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Multi-Process Structuring and the Thoth Operating System
David R. Cheriton

This thesis explores the idea of structuring programs as many concurrent processes. It
is based on work done in designing, implementing, and using the Thoth operating sys-
tem. Thoth implements an abstraction that provides facilities to make this type of
structuring attractive, namely inexpensive processes, efficient interprocess communica-
tion, dynamic process creation and destruction, and groups of processes sharing a com-
mon address space. The abstraction is first described, including measurements of its
performance and comments on its portability. Next, the abstraction is motivated by
considering various design and implementation trade-offs. Then, the design of multi-
process programs is discussed, both in terms of general principles, and by giving specific
uses and examples. The examples are drawn from the operating system and the Thoth
text editor. Finally, the feasibility of verifying the system is considered. This is
motivated by the desire to exploit the multi-process structure of the system to aid in
verification. We conclude that structuring programs as multiple processes can have
significant benefits, especially for programs that respond to asynchronous events.

1 Introduction

Multi-process structuring is the use of several processes to structure programs. The
term process is used to mean a sequence of actions that can logically execute con-
currently with those of other processes. A program can be structured by using several
processes and their pattern of interaction to form the frame or skeleton on which the
rest of the program is built. The term program includes large programs such as
operating systems, compilers or data base management systems, medium-sized pro-
grams such as a text editor, and small programs such as file utilities. It is the conten-
tion of this thesis that:

(a) Processes can be used with considerable benefit to structure programs provid-
ed these programs can be designed for and executed in an environment
suitable for multi-process structuring.

(b) An environment suitable for multi-process structuring can be provided at a
reasonable cost.

These claims are supported by consideration of what constitutes a suitable environ-
ment for multi-process structuring, consideration of the design and implementation of
such an environment (as the abstraction implemented by an operating system), discus-
sion how to structure programs using processes in this abstraction, and consideration
of the benefits of this type of structuring.

The research reported here was performed in the course of developing and exper-
imenting with an actual operating system which uses these ideas, namely. the Thoth
portable real-time operating system. Considerable experience was gained in the use of



multi-process structuring while implementing this system. Further experience came
from developing application programs such as a text editor and an inter-machine
communication program. Measurements of system performance and extensive use of
the system have provided empirical evidence to support the practicality of the imple-
mentation.  Finally, the many iterations of the design and implementation process led
to the discovery of several problems. the consideration of many alternative designs.
and the development of new designs. What we learned and abstracted from this ex-
perience is used to support the concepts of multi-process structuring.

1.1 Motivations

The exploration of multi-process structuring was motivated by problems encountered
in the design of programs that must respond to asynchronous events. For example,
an operating system must respond to many different asynchronous events signalled by
interrupts.  Multi-process structures can be used to achieve the same level of asyn-
chroneity as exhibited by the set of events to which the program must respond. That
is. events are mapped onto processes so that each event is synchronous with respect to
the process that responds to it. This approach suggests a discipline of programming
in which a process only responds to events synchronized with its execution and the
global asynchroneity of the total program is realized by the asynchronous execution
of its multi-process structure. The synchroneity of the individual processes then
makes the program more understandable.

Further motivation comes from the observation that some programs comprise
several somewhat independent sequences of action even though they are not required
to respond to asynchronous events. In such programs, it is attractive to make each
such sequence of actions a separate process, rather than using conventional control
structures to implement the sequences within one process. This avoids complicated
control flow making the program simpler, easier to understand, and easier to modify.
For example, a program requiring garbage collection might be structured so that the
garbage collection is the task of a separate process (Wadler (1976)). This motivates
the use of processes for structuring programs at a level comparable to the use of con-
trol structures and data structures in programming languages. A process in a pro-
gram can also be viewed as analogous to a person in an organization. With these
people-like processes. we can exploit our understanding of and familiarity with human
organizations to structure programs. This anthropomorphic view of processes has
been used in the work reported here but is not considered explicitly in this thesis.

Multiple processes can be used to make a program execute with real or logical
parallelism. The decomposition of a program into processes also suggests the possi-
bility of distributing these smaller units over several machines. This more convention-
al motivation for multiple processes is of interest: however, it is not the central
motivation for multi-process structuring.

Finally, curiosity prompts an exploration of multi-process structuring to gain
more understanding of its problems. implications and applications.
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1.2 Brief Survey of Related Work

The concept of process evolved from the development of multi-programming: different
programs running concurrently were considered to be executed by different processes.
Thut is, one way to run K programs concurrently on a single processor machine is to
simulate a K processor machine. Thus the process evolved as what might be called a
"virtual processor”. Each virtual processor was implemented as a set of time slices of
the reual processor and was thus similar to the real processor. The UNIX operating
system (Ritchie and Thompson (1974)) is an example of a system providing many
processes in this manner.

Brinch Huansen (1969) is credited with introducing the idea of message-passing
for interprocess communication with the RC 4000 system. Dijkstra has been most
prominent in articulating problems arising with concurrent or non-deterministic pro-
grams and also in providing insight into their soluticn. The semaphores and secre-
taries of Dijkstra (1972). the critical regions of Brinch Hansen (1970), and the moni-
tors of Brinch Hansen and Hoare (1974) arc examples of work on process synchroni-
zation. Jammel and Steiger (1977) discuss their manager concept in comparison to
monitors. Their manager is related to our use of a process stereotype, called a
proprictor. for process synchronization.

Few operating systems are structured using processes beyond the implementation
of processes to execute user programs. The system described by Jammel and Steiger
was structured with processes but we understand that it has not and will not be com-
pleted. The DEMOS system being developed for the Cray-1 (Baskett et al. (1977)
and Powell (1977)) is being implemented using processes and message-passing.

Multi-process structures for various operating system mechanisms have been pro-
posed in the literature although few have been implemented. Hoare (1973) gives a
design of u paging mechanism using processes: however, the design is unrealistic be-
cause it requires two processes per page of information. A design by Huber (1976)
for a demand paging system uses one process per memory level in the memory hierar-
chy. The thesis by Janson (1976) explores the use of type extension for structuring
virtual memory mechanisms., The extended types are implemented by so-called type
managers, which Janson points out (but does not pursue) could be implemented as in-
dividual processes. Janson’s thesis deals extensively with a redesign of the Multics
virtual memory mechanisms as an example of the application of type extension.

This thesis includes a study of the feasibility of verifying the Thoth system.
Most previous work on verification is devoted to formally verifying rather small ex-
ample programs to demonstrate a technique. The approach we have taken differs
from this because the program is given. Our objective is to consider how to verify it
using any techniques available. In this sense. it can be regarded as applying existing
verification ideas to an operating system, rather than exploring verification in itself.
Our discussion draws on basic aspects of sequential program verification as developed
by Flovd and Houare, in the sense that one strategy is to reduce the verification ol the
system to units or modules that are manageable under sequential program
verification. This discussion does not exploit the full power and generality of mechan-
isms presented in the parallel program verification literature (Ashcroft (1973). Owicki
(1975), Lipton (1975)) because the restricted type of process interaction in the Thoth
system considerably simplifies its paratlel behavior.



1.3 Thesis Overview

Our objective has been to explore the idea of multi-process structuring: the method
used was to design and implement an abstraction for multi-process programs, and
then experiment with this abstraction. This thesis describes, in part, what we did.
why we did it that way, and what we learned.

Chapter 2 describes the design and implementation of the Thoth operating sys-
tem. Its history. development. and current state is discussed, followed by a descrip-
tion of the abstraction implemented by the current system. We regard this abstrac-
tion as a significant contribution in itself. being a simple yet adequate, efficient-to-
implement, and machine-independent abstraction that has evolved through consider-
able experience with earlier versions of this and other operating systems. It provides
facilities that have been found necessary or useful for multi-process structuring. This
description captures the system at its present stage of development; critical comments
throughout the thesis show that it is subject to improvement. The temptation of
confusing what should have been implemented with what has been implemented was
resisted. The chapter includes a discussion of the portability of Thoth, describing the
main portability problems addressed during the development of Thoth. For a more
complete discussion. the reader is referred to Cheriton et al. (1977). Chapter 2 ends
with a section on measurements of time, space and real-time performance characteris-
tics of the system. These measurements are machine-dependent but give the reader a
cost busis on which to judge the practicality of the system, and thus the ideas present-
ed.

Chapter 3 presents design and implementation issues associated with implement-
ing an abstraction for multi-process structuring with particular emphasis on motivat-
ing the abstraction described in Chapter 2. Issues are considered under the headings
of processes. process identification, interprocess communication and dynamic
configurability.

Chapter 4 discusses the design of multi-process structures and the applicability of
these structures to problems of resource management. synchronization, exception han-
dling and distributed computing. Examples are drawn from the operating system and
various programs that run under the Thoth system.

Chapter 5 examines the internal structure of the operating system. It constitutes
our largest and most interesting example of multi-process structuring. Several advan-
tages of this structuring are presented and current inadequacies are exposed. The
latter prompt including a number of remedies which might be implemented in the fu-
ture.

Chapter 6 presents a study of the feasibility of verifying the operating system.
This is structured by outlining a scheme of verifying the system, and pointing out
difficulties and suggesting some remedies. The outline is an application of techniques
we have developed for reasoning about multi-process programs, a demonstration of
how the multi-process structure of the system makes it amenable to verification, and a
treatment of many problems arising in the verification of a large, concurrent program.

The final chapter draws together conclusions from preceding chapters and sug-
gests directions for further research based on multi-process structuring.
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It is conventional for an overview to indicate the original results or contributions
of a thesis. Unfortunately. what are viewed as contributions cannot be concisely stat-
ed. Sacrificing precision for brevity. the main contributions are considered to be:

1. the design, implementation. and motivation of the Thoth abstraction.

. recognition of the value of discarding concurrency as the main motivation

for multi-process structuring.

3. recognition and clarification of problems with message-passing. process
identification. synchronization. and process destruction.

4. a design approach in which the process structure forms the skeleton of a
program from which a structure or an organization on functions and
resources is derived.

5. the particular multi-process structures of Chapters 4 and S as programming
techniques.

6. the technique used to decompose the verification of Thoth and the treatment
of the basic abstraction. in particular the message-passing.

1o

We also consider the implementation and testing of many of the ideas presented here
as contributing to the evaluation of the practicality of these ideas.

The presentation that follows warrants a few general remarks. [t is advanta-
geous to remain faithful to the current design and implementation of Thoth in our
discussion so that remarks are supported by implementation, testing, and experience.
It is also advantageous to include how we now believe the system should have been
done. drawing on the benefit of hindsight and experience. It is equally advantageous
to abstract the discussion with a particular system to provide wider applicability of
our conclusions. All three of these competing goals govern this thesis: we trust that
the reader will recognize the different tacks in the course of the discussion.

2 Description of Thoth

A description of the operating system is provided for several reasons. First. ex-
amples used in the thesis are drawn from the operating system and various applica-
tion programs running under Thoth so the reader should be familiar with the system.
Second. because the system has been used as a reseurch vehicle for testing ideas. a
description of the functionality and performance of the system provides the reader
with a basis on which to judge the practicality of these ideas. Third, design of the
abstraction for an operating system is an important and a difficult aspect of develop-
ing the system. The abstraction described here has evolved from ideas in previous
operating systems, and from versions and revisions of our own ideas: it is thus in-
teresting in its own right.

What follows is a synopsis of the history and current state of Thoth. a descrip-
tion of the abstraction implemented by the system. comments on the portability of the
system, and the results of measurements of system performance.



2.1 History and Current State

Thoth has evolved through several generations. It was first implemented by
Lawrie Melen and Michael Mualcolm as a small run-time executive in May 1976, run-
ning o single user or stund-alone system on a Data General NOVA: it was ported to a
Texas instruments 990 by Melen in August 1976. System development was done us-
ing a compiler and other support software running on a Honeywell 6050, much of
which was developed by Michael Malcolm. Reinaldo Braga. Gary Stafford. Fred
Young. Morven Gentleman and Gary Sager. Melen (1976) reported some of this
work 1n his master’s thesis.

The author started working on the system in August 1976. This work included
rewriting the run-time executive to form the kernel of the present system, designing
and implementing a disc-based file system (operational in January 1977), and extend-
ing the system to use memory mapping hardware and swapping (August 1977). This
work was done jointly with Michael Malcolm, and benefited greatly from input from
other members of the Portability Group. The file system was rewritten by Alfredo Pi-
quer in the spring of 1977, Bert Bonkowski has been a major worker on the com-
pilers for the base language since September 1976. The Thoth text editor was origi-
nally written by Patricio Poblete in the summer of 1977. The author rewrote it early
in 1978 to improve the multi-process structure, improve its performance. and to allow
its use as an example in this thesis.

device-independent input/output, a tree-structured file system, multiple terminals, and
swapping.  All of the system software and documentation is now maintained on a TI
990/10 Thoth system. This system is used to support porting of the system to new
machines and ongoing development.

As mentionned above. the system is running on the Texas Instruments 990 and
the Data General NOVA. two minicomputers with quite different architectures.
Thoth is currently being ported to the Honeywell Level 6 minicomputer.

A range of system configurations is possible. The facilities described above are
those of u larger configuration: a smaller system can be configured with only multiple
processes. dynamic memory allocation and interprocess communication.

2.2 The Abstraction

Thoth implements a program environment referred to as the Thoth abstraction.
This abstraction is implemented as a base language and a set of system functions im-
plemented in this language.

The base language, described by Braga (1976), is a stack-oriented language
derived from B (Johnson and Kernighan (1973)). which is itself a descendant of
BCPL (Richards (1969)). Programs in our base language, as in BCPL, are written as
a sct of functions and data modules which have global scope. Variables local to a
particular function. including its parameters, are dynamically allocated on a stack so
that functions can be reentrant. A function is invoked as either a subroutine or as a



separate process. When invoked as a subroutine, the function uses the caller’s stack:
when invoked as a process. a new stack is allocated separate from that of the invok-
Ing process.

The language includes statements for enabling and disabling hardware interrupts
to provide indivisible execution of sections of code. There is also a rwir statement
which provides a way of inserting assembly language directly into the code. This
makes it possible to use special 1/0 instructions. and makes the presence of such
machine-dependent code obvious. Twit statements are used almost exclusively for im-
plementing primitive functions in the operating system. and are seldom necessary (or
desirable) in user programs.

A program comprises a4 tree of processes which interface with the Thoth abstrac-
tion via the base language and the invocation of the system functions described below.
This tree of "user processes” is a subtree of the tree of system processes.

The system functions forming the rest of the abstraction are invoked as subrou-
tines in the base language. The system can be configured as a run-time executive so
that the system functions are linked and loaded with the user program into one exe-
cutable core image. The system can also be configured so that system function calls
in g user program are traps which are dynamically linked to system functions. We
have used the convention of beginning all global system names with a ".” so the user
can avoid inadvertently replacing a system function or data module.

The remainder of this section describes the part of the abstraction available as
system function calls.

Memory allocation: A contiguous array or vector of memory is allocated by the func-
tion call

vec = Alloc__vec( size )

This returns a pointer to a vector of size+1 words, which can be indexed as vec[0]
through vec[size]. The vector is returned to the free list by

Free( vec)
Process creation: A process is created with a specified stack size by

size )

id = .Create( funct, stack

where funct is a pointer to the function to be invoked as a process. A unique nonzero
process id is returned which is used in future references to the new process. The
created process becomes a direct descendant of its creator in the trec of processes.
An optional third argument can be passed to .Create to specify the priority of the new
process; the default priority level is 0. The process is created in the embryonic state
and cannot execute until it is readied:

.Ready( 1d, argl, arg2, ... )

.Ready passes its (optional) arguments to the new process and maukes it cligible for
execcution.

CPU allocation: A process eligible for execution is said to be ready. A process that



is not ready is said to be blocked. Of the highest priority ready processes, the process
that has been ready for the longest time is allocated the CPU, and is said to be ac-
tive.

The active process relinquishes the CPU either by blocking or by being preempt-
ed when a higher priority process becomes ready. The latter is caused either by a
hardware interrupt or by an action of the active process. The active process may
block by attempting to communicate with another process or by waiting for an inter-
rupt to occur. Certain system functions, such as input and output primitives, use in-
terprocess communication and may block the active process.

It follows from the CPU allocation rule that on a single processor machine. a
process executes indivisibly with respect to processes of the same or lower priority un-
til it blocks. This relative indivisibility is a useful property of Thoth processes.

The highest user priority is 0; lower priorities are greater than 0. The root of a
subtree of user processes normally has priority 0. Thoth system processes have higher
priorities than user processes.

Interprocess communication: There are four primitives for passing messages between
processes. All messages are 8 words in length,

A process sends a4 message to another process by
id = .Send( msg, id )

The contents of the 8-word msg vector is sent to the process specified by id. The
sending process blocks until the receiving process has both received the message and
sent back an 8-word reply using .Reply. The reply message overwrites the original
msg vector.

If the receiving process does not exist, .Send returns O and the msg vector
remains unchanged. Otherwise .Send returns the id of the process that sent the reply.

The receiving process uses

id = .Receive( msg)
or

idl = Receive( msg, id2 )
The receiving process blocks, if necessary, to receive an 8-word message in its msg
vector. When the optional id2 parameter is present, the message must come from the
specified process. When the id2 parameter is not present, the first process sending to
the receiving process will satisfy the receive. In the following, we refer to the former
case as "receive-specific” and the latter case as "receive-any”. The id of the sending
process is returned for later use in

.Reply( msg, id )
The 8-word reply contained in the msg vector is sent to the specified process awaiting

a reply from the receiving process. The sending process is readied upon receiving the
reply, and the replying process does not block.



An attempt to reccive from a non-existent process results in an undefined mes-
sage and a O being returned by .Receive. A .Reply to a non-existent process is a null
operation,

Instead of replying to a sender, the receiving process can forward the message.
possibly changing its contents, to another process (or even itself):

.Forward( msg. from__id, to_id )

The process specified by from__id must be blocked awaiting a reply from the for-
warding process. The effect of .Forward is the same as if the from_id process had
performed a .Send to the process specified by to__id of the 8-word message in the for-
warding process’s msg vector. The forwarding process does not block. A process re-
ceiving a message can determine the forwarder of the message by

id2 = Forwarder( id1 )

where id1 specifies the sending process; id2 is equal to id1 if the process was not for-
warded.

These primitives provide a facility for short messages. A process can transfer
larger amounts of data between two processes using
Transfer( dest__id, src__id, dest, src, size )

which transfers size+1 bytes from src in the address space of src__id to dest in the
address space on dest__id. Both src__id and dest__id must specify a process that is
awaiting reply from the invoking process or else is the invoking process.

Interrupts: Interrupts are serviced by system processes. These processes invoke
Await__interrupt( device__id )

to block until an interrupt occurs for the specified device. Such an interrupt can only
occur when no processes of the same or higher priority are active. Hence, an inter-
rupt causes its associated process to become both ready and active.

Process destruction: Any process can destroy a process (possibly itself) by
.Destroy( id )

The destroyed process ceases to exist in the sense that its id becomes invalid, it can
no Jonger execute, and its stack and all memory it has allocated are returned to the
free list. When a process is destroyed, all of its descendants are also destroyed.

For any process blocked doing a .Send to or .Receive from a process that is des-
troyed, the result is the same as if the .Send or .Receive had been executed for a
non-existent process. In particular, when a process is destroyed, all blocked processes
attempting to send to or receive from the deceased process become ready.

Teams: Each process belongs to a team which is a set of processes sharing a common
address space and a common free list of memory resources. There are two types of
teams: resident and transient. Processes on resident teams remain in memory and are
higher priority than those on transient teams; transient teams may be swapped to
secondary storage. Transient teams can be created dynamically while resident teams
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are created only when the system is initialized. The priority of a process on a
resident team is fixed throughout its lifetime; the priority of a process on a transient
team is fixed relative to other processes on that team but changes with respect to
processes on other teams. Hence, the relative indivisibility property of a process on a
transient team applies only with respect to other processes on the same team.

Teams allow the use of physical memories larger than the logical address space
on machines with memory management hardware, and greater concurrency via swap-
ping on machines with a secondary storage device suitable for swapping.

Clock: The system can be configured to support a clock abstraction on machines with
a source of periodic interrupts. The clock abstraction supports

.Get__time( date_and__time )
which returns the current date and time,

Set__time( date__and__time )
which sets the current date and time plus

Sleep( date_and__time )
and
.Delay( seconds )

A process invoking .Sleep will block until the current time and date becomes equal to
or later than that specified by the date__and__time vector. A process invoking .Delay
will block until the specified number of seconds has elapsed. Using an optional
second argument to .Delay, a process can block for as little as one clock interrupt
(which is machine dependent). In both cases, the process then becomes ready.

Wakeup( id )
unblocks the process specified by id if it is sleeping or delaying.

Input/output: The input/output system provides a reasonably uniform interface with
peripheral devices and files so they can be used interchangeably by most programs.
Each device is assigned a unique name. e.g. terminals are named "$tty0”, "$ttyl”, ...,
the discs are named “$disc0”, ..., and so on. The random-access memory can be
treated as an input/output device, called ”"Smem”. This allows the use of
input/output editing functions on strings of characters stored in memory.

A file or device is accessed by
fcb = .Open( pathname, mode )

where pathname is a string specifying either the name of a device or the pathname of
a file (which will be defined later) and mode is a string specifying the mode of access
(read, write, append or read/write). Append mode is equivalent to write mode on
devices and is defined further for files in the next section. In the remainder of this
section, we will use the word file to mean "file or device”.

The function .Open returns a pointer to a file control block which contains a
description of the accessed file and any necessary buffer(s); this pointer serves as an
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identifier for the accessed file. The process is said to own the fcb and no other pro-
cess can use it although other processes can still access the file using separate fcbs.

Each open file has a current byte position. When a file is opened, this current
byte position is set to the beginning of the file except in append mode where it is set
to the end of the file.

An fcb can be used to transfer data to or from a file after it is selected. An fcb
is selected for input by

Select__input( fcb )
An fch is selected for output by:
Select__output( fcb )

These two functions verify the fcb ownership and access mode. Only one fcb can be
selected for input at a time, similarly for output.

Data is transferred one byte at a time from a file selected for input by
data = .Get()

.Get returns the current byte right-adjusted and zero-padded on the left. Similarly.
data is transferred to a file selected for output by

Put( data)

.Put writes the right-most byte of the data word to the current byte in the file. Both
.Put and .Get have the effect of incrementing the current byte position.

These data transfers are implemented with device-dependent buffering schemes.
To guarantee that all bytes transferred by .Put have actually been output to the file

.Flush()

ensures that data output to the file selected for output has been output to the actual
file device.

.Seek( fch, where, how )

changes the current byte position. The "how” parameter specifies the interpretation of
the "where” parameter. The three possibilities are: absolute byte which sets the
current byte position to the where-th byte in the file; relative byte which increments
the current byte position by where, which may be negative: absolute block which sets
the current byte position to the first byte in the where-th block of the file. Absolute
block seeking applies only to devices and files on devices for which the concept of a
block is appropriate.

.Close( fcb )

flushes output (if necessary) and removes access to the file. When a process is des-
troyed. all of its accessed files are automatically closed.
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File system: The system can be configured to support a file system on target machines
with one or more direct access secondary storage devices. The file system is struc-
tured as a tree in which each node is a file. In addition, each node may have sub-
structure consisting of one or more descendant nodes.

Each node has a name consisting of up to 32 characters and all the immediate
descendants of a node have unique names. The root node of the tree has the unique
name *. A node is specified by a pathname which is a sequence of names separated
by the / character. A pathname describes a path through the tree. For example, the
pathname

*
refers to the root node, and the pathname
*/src/io/.Seck
refers to the node named .Seek which is an immediate descendant of io, which is an

immediate descendant of src, and src is immediately under the root.

The nodes which are direct descendants, or sons, of a given node, their father.
are ordered. The file system provides functions which return the pathname of the fa-
ther, the next brother or the first son of the node specified by a given pathname. This
enables a program to traverse a subtree of the file system.

Each process has an associated current node which is inherited from its parent; it
may be changed by
.Set__current__node( pathname )

The concept of current node allows abbreviated references to files in the subtree root-
ed at the current node. A pathname starting with ”/” describes a path starting at the
current node. The current node is referred to by

@

For example, if the current node is */src/io then the file */src/io/.Seek can also be
referred to as either

/.Seek
or

@ /.Seek

Two functions are used to modify the file system tree structure. A new node is
created by

.Make__node( pathname )
The space occupied by a file is reclaimed and, if it is a leaf, the node is deleted by

.Remove__node( pathname )

A file system structure can be grafted as a subtree to the file system by
.Graft( pathname, device__name )

The root node of the file system structure on the device specified by device__name can
subsequently be referred to as pathname. Nodes in the grafted file system structure
can be referred to as described above using pathname as the name of the root node.



Ungraft( pathname )

ungrafts the file system structure rooted at pathname making the root of the previous-
ly grafted substructure inaccessible using pathname. Grafts allow the use of multiple
and removable secondary storage devices.

The contents of a file are regarded as an infinite sequence of bytes. Initially all
of the bytes are null. The function .Put, described above, is used to modify individual
bytes in a file when it is open with write or append access. A file is physically
represented by one or more blocks, where the size of a block depends on what is con-
venient or efficient for the particular device. All bytes after the last physical block
are null by definition. Files open with write or append access are automatically
grown to contain the data written. A file open with write access can be explicitly
changed to a specified size by

.Change__file( fcb, size__in__blocks )

after which it will only become smaller by another call to .Change__file or by remov-
ing the file, although the file will still be grown as required to contain data written.

The current byte position is determined by

position = Where( fcb )

The file mark is a byte position in the file which is remembered over accesses to
the file. The mark is initialized to O when the file is created. The mark of the file
selected for output is set to the current byte position by

Mark()

When a file open with only write or append access is closed, the mark is set to the
current byte position. The current byte position is set to the mark by

Seek__mark( fcb )
or when a file is opened for append access.
At mark( feb )

returns | if the current byte position is equal to the mark, and 0 otherwise. The con-
cept of mark generalizes that of "end-of-file” in being a position in the file that can be
retained over several accesses to the file.

2.3 Portability

Thoth was developed as part of a project to produce a portable programming
system for a large class of minicomputers. The interest in portability was motivated
by problems in interfacing with the hardware and system software of target machines
when porting application programs. Problems of interfacing with the target machine
system software are generally more difficult than those of interfacing with the target
machine hardware because of the wide variety of abstract machines presented by the
compilers, assemblers, loaders, file systems and operating systems of the various tar-
get machines. Our goal was to investigate the feasibility of developing portable sys-
tem software and porting it to "barc” hardware. Because the same system software
would be used on different hardware. application programs can be designed for and
executed in the same abstraction on diflferent hardware. Consequently, most applica-
tion programs which use Thoth can be portable if not machine independent.
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Most previous work on software portability has focused on problems of porting
programs over different operating systems as well as over different hardware. To our
knowledge, this is the first time an entire system has been designed for portability.
Our experience indicates that this approach is practical both in the cost of porting the
system and in the time and space performance of the system on the target machine.

An earlier experiment in operating system portability has been reported by Cox
(1975). More recently, the UNIX operating system (Ritchie and Thompson (1974))
has been moved from a PDP-11/45 to an INTERDATA 7/32; this port was done
first by Miller (1978) at the University of Wollongong, and also Johnson and Ritchie
(1977) at Bell Telephone Laboratories.

Three main portability problems were addressed during the development of
Thoth. The first was to design an abstraction of a minicomputer that could be
efficiently realized on a large number of machines. The dual problem is choosing the
domain of target machines so that a reasonable (and efficient) abstraction is possible.
The second problem was to represent the abstraction in such a form as to minimize
the effort required to implement it on target machines. The third problem was to
design and implement software tools to automate as much of the implementation as
possible.

A high-level language has been used to represent most of the system so that most
of the translation into machine code can be done by a compiler. The language has
been designed to encourage the use of machine-independent constructs; however
machine-specific code can (and sometimes must) be used. To document machine
dependencies, the software is divided into components which are stored in separate
files, each containing either a single function, a set of related global data modules, or
a set of related manifest definitions. Each file is classified as either machine-invariant
or machine-specific; this classification is implied by the subtree of the file system in
which the file is stored. The machine-specific components which need to be modified
during a port are thus isolated from machine-invariant code.

The machine-specific components of the system which must be changed during a
port may be viewed as interfaces between system abstractions and machine hardware.
The main interface is provided by the compiler which maps the machine-independent
high-level language constructs into machine instructions. The code generation phase
of the compiler is thus an important interface which must be changed during a port.
Other interfaces are represented by assembly code and rwit statements in the high-
level language. Besides the compiler, there are three main interfaces.

The first interface is in the primitive operations of readying, blocking and
preempting processes. The form of these primitives is machine-invariant, but a small
amount of interface code must be written to load and store the volatile environments
of processes. The abstraction of interrupts is a more complicated aspect of process
preemption and activation; this abstraction is implemented by an assembly coded
module called the interrupt handler.

A second interface is between the input/output system and the hardware inter-
faces. For character-oriented devices, such as teletypes, simple functions which "out-
put a character and wait for an interrupt”, or "wait for an interrupt and then input a
character” are implemented using twir statements. A direct access secondary storage
device is treated as an indexed sequence of fixed-size blocks which may be read or
written randomly by referring to the index of the desired block. The block size may
vary from one device to another and there may be several logical devices per physical
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device as in UNIX (Ritchie and Thompson (1974)). This abstraction is easily imple-
mented in the device handlers. For purposes of program loading and swapping, the
random access device handlers also support reading and writing of multiple contigu-
ous blocks, which is supported directly by the hardware on many machines.

A third interface can by used when appropriate memory mapping hardware is
available. This consists of a small number of functions for changing memory maps.

Implementing these interfaces is relatively straight-forward because, except for
the memory mapping interface, no design decisions need to be made. The interface
functions have simple well-defined semantics. In most cases, the interface functions
from a previous implementation for another machine can be used as prototypes in
which only the machine-specific parts must be changed. That is, they serve as a
model for the new implementation.

Interface code for the NOVA implementation contains 216 assembly language
instructions and 201 ¢wir instructions. The TIT 990 implementation contains 638 as-
sembly language instructions and 334 rwir instructions. The Honeywell Level 6 im-
plementation contains 251 rwit statements and 457 assembly language instructions.

2.4 Performance and Real-time Properties

Measurements of operating system performance are important to the design of
application programs, particularly real-time applications. Such measurements are
also useful for evaluating the efficiency of the system design and implementation.

Thoth has been designed to be configurable to a variety of real-time applications.
The basic Thoth configuration includes support for the following:
dynamic memory allocation
process creation
interprocess communication
input/output
$tty0
Optional facilities that can be configured include:
clock
process destruction
additional devices
file system
multiple teams and swapping

Thoth may be used in two different modes: multiple team and single team. In a
multiple team system. the system code is loaded into primary memory before (i.e.,
separately from) any of the user tcams. In a single team system, all system code is
linked with the user code as a single core image. A configuration that allows multiple
teams also provides the ability to load executable teams from files, swap teams when
the primary memory resource becomes scarce, enforce an equitable sharing of the
CPU resource among the teams, and reclaim resources from teams that terminate ei-
ther normally or abnormally. For these reasons, any configuration that includes mul-
tiple teams must also include the file system, clock and process destruction options.
If the system is configured to run a single user team "stand alone,” there is no inter-
dependence of the options: thus, the user’s requirements alone dictate the options to
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be included.

The space requirements for a null user team are given in Table 1; the figures are
separated into requirements for code and data. Code includes instructions and exter-
nal variables. while data includes team descriptors, process descriptors, stacks, and
buffers allocated during system initialization.

A substantial decrease in size can be realized by eliminating the input/output
primitives and support for $tty0. The code size for a stripped version of Thoth can be
reduced to approximately 2000 words for the NOVA/2 and 2700 words for the TI
990. The stripped versions are indicative of the sizes possible for specialized control
applications.

NOVA TI 990 Level 6

code data code data code data
basic system 5166 257 5588 307 5499 243
clock 767 166 930 180 956 175
destruction 715 283 1024 464 972 229
disc i/o 668 121 1359 303 963 224
file system 4319 415 4730 697 4935 425
additional tty 0 247 0 305 0 232
multiple teams + * 4396 * + *

Table 1: Sizes of Thoth configurations. All sizes are given in 16-bit words. The
total space required by a given configuration can be computed (approximately)
by adding the requirements of the options to those of the basic system. Note
that since the second tty shares code with the first, it requires only the space for
an entry in the configuration table and data for additional driver processes.

+ These measurements are not currently available.

* The data size for multiple teams is decided when the system is generated; the
data space required depends on the maximum number of user teams and
processes and the number of devices supported by the system. Systems currently
running use from 3600 to 6300 words.

The system running on a TI 990 that is used for all software development and mainte-
nance and which supports 5 terminals, 2 disc drives, a printer and a synchronous com-
munication line uses approximately 27.6 K for the memory resident part of the sys-
tem and uses the remaining 44.4 K words for swapping of user and system teams.

The speed of various Thoth primitives was measured by counting the number of
times a primitive could be executed within a given period of time and calculating the
unit costs from these figures. This measurement technique introduces some error due
to overhead for dispatching, handling clock interrupts, loop control and counting.
The results of these measurements are presented in Table 2.
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NOVA/2  990/10  Level 6

.Send/.Receive/.Reply 656 1862 1320
.Forward 323 1025 630
.Create/.Ready/.Destroy 5000 16160 11023
Put 88 176 164
.Get 69 131 128

Table 2: Times in microseconds for primitives.

Input and output that is block rather than byte oriented can be done in a port-
able manner using facilities not described in this thesis.

A further design goal has been that the system meet the demands of real-time
applications. To this end, the system guarantees that the worst-case time for response
to certain external events (interrupt requests) is bounded by a small constant. To
achieve this goal, we have required that the system have bounded disable time. That
is, the maximum time that interrupts are disabled in the system is bounded by a small
constant. It was not clear initially that this goal was possible or practical to achieve.
We contend that the multi-process structuring of the system has aided in achieving
this goal. We discuss below some measurements of the real-time properties of the
system.

One measure of the real-time response of a system is the maximum amount of
time required to respond to an interrupt. In lieu of a hardware monitor to measure
these times directly, we have used a simulator (Sager(1976)) which provides measure-
ment of worst-case disable times and response times to interrupts. The disable times
are given in Table 3.

Table 3: Worst case disable times in microseconds for Thoth on the
NOVA/2. The associated function name indicates where the disabled
code begins.

disable time  function

297 .Send

266 .Free

254 .Receive

187 clock processes
162 .Ready

111 Alloc__vec

107 Await__interrupt

Response time for a specific device is defined to be the elapsed real time from
"device completion” until the CPU ”services” the resulting interrupt. For the NOVA
computer, Data General (1974), "device completion” occurs when the device sets its
DONE flip-flop to 1, and the CPU services the interrupt by setting the device’s
DONE flip-flop to 0. The NOVA is capable of selectively disabling devices for inter-
rupts; this allows the use of multiple priority levels for interrupt handler processes.
When a device’s handler process is active, interrupts are selectively disabled for dev-
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ices with handler processes of the same or lower priority; those with handler processes
of higher priority may still interrupt and thereby preempt the lower priority process.

The best response time for the $tty0 output is 68 microseconds. The best
response time for the real-time clock is also 68 microseconds. The worst cases occur
when both devices complete just as a lower priority process enters the worst-case dis-
abled section of code (see Table 3). Because the real-time clock handler process has a
higher priority than the $tty0 output handler, the worst case time for the clock is
68 + 297 = 365 microseconds, assuming all other device handler processes are of
lower priority. With this assumption the worst case time for the S$tty0 output is
68 + 68 + 297 + x > 433 microseconds, where x is the time spent in the real-time
clock handler from the occurence of one clock interrupt to waiting for the next clock
interrupt. Unfortunately, we have no convenient way of measuring the worst case
value for x; this value would occur at the beginning of a year. This is consistent with
the observed worst-case response times of 316 microseconds for the real-time clock
and 594 microseconds for $tty0 output.

3 Design of a Multi-Process Abstraction

This chapter describes some of the problems encountered when designing and
implementing Thoth and discusses the rationale behind design decisions that lead to
the abstraction described in the previous chapter.

The design of the abstraction was based on two general requirements: (1) The
abstraction must support the multi-process structuring of programs; (2) The abstrac-
tion must be realizable by an efficient implementation. The second requirement made
it necessary to consider the implementation as the system was designed. Because of
this, the two issues are discussed together in this chapter.

The following is a list of facilities that the abstraction should provide to make
multi-process structuring attractive:

1. many inexpensive processes - A system that provides few or relatively expen-
sive processes discourages or forbids their use for structuring programs.
Fast process switching is required because many processes executing
concurrently generally requires more process switching. Also, sets of
processes interact, requiring synchronization, and consequently process
switching.

2. efficient process identification - Processes must be identified or named to
specify process interactions, such as which process is to receive a mes-
sage.

3. inexpensive interprocess communication - Processes must communicate to
interact and cooperate productively. This requirement includes the need
to communicate events such as breaks and faults to a process, events
that occur asynchronously with respect to the process’s execution. To
make this communication practical, it must be inexpensive.

4. Dynamic configurability - It must be possible to dynamically allocate
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resources as required by the program and release them if and when they
are no longer required. Dynamic process creation and destruction are
required because processes are resources.

Problems and solutions associated with satisfying these requirements are con-
sidered in the following sections.

3.1 Process Implementation

The abstraction of a process is implemented by a process descriptor, a process
data area and functions that switch the processor among these processes. The process
descriptor contains system information such as process state, priority, creator and the
volatile environment. The volatile environment is a set of values for the set of
machine registers that are physically but not logically shared by all processes. Typi-
cally this includes the instruction counter, condition or status words and other proces-
sor registers. In Thoth. the volatile environment also includes a global variable, ac-
tive, containing a pointer to the process descriptor of the active process, and a vari-
able containing a pointer to the top of the stack for the active process (used in stack
overflow checking). A process is the active process at a given time if its volatile en-
vironment 1s defined by the respective machine registers at that time. All other
processes have their volatile environments specified by their process descriptors.

Providing many processes requires keeping the cost per process small. This cost
huas two components: time and space.

The time cost is mainly that of switching processes. This cost is the cost of load-
ing and storing the volatile environment plus the cost of searching for the next process
to activate. The first cost depends on the size of the volatile environment and the
hardware support for loading and storing it. The second cost is determined by the
CPU allocation rule and its implementation. In the following, we consider the Thoth
CPU allocation rule, how it is implemented, and its advantages and disadvantages.

The next process to activate must be a ready process so it is more efficient in
time to only search over the set of ready processes (rather than over all processes).
Thoth employs a data structure that allows fast identification of the ready processes.
For each priority level, there is a queue of ready processes. The processes in each
queue are ordered by the time at which each process became ready, the most recently
readied process last in the queue. There is also a queue with two entries per priority
level, ordered by priority. The first entry for a priority level points to the first ready
process (if any) at that priority level. The second entry points to the last process in
this qucue, used for adding processes to the end of the queue. Only this last queue of
ready heads needs to be searched to find the process to activate.

A process switch is caused by either a higher priority process becoming ready or
the active process blocking during the execution of a message-passing primitive or
awaiting an interrupt. A higher priority process can be readied either by the active
process or by an interrupt. The two cases to consider are: (1) a higher priority pro-
cess becoming ready: (2) the active process blocking. In the first case, the function
readying the higher priority process also activates it, so only the cost of readying the
process (storing the current volatile environment, and loading the other environment)
is incurred. Thus, a scarch is required only when the active process blocks. In the
second case, there can be no ready processes of higher priority than the active pro-
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cess, so the blocking function need only search the same and lower priority ready
queue heads, thus reducing the scope and hence the cost of the search. There is al-
ways a ready process because the idle process. a system process of lowest priority, is
always ready. Thus, the search is always successful, making it simpler than if it had
to anticipate not finding a ready process, and more efficient if it usually finds a ready
process other than the idle process.

This simple scheme is adequate for a system configured as a single team with the
user program iinked and loaded directly with system functions. The use of multiple
teams suggests two options in extending the CPU allocation scheme: the priorities of
processes on a tcam can be absolute system priorities so processes on different teams
created with the same priority execute with relative indivisibility, or the priority of a
process can be relative to its team. The latter option was chosen for Thoth for
several reasons. The system team needs to be of higher priority than other teams so
at least two levels of team priorities are needed: system and user. Real-time applica-
tions require that it be possible to make some teams higher priority than others,
hence resident teams. Dynamically changing the team priority of transient teams is
used to multiplex (time-slice) the CPU among these teams and to exclude teams from
CPU uallocation when they are swapped out to effect a time-sharing mode of opera-
tion. Finally, although choosing this option abandons the relative indivisibility pro-
perty between processes created at some priority on different teams, this property
seems impossible to retain along with a time-sharing mode for transient teams. That
is, with relative indivisibility, a process executes until it blocks. If it never blocks, no
process of the same or lower priority in the system could ever execute, which is unac-
ceptable in a timesharing mode. Thus, the main advantage of the first option is in-
compatible with timesharing.

In Thoth. the absolute (or system) priority of a process is its team priority plus
its relative process priority. The relative priority of a process remains fixed but the
system priority of a process on a transient team is changed by changing its team
priority. The system increases a team’s priority to give the processes on the team
CPU preference and reduces the priority to bias the CPU allocation to other teams.
When a transient team is swapped out, it is assigned a very low swapped priority and
the heads of its ready queues are removed from the list of ready queue heads so
swapped processes are never considered for activation,

This CPU allocation scheme has several advantages:

1. Finding the next process to activate is always a simple successful linear
search of a short queue, the length being the number of different priori-
ties levels of processes in memory.

2. The process priorities can be used to guarantee real-time response properties
of the system and resident teams. They can be used in general within a
team to give preference in CPU allocation and to achieve relative indi-
visibility.

3. Process switching is oblivious to swapping yet the scheme can be used to al-
locate time slices of CPU preference to transient teams and to make
swapped processes ineligible for activation.

Therefore, it is possible to realize both real-time constraints and a time-sharing mode
with this CPU allocation scheme. In contrast, a strict time-slice CPU allocation
scheme would not allow sufficiently fast activation of processes to allow processes to
be used to service interrupts, as is done in Thoth. A fixed priority scheme would not
provide a time-sharing mode of operation. The time cost of the process switching is
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small; moreover. machines are beginning to appear that provide hardware support for
process switching, an example being the Honeywell Level 6 minicomputer.

The Thoth CPU allocation scheme has the property that two processes on the
same team can effectively "deadlock on the CPU” because the CPU allocation rule
does not guarantee progress to all processes. Two processes on different transient
teams cannot deadlock on the CPU because the relative priorities between processes
on different transient teams change periodically. It is not clear how to remove the
possibility of "CPU deadlocking” without discarding the concept of process priorities
because high priority processes must be guaranteed CPU preference. The existence of
several levels of priorities has proven to be a useful tool, and the absence of the
guaranteed progress property has not been a problem. Because deadlocking on the
CPU is local to a transient team and because all deadlock situations involve "busy
waiting” on some event, it has been easy to avoid.

The space cost of process implementation is that of the process descriptor and
the process data area. The space cost of the code for process switching is not includ-
ed because the cost is small and independent of the number of processes. In Thoth,
the size of the process data area (the process stack) is determined by the base
language, the machine architecture, and the call tree of functions for the particular
process. The size of the process descriptor depends partly on the machine architec-
ture because it must be large enough to store the volatile environment of the process,
which includes the processor state. Thus, machine architectures with large processor
states like the CRAY-1 with its many vector registers would require a large process
descriptor. The size of the process descriptor is larger than the size of the volatile en-
vironment because of additional fields providing other per process information such as
process priority, process identification and process hierarchy information.

There are a number of trade-offs in the implementation of processes. Features
can be added to the basic notion of process presumably making it more powerful but
also raising the cost per process. An example of such features would be additional
scheduling information. We have instead followed the design philosophy of keeping
the notion of process simple and using many of these inexpensive processes to achieve
the required power. There is also a trade-off between the space and time costs per
process. For example, the ready queue structure described above increases the space
cost but decreases the time cost of process switching. Also, Thoth process descriptors
contain redundant information to make certain operations fast at the expense of addi-
tional space in the process descriptor. For example, the process descriptor contains
pointers to the process’s ready queue to make process switching fast. Some of this
redundant information is required for the bounded disable time property. That is, the
extra information allows an indivisible operation to take only a bounded number of
instructions. The system might benefit from a reexamination of the value of some
process descriptor fields now that the trade-offs are more evident.

3.2 Process Identification

A mechanism of naming processes is required when sending and receiving mes-
sages and when readying or destroying a process; this mechanism is called process
identification. A process identifier, called an id, is valid if it refers to an existing pro-
cess. Process identification should be efficient in both time and space. The process id
should require little storage because it is used and stored in many places. Similarly,
the following operations should be efficient:
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1. Testing the validity of a given id.

2. Generating new unigue id’s.

3. Mapping a valid id to the corresponding process descriptor.
4. Invalidating a given id.

The validity test should be efficient because of its use in the message-passing
primitives to check the existence of the specified processes, thus contributing to the
time required for message-passing. More importantly, this test may affect the max-
imum disable times. That is, testing an id’s validity and using it must be done indi-
visibly with respect to process destruction to guarantee its validity when it is used.
This indivisibility is most easily achieved by disabling interrupts.

A further requirement arises from the need to recycle id’s. There is only a finite
number of unique id’s available. Consequently, after a sufficient number of process
creations and destructions. an id must be reused. Because an id may be known to
other processes and is the sole means of identifying a process, reusing an id can cause
problems analogous to that of the telephone company reusing telephone numbers.
That s, an id may be valid but identify a different process than the user of the id ex-
pected. To reduce the likelihood of this confusion, a final requirement of the scheme
is that it guarantee a (long) minimum recycle time for process id’s. The recycle time
for an id is the number of process creations between the destruction of a process with
that id and creation of another process with the same id.

In Thoth, an id may be any non-zero value that can be stored in a machine
word. This provides a large space of possible id’s allowing a long recycle time. The
system reserves space for some maximum number of process descriptors. (For the
purposes of this section, process descriptor is used to mean one of the blocks reserved
for a process descriptor and not the contents of the block.) The number of id’s is
larger than the number of process descriptors, so a4 many-to-one mapping is used to
map id’s onto process descriptors. Let N be the number of process descriptors and
therefore the maximum number of processes. The id is mapped into a process
descriptor as follows. There is a vector with N entries, .Pd__bundle, each entry of
which points to a process descriptor. Given an id, the (id modulo N)-th entry of
.Pd__bundle points to the process descriptor corresponding to the id. Therefore, for
each k between 0 and N-1, every value i such that k = i mod N maps to the same
process descriptor.

Each process descriptor contains a field called ID. A process id, k, is valid if the
ID field of the process descriptor to which it maps contains the value k. Therefore, it
is simple to check in a bounded amount of time whether a 1-word value is a valid
process id.

In practice, we restrict the number of entries in .Pd__bundle to be a power of 2
so that the modulo operation may be performed by a bit-wise logical AND. To avoid
forcing N to be much larger than the maximum number of processes expected or re-
quired. the extra entries of .Pd_bundle are mapped to a "pseudo process descriptor”
which is marked as in use but not valid. All id’s that map to these entries are not
valid. For example, if 258 process descriptors were required. the .Pd__bundle would
have 512 entries but only the first 258 entries would point to distinct process descrip-
tors. The remaining entrics would point to the same pseudo-process descriptor which
1s marked as in use but not valid. The modification to the basic scheme to have the
size of the .Pd_bundle a power of 2 increases the speed of the test while the "pseudo
process descriptor” trick avoids allocating space for unneeded process descriptors.



The test is thus
if( ID[.Pd__bundle[id & .1d__mask]] == id ) then valid

where (id & .Id__mask) is equivalent to (id modulo N) because N is a power of 2 and
Jdd_—mask has the value N-1. The ID field of the pseudo process descriptor men-
tioned above is set to one so its value does not map to this process descriptor so it is
not valid.

Unused process descriptors are kept in a singly-linked list with a pointer to the
head of the list and a pointer to the last process descriptor in the list, thus allowing
fast deletion from the head of the list and fast insertion at the end. A process id is
only invalidated when a process is destroyed. When a process is destroyed, the id is
saved in the OLD__ID field, the ID field is set to zero and the process descriptor is
added to the end of the list of free process descriptors. A new id is allocated only
when a process is created, and thus only when a process descriptor is allocated. Pro-
cess descriptors are allocated from the beginning of this free list. Each free process
descriptor contains a field called OLD__ID which contains the last id used with the
process descriptor. The new id is

new__id = OLD__ID[pd] + .Id_mask + 1;

where pd is a pointer to the allocated process descriptor. Thus, the new id is the next
larger value (in modulo machine arithmetic) after OLD__ID[pd] which maps to this
process descriptor. The worst case cycle time for the new id is now the least k
greater than zero such that

id = (id + k*(.Id_mask + 1)) mod (2 ** m)

where m is the number of bits in the machine word, e.g. on a 16-bit machine with 64
processes, k = 1024. Therefore, this scheme guarantees a reasonable though non-
optimal recycle worst case at an acceptable cost. The worst case occurs when the
same process descriptor is used for each of these process creations so generally, the
recycle time for id’s is much better than this worst case.

Instead of the above scheme, one can make the id space sufficiently large, possi-
bly by storing id’s as multi-word values, so that the id’s will never be recycled in prac-
tice. On a machine with a large word size (say 32 bits or more), one might reason-
ably expect that id’s would never recycle just using single word id’s. This maximizes
the recycle time because no id is ever recycled. However, on machines with small
word size, multi-word id’s would be required, making process identification more
awkward and less efficient. Also, on a machine with a large word size, it may be at-
tractive to use part of the id to specify attributes of the process, effectively reducing
the cycling part of the id and thus requiring some guarantees on the recycling of id’s.

The optimal scheme for maximizing the recycle time in general requires main-
taining a queue of unused id’s ordered by their last use. Process creation would then
select the least recently used id that maps to a free process descriptor. However, it
would be too expensive to store the queue of unused id’s because this must be large to
allow a long recycle time.

The scheme presented above guarantees a reasonably high minimum recycle time
process 1d’s at a small cost. Note that this scheme of identification could be applied
to objects other than processes that are created and destroyed and pose similar prob-
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lems of identification.

3.3 Interprocess Communication

Interprocess communication includes message-passing, synchronization, interrupt
handling and data sharing. Interrupt handling is included by viewing it as communi-
cation with a hardware process.

Processes can communicate via shared data or by system primitives. The wide
spectrum of possible semantics for the primitives can be rendered more manageable
by recognizing the following classification:

. data transmission capability - Data transmission capabilities range from
none to arbitrary length messages of unrestricted content. Pure syn-
chronizing primitives are characterized by their lack of data transmis-
sion ability.

synchronous - A primitive is synchronous if all processes it directly affects
must be in some appropriate state for the action of the primitive to
complete. Otherwise the primitive is asynchronous. Thoth message-
passing primitives are synchronous.

3. explicit mention of processes affected - A primitive can be explicit as to
which process(es) it affects; e.g. the .Send primitive of Thoth is explicit
because the process affected, the receiver, is explicitly named. A sema-
phore is not explicit.

4. number of processes affected - A primitive can affect just the process execut-
ing the primitive, one other process or several others. .Send, .Receive
and Reply just affect one process other than the invoking process while
.Forward affects two other processes. A primitive can affect some fixed
maximum number of processes or a potentially unbounded set as with a
broadcast-type primitive where the effect is broadcast to a large set of
Processes.

3

Designing interprocess communication primitives is a non-trivial task because
their semantics and efficiency can have a significant impact on the system. We pro-
pose basing the design of these primitives on the following criteria:

. The primitives should have simple, well-defined semantics.

2. The semantics should allow an efficient implementation.

. The semantics and the implementation should be such that a set of processes
can only be deadlocked using the primitives when they are logically
deadlocked in the abstraction, i.e. deadlock is always understandable
within the abstraction.

4. The primitives should be safe in the sense that the semantics are well-defined
and harmless to the invoking process independent of other processes be-
ing destroyed. By harmless, we mean that the invoker of the primitive
is not destroyed or left blocked indefinitely.

5. The primitives should be both implementable and useful for a distributed ar-

chitecture.

(98]

We now consider the design of interprocess communication via data sharing and vari-
ous primitives, keeping these criteria in mind.

in
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3.3.1 Data Sharing

Data sharing is the sharing of access to a segment of memory by two or more
processes. This provides an implicit mechanism for communicating between
processes. Data sharing is attractive for programming problems that decompose as
several processes operating on shared data structures, where each process does rela-
tively little computing in comparison to the amount of data accessed. Examples in-
clude sorting, searching, text editing and formatting, and various graph algorithms.
In these cases, the data structures are more naturally shared than duplicated and the
cost of moving data is avoided.

Several alternatives are possible for the design of a mechanism to provide data
sharing. The virtual memory mechanism of Multics (Bensoussan et al. (1972)) allows
shared segments between processes; however, the mechanism used is expensive be-
cause of the elaborate address translation on every memory reference, not portable
because of special hardware requirements, and under utilized (Montgomery (1977)).
Alternatively, data can be shared by storing it in a file if the constraints of secondary
storage are acceptable.

The design chosen for Thoth derives from the observation that most data sharing
occurs between closely interacting processes. It is necessary that they interact closely
if the data is changed because sharing is only safe providing the processes accessing
the data are synchronized. Thus, the scheme chosen was to implement an address
space unit, called a team, can contain sevearl processes. It is created with one pro-
cess in it and that process (or subsequently created processes on the team) can create
more processes on the same team, and therefore in the same address space. A team
is a set of processes that share the same address space, memory free list, code seg-
ments and data segments. The cost of interprocess communication between processes
on the same team is small because data segments are shared. Also, because a team is
swapped as a unit, message-passing between processes on the same team does not in-
teract with the swapping (such as a process blocking because of a process that is
swapped out). Therefore, the team provides a means of associating a set of closely in-
teracting processes in terms of data and code sharing, and in terms of swapping.

The team implementation extends the conventional virtual address space imple-
mentation of one process per address space by adding the facility for additional
processes in the same address space, not by extending the address space implementa-
tion to shared data areas. Thus, the implementation of this address space is portable.

The team concept is not a completely general scheme for data sharing because of
the (necessarily) close interrelation between processes on the same team. For exam-
ple, all processes on a team other than the initial process on the team are descendants
of this initial process. so two processes that are created independently cannot share
data via the team concept. There are also several costs associated allowing an arbi-
trary number of processes per team as opposed to having only one process. The
operating system cannot safely use the team space for handling a system call because
there may be other processes on the team active in this same address space that could
interfer with the system call handling. It is also much harder to have a protected sys-
tem area per process as part of the swapping unit (as many systems do) because the
number of processes per team can be arbitrary. Therefore, more of the description of
each process may have to be memory-resident or else a sophisticated scheme of swap-
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ping these protected areas is required. The provision of dynamic memory allocation
is more expensive because of the need for synchronizssarily imply that this is a good
time to swap the entire team. On systems with one process as a swapping unit, a pro-
cess can be swapped to secondary storage when it blocks, thus freeing up primary
memory immediately. Finally, with several processes on a team, there are several
separate stacks, making dynamically growing of a process stack more difficult.
(Currently, the size of a process’s stack in Thoth is fixed when the process is created).

3.3.2 Data Transmission

Data transmission is the movement of data between memory owned by different
processes. Transmitting data reduces the need to share data, reducing the need for
synchronization and for shared memory. Data transmission is required for communi-
cating processes that are in disjoint address spaces, such as when two processes are on
separate machines. Also, transmitting the data is often more natural than sharing it.
For example, sending a message to another process logically involves moving the data
rather than putting the data in a shared location. In the following, the data transmit-
ted is called a message and the primitives are called message-passing primitives.

The basic actions are sending and receiving messages. The specific semantics of
the primitives affect their efficiency. We first consider the sending of messages. A
primitive that allows a process to send a message and continue before the message is
received by the recipient process requires a buffering scheme for storing in-transit
messages. Message buffering costs in both time and space. The cost depends on the
buffering scheme used and the size of the buffers. First, buffers can be either statical-
ly or dynamically allocated. In the static scheme, each process has some number of
associated buffers which determines the maximum number of in-transit messages that
it can have at any given time. In the dynamic scheme, a message buffer is allocated
(or requested) at the time the message is sent. The advantage of dynamic allocation
is that a process not sending messages does not consume message buffers, thus provid-
ing more buffers for processes actively sending messages. Buffers can also be allocat-
ed for the particular size of the message rather than requiring them to all be the same
(maximum) size. Finally, memory can be dynamically allocated for message buffers
and released when not in use, reducing the amount of memory dedicated to message-
passing. However, if processes are almost always blocked sending messages and there
are more senders than receivers, this advantage will not be realized.

A variation on dynamic buffer allocation is to use a segment of the sender’s ad-
dress space for the message. The message is sent by transferring the segment to the
address space of the receiver to avoid copying the message, a noticeable saving for
large messages. However, this scheme has a number of disadvantages: it is expensive
to allocate, transfer, release, and swap segments; the sender loses the message from its
address space so it may have to make a copy of it; and the scheme depends on special
memory management hardware being available, so it has limited portability.

Dynamic buffer allocation has the disadvantage of being more expensive that
static allocation. However, the major disadvantage arises when there are no unused
message buffers available (we assume that the space for buffers is finite). If a process
attempts to send a message and no buffer is available, there appear to be two basic
options: The process can block pending the availability of a message buffer, or the
send primitive can return an indication of failure and let the process decide what to
do. We reject the second option as unusable because, in general, the process cannot
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do anything to make a message buffer available. With the first option, exhaustion of
message buffers can lead to deadlock from circular dependencies in the conditions for
message buffers becoming available. This type of deadlock violates Criterion 3 be-
cause it results from blocking on a resource internal to the implementation of the
abstraction. That is, processes that are not logically deadlocked in the abstraction
can become deadlocked because of the finite number of message buffers available.
The finiteness of the message buffer pool seems difficult to reflect in the abstraction
because of the dynamic allocation. In the static allocation scheme, the process can
know how many messages it can send before exhausting its buffer pool so the process
need not deadlock on the availability of message buffers. In the dynamic scheme,
there may be no message buffers available the first time a process attempts to send a
message.

Two solutions to the deadlocking are the following. A supervising mechanism
can either prevent deadlock, or detect and somehow remove deadlocked processes.
The cost of deadlock detection adds considerable overhead by known deadlock detec-
tion algorithms (Shaw (1974)). Moreover, it is unclear what the semantics should be
at the abstraction level of resolving a deadlocked situation. A second solution is to
limit the number of messages a process can have outstanding at any time. This limit
must guarantee that each process can send some minimum number of messages before
blocking from the unavailability of message buffers, and no process should have more
than that limit in outstanding messages. Therefore, there must be that many buffers
per process, and no process will ever use more than its limit. This reduces the scheme
to essentially that of static buffer allocation (even if the limit for messages is different
among the processes).

It is necessary to limit the maximum number of in-transit messages per process
to prevent a process from consuming all the message buffers, by sending output via
messages to a slow or non-functioning device for example. There is a trade-off
between allowing many in-transit messages per process with the resulting cost per pro-
cess (and per message) versus allowing few in-transit messages per process and having
less expensive message-passing. Providing many in-transit messages allows a high de-
gree of concurrency in the message-passing. For example, a process may send several
requests for service and then wait for completion or responses from them rather than
issuing these requests sequentially. However, achieving concurrency through the
message-passing seems to lead to more complicated programming because the process
is no longer functioning purely sequentially. Besides raising the cost of message-
passing, the use of in-transit messages requires added complexity and administration
to keep track of outstanding messages and to handle errors. For example, using a
message-passing mechanism providing many in-transit messages, a file system could
be implemented as a single process that could process many file system requests con-
currently by using in-transit messages to concurrently request the required disc 1/0.
However, the process would have to maintain a record of the state of each request.
the messages outstanding, plus checking that the requests being processed concurrent-
ly did not conflict (both in the sense of logical conflicts and in the sense of head con-
tention of two requests on the same drive). In essence, the process is simulating
several processes with the state information and the concurrent messages. In general,
our experience leaves us unconvinced of the utility of allowing many in-transit mes-
sages even though a number of designers stress the importance of this facility (Jam-
mel and Steiger (1977), Brinch Hansen (1969)).

The design philosophy of this thesis is to achieve concurrency with many
processes rather than with the message-passing so it was choosen not to provide in-
transit messages. That is, a message is not effectively sent until it is received by the
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recipient process. This is called fully synchronized message-passing. With this con-
straint, the message can reside in the environment of the sender until received so mes-
sage buffering is not required. Only fully synchronized message-passing is considered
in the following. This is consistent with Criteria 1, 2 and 3 in having simple, well-
defined semantics, being efficient, and not allowing internal deadlocking.

The cost of transferring a message depends on three factors: the number of times
it is moved; the size of the message; and how difficult it is to move. A message has
to be moved more than once if it is not possible to move the message directly from
the environment of the sender to the environment of the receiver. For example, if the
two processes are on two different transient teams that cannot fit into memory togeth-
er, the message must be moved through a memory resident buffer so it has to be
moved at least twice. A message also has to be moved more than once if the message
is to be broadcast to several receivers. QOur experience to date has not motivated the
use of a broadcasting-type primitive so this alternative is not considered further. The
difficulty of moving the message is affected by the need for special memory mapping
instructions, interaction with swapping or paging, and communication between
machines. This is usually a consequence of not being able to move the message
directly.

In a system configured with transient teams, either messages sent by processes on
transient teams need to be stored in a memory-resident buffer, or the recipient
processes must be prepared to fetch the message directly or indirectly from the swap-
ping device (in the case of the transient team being swapped). The first option
effectively requires one buffer per process; if buffers are statically allocated to
processes, they need to be big enough to hold the maximum sized message. Buffers
incur a space cost multiplicative in the number of processes so this scheme has the
disadvantage of increasing the space cost per process and limiting the maximum size
of message. It has the advantage of making message-passing independent of swap-
ping. The second option provides a powerful message-passing mechanism but re-
quires a more complicated implementation. It is also less efficient if small messages
are common,

The first option is the scheme used in Thoth. The criteria of simple, efficient se-
mantics without internal deadlock (Criteria 1, 2 and 3 above) have lead to fully syn-
chronized primitives, passing small, fixed length messages. The synchroneity avoids
the inefliciency and deadlock of dynamic buffer allocation and the memory cost of
several buffers per process. One statically allocated message buffer per process avoids
interaction with swapping, which otherwise complicates receiving messages. Small,
fixed length messages reduce the overhead of buffers and moving data.

Sending and receiving messages are the basic actions of message-passing. In that
sense, .Send and .Forward are compound because both could be implemented in
terms of several basic actions, Providing these compound actions as primitives has
advantages over just providing the basic actions.

The combined ”“send and receive a reply” function of .Send has the following ad-
vantages. .Send can have the simple semantics of a subroutine call in the sense that
the send action supplies arguments to the recipient process and the reply returns the
result. If the recipient only acts on a message between the time that it receives the
message and the time that it replies to the sender, the process interaction is entirely
sequential from the point of view of the sender, just as if this action had been accom-
plished by invoking a subroutine. This sequentiality is exploited in considering the
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verification of the system in Chapter 6.

There are typically more .Send’s than .Receive’s in programs so it is of benefit to
minimize the code required to perform a .Send. The combined action of .Send avoids
extra code that would be required for receiving a reply message by a separate primi-
tive. Also, if receiving the reply was a separate operation, the original sender might
not be ready to receive the message so the sending of the reply would cause the re-
ceiver to block. In the case of a user process sending to a system process, the system
process would block sending the reply and the user process would have to be activated
to unblock the system process. This would be particularly inefficient if the user pro-
cess was swapped out at the time. In general, under this scheme a process sending to
a higher priority process would require two extra process switches to receive the reply.
With the current primitives, only two process switches are required for a message to
be sent, received and replied to; one switch from the sender to the receiver and a
switch back to the sender after the reply is sent.

The main disadvantage of the reply in .Send is the additional overhead when a
reply is not needed. In our experience, the reply is required most of the time, so this
is not a practical disadvantage.

The semantics of .Forward were motivated by the need to forward a message to
another process without blocking and without requiring the sender to resend to the
other process. This allows a process to act as an intermediary in message-passing
between several processes.

In general, the primitives have proved adequate for the synchronized communi-
cation of short messages prevalent in the system; however, they have shortcomings. If
the logical message being sent is larger than the 8 words that will fit into a message,
the message must either be broken into packets of 8-words and sent as several mes-
sages or transferred by some other mechanism. Sending a logical message as several
physical messages means that the message is not transmitted indivisibly. That is, an
8-word message is either fully received or not received at all, which is not true of a
(say) 16-word message sent as two 8-word messages. In general, sending a message as
packets raises some of the same issues found in a packet-switched network, (Davies
and Barber(1973)), such as not all the packets of a message arriving.

This shortcoming could be remedied by allowing longer or arbitrary size mes-
sages as was mentioned as an option earlier. An alternative is to provide a second
data transmission facility, a virtual direct memory access mechanism for moving data.
The .Transfer primitive in Thoth provides the facility as described in Chapter 2. This
was chosen over extending the message-passing for several reasons. The .Transfer
mechanism is more general and more powerful than a mechanism providing arbitrary
size messages because the data transmission is separate from the blocking and queu-
ing of the message-passing. For example, the Thoth debugger inserts break points
that result in the process encountering the breakpoint sending to the debugger pro-
cess. The .Transfer mechanism can be used by the debugger to fetch and store words
from that process’s address space. As another example, a large amount of data can
be transferred between processes by the sender specifying the location of the buffer
containing the data and its size in a message. The receiver can then allocate a buffer
of that size and use .Transfer to move the data into the buffer. That is, the message
can provide information about the data to be transferred, making it possible for the
receiver to prepare to receive it and to specify where the data is to be placed. The
.Transfer primitive in combination with the message-passing primitives also provides a
means of sending data that is not naturally a linear array. For example, a request to
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the file system might contain various control information, and strings specifying path-
names. Using only arbitrary length messages, this would require formatting these
into a single array to send in the message and require the file system to decompose
the message once received. With .Transfer, just a pointer to the pathname strings and
their size need be sent in the message. The file system can then allocate space for
these strings and transfer them into the allocated space. The .Transfer mechanism is
also easier to implement than arbitrary length messages in a system structured as
many processes interacting via messages (as Thoth is) because some system processes
implement the disc 1/O and the swapping mechanism. These processes communicate
via message-passing yet they cannot directly use the mechanism that they implement
without sending to (and thus deadlocking) on themselves. That is, a primitive for re-
ceiving a long message would use the services of the swapping device to access the
message if the sender is currently swapped out. However, the swapper process can re-
ceive messages from a currently swapped process so it may be hard for it to use the
same primitive that it implements. These processes can use the short messages
currently implemented without circularity because they are independent of the swap-
ping. Finally, our experience to date suggests that communication is of the nature of
many short control messages plus fewer large data transmissions. The two levels pro-
vided by the message-passing and the .Transfer mechanism recognize and exploit this
characteristic of communication.

3.3.3 Synchronization

By synchronization, we mean the forcing of a partial ordering on certain pro-
gram events. Many systems provide explicit primitives for synchronization. We
claim that specific synchronization primitives are not needed in Thoth because a
Dijkstra binary semaphore can be simulated by a process and message-passing. This
is shown as follows:

The P and V operations are Send’s to a process, called the semaphore process,
with the process id semaphore__id.

P( semaphore__id )

{
auto message{MESSAGE__SIZE];

Send( message, semaphore__id );

J

V( semaphore__id )

{
auto message[MESSAGE__SIZE];

.Send( message, semaphore__id );

}
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The semaphore process executes the following code.

Semaphore__process()

{
auto requestor, requestfMESSAGE_SIZE];

repeat
{
requestor = .Receive( request ); Receive a P
.Reply( request, requestor );  and allow to proceed
.Receive( request, requestor ); Wait for V
.Reply( request, requestor );

}

Notice that the content of messages here is irrelevant because only the queuing and
synchronizing of the message-passing is being used. Also, the error-checking behavior
of this construction is rather poor.

This construction does not fully simulate a binary semaphore because the same
process doing the P must also do the V operation. For example, the usual semaphore
solution to the producer-consumer problem (Dijkstra (1972)) needs to violate this res-
triction. A binary semaphore can be fully simulated using two processes and the
message-passing as follows. The semaphore is created by

Create__binary__semaphore()
extrn P__process, V__process;
auto s;

s = .Alloc__vec( 1); 2 word semaphore descriptor
s[0] = .Create( &P__process, P__STACK );

s[1] = .Create( &V__process, V_STACK );
.Ready( s[0], s[1] );

Ready( s[1], s[0] ):

return( s );

}

which creates the two processes, passing each the other’s process id. The operation of
the two processes can be interpreted as passing a token. The V process

V_process( p__process )

{
auto msg[M ESSAGE__SIZE];

repeat
{
.Send( msg, p—process ); Send token to p__process
.Reply( msg, .Receive(msg) ); Get a token
J
§

starts out with a token and passes it to the P process. It then waits to receive another



32

token. The P process

P__process( v__process )

{
auto msg[MESSAGE_SIZE];

repeat
{
.Receive( msg, v__process ). get a token
.Reply( msg, .Receive(msg) ). give out the token
.Reply( msg, v__process );
}
J

receives a token from the V process and then hands it out to a process executing a P
operation. The P operation

P(s)

{
auto msg[MESSAGE_SIZE];

Send( msg, s[0] ). send to P process
J

and the V operation

V(s)

{
auto msg[MESSAGE_SIZE];

.Send( msg. s[1] ); send to V process
}

are simply .Send’s to the appropriate process. This same process structure can be
used to simulate a general semaphore: the V process maintains the semaphore count
and the V operation sends to it to increment the count; the P process sends to the V
process to decrement the count before allowing its own sender (executing a P) to con-
tinue.

These constructions demonstrate that no explicit synchronization primitives are
necessary in addition to the message-passing primitives. However, no form of sema-
phore is used in the system for reasons described below in Section 3.4.2. Instead,
Thoth employs processes and message-passing directly as described in Chapters 4 and
S to implement synchronization.

The message-passing primitives allow a process to synchronize with other
processes. There is also a need for processes to synchronize with hardware processes
via interrupts. Interrupts are part of the communication between the device request-
ing the interrupt and the processor. Regarding the device as a hardware process, it is
attractive to communicate with the device using .Send so this communication can be
identical to other interprocess communication. That is, a process sends a message re-
questing service from the device and receives a reply when the service has been per-
formed or an error is encountered. This is the approach taken in Thoth.
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This abstraction is implemented as a software process acting as the representa-
tive of the hardware device process. This device handling process receives messages,
interacts with the actual hardware interface to accomplish the requested service and
then replies with possibly some completion status information.

The use of device handlers raises the issue of how to synchronize them with the
devices, in particular interrupts. For this purpose, the .Await__interrupt primitive of
Thoth allows a process to block until an interrupt from some specified device has oc-
curred. It seems easier to implement and is more portable than directly simulating
message-passing with hardware processes. For example, not all device interaction
maps easily onto receiving one fixed length message. This interrupt abstraction is
easy to implement because the blocking mechanism is already available. The fact
that a process unblocked by an interrupt is immediately activated means that this ac-
tivation is more efficient than if the process was readied and then later activated after
a search of the ready queues. Also, the use of this interrupt abstraction allows many
of the device handlers to be machine-independent up to their interface with the
hardware. Further advantages of device handling processes are described in Chapter
5. Note that this structure does not preclude message-passing with the device more
directly on some machines, dispensing with the device handler process.

A special case of synchronization is indivisibility. An action is indivisible with
respect to a class of actions if none of these actions can proceed concurrently with the
indivisible action. Actions can be made absolutely indivisible by disabling interrupts
while the code causing the action is executed. This is true providing that the code
does not involve blocking or readying another process of higher priority (unless indi-
visibility is not required beyond that point). Blocking or readying a higher priority
process can only occur in the Thoth abstraction by awaiting an interrupt, invoking a
message-passing primitive, or invoking .Ready on a newly created higher priority pro-
cess. The execution time for the disabled code must be bounded by a small constant
if the system is to have good real-time properties. Ideally, disabled code should be
conceived as an extension of the hardware instruction set and used only in the kernel
of the system. User processes cannot, in general, disable interrupts so this is not a
widely applicable means of achieving indivisibility.

Frequently, indivisibility is only required with respect to the execution of other
processes. This relative indivisibility can be achieved using process priority levels.
Note that this type of indivisibility is essentially of no cost because it is derived from
the CPU allocation rule; the CPU allocation rule is inexpensive and motivated by the
considerations of Section 3.1.

3.3.4 Asynchronous Communication

The communication described to this point is strictly synchronous yet there is
also a need for some type of asynchronous communication. For example, it is neces-
sary to communicate the occurrence of a break to a program. A process cannot
predict if and when such a break will occur and it would be absurd for it to block
waiting for the break to occur. Therefore, the process needs to either incur the cost
of polling for breaks or have the occurrence of a break communicated to it asynchro-
nously. We reject the polling option because of inefficiency and its inadequacy for
communicating with erring processes. The need for asynchronous communication is
analogous to that required between the processor and various peripheral devices. One
possible approach (not taken in Thoth) is to implement the concept of software inter-
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rupt or signal (Ritchie and Thompson(1974)).

A signal is a software process interrupt; a process that has been sent a signal will
start to execute code corresponding to the signal the next time it is activated. This
code is analogous to the interrupt routine invoked in response to a hardware inter-
rupt.

Signals provide a general mechanism for asynchronous communication, e.g. cer-
tain crror conditions such as an arithmetic exception can be signalled to a process.
However, signals have a number of disadvantages. Signals can require sophisticated
programming like that needed to deal with hardware interrupts. That is, the signal
mechanism should provide for disabling signals, receiving and acting upon a signal
and specifying which routine to invoke in response to a signal. These complications
make processes harder to program; they also make processes more expensive.
Second, signals are asynchronous events so the execution of a process is non-
deterministic in the same sense that the execution of the operating system is made
non-deterministic by hardware interrupts. Non-deterministic processes are harder to
verify because of the large number of control flows that usually result from non-
determinism. Third, a signal is logically only acted on after the process unblocks.
making a signal ineffective for dealing with deadlocked processes. Thus, a mechanism
such as process destruction is required for removing deadlocked processes. One could
implement signals so that a blocked process receiving a signal is unblocked in order
to respond to the signal. This complicates the semantics of message-passing and
awaiting an interrupt. For example, does a process unblocked by a signal return to
its previous blocked state after responding to the signal? Do all signals unblock
blocked processes or just some?

We propose using process destruction to handle all asynchronous.communication
in the system. Thus, the destruction of a process is the only event that can happen to
a process asynchronously with respect to its execution. This avoids the extra cost of
more sophisticated forms of asynchronous communication. The handling of this
asynchronous event is simpler than handling signals because the resources need not
satisfy the process’s local consistency constraints after the event since the process does
not exist after the destruction. It is only necessary to guarantee the integrity of
resources that are relinquished by the destruction. Aspects of the process destruction
mechanism are described more fully in Section 3.4 and its use is illustrated in Chapter
4,

3.3.,5 Safety of Communication

Safety of communication is the security and reliability properties of the interpro-
cess communication provided by the data sharing and the various primitives.

The data sharing is limited to processes on the same team which are expected to
trust one another and synchronize on shared data using the message-passing primi-
tives. That is, because a team is an execution of a program or part of the execution
of a program, this unprotected interaction is local to closely interacting processes.

The message-passing primitives need to be safe in the presence of process des-
truction because a process cannot know that a specific process will exist when it in-
vokes a primitive on this process. Therefore, a primitive invoked on a non-existent
process or on a process that is subsequently destroyed behaves as a null operation
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other than returning an indicative status. Thus, it is safe to send to, receive from, re-
ply to. forward, or transfer data to or from a process even though it may be destroyed
at any time. This makes it safe for system processes to interact with user processes.

The primitives are also safe in the sense that all blocking behavior is explainable
in the abstraction. For example, there is no possibility of deadlocking internal to the
implementation of the abstraction.

The semantics of the primitives make receiving messages safe provided the re-
ceiver is prepared to receive messages from any process when invoking the receive-any
form of .Receive. The receiver can safely reply to the sender because .Reply does not
block. If the reply was received by a separate receive operation, then with synchro-
nous message-passing, the original sender would have to be trusted to attempt to re-
ceive the reply. This problem is illustrated by the interaction between operating sys-
tem and user processes; a system process must be able to safely reply to a user pro-
cess. It can also transfer data in and out of the sender’s address space using
.Transfer, which is safe even if the source or destination arguments are illegal. That
is, a receiver can receive a message specifying a buffer location and the size of the
buffer that it is to transfer into its own space. If the buffer location is outside the ad-
dress space of the sender, then .Transfer will just return an error status and not
memory fault. The receiving process has control over the sending process in several
ways. It can keep the sender blocked, allowing the receiver to synchronize the sender
with the action requested rather than trusting the sender to synchronize properly. The
receiver also has control over the sender by the ability to forward its message to
another process with a possibly changed contents. Thus, the receiver has full control
over the sender except that the sender may be destroyed independent of the receiver.

As a consequence of the control of the sender by the receiver, the sender must
trust the process it sends to. That is, user processes must trust system processes and
system processes cannot be allowed to send to user processes. This simple protection
policy has been adequate for the system to date. Its simple, efficient implementation
prompts exploring its applicability and limitations, rather than extending it to a more
sophisticated scheme.

An unsafe aspect of the primitives lies in their blocking behavior. A process exe-
cuting .Receive, .Send or .Await__interrupt can block indefinitely if the required un-
blocking event does not occur. However, the usual solution of time-outs on the
blocking can effectively be implemented using these primitives, the clock abstraction
and possibly extra processes. This is discussed further in Chapter 4.

In conclusion, we claim that the interprocess communication mechanisms in
Thoth have followed the criteria listed at the beginning of this section. The adequacy
of the primitives provided is best evaluated from experience with their use. Compar-
ing the Thoth interprocess communication to that provided by most systems, we
would expect that the most contentious issue in the design would be the synchronous
regime of communication imposed in Thoth. We claim that the design is consistent
with the philosophy of avoiding the expense of providing parallelism in the communi-
cation mechanisms and achieving the required paralielism by using many processes in-
stead. Finally, problems of distributed systems have been considered in designing
these primitives but there is no experience to date to support their utility in this en-
vironment.
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3.4 Dynamic Configurability

Dynamic configurability is the ability to dynamically allocate and release pro-
gram resources. The resources in the abstraction include memory, files and processes.
Note that the CPU is not an explicit resource within the abstraction.

Dynamic configurability has several advantages. Resources need be allocated
only when first needed and can be released when no longer required, thus avoiding al-
locating the maximum ever anticipated or allocating in advance of need. This leads
to better resource utilization. [t also allows a more elegant manipulation of resources
because resources can be released when not needed and then reallocated for another
purpose, rather than having to awkwardly transfer the resources from one activity to
another. Process creation and destruction allow a program to dynamically and asyn-
chronously reconfigure its multi-process structure. Finally, the facilities for dynamic
allocation of files and memory form the basis for a mechanism to recover resources as
part of process destruction.

Dynamic resource allocation must handle the case of not being able to immedi-
ately satisfy an allocation request. There are three options for this situation: block
until the request can be satisfied; preempt the resource to satisfy the request; or return
an indication that the allocation cannot be satisfied currently. The first option can
lead to deadlock on the availability of resources. The second option requires a
mechanism for deciding which process to preempt and for returning the resource at
some later time. Usually, it is simpler to just destroy the current owner of the
resource. Thoth implements resource allocation corresponding to the third option.
Therefore, processes in Thoth cannot block on the availability of resources so they
cannot deadlock on system resources. This does not preclude user programs imple-
menting their own local resource allocation (using message-passing) that causes block-
ing. To date, a more sophisticated scheme has not been required.

3.4.1 Dynamic Memory Allocation

Dynamic memory allocation is provided through the primitives of .Alloc__vec
and .Free. They provide a mechanism by which processes on a team can share a
common pool of memory without interference. The memory allocation is structured
as two levels. On the first level, the system allocates memory to the team, part of
which is used to contain the team memory free list. On the second level, processes on
the team allocate from the free list. The two level allocation allows a team to be
created with a large enough free list that it does not require more memory and
reduces the overhead that would be incurred by growing the data segment of the team
on every allocation request. The former is necessary for resident teams that cannot
be increased in size because their location in memory is fixed at the time they are
created. The allocation of memory to teams is discussed as part of the discussion of
the swapping mechanism in Chapter 5.

In a conventional system with one process per address space, the memory free
list is only accessed by that one process so no synchronization is required and the al-
location can be done by a set of run-time library functions. With multiple processes
on a team, operations on the free list need to be synchronized to avoid uncontrolled
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concurrent operations on it. There are several alternatives for synchronizing
Alloc_vec and .Free. First, both operations could be executed with interrupts dis-
abled making them absolutely indivisible and therefore, properly synchronized. How-
ever, the time for allocation is not bounded by a small constant because it involves a
search for a suitably sized free block of memory plus possibly growing the data seg-
ment of the team. Similarly, freeing a vector can involve inserting the vector to be
freed in order in the free list in some memory allocation schemes, also taking a po-
tentially unbounded length of time.

Another alternative is to impose a higher level synchronization through say the
message-passing primitives. For example, the memory allocation could be performed
by a system process. This has the disadvantage that this process must be able to do
this safely independently of the behavior of the processes on that team. Many
memory allocation schemes maintain the data structures of free blocks right in the
free blocks to avoid additional storage. Because this is addressable by all processes
on the team, such a system process can make no assumptions about the correctness of
the data structure. In particular, it must check the validity of every pointer to avoid
incurring a memory address violation. FEven if the system was designed so that the
memory allocator process could incur such a fault and continue, one would need to
guarantee that it could not get into an infinite loop. Another difficulty is that
memory allocation is useful at low levels in the implementation of the system so im-
plementing it to rely on higher levels of the system such as processes leads to circular-
ities in the implementation. Finally, using higher level synchronization primitives
makes memory allocation slower in comparison to the unsynchronized functions that
are adequate for the single process situation. The concern with speed of memory al-
location is prompted by the desire to use memory allocation in time-critical applica-
tions often found in real-time systems rather than by any measurements of high utili-
zation of the CPU by memory allocation.

The solution used in Thoth is to decompose the allocation and freeing of
memory into steps, each of which is executed with interrupts disabled. Each step is a
fixed, acceptably small number of instructions that leaves the free list data structure
in a consistent state. This scheme just adds the overhead of function calls to the step
functions plus the cost of disabling and enabling interrupts.

The particular scheme currently used is a first-fit algorithm in which the free
blocks are maintained in a doubly-linked list sorted by address to allow coalescing.
There is two words of overhead per allocated vector. One word for the size of the
vector and one word to link the vector into a per-process singly linked list of allocated
vectors. To clarify the description of the technique used, the code for .Alloc__vec
and .Free is included.



Alloc__vec( size; abort, zero )

{

auto nargs, start, vec, words:

nargs = Nargs():

if( naghs < 3) zero = 1: default to zeroed vector
if( nargs < 2 ) abort = 1; default to abort

start = 1

words = (s#ze < 1) 74 : size + 3;

repeat
{
vec = .Alloc__one__step( words, start );
start = 0;
ifl vee == 1)

{ Try to grow the memory
if( .Grow_memory{MEM_INCREMENT) '= OK ) break:
start = 1;

!

else if( vee )

{ Allocated vector
if( zero ) .Zero( vee. size )
return{ vec );

f

!

if( abort ) .Abort( "out of memory” );

return{ 0 ); out of memory

}

The function .Alloc__vec repeatedly calls .Alloc__one__step which is executed totally
disabled. If .Alloc__one__step is called with the argument start non-zero, it sets
free block pointer associated with the free list to the first free block and determines if
this block satisfies the allocation request. 1f not, the free block is advanced to the
next free block and it returns zero. If the request is satisfied, the free block pointer is
set to the first free block, the memory allocated is removed from the free list and a
pointer to the allocated block is returned. [If the wvariable start is zero then
Alloc__one__step examines the free block after the free block pointer. The function
returns one if the end of the free list is reached without satisfying the request, wherecu-
pon it attempts to grow the free list and then restarts the search at the beginning of
the free list.

Similarly, .Free
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Free( vec)
extrn .Death__proprietor_.id;
auto prev, t;

t = MEMORY_RESOURCE|[prev = active];
while(t && 1t !'= vec )t = MEMORY__LINK[prev = t};

iftt==0]| *(2) <4)
if( ID[active] == .Death__proprietor__id )
{
TEAM_STATE[TEAM/[active]] | = BAD__FREE__LIST,;
return( 0 );

}

else .Abort( "bad vector” );

if( prev == active )

prev = active + MEMORY_RESOURCE - MEMORY__LINK;:
while( .Free__one__step(vec, prev) ) ;
return( 1 );

}

calls .Free__one__step which is executed totally disabled. .Free__one__step adds the
vector passed as an argument to the free list if the free block pointer points to the
block after which this vector is to be added and returns 1. Otherwise, it moves the
free block pointer to the next block in the free list in the direction of where the vector
is to be freed.

One can argue from the CPU allocation rism is necessary because the free block
pointer must be reset to the beginning of the free list when a process on that team is
destroyed in case this process has advanced the pointer after interrupting a lower
priority process that was allocating a vector.

This scheme provides synchronized memory allocation for multiple processes re-
quiring only a bounded amount of disable time and with only a slight increase in
overhead over the unsynchronized allocation functions that suffice for the single pro-
cess case. The main disadvantage seems to be its more complex behavior. The
memory allocation deserves further investigation.

3.4.2 Dynamic Process and Team Creation

Process creation adds another concurrent entity to the system with resources and
identification. It involves allocation and initialization of a process descriptor, process
id, and stack for the new process, and the linking of this process descriptor into the
tree of processes. There are two types of process creation in Thoth.

In the first type, the new process is added to the team of its creator. This type
of process creation is fast because it does not involve creating a new address space, al-
locating swap space, or locating the file containing code and initialized data. These
are all available from the team of the creator of the process. Also, creating the pro-
cess in the saume address space and swapping unit allows inexpensive interaction with
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other processes on the team. This type of process creation forms the basis for the
datr sharing discussed earlier. It has the disadvantage of requiring that the code to
be executed be already available in the team; it also requires part of the team’s ad-
dress space for data.

One is motivated to make process creation a two stage operation as is done in
Thoth using .Create and .Ready because the process id returned by .Create may be
needed as an argument for .Ready. This situation is illustrated in Section 3.3.3 by
the Create__binary.__semaphore function used in the semaphore simulation.

The .econd type of process creation, called team creation, creates the new pro-
cess as the first process on a new team. Therefore, it is created in a separate address
space with code and initialized data from a specified file.

In conclusion, dynamic process creation allows a program to dynamically
configure its process structure in responding to the different demands. The full utility
of this configurability is only realized with the provision of dynamic process destruc-
tion.

3.4.3 Dynamic Process Destruction

Process destruction is halting a process, removing it from the system and releas-
ing all its resources. Process destruction is useful for disposing of processes, reclaim-
ing resources, and handling faults, breaks and exceptions. For this utility, process
destruction must have the properties of being complete, immediate and indivisible
with respect to the process requesting the destruction.

Process destruction is complete if all resources allocated to a process are relin-
quished in a consistent state when the process is destroyed. Complete process des-
truction is required because a process is often destroyed in order to reclaim resources;
it is unacceptable for resources to be lost. The concept of a team complicates com-
plete process destruction because some resources are returned to the system and some
are returned to the team. For example, the memory owned by a process is allocated
from its team free list and is thus returned to this free list when it is destroyed.
Resources such as the process descriptor and open files are returned to the system.
All the team’s resources are returned to the system if there are no remaining
processes on the team of the destroyed process. That is, a team ceases to exist when
there are no processes left on the team so there is no separate team destruction.

Process destruction is immediate if the process is destroyed without requiring it
to reach some particular state. Immediacy guarantees that the process can always be
destroyed (even if it is deadlocked) and thus the process’s resources are always re-

claimable. A system prooviding message-passing must either ignore the possibility of
processes deadlocking via the message-passing, or provide facilities for preventing this
deadlock or for removing deadlocked processes. Ignoring the possibility of deadlock
is not reasonable. Preventing or arbitrating deadlock imposes an additional overhead
on the message-passing mechanism.

Process destruction is indivisible with respect to the process requesting the des-
truction if the process is destroyed and the resources released before the requesting
process can continue. This assures the requestor that the resources belonging to the
destroyed process are available for allocation immediately after the destruction. Re-
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claiming some resources takes time. For example, a file may require disc [ /O before
the buffers can be released. This limits the speed of destroying processes and delays
the process requesting the destruction as well.

The semantics of the Thoth process destruction primitive .Destroy are complete,
immediate and indivisible to the requestor. The use of process destruction is con-
sidered more fully in Chapter 4. The implementation is discussed in Section 5.2.5.

There is a conflict between the need for mutual exclusion of an operation and the
need for immediate process destruction of a process performing that operation. In
general, an operation that must be executed mutually exclusively operates on shared
data and it must leave this data consistent. Therefore, it needs to be completed once
started so the process executing the operation must not be destroyed until the opera-
tion is completed.

However, immediacy makes process destruction an asynchronous event with
respect to the execution of the process to be destroyed. This problem is illustrated by
considering the use of semaphores for mutual exclusion in the presence of immediate
process destruction.

Suppose the system made use of Dijkstra’s semaphores with the P and V opera-
tions (Dijkstra (1972)) for imposing mutual exclusion on access to shared resources.
Let s be a semaphore on some resource. Suppose a process has executed a P(s) for
this resource and has proceeded into a critical section and then this process is request-
ed to be destroyed. Three options are available in the design at this point.

1. The destruction could be postponed until the process has done the corresponding V,
or more correctly, until it has done no P’s without the corresponding V’s. This
trusts that the process will eventually reach such a state and violates the re-
quirement that process destruction be immediate. Note that it is necessary to
provide synchronizing primitives for the user because Thoth provides the user
with a multi-process facility, and ideally, these should be the same as the sys-
tem primitives. Therefore, it is necessary to make no assumptions in the pro-
cess destruction mechanism about the correct use of semaphores. For exam-
ple, there might be no V corresponding to the P. Also, using semaphores for
producer-consumer type problems, there are usually semaphores that one pro-
cess executes P’s on and the other executes V’s on. Sometimes the initial state
is as if a P had been done, but not a V. It is unclear how to identify these
cases when destroying a process.

2. The process could be destroyed without regard for semaphores. In this case,
resources owned by the process through semaphores are lost because the
corresponding V’s will never be done. This contravenes process destruction be-
ing complete, reduces the usefulness of process destruction for the user, and
endangers the correct operation of the system.

3. The process descriptor could be used to record the semaphores that the process
currently owns via P’s and the destruction of the process could include doing
V’s on these semaphores to release the resources. This violates the require-
ment that process destruction be complete because there is no guarantee that
the resources are left in a consistent state. Also, as mentioned above, the pro-
cess doing the V is not always the process that did the P.

Thus semaphores do not suit an environment including complete and immediate
process destruction. The same argument holds for the monitors proposed by Hoare
(1974) and the critical regions proposed by Brinch Hansen (1970) if we supposc a pro-
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cess is destroyed while executing a monitor (or critical region) because there is no
synchronization with respect to process destruction in these schemes.

Several solutions can be used for synchronization in the presence of immediate
process destruction. Certain operations can be made indivisible so process destruction
cannot occur while the operation is performed. Disabling of interrupts is used in
Thoth for indivisibility in several places including message-passing primitives, process
creation and memory allocation. For code that involves blocking on another process.
this is not sufficient. For example, the message-passing primitives are indivisible with
respect to process destruction until they block. Making these primitives indivisible
with respect to process destruction violates process destruction being immediate. We
instead define the semantics of sending to or receiving from a destroyed (non-existent)
process and the semantics of message-passing with a process that is subsequently des-
troyed (see Chapter 2). These semantics are implemented with the aid of the process
destruction mechanism.

A form of synchronization with process destruction available only to operating
system processes is the use of relative indivisibility with respect to process destruction.
System processes of the same priority or higher as the process responsible for process
destruction can make use of the fact that no processes can be destroyed until they
block.

Finally, a solution is required for operations that block, operations for which the
indivisibility cannot be achieved by disabling interrupts because of long execution
time, and user processes for which disabling interrupts and relative indivisibility with
respect to death are not available. The solution proposed is a concept called a
proprietor, a stereotype process that does not need to be destroyed. This is described
in Section 4.3.

3.5 Summary

This chapter has described the considerations and decisions behind the design of
the Thoth abstraction for multi-process structuring. The simple notions of process
and CPU allocation make processes relatively inexpensive. The process identification
scheme provides a way of specifying processes with little danger of confusion, even
though process id’s are recycled. Teams provide a means of grouping processes so
that they can interact inexpensively because, as a team, they share code and data seg-
ments and swap as a unit. The fully synchronized message-passing provides data
transmission and synchronization between processes without the danger of deadlock
internal to the implementation of the abstraction or the cost of dynamic buffer alloca-
tion. The Transfer primitive provides large data transfer as a supplement to the
message-passing. It was shown that the message-passing could be used for synchroni-
zation between processes and that Awaitinterrupt provided synchronization with in-
terrupts. Process destruction was proposed as a means of asynchronous communica-
tion. The safety of the communication was defined by a simple policy based on trust
between processes on the same team, sending processes trusting their receiving
processes, and the interprocess communication primitives having well-defined seman-
tics with respect to process destruction. The provision of process creation and des-
truction allows programs to configure their multi-process structures dynamically.
Process destruction provides a simple mechanism for exception handling and resource
reclamation.
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These facilities form the raw materials for developing multi-process programs.
The remainder of the thesis is concerned with understanding how to use these facili-
ties to structure programs. In Chapters 4 and 35, we support the sufficiency and utility
of the abstraction for multi-process structuring by giving examples of multi-process
structures and by describing the structure of the Thoth operating system which both
provides and uses these facilities. Chapter 6 explores the value of multi-process struc-
turing in facilitating verification of the system.

The costs of some of the primitives are given in Section 2.4 for the TI 990,
Honeywell Level 6 and the NOVA 2 and are indicative of the efficiency of the imple-
mentation.

4 Multi-Process Structuring

The multi-process structure of a program is defined by its processes and their in-
teraction, particularly interaction via message-passing. This structure imposes a
structure on the functions and resources of a program by associating each function
with the processes that execute it and each resource with the processes that allocate
(and thus own) the resource at some time. The structure can change dynamically by
the use of .Create and .Destroy to create and destroy processes. This chapter
discusses designing these structures.

The discussion has several purposes. It serves to document insights into the use
of multi-process structures gleaned from the development of Thoth. It explores the
adequacy of the abstraction described in Chapter 2 for multi-process structuring by
demonstrating how to solve various problems in this abstraction, and by showing how
this abstraction is used by various programs. Finally, it supports the contention that
the parallelism of multi-process structures can be used to make a program more
understandable than if it was written as a sequential program. This is not to imply
that developing good multi-process structures is easy; on the contrary, perceiving a
good process structure for a program can be a major obstacle in its development.

4.1 Multi-Process Structuring Principles

A program comprises a tree (or a forest) of processes, possibly on different
teams. Several principles for structuring programs as multiple processes can be
abstracted from the experience gained in developing and using Thoth programs.

If a program as part of its specification must respond to events that occur asyn-
chronously with respect to its execution, several processes can be used to achieve this
asynchronous response. For each asynchronous event, there is a process that blocks
waiting for that event to occur, and responds to or handles the event. The event is
synchronous with respect to this process although it is asynchronous with respect to
the rest of the program. This approach suggests a discipline of programming in
which each process only responds to events synchronized with its execution. The re-
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quired asynchroneity of the program is realized by its multi-process structure. The
synchroneity of the individual processes then makes the program more understand-
able. In a real-time environment, this use of processes can provide fast response to
events because the process waiting for the event can be readied immediately after the
event occurs and can execute logically concurrently with respect to other processes.
On a single processor machine, the processes do not really execute in parallel, but the
preemption of the CPU by high priority processes and the resulting interleaving of the
executions of processes provides the logical concurrency required. Events requiring
particularly fast response can be handled by high priority processes. For example, the
operating system must respond to hardware interrupts from peripheral devices. Inter-
rupts are handled by device handling processes, one per device with the higher priority
processes servicing the devices requiring faster service.

Concurrent response to events can allow efficient resource utilization in general.
For example, a program could be structured into compute-bound and 1/0-bound
processes so that the compute-bound processes execute while the 1/O bound processes
block on 1/0, overlapping the use of the CPU with the 1/0, thus decreasing the real
time for execution and increasing throughput.

Invoking a function as a separate process means that the activity of this process
can be halted by destroying the process independently of the activity of other
processes. (Using process destruction here has the additional benefit of reclaiming all
resources allocated by that process.) Conversely, the activity of this process can con-
tinue independently of other processes being destroyed. This is used in implementing
break and exception handling, as described in Section 4.5. It is also important in the
use of proprictors. as described in Section 4.2. Finally, it can be used by the program
to dynamically reconfigure itself to perform a different activity by destroying some
processes and creating others. For example, this is used in an inter-machine com-
munication program to change from the terminal communication mode to the file
transfer mode and vice versa.

A process can be created on a separate team so that it executes in a separate ad-
dress space (or even a separate machine although this is not currently supported in
Thoth). Designing a program as several teams reduces the memory requirements of
the program to that of the largest team. It also reduces the run-time cost if not all
teams need to run concurrently. For example, the Thoth base language compiler is
structured as several teams which communicate via files. The initial team creates the
phases of the compiler as separate teams and coordinates the overall execution. This
means that at any time, the address space required for running the compiler is much
less than the total space required for all of the compiler, allowing the compiler to exe-
cute on small machines. Also, the compiler can dynamically configure which phases
to run for different types of compilations and for different target machines.

Real-time programs can use separate teams as well. A program can be divided
into resident teams which guarantee a certain level of real-time response plus transient
teams which can handle less time-critical functions, thus avoiding the memory com-
mitment of having the entire program memory-resident.

Finally, there are examples in the operating system offl operations that a process
cannot logically perform on itself directly. These include a process destroying itself,
going to sleep, or being swapped out. For example, & process destroying itself must
be completely destroyed when the destruction is finished but in existence to the end to
complete the destruction. Implementing the operation as a separate process invoked
by sending it a message resolves this difficulty because this separate process can act to
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release all the resources of the process being destroyed.

A process can be used as a control structure to implement an independent se-
quence of actions. This is used in programs that comprise several relatively indepen-
dent sequences of actions even though they may not be required to respond to asyn-
chronous events. It is attractive to make each sequence of actions a separate process,
rather than using conventional control structures to implement the sequences as one
process. This use of processes is analogous to the use of control structures and data
structures in conventional programming languages. For example, in the implementa-
tion of a file copy program, one is motivated by efficiency to buffer the data between
the input and output files. The moving of data into a buffer from the input file and
the moving of data from the buffer to the output file are two sequences of actions
coordinated by the amount of data in the buffer. In many systems, these two activi-
ties must be simulated by imposing two modes of action on one process, namely a
mode of reading and a mode of writing, with the one process switching between these
two modes depending on the amount of data in the buffer. Multi-process structuring
allows each sequence of actions to be implemented by a separate process. This pro-
cess structure can also allow concurrent reading and writing of the files.

Multi-process programs can be difficult to develop and understand because of
two basic problems not found in sequential programs. There is the possibility of
deadlock because processes block when message-passing. In a given set of processes
in some state, a process is deadlocked if it is blocked and the condition required for it
to be unblocked is dependent upon it not being blocked. The important aspect is that
of circularity in the dependencies of the unblocking conditions.

A process can only be deadlocked if it is blocked doing a .Receive in the
receive-specific form or if it is blocked doing a .Send. A process blocked waiting for
an interrupt is not deadlocked because the unblocking of the process is dependent
only on the occurrence of the interrupt and the interrupt occurrence is independent of
the process being blocked waiting for the interrupt, even though it can block
indefinitely until the interrupt occurs. Assuming the correct functioning of the
hardware and normal use of the system, all requested interrupts occur within a finite
amount of time, thus unblocking processes awaiting interrupts. A process cannot
block on executing .Reply or .Forward because these primitives do not block. A pro-
cess cannot deadlock by executing the receive-any form of .Receive because any other
process can do a .Send to this process and unblock it. (A program can be in a state
such that there will never be a send to the blocked process so it is effectively
deadlocked. This is discussed later.) Thus, a process can only be deadlocked if it is
blocked doing a .Send or a receive-specific. It can deadlock with these primitives
trivially by sending to or receiving from itself. The possibility of a set of processes
deadlocking using .Send or receive-specific is examined by considering its blocking
graph. The blocking graph of a set of processes is the labelled directed graph defined
such that:

1. There is a node in the graph corresponding to each process.
2. There is a directed edge from node A to node B labelled S if and only if
process A sends to the process B.
3. There is a directed edge from node A to node B labelled R if and only if
process A does a receive-specific on process B.
Therefore, an edge from A to B means that process A can block on process B.

If the blocking graph of a set of processes contains no cycles, the set of processes
cannot deadlock because no circularity in the blocking can occur. The presence of
cycles in the resulting blocking graph does not necessarily imply that the system can
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deadlock. However, showing the absence of deadlock requires a more detailed argu-
ment that the cyclical blocking represented by the cycles cannot actually occur. For
example, if there is an S edge from A to B and an R edge from B to A, this cycle of
blocking cannot occur because either the .Send by A unblocks B or else the .Receive
by B does not block because the .Send has already been executed.

A process can be effectively deadlocked even though its blocking graph contains
no cycles. A process blocked executing a receive-any may, by intention, only receive
messages from a certain set of processes so it effectively blocks on that set of
processes when executing a receive-any. If, for example, all processes in the set are
also effectively receive-blocked on this process, these processes are then effectively
deadlocked. The blocking graph can be extended to handle this case by adding an
edge labelled RA from the receiver to each process it implicitly blocks on with the
receive-any. One can then argue that the receiver can deadlock executing the
receive-any if and only if there is a cycle through each RA edge in the graph and that
all the cyclical blocking indicated by these cycles can occur simultaneously.

Another way for processes to effectively deadlock is for a process to effectively
block on another process by looping waiting for, say, a variable to be changed by the
other process. That is, the process is not actually blocked but is effectively blocked in
the loop. This case can be handled by adding appropriately labelled edges to the
blocking graph corresponding to this blocking and treating them as analogous to the
receive-any as described above,

The blocking graph of the operating system is shown in Figure 1 of Chapter 5.
This graph is used in Chapter 6 to argue that the system cannot deadlock. The
blocking graph can be used in general to argue the absence of deadlock in multi-
process programs. In our experience, the blocking graph usually contains no cycles
or only cycles of the receive-specific form described above, so arguments to prove ab-
sence of deadlock tend to be straight forward if not immediate given the blocking
graph. In general, the blocking graph is a useful tool for understanding the process
structure of a program.

The second major problem introduced by multi-process structures is the need for
synchronization. Synchronization involves imposing some partial ordering on pro-
gram events to ensure correct behavior. This is required because concurrency re-
moves the total ordering of events imposed by the sequentiality of a single process
program. There are two aspects to synchronization: mutual exclusion and sequencing.
Mutual exclusion imposes an ordering on events because if A and B are mutually ex-
clusive events, either A must happen strictly before B or vice versa; they cannot hap-
pen concurrently. Sequencing requires a set of events to happen in some specified
order, namely A must precede B. We consider event sequencing in Section 4.4.

Mutual exclusion is required because of sharing. In the conventional approach
to multi-process programs, program resources are pooled and shared among the
processes. The consistency of the resource and avoidance of timing-dependent prob-
lems usually requires that only one- process use the resource at a time, or mutual ex-
clusion.

An alternate view is based on resource allocation and ownership. A process
owns a resource if it has allocated the resource (or has been allocated the resource)
and has not relinquished it. Ownership of a resource implies exclusive access to the
resource. Therefore at any time, a resource is owned by at most one process so mu-
tual exclusion is implemented by resource allocation. This view suggests two options
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for a process requiring a service that uses a resource it does not currently own:

1. The process can allocate the resource and perform the required service. This is
the more traditional approach, typified by semaphores and monitors.

2. It can send a message to the process owning the resource requesting that this
process act on its behalf to perform the service. This assumes that the pro-
cess owning the resource is prepared to offer this service to other processes.

Option 1 associates allocation (and ownership) of a resource with the function that
performs the service. Option 2 means that the ownership of a resource can be associ-
ated with the process that performs the service. This leads to a static ownership of
resources because a process offering one of these services can retain ownership of
resources for its entire lifetime. Static ownership of resources means that program
resources can be associated with the process in the multi-process structure that owns
the resource, thus inducing the same structure on the resources.

This view suggests that Option 2 be used for resources that require mutually ex-
clusive access, especially if the resource cannot be subdivided. It also suggests that
activities be allocated to processes so that the resource allocation among the processes
is understandable and sharing is minimized. That is, each resource requiring mutually
exclusive or sequential access is owned by one process. If a resource is needed by
several processes, it is allocated to a process that makes the required services of this
resource available to other processes. We refer to this type of process as a proprietor.

4.2 Proprietors

A proprietor is a process owning a resource that it uses to provide services to
other processes. Other processes can use these services by sending the proprietor a
message, called a request; the requesting process blocks until receiving a reply. The
proprietor acts on behalf of the requesting process as specified by the message. Thus,
although the proprietor makes the services based on the resource available to other
processes, there is no concurrent access to the resource because only one process, the
proprietor, acts directly on the resource. The general form of a Thoth proprietor is

Proprietor()

{
auto requestor, requestfMESSAGE__SIZE];

initialize
repeat
{
prepare for request
requestor = .Receive( request );
act on request and compose a reply
.Reply( request, requestor );
complete request processing
i
J

The general form of sending a request to a proprietor is
.Send( request, proprietor__id );

The proprietor structure is used to eliminate the need for specific mutual exclusion
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mechanisms as illustrated in the following example with semaphores.

Consider a simple file system in which the binary semaphore File__sem imposes
mutual exclusion on the operations in order to protect the integrity of file system data
structures. For example, two files must not be created with the same name.
File._sem is used to impose mutual exclusion on making files as follows.

Make__file( pathname )
{

extrn File__sem;
auto reply;

P( File__sem ),
reply = Make_ f( pathname );
V( File__sem );
return( reply );

}

Using a file system proprietor to replace the semaphore, the proprietor performs all
file system operations on behalf of other processes as follows.

File__system__proprietor()

{
auto reply, requestor, requestfMESSAGE_SIZE];

initialize the file system

repeat
{

requestor = .Receive( request );
select( TYPE([request] )

{
case MAKE__FILE:

reply = Make__f( PATHNAME[request] );

case REMOVE__FILE:
reply = Remove__f{ PATHNAME[request] );

case OPEN__FILE:
reply = Open__f{ PATHNAME[request] );

!
request{0] = reply;
.Reply( request, requestor );
f
J

To make a new file, other processes call
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Make__file( pathname )
{
extrn File__sys__id;
auto requestfMESSAGE_SIZE];

TYPE[request] = MAKE__FILE;
PATHNAME][request] = pathname;

.Send( request, File__sys__id )
return( request[0] );

J

The file system proprietor shown here is similar to that used to implement the Thoth
file system.

The implementation of proprietors only requires the existing mechanisms of the
abstraction, namely processes and message-passing, so the implementation is portable
and requires no special features in the base language, in contrast to monitors which
Hoare(1972) describes as a "high-level language construction”. Proprietors can be
used instead of disabling interrupts to achieve mutual exclusion on a resource or
operation, reducing the need for disabling interrupts. Thus, their use can aid in keep-
ing disable times bounded. Finally, because processes and message-passing are avail-
able at the user level, user programs can use proprietors. The text editor presented in
Section 4.5 is an example of such a program.

A proprietor localizes the ownership of and access to a set of resources to one
process so operations on the resources are independent of other processes. In particu-
lar, operations on the resource complete independently of whether the requesting pro-
cess is destroyed while the request is being processed, avoiding the problem with
semaphores discussed in Section 3.4.3. This locality also means that verification of
properties about the resource and resource operations are independent of the other
processes of the program. As we argue in Chapter 6, the individual system proprie-
tors can be verified as though they were sequential programs, allowing the use of stan-
dard sequential verification techniques.

The proprietor structure implements the policy of servicing requests in a first-
come-first-served order. Therefore, requests that cannot be handled immediately are
not queued but simply replied to with an indication of the reason. For example, a re-
quest to remove a file that is currently busy is rejected and a code returned in the re-
ply indicating this condition. Implementation of more sophisticated scheduling poli-
cies is discussed in the next two sections.

Proprietors can be compared to other schemes for achieving mutual exclusion
such as semaphores, monitors, critical regions, managers and secretaries.

The concept of proprietor is close to concepts that have been called managers
but we have avoided the term "manager” because it has been used in many different
ways, many of which not referring to a process or concerned with mutual exclusion.
For instance, the operating system of Jammel and Steiger (1977) used a concept of
manager similar to that of a proprietor; however, their concept of process and
message-passing is more restrictive. Conversely, the virtual type manager of Janson
(1976) is simply a set of functions for implementing a data type with no concept of
process, message-passing or mutual exclusion inherent in the definition. Certain
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proprietors, such as the file system, implement a data type whose operations are the
available requests; however, regarding a proprietor as a type manager is not always
natural because, by the definition of type manager, each proprietor would implement
a different data type, so each file system proprietor implements a different data type.

Dijkstra (1972) proposes the concept of a secretary which appears similar to that
of proprietor. It is, to our knowledge, unimplemented and lacking in detailed
description. He remarks that this approach is aesthetically pleasing but that the prac-
ticality of this approach remains to be seen.

All of the above schemes, except secretaries and some managers, are passive
structures in the sense that the process requiring the service must execute them. This
requires that the process have addressability to the structure, limiting the value of
these schemes on some architectures, particularly distributed machines. In contrast, a

proprietor can be independent of the requesting process, with the only interaction via
message-passing. This seems more promising for use in a distributed system.

The concept of proprietor centralizes in one process the access to a resource. In
comparison, sesmaphores can distribute the access and synchronization throughout the
code executed by many processes. Monitors centralize the access of the resource to
the functions of the monitor but distribute the use of these functions over all
processes. Centralization can have the implication of imposing excessive sequentiality
of access to resources owned by proprietors. However, reducing concurrency can
have the benefit of reducing the cost of process switching and contention for
resources. Also, ownership of resources can be subdivided to provide more con-
currency in total if desired. For example, a system could be designed with a proprie-
tor of disc storage, or a proprietor for each disc channel, or a proprietor for each disc
drive,

The most significant argument in favor of proprietors is that they have been, in
our experience, adequate for mutual exclusion in the system and user programs,
whereas semaphores, monitors and critical regions have been shown to be inadequate
in the presence of process destruction (see Section 3.4.3). Proprietors seem incompar-
able with these schemes in terms of simulating each other. That is, it is not clear
what it means to simulate a proprietor with semaphores and a single proprietor can-
not simulate a semaphore without using an internal queuing mechanism. Because
semaphores can be simulated with processes and message-passing, and appealing to
various comparisons in the literature between semaphores and other schemes, like
Hoare(1974) and Brinch Hansen(1970), there is no loss in power by not including
these schemes as primitives in the abstraction.

The cost of the proprietor structure is the space cost of a process, the time cost
of message-passing plus some overhead for producing and interpreting messages.
Thus, its efficiency is dependent on the availability of inexpensive processes and
efficient message-passing, which do not exist in many operating systems. Therefore, a
major disadvantage of proprietors is their lack of applicability to existing systems oth-
er than Thoth. Comparing the costs of message-passing to semaphores as a means of
synchronization, the execution of a P does not always result in a process switch while
execution of .Send does. However, with heavily utilized resources, one would expect
execution of a P to cause blocking most of the time. Thus, if process switching con-
stitutes most of the cost of message-passing on a machine, the cost of the two
schemes would be comparable under heavy utilization.
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4.3 General Queuing and Serving

A proprietor is, in queuing theory terminology, a server serving a single queue of
customers, its send queue, in first-come-first-served order (FCFS). In this section, we
consider how to implement more general queuing and serving using the existing primi-
tives of Thoth.

First, a queue need not be served in purely FCFS order. A proprietor can im-
pose a simple round-robin service on its send queue as follows. The proprietor serves
the first request in its queue up to some maximum amount of service. If that satisfies
the request, the service would complete normally and the requestor would be replied
to. Otherwise the proprietor would forward the requestor’s message to itself (the
proprietor) with a request for the remaining service. This has the effect of placing
this process at the end of the proprietor’s send queue. For example, a disc proprietor
that received requests to read or write large amounts of data could read or write at
most some maximum at a time; requests for larger amounts would be handled by a
round-robin scheme of several smaller amounts.

There is sometimes a need to discriminate more than one class of customer. For
example, processes accessing a data base can be classed by whether they are request-
ing queries or updates. These classes can be realized as several queues, one for each
class, which can be provided by having a process for each queue; the send queue of
the process serves as the queue for the associated class. In some applications, each
sending process will know which queue to enter, namely which process to send to:
otherwise one process could receive all messages and forward the messages to the ap-
propriate process, thus queuing the sending process in the appropriate class. Each
queue process acts as a server for its queue. This service can be FCFS or round-robin
as above, or made more sophisticated by servers forwarding messages to other server
processes. The servers send to the proprietor of the resource to perform the service.
Using these techniques, it is possible to implement many different queuing disciplines.

A proprietor owns its resources to guarantee the required synchronization, thus
imposing sequential service on the resources. However, the sequentiality can be ex-
cessive in terms of that required to ensure integrity of the resource. For example, the
proprietor of a data base owns all the records of the data base because updates can
affect any part of the data base. However, it is common to have two requests that
are independent of each other in the sense that the two operations can be performed
concurrently with no ill effects because they affect disjoint sets of records. A proprie-
tor can effectively service requestors concurrently by employing a set of subservient
server processes that perform the requested service. It assumes the role of a resource
allocator to these servers. For example, a database proprietor would allocate to the
server process, the records required to handle a request rather than the server locking
the records (as in the conventional design). If several classes of requests were recog-
nized using the multi-queuing mechanism described above, the servers for the queues
could also act as subservient servers for the proprietor. The proprietor could also en-
queue requesting processes by forwarding requestors to the appropriate queue. This
scheme uses the dynamic allocation of resources typified by the semaphore but res-
tricts the allocation to a special set of processes, the servers. Note that if servers
could be arbitrarily destroyed, there would be the same problem of resource incon-
sistency observed in Section 3.4.3.
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The dynamic allocation of parts of a proprietor’s resource introduces the possi-
bility of the servers deadlocking. The proprietor can avoid deadlock by requiring that
all the allocation for a request be done at one time, or by analyzing each allocation to
detect deadlock.

4.4 Event Sequencing

The previous sections discussed the mutual exclusion aspect of synchronization;
we now consider event sequencing. Event sequencing is the imposition of a partial
ordering on the set of program events and external events. This is implemented as
follows: If event A must precede event B, the process causing B waits for event A to
happen. A process can wait for an event by polling repeatedly to see if the event has
occurred. This is inefficient and does not work for a process waiting on an event
caused by a process of the same or lower priority (because of the CPU allocation
rule). A process can also wait by blocking on certain events, called simple events. A
simple event is an event that a process can block on by using a primitive in the
abstraction. Thus, the occurrence of an interrupt, completion of a time period, ar-
rival of a particular time, and the sending or receiving of messages are all simple
events. The primitive .Receive used in its receive-specific form allows a process to
block until the specified process is destroyed (providing it does not send to the re-
ceiver). Similarly .Send could be used if the process to be destroyed does not do a
receive-any or a receive-specific from the waiting process. Therefore, it is also
straight forward to implement a process that waits for a specific process to be des-
troyed.

We now consider the need for blocking on complex events specified as arbitrary
Boolean functions of simple events, called multi-events. An example of a commonly
used multi-event is an interrupt time-out. The process blocks waiting for an interrupt
or else a time-out if the interrupt does not occur within some predetermined time
period.

Blocking on a multi-event can be implemented by the process blocking on a
receive-any form of .Receive, assuming that all events defining the multi-events are
communicated to it by messages. This would mean that for an interrupt, a separate
process would be required to block on the interrupt and then send a message to the
process doing the receive-any. Also, it would be difficult for a proprietor to use a
receive-any in this way because it would then also receive any outstanding requests to
it.

A more general structure consists of a "coordinator” process that receives re-
quests from processes to block on a specified multi-event. The coordinator only re-
plies to a requesting process after its respective multi-event has occurred. It also re-
ceives event messages indicating the occurence of events. After receiving an event
message, the coordinator determines whether this event has satisfied the Boolean ex-
pression of one or more multi-events for which processes are waiting and replies to
each such process. Therefore, the coordinator must maintain information specifying
multi-events and processes blocked on them. It must also arrange to receive these
event messages. This requires having one process per simple event that blocks on this
event and then sends to the coordinator. For example, such a process acting an as
alarm clock would delay for a specified time and then send to the coordinator, thus
providing a message indicating that the time period had expired. If one of these
processes is blocked on a simple event that is no longer of interest to the coordinator,
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the coordinator can ignore the process, destroy the process, or unblock it using
.Wakeup if the process is sleeping or delaying. The first option is usually too expen-
sive because of resources consumed by such blocked processes.

A coordinator process can also be used for debouncing an event. That is, if
several events of the same type occurring within some small time period are con-
sidered to be one event, the event must be debounced. The term “debounce” comes
from the problem of a mechanical switch that generates several interrupts for each
change in the switch position because of mechanical bounce in the contacts. De-
bouncing the switch is ignoring the interrupts due to the bounce. After the first event
occurs, the coordinator can arrange for an alarm clock process to send to it some
specified time period. It then ignores event message about this same event until the
alarm clock process sends to indicate that the time period has expired.

This structure could also be used for resource allocation in which the events are
requested resources becoming available. A process would send a message requesting
the allocation of some set of resources. It would be left blocked by the coordinator
until the resources are available. In some cases, the coordinator would have to detect
and resolve deadlock.

There is a trade-off between the number of coordinators and their complexity.
One coordinator can manage all multi-events or a simple coordinator can manage a
single multi-event. A coordinator only blocks when it is blocked waiting to receive a
message so it cannot deadlock and using one coordinator does not produce a
bottleneck (unless multiple processors are available and the computation load of the
coordinator is significant).

The main disadvantage of the coordinator process is the cost, especially if extra
processes are required solely to block on simple events and send event messages to the
coordinator. Evaluating arbitrarily complex Boolean functions specifying multi-events
can be costly, but the functions that occur in practice are, in our experience, simple.
Moreover, more efficient structures can be used for specific multi-events. For exam-
ple, a time-out on sending to a process could be implemented with one extra process
as follows. The extra process sends to the receiver while the original process delays
for the time-out period. If the extra process receives the reply before the time-out, it
uses .Wakeup to ready the original process. This structure works as well for a time-
out on an interrupt; the extra process would block on the interrupt. The communica-
tion between the two processes and the action of the delaying process on a time-out
would depend on the application.

Finally, the above scheme suggests how the clock proprietor can be used as a
simple form of coordinator. A process can delay and wait to be unblocked by any
number of events communicated to it via .Wakeup. If a time-out was not desired, the
delay time could be made long enough so that the time period would never expire.
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4.5 Fault, Break and Exception Handling

Faults, breaks and exceptions require a change in the normal hierarchic control
flow of a process. A fault is an abnormal condition that is detected externally to a
process and asynchronously to its execution, yet caused by that process. Faults in-
clude illegal operations, memory faults and priviledged operations. A break is the
asynchronous halting of a program’s activity. An exception is an abnormal condition
detected by the process.

On some systems, faults and breaks are handled by a software interrupt or signal
as mentioned in Section 3.3.4. On one of these conditions, the process is sent a signal
to which it can respond as it chooses. The process is destroyed if it has not provided
for handling the signal. For exception handling, one technique is for the function
detecting the exception to return an error status indicating the error condition. This
can require passing the error condition back through several levels of function calls
before the error condition is acted upon. Another technique is to provide a means of
breaking out of the hierarchic control flow specified by the process’s call graph of
functions. For example, the setexit and reset functions of UNIX provide a non-local
goto mechanism. The execution of reset causes a simulated return from the last call
to setexit, assuming there was a call to setexit executed in a function that is an ances-
tor to the reset in the process call graph.

Faults, breaks and exceptions can be handled by multi-process structures with
process destruction using the following principles. First, each process that encounters
a fault or exception, or that is the subject of a break, is destroyed. In the case of an
exception, the process first leaves an indication of which exceptional condition was en-
countered. (It seems desirable to extend this to fault handling in the future.) Second,
if the program is to continue running after one of these conditions, the part to remain
is designed as separate processes from the processes to be destroyed.

These principles are applied to implement break and exception handling in Thoth
programs. Faults are handled by destroying the team (i.e. all the processes on the
team) of the process incurring the fault. Process destruction is used to handle breaks
as follows. Each team has a associated teletype. Each process is either breakable or
unbreakable. The function .Breakable makes a process breakable or unbreakable
depending on its argument. If a process is breakable, it is destroyed when a break is
generated by its associated teletype. Generally, all processes on a team are breakable
so a break on the team’s teletype destroys the entire team; however, an interactive
program may need to halt the execution of the current command and return to com-
mand level or translate the break into some action without the whole program ter-
minating, so not all its processes would be breakable.

The Thoth text editor is an example of the use of multi-process structures for
break and exception handling. It is a simple, line-oriented text editor with a user in-
terface similar to Edit of Software Tools (Kernighan and Plauger (1975)). The text is
stored in a buffer which is maintained in memory. As an interactive program, the
text editor must handle exceptions caused by incorrect command lines, running out of
memory, unsuccessful pattern searches, and the user pressing break. After any of
these conditions, the text editor must continue running with the text buffer in a con-
sistent state.

th
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The text editor is structured as two processes on one team. The first process is
the proprietor of the text buffer and performs all text buffer operations. (This process
is referred to as the Main process because it is created executing a function called
Main.) The Main process guarantees the integrity of the text buffer; it is not des-
troyed by an exception or a break. The operations on the text buffer are performed
at the request of a second process (referred to as the Editor process because it is
created executing a function called Editor). The Editor process reads command lines
and text from the input, parses command lines, and performs the commands,

The Main process is unbreakable while the Editor process is breakable so only
the Editor process is destroyed on a break. Because the Editor process executes the
commands, a break causes the execution of the current command line to stop. The
text buffer remains consistent because it is maintained by the Main process. The
Main process detects when the Editor process has been destroyed and creates another
Editor process which proceeds to read a command line from the input. Thus, the
handling of breaks appears to the user as that of the Editor immediately returning to
command level.

This structure is also exploited in handling exceptions. On detecting an excep-
tion, the Editor process destroys itself after leaving a pointer to an error message in a
global variable indicating the exception. The user is notified of the exception by the
next incarnation of the Editor process, which prints the error message.

This discussion is clarified by considering the source code for the text editor.
When the text editor is invoked, the system creates a new team from the code and the
initialized data stored in a file associated with the text editor. The new team is ini-
tially one process which exeecutes a standard function which opens the default input
and output and calls the function

Main( optc, arge, cmd__vec )

e - The Thoth Text Editor
{
extrn Editor_id;
auto requestor, request[MESSAGE__SIZE];

if( optc > 0 || arge > 1)
{
.Err—msg( "use: ¢ [ <pathname> ]”);
CExit( 1)
J
Initialize( optc, arge, emd__vec );
.Breakable( FALSE ),

repeat
{
requestor = .Receive( request, Editor__id); (*)
Editor does not exist first time
if( requestor == 0)
{
Recreate._editor(); next;
!
select{ OPERATION]request] )

{



56

case APPEND__LINE: Append__line();

case DELETE__LINES: Delete__lines( request );

case COPY_LINES: Copy_lines( request );

case NORMALIZE__LINES: Normalize__lines();

case SUBSTITUTE__LINE: Substitute__line( request );

case SET_CURRENT__LINE: Set__current__line( request );
J
.Reply( request, requestor );
}
}

The first time .Receive is executed at (*), the Editor process does not exist so reques-
tor is set to zero and Main invokes the Recreate__editor function, which creates a
second process executing the function

Editor()
{
extrn Message, Index, Command, Error__messages, Reserved__core;
extrn Input, Qutput, Output_mode. Flush;

Select__input( .Open(Input, "r") );
Select__output( .Open(Output, Output__mode) );
Put__str( Message ); ++Flush;

Message = Error__messages[BREAK];

.Breakable( TRUE );
Reserved__core = .Alloc__vec( RESERVE_WSIZE ),
.Reset__option( .Select__input(), ECHO_NULL__LINES );

repeat

{
Execute__command__line( NON_GLOBAL );

Get a new command line
if( Flush ) {.Flush(); Flush = 0:}

Index = 0;

if( .Get__str(Comamand, MAX__LINE) == "*(0")
Exit( 0 );

ifl Command{0} == "!") Error( ESCAPE ),

if( Skip—blanks() == "*0")
{ Print the next line on null line
.Concat( Command, ".+1p” );
Index = 0;
}
J
J

St

~ ——
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Notice that the Editor process prints the message from the previous Editor process
and then sets it to the break message. The Editor process responds to exceptions and
sets the error message with the function

Error( msg__number )

{

extrn Message, Error__messages, Editor__id;

Message = Error__messages[msg__number];
.Destroy( Editor__id );

}

The Main process also invokes Error to halt the Editor process when there is no
memory available to grow the buffer. This is the only exception detected by Main.

This structure has several advantages. The error handling is elegant in the sense
that it is local to where the error was detected except for recreating the Editor process
and printing the error message. This contrasts with the use of error codes that are
typically handled and returned through several levels of function invocations. The
break handling is elegant because there is no need for any synchronizing code with
respect to breaks and there are no critical sections. The Main process simply makes
itself unbreakable and the Editor process makes itself breakable. This structure is
portable because it only relies on message-passing, multiple processes and process des-
truction which are largely machine-independent in implementation in Thoth and
which could be implemented in other systems as well. In contrast to the reset scheme
of, UNIX, we claim this structure is logically clean because the hierarchic flow of con-
trol is not violated, just halted. The reset scheme of UNIX is also less portable be-
cause it relies on being able to reset the stack to the setexit call, which is difficult on
some machines (Johnson (1978)).

The structure can be applied to many interactive programs for exception and
break handling. The functionality of the program is implemented by a process
corresponding to the Editor process and the data structures that must remain con-
sistent over breaks and exceptions are maintained by a process corresponding to the
Main process. Conceivably, the process corresponding to the Main process could
function solely to recreate the first process after breaks and exceptions.

The handling of faults in Thoth is so far very simple, namely destroying the team
of the process incurring the fault. For more sophisticated machines with floating
point arithmetic faults, it seems desirable to only destroy the process incurring the
fault and provide some means for other processes to determine why that process was
destroyed.

4.6 Agents

A distributed system is two or more machines connected so that they can com-
municate and utilize each other’s resources. An instance of such resource sharing is a
distributed file system can access files of the others.

Connecting multiple machines introduces the non-local use of system resources.
This raises questions of ownership, reclaimability and cost, both in size of code and
reliability. Thoth currently has no concept of an external system, or any mechanism
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for handling this. Moreover, there are many places where advantage is taken of a
process being local. For example, a process’s process descriptor is often used in the
system to directly access information about the process. One approach is to extend
the operating system to handle external use of resources in a general fashion. This in-
creases the size and complexity of the system and introduces several problems regard-
ing the external process’s interface to the system. An alternate approach is to restrict
the knowledge of the external use of resources to one local process, called an agent.
An agent is a process whose function is to act as a representative of other machines,
and to use the resources of its machine on their behalf.

An agent, as a local process, uses the standard mechanisms for interacting with
the rest of the local system, including allocating resources. Similarly, the local
machine views the agent as a local process so it need not know about the external use
of the resources and it retains full control of these resources via the normal mechan-
isms. Therefore, no special mechanisms are needed in the rest of the local system.

The use of an agent also simplifies the interface between machines because each
machine only deals with one process on the other machine. That is, the agent for
machine A that resides in machine B is, from the point of view of machine A, the
proprictor of machine B because all requests to access any of machine B’s resources
from machine A must be sent to this process. For example, in a distributed file sys-
tem, to access a file on another machine, a request is sent to the agent in that
machine who attempts to access that file and if successful, returns the necessary file
information and data.

The notion of agent is applicable to programs extending over separate address
spaces. A program can be structured as several teams with teams having agents on
other teams.

The concept of agent has not been implemented for communication between
machines yet; however, the structure of the operating system can be viewed as using
agents. That is, the system processes act as agents for the user processes. We ex-
plore the structure of the system further in the next chapter.

5 Multi-Process Structures in Operating Systems

This chapter considers the application of multi-process structuring to operating
systems by describing the multi-process structure of the Thoth operating system.
Multi-process structuring is well-suited for use in operating systems because of the
asynchronous and parallel operation of peripherals and the logical concurrency of
programs that results from multi-programming. This type of structuring also provides
further techniques for dealing with the problems of synchronization, deadlock
avoidance, resource allocation and reclamation, protection and system interfaces. In
the course of the discussion, we abstract several principles from the design; we also
note problems with the current structure and propose solutions. The overall structure
of the system is considered first.
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5.1 Overall Structure

The operating system is structured as two distinct levels of implementation. The
kernel, the lowest level, implements a basic abstraction. It consists of a set of data
structures and functions that operate on these data structures. The multi-process
structure, the second level, consists of system processes which execute within the basic
abstraction and which implement several internal levels of abstraction that together
implement the external abstraction. The system processes create various system data
abstractions and functional abstractions from hardware resources and abstract
resources made available by other system processes.

The services provided by system processes are made available to user processes
(as well as other system processes) via the message-passing. Rather than being aware
of sending a message to a system process, the user invokes a function supplied by the
system library that prepares a message and sends it to the appropriate system proprie-
tor. Thus, even though communication with the system proprietors is implemented
with message-passing, the presence of system processes and message-passing commun-
ication can be transparent to user processes because of these library functions and the
"subroutine” semantics of .Send.

The use of message-passing as a means of communication between address
spaces eliminates the need for a special mechanism to implement "system calls” other
than the message-passing primitives. Restricting all interaction with the system to the
message-passing can lead to a more secure system because the interface is more
specific. That is, assuming the message-passing primitives are secure, a user process
can only access system resources by sending to a system process. Then, one need
only show that no system process can be “out-smarted” by a strange message to show
that the system is secure.

System processes act as agents for the user processes in several ways. They give
user processes (indirect) access to the system space and resources. In theory, this
means that user processes do not even have to be on the same machine. System
processes also execute at system priority and are synchronized with other system
events by the relative indivisibility property. The sender need not be in memory for
the proprietor to act on its behalf for some operations, thus reducing interaction with
the swapping mechanism. Finally, system processes execute in privileged mode mak-
ing certain instructions available that are not available to user processes.

System calls in Thoth are implemented as a combination of the traditional func-
tion calls (that trap on a multi-team system) and via the message-passing. We hope
to evolve the system to use message-passing for most of the system calls. For exam-
ple, currently most of the 1/O-related system calls are implemented as traditional
trap-type functions calls. They would be much better implemented through the
message-passing directly. However, it is not clear that it is possible or entirely desir-
able to restrict all interaction with the system to message-passing. For relatively ex-
pensive system facilities like accessing a file, the cost of the message-passing is small
in relation to the total cost plus the message-passing allows the use of the proprietor
structure with advantages as described in Section 4.2. Also, accessing a file is per-
formed with system data structures only so the error checking is simple because the
file system can trust system data structures. In contrast, implementing .Alloc__vec by
message-passing means that the system process doing the memory allocation must do
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extensive error checking because it is operating on a data structure in the user’s ad-
dress space. Moreover, the cost of the message-passing becomes a significant propor-
tion of the cost of allocating a vector. Finally, because .Alloc__vec is a simpler
operation, the advantages of doing it by proprietor are less significant.

Several types of processes are used in the system. At the lowest levels are the
device proprictors. A device proprietor is a proprietor of a device. The device
proprietor owns the device interface in the sense that it is the only process that
accesses the device interface and waits for interrupts from the device. The device
proprietor implements an abstract device based on the hardware it owns and makes
the services of this device available to other processes via the message-passing. The
abstract device is designed to be simpler and more portable than the real hardware.
The device proprietor can exploit the facilities of the Thoth abstraction on behalf of
the device. For example, several device proprietors send to the team proprietor to re-
quest that the team of their current requestor be swapped into memory to give them
access to that team’s data segment. However, as discussed in Section 3.1, using
processes to handle interrupts requires fast activation of these processes.

The conventional design of device handling routines uses interrupt routines in-
voked directly by the hardware mechanism for handling the interrupts and managing
the device activity. One set of routines initiates device activities and the other set per-
forms the necessary actions to continue the device operation after an interrupt signal-
ling the completion of an operation. This scheme has the disadvantage of being less
uniform than using device proprietors because communicating with the device is usu-
ally unlike the message-passing. Also, a device proprictor has the facilities of the
process abstraction available to it for performing its functions while interrupt routines
would not. Finally, our experience has been that device proprietors are easier to
understand and to program.

Above the device proprietors are processes that use the services of these device
proprietors. For example, the file system uses the services of the two disc drive
proprietors to implement the file system abstraction. Similarly, the team invoker uses
the file system when invoking teams.

The structure of the system in terms of processes is given in Figure 1. Each
block is a process and a "*” or "+” indicates a process that receives messages and is
thus a proprietor. Only the RTC process and the swapping alarm clock are not
proprietors. The system given is configured with two disc drives and one teletype
although Thoth will support more disc drives and teletypes, as well as other devices.
User processes send messages to any of the processes marked with a "*”,
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In the following sections, we discuss the structure of the kernel and the particu-
lar process structures used in Thoth.

5.2 The Kernel

The basic abstraction implemented by the kernel includes:

1. processes and process identification

2. message-passing

3. interrupt abstraction

4. dynamic memory allocation

S. dynamic process creation
The implementation of these facilities was discussed in Chapter 3 and is further
developed in Chapter 6 in the discussion of verification.

The structure of this level of the software is conventional in the sense that the
kernel consists of a set of functions acting on shared data structures and interrupts
are disabled to achieve the required mutual exclusion. The structure is necessarily
primitive because the facilities of the full abstraction are not available at this level.
Therefore, it is appealing to implement the minimal facilities required at this level
and use the multi-process structure to implement the rest. These minimal facilities
must therefore include processes, process identification and message-passing. The in-
terrupt abstraction is included because it involves process switching. The memory al-
location is included for reasons described in Section 3.4.1, primarily for simplicity
and efficiency. Process creation is part of the Thoth kernel largely for historical rea-
sons although having it there has efficiency advantages.

The memory allocation and process creation could be removed from the kernel
by having these services provided by proprietors. This would add to the cost of these
operations and to the code required to implement them as well as potentially intro-
ducing logical problems. For example, the memory proprietor could not handle
growing the team’s data segment to satisfy an allocation request without depending
on the swapping mechanism which, as it is currently implemented, uses the memory
allocation itself. Process creation seems like a better candidate for implementing via
a proprietor although the operation is actually sufficiently short that disabling inter-
rupts is adequate for the required indivisibility. However, because process destruction
is implemented by a system process, it would seem more consistent to have this same
process perform process creation and make it the process proprietor.

In general, the kernel should present an abstraction that processes use without
violating (by directly accessing kernel data structures) and the facilities of the kernel
should be as efficient as possible. One might also like all operations of the kernel to
be executed with interrupts disabled to simplify their behavior and verification.

While the Thoth kernel is fairly efficient, the basic abstraction of the kernel is
violated by both the swapping and the process destruction mechanisms. Also, not all
instructions have interrupts disabled for the full duration of their execution. This is
done in order to achieve a small, bounded maximum disable time. We have been
evolving the kernel more in the direction of removing abstraction violations and
undisabled operations; however, it is not clear how to best resolve the abstraction vio-
lations. For instance, because the process descriptor is a data structure internal to the
kernel implementation, process destruction should be a kernel operation, yet this is
much easier to implement as a process. Moreover, to reduce the size of the kernel, it
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was suggested earlier that process creation could also be done by a proprietor, thus
adding another abstraction violation. These issues deserve considerably more investi-
gation.

5.3 Real-time Clock

The real-time clock abstraction is implemented by two processes. One process,

the clock proprietor receives messages to:

1. wake up processes whose time has expired.

2. set the time to a specified time.

3. return the current time in the reply.

4. cause the requesting process to sleep (or block) until the specified time.

5. cause the requesting process to delay for the requested time period.

6. wake up a specific process even though its time to delay or sleep has

not expired.

Thus, .Sleep, .Delay, .Get__time, .Set._time and .Wakeup are implemented as send-
ing messages to the clock proprietor. The clock proprietor maintains a record for
each process that is sleeping or delaying that indicates the time to wake up this pro-
cess. The clock proprietor leaves a process requesting to sleep or delay blocked for
the required time interval simply by not replying to its message until the time has ex-
pired.

A process delaying must delay for the specified time period independent of the
absolute time being changed by .Set__time. Thus, when the time is changed by
.Set__time, the clock proprietor recalculates the remaining delay time for each delay-
ing process and forwards the message of each delaying process to itself (the clock
proprietor) with a message to delay for the remaining period of time. This allows the
clock proprietor to use its normal delay mechanism for adjusting the delay of these
processes.

The clock proprietor relies on two services. It relies on a vector being main-
tained with the current date and time and it relies on receiving a message to wake up
processes when the wakeup time of the next process to wake up is equal to or earlier
than the current time. These services are provided by the RTC process.

The RTC process is a process that awaits the periodic interrupts generated by
the real-time clock (RTC) hardware. On each interrupt, it updates the current time
and effectively sends to the clock proprietor if the current time is now equal or later
than the wakeup time for the first process to be awoken. It is necessary to limit the
disable time and restrict the amount of activity at the RTC process’s priority or
higher to guarantee that the proper frequency of clock interrupts is achieved so the
correct time can be maintained. For the same reason, it is necessary to guarantee
that the RTC process only blocks on interrupts. Thus, the "effective” sending to the
clock proprietor is accomplished by violating the abstraction and not by the normal
.Send mechanism. If the normal .Send mechanism was used, the RTC process could
remain blocked on the clock proprietor for an unbounded period of time while the
clock proprietor served various requests and not be ready for the next clock interrupt.

This violation could be avoided by updating the current time in the interrupt
handler and only having an interrupt occur in the abstraction when the current time is
equal to or past the next wakeup time. This simulates a hardware clock with two re-
gisters: one is maintained as the current date and time; the other is the wakeup regis-
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ter containing a later time. This hardware generates an interrupt when the contents
of the current time register are greater than or equal to the contents of the wakeup
register. Thus, the RTC process could be replaced by a process that awaits this
"wakeup” interrupt and sends to the clock proprietor by the normal mechanism.

All the services of the clock are implemented by messages so these services
would be immediately available to another machine if the message-passing was imple-
mented between the two machines.

5.4 Block I/O

Each block device has an associated device proprietor that receives messages for
device service. The device proprietor is deemed to own the interface to the device but
not the device itself. For example, the controller proprietor does not own the blocks
on the disc or the heads on the drives.

The process structure can be made more sophisticated if the controller controls
more than one device. The system in Figure 1 is configured for a disc controller that
controls two disc drives. There is a controller proprietor process that owns the disc
controller plus two disc proprietors that each own their respective drives which they
access by sending to the controller proprietor process. This structure allows a seek on
one drive concurrent with disc operations on other drives providing the disc controller
hardware allows this. That is, a disc proprietor can request a seek on its drive and
then await the completion of the seek by waiting for the seek complete interrupt it-
self. Meanwhile, the controller proprietor is free to accept requests for services on
other drives.

This structure can also be used for several tape drives attached to one tape con-
troller, allowing a tape drive to rewind concurrently with tape operations on other
drives. The drive proprietors plus the controller proprietor form an interesting multi-
process structure but this structure has provided little gain in performance. That is,
overlapping of seeks has not brought a noticeable gain in performance.

5.5 Teletype 1/0

A teletype is effectively two devices, one the input and the other the output.
Therefore, it is handled as two processes. The teletype output proprietor receives
messages containing characters to output to the teletype. The message also contains a
specification of options to be used on output such as whether tab characters are to be
expanded. That is, blanks are inserted to achieve the indicated tabulation. If the
teletype is paged, it outputs at most a screen or page of characters between receiving
characters from the teletype input proprietor. This is implemented by the output
proprietor doing a receive-specific from the input proprietor when it reaches this limit.

The teletype input proprietor awaits interrupts from the keyboard and builds a
line of characters. Other processes send to the input proprietor to receive a line of in-
put. The teletype input proprietor sends to the output proprietor to have characters
echoed, if required. Because a line of input does not in general fit into a message, the
teletype input handler uses .Transfer to transfer the input line into the requesting
process’s buffer.
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The teletype input proprietor also handles breaks. A break is implemented by
the teletype input proprietor destroying every process that is marked as breakable for
that teletype. To accomplish this, the teletype input proprietor sends to the death
proprietor. Thus, the input proprietor uses a number of system services on behalf of
the teletype input hardware.

5.6 File System

The file system is implemented as a proprietor that owns the disc blocks and the
file system data structures on disc and in memory. (It owns the disc blocks as con-
tainers while not necessarily owning their contents.) It receives messages to perform
file system operations such as open file, close file, create file and so on. This structure
was used as an example in Section 4.2. File operations involve disc I/O which the
proprietor performs by sending messages to the disc proprietors. Thus, it implements
an abstract resource consisting of a set of files using the abstraction of the discs pro-
vided by the disc proprietors.

The file system has several problems that we hope to fix in the future. The file
system proprietor restricts concurrency of file system operations when the file system
is spread over several independent drives because only one operation is performed at a
time (because there is only one file system proprietor). Most of the time to perform
an operation is spent waiting for disc 1/O so operations on separate drives could be
performed concurrently with considerable benefit. This is partially alleviated by the
fact that the disc I/O for reading and writing a file is not done by the file system
proprietor, but is done directly by the appropriate disc proprietor. This is reasonable
because file 1/O involves changing the contents of files and not the file system struc-
ture so it does not conflict with the file system proprietor’s ownership. However, to
protect the file system and files against unauthorized disc 1/0, it is necessary to check
that the requested disc I/O is permitted for the requestor by the file system. Unfor-
tunately, this protection requires that the disc proprietor access file system data struc-
tures thus violating the exclusive ownership of these by the file system proprietor.
Consequently, this protection is not currently implemented. The file system also
needs to transmit larger amounts of data between teams than allowed by the
message-passing primitives, and it has not been changed since before the introduction
of .Transfer so its current state still reflects some early design flaws.

Several improvements are planned for the file system. We plan to allow several
file system proprictors, each owning some disjoint subset of the disc drives. This
would allow concurrent file system operations and make the reading and writing of
files going through the associated file system proprietor feasible thus solving the pro-
tection problem. We plan to change the file system and swapping so requestors can
be swapped out of main memory while most file system operations take place. The
file system proprietor will then act as a high priority memory resident agent for user
processes. We also hope to make part of the file system processes swappable thus
reducing the amount of memory dedicated to the file system.

In summary, the file system is currently implemented as a simple proprietor and
this process structure works well in small systems. It is not adequate as it stands for
larger configurations, but this will be remedied.
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5.7 Process Destruction

The death proprietor receives requests to destroy processes and sends messages
to other system proprietors in the course of reclaiming the resources of the destroyed
process. Thus, .Destroy is implemented as sending a message to the death proprietor.

The death proprietor resolves concurrency problems arising from two or more
processes attempting to destroy the same process. It also acts as an external agent
for a process wanting to destroy itself. It would be awkward for a process to directly
destroy itself because a process cannot exist without resources so it cannot logically
release all its own resources.

The death proprietor uses the standard relinquish functions to release the
resources of the process it is destroying. This causes it to send to various system
proprietors. For example, it sends to the file system proprietor to close files. The re-
linquishing of resources can be slow if it requires closing files and so the death
proprietor can be a bottleneck in a large system. Worse still, the death proprietor
can block indefinitely on closing the printer file when the printer is out of paper. A
possible solution is for the destruction proprietor to modify each process it is destroy-
ing to close its own files and free its own memory. This process would then send to
the death proprietor which finishes destroying the process. This would aid in solving
another problem. Currently, the death proprietor must free memory into the team
free list of the process being destroyed. If the free list is inconsistent, it is very hard
to guarantee that the death proprietor cannot memory fault. The process being des-
troyed could memory fault without affecting the death proprietor. We plan to further
investigate this design once the file system is changed.

5.8 Team Invoker and Team Proprietor

Teams are implemented by the team invoker and the team proprietor. The team
proprietor owns the data structures involved in implementing teams, namely those
describing the memory allocated to teams, the swap file, and the team descriptors.
The team invoker acts as an intermediary between the user and the team proprietor
when invoking a team. That is, the team invoker receives requests to invoke teams.
It locates the file containing the code for the team plus initialized data, requests the
creation of a team address space from the team proprietor, loads the file into this
team space and creates the first process on the new team. The team proprietor re-
ceives messages requesting:

1. creation of a new team address space.

2. reclamation of team resources allocated to a team whose processes have
all been destroyed.

3. swapping into memory of a team currently swapped out.

4. reordering of priorities of teams in the ready queues and in the list of
swapped teams (which can result in swapping).

5. transfer of data between two team spaces. That is, .Transfer is imple-
mented as sending an appropriate message to the team proprietor.

6. modification of team attributes.

7. growing of the team’s data segment.
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The team proprietor requires real-time input to drive the swapping and CPU al-
location. This is provided by the swapping alarm clock which repeatedly delays for a
fixed time period and sends to the team proprictor requesting a reordering of the
teams. The reordering causes teams that are swapped out to be considered for being
brought into memory and it changes the priorities of teams in memory. This causes a
cycling of teams through memory and through the various levels of CPU preference.
The cycling is disrupted by the team proprietor receiving requests to bring in a partic-
ular swapped team. For example, the disc proprietor needs to ensure that the data
segment of the requestor’s team is in memory to do direct memory access between the
disc drive and a buffer in the team’s data segment. In this sense, the swapping and
CPU allocation are driven both by real-time input and various system events.

The swapping is a level of memory management and is best implemented with as
little dependence on other facilities as possible. This motivated the separation of the
team implementation into the two processes. The team proprietor allows more sys-
tem processes to send to it without the danger of deadlock because it only depends on
the swapping-device proprietor and the clock proprietor. Thus all other processes can
safely send to the team proprietor without the possibility of deadlock. Also, the ser-
vices of the team proprietor are performed independently of the file accessing done by
the team invoker. For example, the swapping is done independently of the file sys-
tem.

As a result of several design errors as well as historical considerations, the file
system needs to access its requestor’s data segment. Therefore, the file system needs
to get the requestor’s team in memory plus lock the team in memory while the file
system operation is performed.

It is hoped that the system could be ported to a machine with paging hardware
and that a page fault process would handle page faults in this configuration. That is,
the routine invoked by a page fault trap would simulate a send by the process incur-
ring the page fault to the page fault process, requesting that the page be swapped into
memory. We then must require that the page fault process and all the facilities it
uses cannot page fault.

5.9 Summary

The multi-process structuring of Thoth has been successful in making the system
relatively easy to implement and to understand. For example, timing-dependent er-
rors have not been a problem. These claims are supported in the next chapter in con-
sidering the feasibility of verifying the system.

There are a number of problems with the current implementation of Thoth but
nothing that is intrinsic to the techniques used. The I/O and file system are currently
the most inadequately designed parts of the system. However, a new file system has
been designed which we hope to implement to replace the current rather archaic sys-
tem.

Structuring the system as processes that only communicate via messages suggests
the possibility of distributing the system over several machines. Currently, Thoth is
not sufficiently pure for this because communication takes place outside the message-
passing. Also, assumptions are used in the system such as relative indivisibility that
assume execution on one processor. However, the system is evolving to remove some
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of these problems.

We expect that an advantage of Thoth for a distributed environment is that the
structure would facilitate connection of disjoint Thoth systems running on separate
machines. In this regard, we mentioned previously the use of agents to implement a
distributed file system.

6 Feasibility of System Verification

In this chapter, the feasibility of verifying the operating system is discussed.
Verification is used to mean the development of formal or semi-formal arguments that
properties of interest are true for the system.

Exploring the verifiability of the system has several motivations. First,
verification involves developing a framework in which to reason about and to under-
stand the operating system, leading to greater confidence in its behavior. Second,
ease of verification is one measure of goodness of the design. The work reported here
has lead to the recognition of difficulties in verifying the system caused by flaws and
inconsistencies in the design. Finally, the verification attempt has lead to the
discovery of several errors in the system and errors in our understanding of the
system’s behavior. This points out the value of verification in addition to testing; ex-
haustive testing is impractical and many problems are difficult to generate and detect
with test data. Moreover, with a portable system, testing may establish a certain level
of functionality on one machine, but the system may fail to run at all when ported to
another machine through no fault of the porting.

The verifiability of the system is explored by developing an outline of a
verification of the system. A complete verification seems to be impractically large, at
least in this thesis. Rather than describe the outline in total, the discussion focuses on
techniques of interest and particular problems encountered, avoiding the bulk of sys-
tem details.

A strategy for the verification is needed to handle the large size and non-
determinism of the system. Size is handled by verifying a small, simplified version of
the system first, then adding further components and considerations, and arguing that
the extension does not disturb the earlier verification arguments. This progressive ex-
tension of the verification is useful for handling several apparent circularities in the
design. Non-determinism, which is due to interrupts, is handled by mapping it onto
the process switching, thus appearing as the concurrent execution of many processes,
each one deterministic.

Verification of parallel programs is difficult and not currently well understood so
the outline tries to reduce as much of the verification as possible to units that can be
verified using sequential program verification techniques. In general, the outline does
not develop most topics past this point.

The discussion provides: a description of the verification as a series of smaller
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tasks; some of the significant definitions and lemmas; and mention of certain sources
of difficulty. Closely following the structure of the system, the verification consists of
two main parts, the kernel and the multi-process structure.

6.1 Kernel

Verification of the kernel involves showing that the semantics of the kernel prim-
itives are correctly implemented and verifying properties of objects in the basic
abstraction implemented by the kernel. This abstraction was described in Section 2.2;
its implementation was discussed in Chapter 3 and Section 5.2.

Ideally, processes should only use this basic abstraction and not access kernel
data structures directly (violate the abstraction) so that the kernel can be treated as a
"black box” once verified. The problem is that the basic abstraction is violated by
several processes. For example, the death proprietor operates on process descriptors
when destroying processes. This leads to a circularity in the implementation because
processes are implemented by the kernel. If the process manipulates the kernel data
structures, the process depends on the kernel for its correct behavior and the kernel
similarly depends on the process. A similar circularity problem was observed in the
Multics supervisor by Schroeder, Clark and Saltzer (1977). Their solution was to try
to remove all such loops. As mentioned in Section 5.2, the desire to have the kernel
as small and simple as possible plus the desire to use processes to implement most fa-
cilities leads to implementing facilities via processes that would otherwise be part of
the kernel, thus introducing more circularities.

The approach taken here is to ignore these violations during the verification of
the kernel and introduce them later, arguing that their introduction does not invali-
date the earlier arguments. Thus, the verification of the kernel should be structured
so that the arguments are not invalidated when the later complications are introduced.

The alternate solution of trying to eliminate the violations by providing the re-
quired operations as part of the kernel seems to lead to a much larger kernel as well
as unbounded maximum disable time.

Verification of the kernel seems most easily handled by reducing it to a series of
sequential verifications. We first assume that there are no interrupts so all operations
are executed sequentially. Interrupts are then introduced with the assumption that
the previously discussed operations are executed with interrupts disabled so the
verification of these operations remains valid. We then discuss relaxing this assump-
tion. This provides a scheme for verifying the semantics of the primitives. Verifying
properties about objects in the basic abstraction involves proving properties about the
kernel data structures. Some properties, such as the sequentiality of processes, follow
from considering the operations that affect the relevant data structures. Because these
operations are indivisible, they can be considered sequentially. Other properties, such
as the minimum recycle time for process id’s, cannot be shown just from the kernel,
but require (in the case of process id’s) also considering the death proprietor.

Three terms required in the following discussion are that of invariant, data struc-
ture consistency and machine instruction.
Definition: An invariant is an assertion about an object that is true for the object over
its lifetime although it may be violated while the object is being changed.
Definition: A data structure is consistent at a given time if its invariants are satisfied
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at that time.

Definition: A machine instruction is a basic machine state transition that is executed
indivisibly with respect to interrupts when interrupts are enabled.

An interrupt can occur between instructions but not during an instruction. (Many
machines have interruptable machine instructions but we take the liberty of assuming
that these instructions would not be used in the kernel.) Error traps that are invoked
by the execution of the instruction, such as illegal operation traps, are not included
because the process that caused the error trap does not continue after the trap.

Until further notice, it is assumed that no interrupts occur.

6.1.1 Process Implementation

‘The main difficulty in verifying the process implementation is making the transi-
tion from viewing the processor as executing functions to viewing processes as execut-
ing functions. This is done by defining what it means for a process to have executed
an instruction, and proving properties about the set of instructions executed by a pro-
cess. In more detail, the strategy is as follows. As mentioned in Section 3.1,
processes are implemented by process descriptors, a ready queue structure and process
stacks, plus process switching operations on these data structures. Various properties
can be proved at this point using sequential techniques because the processor executes
these operations sequentially,

One approach to verifying the kernel is to extend this simulation view to the en-
tire verification, that is, to verify the entire kernel as a simulation performed by the
processor executing operations on data structures. However, some operations block
and some operations are interruptable making them hard to treat in this sequential
fashion. Therefore, the approach taken is to verify primitives as being executed by
processes, starting at the earliest possible point in the verification.

Definition: The state of a process is its eligibility for execution.

A process is either eligible for CPU allocation, ready, or its state indicates the reason
for ineligibility, namely why it is blocked. The state of a process is indicated by the
value of the STATE field in its process descriptor. All the other states are blocked
states and are discussed later. The process switching operations are:

1. .Block() - block the active process and activate one of the ready processes ac-
cording to the CPU allocation rule. The STATE field of the active process
is assumed to be set to indicate the new blocked state.

2. .Add_ready( pd ) - make the state of the process described by pd ready and ac-
tivate this process if required by the CPU allocation rule. That is, if this
process is of higher priority than the current active process, it is activated.

3. .Block__and__add__ready( pd ) - block the active process, make the state of the
process described by pd ready and activate one of the ready processes ac-
cording to the CPU allocation rule. The STATE field of the active process
is assumed to be set to indicate the new blocked state of the active process.

Once the semantics of these operations are verified, it is useful to regard the pro-
cessor as executing the process switching operations as single instructions. This al-
lows the following definition to be unambiguous.

Definition: A process is said to have executed a given instruction if the processor exe-
cuted the instruction when that process was the active process.
Condensing the process switching to a single instruction means that the transition in-
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volved in a process switch occurs in the course of that one instruction. Thus, a pro-
cess is defined to be active from the instruction after the process switching instruction
that activated it to the process switching instruction that activates another process in-
cluding this last process switching instruction.

Finally, it is necessary to show that the process executes sequentially and deter-
ministically. There is a one-to-one correspondence between the instructions executed
by the processor and the instructions executed by the process between process
switches. Thus, a process is sequential and deterministic between process switches be-
cause the processor is sequential and deterministic. The argument is completed by
showing that:

Lemma A: The next instruction executed by a process after executing a process
switching instruction is the instruction following that process switching instruction,

At this point, primitives can be considered to be executed by a process rather
than by the processor. By the above, we can continue to apply sequential verification
techniques.

In a complete verification, it would be necessary to verify the implementation of
the CPU allocation rule given in Chapter 2 and the process identification scheme (see
Section 3.2). They have the property that they do not involve blocking, making them
relatively easy to verify. The message-passing primitives, which do block, are con-
sidered in the next section.

6.1.2 Message-Passing

The next step in the verification is to argue that the semantics specified for the
message-passing primitives are those actually implemented. It is attractive to consid-
er the message-passing primitives as operations on process data structures and then
treat them as single instructions executed by a process, instead of treating the lower
level process switching operations in this fashion. The problem is that some of the
message-passing primitives block and then continue executing, so they are not indivisi-
ble, while indivisibility is required by the definition of instruction. As a consequence
of the blocking, the semantics of an individual primitive cannot be derived from just
the code for that primitive; its interaction with other primitives must be considered.

To verify these primitives, we first consider the semantics of the different
message-passing blocked states. Then, the blocking primitives of .Send and .Receive
are verified from the semantics of their code, using the semantics of the states in
which they block to complete the semantics of the primitive. The semantics of .Reply
and .Forward are straight-forward because they do not block.

When a process blocks, it blocks until another process performs some action to
unblock it. If this action must be performed by a particular process (as when sending
to a process), the blocked process is said to be blocked on this process. The "blocked
on” process is the only process that may act on the blocked process to unblock it or
change its state. Two conditions are defined for each blocked state.

Definition: The block condition of a blocked process state is the condition or assertion
that is true of a process blocked in this state.

Definition: The unblock condition of a blocked state is the condition or assertion that
is true when a process in this state becomes ready (or unblocks).

The BLOCKED__ON field of the process descriptor indicates which process the
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blocked process is blocked on. If this field is zero, any process may act on the
blocked process. For example, this is used to discriminate between the "receive any”
and the "receive specific.”

The code for .Send, .Receive and .Reply is included at this point for reference in
the following discussion of verification. Note that .Copy is a subroutine that takes its
first argument as a pointer for the destination, the second argument as a pointer for
its source and copies the number of words specified by its third argument plus one
from the source to the destination.

.Send( message, receiver__id )
{
extrn .Pd__bundle, .Id__mask;
auto receiver, pd;

receiver = .Pd__bundle[receiver _id&.1d__mask];
disable;
if( ID[receiver]| !'= receiver__id )
{
enable;
return( 0 ); receiver does not exist

J

ifl STATE[receiver] == RECEIVE_BLOCKED &&
(BLOCKED__ON][receiver] == IDJactive] ||
BLOCKED__ONfreceiver] == 0) )

{ Receiver receives the message and is unblocked

STATE[active] = AWAITING_REPLY:;
BLOCKED__ONJactive] = receiver__id;
.Copy( &MESSAGE[receiver], message, MESSAGE__SIZE );
BLOCKED__ON]receiver] = IDJ[active];
.Block__and__add__ready( receiver );

!

else

[/ | Enter the send queue of the receiver
BLOCKED__ON]active] = receiver_id;
STATE[active] = SEND_BLOCKED|QUEUED:;
pd = SENDERQ__TAIL receiver];
BLOCK_PREV[active] = pd;
BLOCK_NEXT]/active] = BLOCK_NEXT([pd];
SENDERQ__TAIL{receiver] = BLOCK_NEXT([pd] = active;

.Copy( &MESSAGE/active], message, MESSAGE_SIZE );
.Block();

l

(*) enable;

if( !.In_data__area(TEAM/Jactive], message, MESSAGE__SIZE) )
Abort( "bad parm”);

.Copy( message, &MESSAGE[active], MESSAGE__SIZE ),

return{ BLOCKED__ONfJactive] );
J



.Receive( message; sender__id )
{
extrn .Pd__bundle, .Id_mask;
auto sender;

if( !.In_data__area(TEAM]Jactive], message, 7))
Abort( "bad parm” );

if( Nargs() == 2)
{ receive specific
sender = .Pd__bundle[sender__id & .1d__mask];
disable;
if( ID[sender] != sender__id )
{
enable;
return( 0 );
J
if( USTATE[sender] & SEND_BLOCKED & &
BLOCKED__ON[sender] == ID[active] )
sender = Q;
i
else
{ receive any
sender—id = 0;
disable;
if( (sender=SENDERQ_HEAD/active]) = = &SENDQ__EMPTY [active] )
sender = 0;
}

if( sender == 0)
{ No sender
STATE[active] = RECEIVE_BLOCKED:; -
BLOCKED__ONJactive] = sender__id;
*y  .Block();
enable;
.Copy( message, &KMESSAGE]active], 7 );
return( BLOCKED__ON]a sender__id = 1D[sender];
enable;
return{ sender—.id );

}
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.Reply( reply. sender_id )

{

extrn

Pd__bundle, .Id_mask;

auto sender;

disable;
if( (ID[sender = .Pd__bundle[sender__id&.Id__mask]] !'= sender__id) )

{

enable;
return;

}

ifl STATE[sender] '= AWAITING_REPLY |
BLOCKED__ON[sender] != ID[active] )

{

enable;
return;

!

.Copy( &MESSAGE(sender], reply, 7 );
.Add__ready( sender );

enable;

return;

J

The source code for .Forward is not included but is similar to that of .Send and
can be derived quite easily. The following discussion is also simplified by not consid-

ering .Forward.

The states associated with the message-passing are send-blocked, receive-blocked
and awaiting-reply. These states are described as follows in terms of their block and
unblock conditions:

1. receive-blocked

block condition - the process has executed .Receive and either the
process’s send queue was empty or a sender was specified that was
not blocked on this process. Therefore, the process is blocked at
(*) in the code for .Receive and the next action performed by the
process blocked in the receive-blocked state will be to copy the §
words of its message field into its message vector.

unblock condition - only a .Send to this process will change its
state, so when it executes its next instruction, a process has execut-
ed .Send to this process so there are 8 words from the process
identified by BLOCKED__ON in its message field and the sender is
awaiting-reply.

2. awaiting-reply

3. send-blocked

block condition - a process awaiting-reply is blocked executing
Send such that the next instruction it will execute is at (*) in the
code for .Send. The process that it sent to has received the mes-
sage, but has not yet replied.

unblock condition - the process that this process, the sender, is
blocked on must execute a .Reply to the sender, putting the reply
message in the sender’s message buffer.
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block condition - the process has executed .Send and is blocked in
the send queue of the process identified by its BLOCKED_ON
field. The next instruction that it will execute when unblocked is at
(*) in the .Send code.

unblock condition - the only way the process unblocks is by the
process it is blocked on executing a receive-any when this process is
at the head of the send queue, or a receive-specific on this process.
This process is then awaiting-reply and is unblocked according to
the unblock condition for awaiting-reply.

The block condition for a blocked state is verified by examining the code that
can put a process in this state, similarly for the unblock condition. These conditions
are used as follows to verify the primitives.

For .Receive, there are the two cases to consider, the receive-any and the
receive-specific. It is only necessary to discriminate between these two cases to argue
that the correct determination of the sender is done. That is, in the case of the
receive-specific, we need to show that the specified process is used. In the case of the
receive-any, the first process (if any) in the send queue is used. There are two main
flows of control to consider. First, the appropriate sender exists and is send-blocked
on this process. By the semantics of the block condition of send-blocked, the process
is in the send queue of the receiving process and its message is in its message buffer.
With this, we can complete the verification of this flow of control.

If the sender is not available in the sense that the send queue is empty or a
sender is specified that is not send-blocked on this process, the process executing the
.Receive blocks in the receive-blocked state. By the semantics of the unblock condi-
tion for receive-blocked, a message will be available in this process’s message buffer
and the sender will be identified by the process id in the receiver’s BLOCKED__ON
field when the receive unblocks. This is used to complete the verification.

For .Send, there are two flows of control to consider, one in which the receiver is
blocked waiting for this message (or any message) and one in which it is not. Consid-
ering the latter case first, the sender executes until it becomes send-blocked. The se-
mantics of the unblock condition for send-blocked are used to complete the
verification of .Send. In the second flow of control, the process blocks awaiting-reply
so the unblock condition for this state is used.

The semantics of .Reply can be verified when verifying the unblock condition for
awaiting-reply. The inclusion of .Forward only complicates the specification of the
block and unblock conditions.

6.1.3 Interrupts

The introduction of interrupts and the interrupt abstraction requires arguing that
previous arguments remain valid and that the semantics of .Await__interrupt are im-
plemented correctly.

Initially, we assume that all primitives verified previously are executed with inter-
rupts disabled so the assumption of absence of interrupts remains valid. To show that
processes still execute sequentially and deterministically, it is necessary to show that:
Lemma A: The next instruction executed by the active process is independent of an
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interrupt occurring before that instruction.
From this we conclude that all processes still execute sequentially and deterministical-

ly.

The interrupt abstraction is implemented by the primitive .Await__interrupt and
the interrupt handler, which is an assembly-coded module invoked directly by the
hardware interrupt mechanism. The verification of .Await__interrupt is similar to
that of the message-passing because it uses .Block to block in the state awaiting-
interrupt. It is only necessary to show that a process awaiting-interrupt is unblocked
by the interrupt handler when the interrupt occurs. This provides the unblock condi-
tion for awaiting-interrupt to complete the verification of .Await__interrupt.

When interrupts are enabled, an interrupt causes execution of the interrupt

handler, which performs a process switch to the process awaiting the interrupt. We
refine the definition of a process executing to
Definition: A process is said to have executed a given instruction if the processor exe-
cuted the instruction while the process was the active process and the processor was
not executing the interrupt handler.
This does not disturb earlier arguments because, assuming the absence of interrupts as
we were earlier, the processor would never be executing the interrupt handler. Lem-
ma A can be verified by arguing that the active process is not considered to be execut-
ing after an interrupt occurs and that the interrupt handler correctly saves the volatile
environment of the active process so the process will continue independently of the in-
terrupt when it is activated again. Therefore, the non-deterministic behavior of the
processor appears only as the asynchronous activation of processes awaiting interrupt,
which does not affect the execution of other processes.

It is desirable to relax the assumption that certain primitives are executed totally
disabled because this leads to long or unbounded disable times. It can be argued on
an individual basis that reducing the disabling (to what it actually is) does not cause
problems. However, the arguments appear harder to formalize because they involve
the possible concurrent interaction of processes. Three cases are considered.

First, if part of the operation is local to a process or accesses variables that never
change, there can be no interference and therefore, no need for mutual exclusion.
Second, if the operation involves a potentially unbounded search of a data structure,
for example finding a free memory block of sufficient size, the search can be executed
in disabled steps with the data structure consistent between steps (where interrupts are
enabled). Third, the blocking of a process includes a potentially unbounded search of
the ready queue heads after saving the environment of the blocking process. Because
this action was considered above as a single instruction, it is necessary to separate the
blocking action from the search and consider the search to be executed by the proces-
sor and not by any process, just like the interrupt handler.

This completes the discussion of the kernel except for initialization, which is con-
sidered in Section 6.3. The discussion provides a framework for a verification; howev-
er, it seems to be difficult to handle the relaxing of interrupt disabling. It seems
better to change the system so that primitives of the kernel are completely disabled
rather than pursuing the verification of the system further as it now stands. For ex-
ample, process creation could be changed so that the stack is supplied. Then it is
feasible for it to be executed with interrupts disabled. The kernel is small so a com-
plete verification is not infeasible, but it is a much larger task than can be undertaken
here.
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6.2 Multi-Process Structure

The multi-process structure of the system extends the basic abstraction imple-
mented by the kernel to the full Thoth abstraction. Verification of the multi-process
structure includes verifying semantics of primitives, properties of objects such as files,
and global properties such as absence of deadlock.

Some properties can be established by considering just one process, assuming the
absence of interference (asynchronous interaction between processes). For example,
.Get__time is implemented as sending a message to the clock proprietor, which re-
turns the current time in the reply. Its semantics can be verified by just considering
the clock proprietor. However, many properties, such as absence of deadlock, are
global properties, being the result of the collective behavior of processes.

The verification of the multi-process structure is structured by first verifying each
system process, assuming the absence of interference. A process is a small (relative to
the system), somewhat independent, sequential unit. Then, the collective behavior of
these processes is considered in verifying global properties, including discharging as-
sumptions of no interference.

6.2.1 Process Verification

By the term verifying a process, we mean proving properties about that a process
such as the semantics of sending a message to the process, the resources it accesses
and the processes it sends to.

The advantage of considering one process at a time is that it is a natural sequen-
tial unit in the multi-process structure. Properties can be verified using sequential
program proof techniques because a process is sequential and deterministic and in-
teraction with other processes is sequential (assuming no interference). That is, be-
cause of the subroutine semantics of .Send, and because a system process only acts
for a sender until it replies, its use can be interpreted as invoking a subroutine that
accomplishes the effect of the .Send to the other process. The use of .Receive or
.Await__interrupt can be considered as receiving input and use of .Reply can be
thought of as generating output. Processes are partially ordered by the “sends to” re-
lation within the levels of abstraction. If processes are verified starting at the lowest
level (processes that do not send to other processes), each process can be verified after
verifying each process it sends to (avoiding possible circularity). Thus, each process
can be verified with known semantics attached to each of its calls to .Send.

Each system process executes some local initialization when it is first created and
then proceeds into an infinite loop, performing its function. The local initialization
sets up resources used by the process for the function it performs in the loop. The
loop is governed or driven by external (to the process) events. For example, the loop
of the RTC process is driven by clock interrupts; the loops of proprietors are driven
by request messages from other processes.

One aspect of verifying a process is considering resources that the process acts
on and establishing certain invariant assertions about these resources. These invari-
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ants are defined to hold at certain points in the loop because they can be legitimately
violated while the process is changing these resources. Invariants can be verified in-
ductively. To establish that an invariant [ holds immediately before the receipt of
each request in a proprietor, the invariant is first shown to hold after initialization
and just before receiving the first request. Then, assuming the T is true just before
one request, I is shown to hold just before receiving the next request. By induction,
the invariant holds just before the receipt of every request. In the course of proving
these assertions, it can be established which resources the process accesses. This is
used later to show the absence of interference.

The action of a loop is the change that occurs to the data structures as a result
of executing the loop. For example, the RTC process updates the current time every
iteration through the loop (on every clock interrupt).

With two exceptions, the function of every system process is specified by the se-
mantics of sending to that process. The two exceptions are the RTC process and the
swapping alarm clock. The RTC process maintains the current time and sends to the
clock proprietor when it is time to wakeup a process. The swapping alarm clock

Swapping__alarm__clock O THOTH__CODE, THOTH_DATA)

This process delays for SWAP__CLICKS clock interrupts
and then sends to the team proprietor to reorder
the team priorities.
The first team in the list of swapped teams
that is ready being brought into memory at the head
of the "user” ready queues if such a team exists.
Otherwise, the last user team in memory is moved
to the front of the user ready queues.

[
extrn . Team__proprictor_id;
auto request[MESSAGE__SIZE];

repeat
[
request[0] = REORDER_TEAM__PRIORITIES;
.Send( request, . Team___proprietor_.id );
.Delay( 0, SWAP_CLICKS ).
/i

/o

simply sends to the team proprietor periodically to provide real-time input to the mul-
tiplexing of the CPU and memory among transient teams. For these two cases, these
actions are verified. Their impact on the global behavior is considered later.

Several system processes are simple proprietors in the sense that they receive a
request, act on it, and then reply before going on to another request. Their only in-
teraction with other processes when acting on the request is by sending messages.
Thus, the semantics of sending to these processes follow simply from the sequence of
actions taken by the process from the receipt of the request to the reply. The file sys-
tem proprietor, the teletype input proprietor, the disc proprietor, the controller
proprietor, the abort proprietor, and the death proprietor are all in this category.
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The other proprietors do not necessarily reply to a request before receiving the
next request. For example, the implementation of .Sleep is the sending of a request
to sleep and a wakeup time to the clock proprietor; the clock proprietor only replies
when the wakeup time arrives. This complicates the verification of the process in two
ways. First, the receiving of requests and the sending of replies is intermixed. This
can be handled by arguing the semantics of sending to such a process using induction
on the number of intervening requests received between the receipt of a message and
the corresponding reply. Second, these processes rely on receiving certain messages
from other processes to complete the servicing of the ones not yet replied to. For ex-
ample, the clock proprietor relies on the RTC process to send wakeup messages to
cause it to reply to sleeping processes when the wakeup time arrives. Therefore, the
semantics of sending to these processes includes the assumption that they receive cer-
tain messages at certain times. In considering the global behavior of the system,
these assumptions can be removed. The clock proprietor, the team proprietor, and
the teletype output process have this type of behavior.

In general, verifying a system process is simplified by treating it like a sequential
program and by the simple process interaction. However, several problems arise.
First, as mentioned earlier, some processes violate the abstraction by directly manipu-
lating kernel data structures. For example, the death proprietor

.Death__proprietorOHTHOTH__CODE, THOTH__DATA)

The .Death__proprietor destroys the process whose id
it receives as well as all its descendants, reclaiming
reclaiming resources and unblocking all senders and
receivers blocked on these processes.

[
auto msg[MESSAGE__SIZE], pd, current, prev, id;

repeat

[

id = .Receive{ msg );

pd = .Convert__to__pd( msg[0] );

ift pd == 0| !.Authorized(id, TEAM_USER[TEAM{pd]]) )
msg[0] = 0;

else

[
prev = FATHER|[pd] + (SONS - BROTHER);
while( (current = BROTHER[prev]) != pd )
prev = current;

BROTHER|[prev] = BROTHER[current];

BROTHER[pd] = FATHER|[pd] = 0;
.Remove__processes( pd );
Settle__estates( pd );
.Unblock__senders

msg[0} = 1;

/A
.Reply( msg, id );

and__receivers();
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}

manipulates the process descriptors of the processes it destroys to remove them from
the tree of processes and send queues, to invalidate process id’s, and to reclaim
resources. This requires arguing that the actions on the process descriptors has the
desired effect in the abstraction and that the actions can not generate problems. That
is, the data structures of the kernel are shared so it must be argued that these actions
are properly synchronized on the process descriptors. Generally, the required mutual
exclusion is achieved by disabling interrupts or by relative indivisibility if no processes
of higher priority can affect this data.

Second, process interaction extends outside the message-passing. For example,
the disc proprietor can directly transfer data from the disc to a buffer in a transient
team. Thus, the disc proprietor must communicate to the team proprietor not to
swap that team out to disc while this transfer is in progress.

Third, a process awaiting reply can be destroyed, so no proprietor can assume
that its requestor is awaiting reply until the reply is returned.

Fourth, the sequential verification proposed for processes seems hard to apply to
the use of .Forward. For instance, the clock proprietor uses .Forward as described in
Section 5.3 to forward delaying processes to itself.

Finally, the verification of a system process is only a partial correctness because
the semantics of sending to it are contingent on it replying. Two global properties
affect whether or not the process receives and replies to a message. The process must
be allocated enough CPU time to execute. This is impossible to establish unless
underlying machine properties are considered. For instance, if the machine were so
slow that it spent all its time running the highest priority process, such as say the
RTC process, no other processes would be allocated the CPU. In practice, this is not
a problem. One can show for a given machine, that the percentage of CPU cycles
used by the system (that is, used by system processes and interrupt routines) decreases
as the cycle time decreases, providing that the frequency of interrupts and system calls
remains constant. That is, the CPU cycles used by the system is dependent on the
frequency of interrupts and the frequency of system calls, not on the speed of the pro-
cessor. Another reason why a process might not reply to a message is that it might
become deadlocked and thus unable to continue. This is considered in the next sec-
tion.

6.2.2 Global Properties

Global properties are properties of the multi-process structure that must be ar-
gued from the behavior of two or more processes. So far, the properties of individual
processes have been considered. Three categories of global properties are considered
here:

1. blocking behavior including absence of deadlock

2. absence of interference or timing-dependent behavior

3. collective functional behavior
These properties involve the logically concurrent behavior of several processes. To
consider this behavior in a sequential argument, the following general approach is
used. For a given property, certain system events are relevant. These events can be
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sufficiently small that they can be considered to occur sequentially even though some
are logically concurrent. Thus, the technique is to enumerate every possible sequence
of relevant events and show that each sequence has the desired property. For in-
stance, to show the absence of deadlock, the events are the blocking of processes. It
is necessary to show that no sequence of blocking that can occur produces deadlock.

This technique reduces consideration of a parallel operation to a series of
sequential arguments; however, the number of sequences of events can potentially be
very large. The structure of the system limits the number of interacting events to
reduce the number of sequences that must be considered. Various techniques can be
used to further reduce the number of sequences and provide arguments that the ones
considered are sufficient. We first consider deadlock.

The blocking graph of a set of processes, described in Section 4.1, superimposes
the blocking behavior of each process, giving a worst case for the system (in terms of
blocking behavior at any time). The only processes that can possibly deadlock are
those on a cycle in the blocking graph, so only the different possible sequences of
blocking for those processes need to be considered in the deadlock argument. In the
blocking graph of the system in Figure 1 (page (figl)), only the death proprietor, the
teletype input proprietor and the teletype output proprietor are contained in a cycle,
so only the difference sequences of these processes blocking need to be considered to
show that this cycle of blocking cannot actually occur.

One other form of blocking needs to be considered to show that the system can-
not deadlock. System processes can lock a transient team in memory to do direct
memory access (DMA) between a device and the data segment of the team without
the team being swapped out. For example, the disc proprietor "locks” a transient
team in memory when doing direct transfers between disc and memory to or from the
team data area because the team proprietor can otherwise swap the team out to a file
asynchronously with respect to the disc data transfer. The team proprietor can
effectively block waiting for a team to become unlocked in order to bring in a
swapped transient team. It must be argued that no process can have a team locked in
memory while it is blocked (directly or indirectly) on the team proprietor.

Absence of interference requires showing that there is no timing-dependent or
asynchronous interaction between processes that would make the abstraction behave
non-deterministically. This involves showing that reordering unsynchronized events in
each sequence of events that can occur does not change the behavior in the abstrac-
tion. First, different concurrent sequences of events result from the execution of
different processes, including user processes executing system primitives. Second, it is
only necessary to consider events that access common resources. Thus, in the pure
proprictor structure, there is no sharing and all interaction is via message-passing {and
thus synchronized) so there can be no interference. That is, the effect of reordering
the unsynchronized events of any sequence of events is the same as the original se-
quence.  However, processes interact outside the message-passing in several ways.
For example, in the above example of the disc proprietor locking a team in memory,
it must be argued that the locking forces the team to remain in memory, that the disc
proprietor ensures that the team is in memory, and that the team is only unlocked
when the data transfer is complete. Similarly, a user process can be destroyed asyn-
chronously while being served by a system process. However, the death proprietor is
synchronized by executing at the lowest system priority, so process destruction can
only happen when other system processes block. Also, the death proprietor synchron-
izes with other system processes by closing the files of the process it is destroying.
Thus the sequences of events that need to be considered involve swapping, various
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1/0 operations and process destruction.

We now consider the collective functional behavior of the system. Each system
primitive is implemented as a function which possibly sends to system processes. As
mentioned previously, the .Send’s have the semantics of subroutine calls, so the se-
mantics of these primitives can be verified using sequential techniques. For several
proprietors, verifying the semantics of sending messages to them requires assumptions
about the messages they receive. These assumptions can be discharged by the previ-
ous verification of processes that send to these proprietors. For example, verification
of the RTC process shows that it sends a wakeup message to the clock proprietor
when the wakeup time becomes equal to the current time. The semantics of .Sleep
follow from the semantics of sending a sleep request to the clock proprietor, the se-
mantics of sending a wakeup message, and the knowledge that the clock proprietor
receives a wakeup message after the wakeup time for the sleep request arrives.

Functio_ndl properties other than semantics of the primitives are of interest. For
instance, the swapping alarm clock has the property of sending a particular message
to the team proprietor periodically. The team proprietor has the semantics of invok-
ing a certain function on receipt of this message. The function adjusts the priorities
of transient teams by bringing in a swapped team and rearranging the CPU allocation
to transient teams in memory. The global property is then a periodic adjustment of
transient team priorities. It can be shown, for instance, that a transient team with
ready processes does not remain swapped indefinitely. Another global property is the
minimum recycle time for process id’s.

This discussion of the multi-process structure shows that the simple semantics of
the message-passing and its simple hierarchic use (in the sense of the partial ordering
by .Send’s) aid the verification of many properties. The verification of properties lo-
cal to individual processes provided a foundation for establishing global properties.
Treating arguments about concurrent structures as a series of arguments about the
enumerated possible sequences of events is applicable when the number of sequences
can be reduced to a manageable number.

6.3 Initialization

The initialization of the system is the set of actions that take place from the mo-
ment the system executes the first instruction (after being loaded into memory) until it
arrives in its normal state of operation. This occurs in two stages. The first is the in-
itialization of the kernel. The second is the concurrent execution of the initialization
of each system process.

At the beginning of the first stage, a "handcrafted” process is created as the root
process. It first sets up the data structures implementing the basic abstraction. These
include the memory free list for the system team, process descriptors and ready
queues. At this point, other processes can be created. The root process then sets up
the system configuration as dictated by the configuration table (see Section 2.4). This
includes creating other system processes and setting various hardware configured to an
initial state. For example, the speed and mode of the teletypes are set. User
processes are created either by the root process or by another system process, depend-
ing on the configuration. The root process changes itself to the lowest priority pro-
cess to become the ”idle” process, inserts itself into the slumber queue to effectively
sleep forever, and switches to activate the highest priority ready process. Because this
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first process violates the abstraction so much in order to set up the abstraction, it
might be better to regard the initialization as executed by the processor rather than
by a process executing in the abstraction.

Up to the point of this process switch, the initialization is executed sequentially
and deterministically by the root process because it is the first process to execute, it is
of the highest priority, interrupts are disabled, and it does not block. Thus, the ini-
tialization to this point forms a unit of sequential verification.

After the first process switch, system processes begin to execute in the order dic-
tated by the CPU allocation rule. Each system process executes its initialization con-
currently with the other processes. Because this initialization is local to each process,
its verification is considered as part of the verification of the process.

It remains to verify the concurrent part of the initialization. This is argued as
follows. First, initialization local to a process does not require synchronization be-
cause it does not affect variables shared with other processes and this is completed be-
fore receiving any requests. Similarly, because the initialization of the devices is done
by the root process, it is completed before any process accesses a device. Thus, even
though different processes can complete their initialization at different times, the re-
quired sequencing of events is accomplished by the root process executing some ac-
tions before any other process executes and the requirement that no process receive
requests before completing its local initialization. Finally, the blocking graph of the
system in Figure 1 is valid for the initialization as well.

Thus, the verification of the initialization involves the sequential verification of
the initialization of the abstraction and the local initializations of each system process
plus basically the argument given about the concurrent part of the initialization.

6.4 Summary

The system was not specifically designed to be verified, but verification does not
appear to be totally infeasible. Much of the verification can be reduced to sequential
verification tasks. The kernel is verified as a set of sequential operations on process
data structures. A major step is making the transition to verifying operations as be-
ing ¢xecuted by a processs from verifying operations as being executed by the proces-
sor. The interaction in the message-passing is handled by attaching semantics to the
hlocked states used by the message-passing. The subroutine semantics of .Send and
the partial order it defines on the multi-process structure make it possible to verify
cach svstem process as if it were a sequential program. The technique of progressive-
Iy extending the abstraction by the addition of new components renders the size of the
system more manageable and aids in handling apparent circularities of dependencies.
The technigue of enumerating the different sequences of events relevant to a global
property involving asynchronous events allows the use of sequential arguments to es-
tablish the property.

Several problems make the system difficult to verify. Several processes violate
the basic abstraction by directly manipulating the kernel data structures. Some in-
stances of this, such as process destruction and swapping, seem hard to avoid unless
they are changed so they are not implemented by processes. Process interaction is
more complicated than just message-passing so a number of complicated cases are en-
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countered, particularly involving process destruction.

In conclusion. the system should be changed to minimize violations of the basic
abstraction and to provide more disciplined process interaction. However, further
development of an informal outline of verification would be of benefit in providing a
framework in which to reason about the system, document assumptions, and specify
the design. The work on this to date has given us increased confidence in the design
as well us uncovering a number of errors.

7 Summary, Conclusions and Future Research

This thesis has explored structuring programs as many asynchronous processes.
It records ideas arising from the engineering experience of building an operating sys-
tem. Much of the claim of the practicality of the ideas is based on their implementa-
tion and use in the Thoth operating system.

We have attempted to draw pertinent conclusions in the course of this work but
we will use this chapter as an opportunity to summarize the thesis and draw together
conclusions from the preceding chapters. Also, time did not allow pursuing all ideas
as far as we would have liked. We conclude with possibilities for further related
research.

7.1 Summary

Chapter 1 was introductory in nature, describing the motivations for this
research, previous related research, and providing an overview of the thesis.

Chapter 2 provided background to this research in the form of the history of
Thoth. and described the abstraction implemented by the system, referred to as the
Thoth abstraction. The chapter included a discussion of the portability of Thoth and
gave results of measurements of system performance, including space, time and real-
time response.

Chapter 3 described the facilities considered desirable for the multi-process struc-
turing of programs. This served to motivate the design of Thoth presented in Chapter
2 and also to point out several problems that had to be solved to implement these fa-
cilities. The problems included the deadlocking and inefficiency normally associated
with message-passing, the incompatibility between process synchronization and pro-
cess destruction, and the need for complete and immediate process destruction. We
discussed the need for efficient communication between interacting processes and thus
motivated the concept of team described in Chapter 2.

Chapter 4 addressed the problem of how to use processes to structure programs.
The concepts of process resource ownership and proprietors were presented as concep-
tual tools for structuring a program using processes and for solving concurrency prob-
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lems. A set of general process structures were presented suitable for a number of si-
tuations including more generalized queuing and serving, multi-events, break and ex-
ception handling. Alse, a process structure for connecting machines called an agent
was discussed. This chapter documented the insights we have gained into various use-
ful process structures.

Chapter 5 described the current structure of the Thoth operating system, point-
ing out some of the problems that have been recognized and suggesting possible solu-
tions. It served to provide more information about the system as background for
Chapter 6 which discussed the feasibility of verifying the operating system. It demon-
strated how process structuring had been used to make the system more amenable to
verification. The outline of verification provided a framework on which to under-
stand, and thus gain more confidence in the design of the system.

7.2  Conclusions

The major conclusion we draw from this thesis is that the use of processes to
structure programs is worthwhile and deserves further investigation. As a conse-
quence, we conclude that the facilities for structuring programs as multiple processes
should be made available at the user level in future systems. However, the proper use
of processes seems non-trivial and more techniques are required for developing and
understanding multi-process programs, particularly if the concurrency problems of
deadlock and interference are to be avoided. A number of other conclusions can be
drawn from the discussions in particular chapters.

In Chapter 3.. we concluded that there was strong motivation for using synchro-
nous message-passing to avoid the dynamic buffering and the resulting inefficiency
and possible deadlock. We demonstrated the need for complete and immediate pro-
cess destruction and showed its incompatibility with semaphore- or monitor-like syn-
chronization schemes. This problem, plus the incompatibility with distributed sys-
tems, does not support the use of shared memory synchronization techniques. In
Chapter 4. as a solution to synchronization, we showed that the proprietor concept
could be used to synchronize in the presence of process destruction and that its imple-
mentation was only dependent on processes and the message-passing mechanism.
From the examples and discussion of this chapter. we conclude that multi-process
structuring provides elegant solutions to a number of programming problems and its
use has many significant advantages. We contend that these examples support the
adequacy of the abstraction described in Chapter 2 and developed in Chapter 3.
Chapter 5 shows that the use of multi-process structuring in operating systems has
many advantages and suggests some solutions to problems present in the current
structure of the system.

In Chapter 6, we show that the process structuring of the Thoth system has pro-
vided a structure that is more amenable to verification than the more conventional
monolithic operating systems structure. This demonstrates that a real operating sys-
tem can be structured to facilitate verification without detriment to its utility. The
outline of verification is also a useful form of documentation of the system,

As a final, overall conclusion, the work invested in this thesis has been of real
benefit to the design and implementation of the system. The discussion of design is-
sues for the implementation of the abstraction has clarified the trade-offs in the sys-
tem and lead to improvements, for example in process identification. The process
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structures presented in Chupter 4 have suggested new structures in the system and sup|

other programs, some of which are currently in use. The description of the system in
Chapter 5 has pointed out problems that had not been previously recognized. Finally,
the outline of verification lead to the discovery of several minor bugs in the system,
and increased our awareness of inconsistencies in the design.

7.3 Future Research

Muany ideas have not been fully explored, tested or perhaps even thought of with
respect to multi-process structuring. We expect that further insights and understand-
ing will result from the application of systems like Thoth to a variety of problems,
particularly communications and distributed system development.

The further application of these ideas will reflect considerably on the message-
passing mechanism and interprocess communication in general. First, it will be
necessary to implement the message-passing between different machines, raising the
need for a more sophisticated message-buffering scheme. Second, the more extensive
use of messages raises issues of size of messages and the amount of data that needs to
be moved. That is, is the message-passing mechanism suitable for moving large
amounts of data between machines and if not, what mechanism would be suitable?
Third, what conventions should be used for message format? Finally, the work to
date has not addressed the issues of protection and security. For example, there is no
restriction on which processes can send to a given process. This should be explored
with considerable attention given to the ideas of the DEMOS link and DEMOS secu-
rity and protection mechanisms described in Baskett et al. (1977).

The use of processes to structure operating systems, especially distributed sys-
tems, needs much more study. Even in the conventional single machine setting, there
are many ideas to explore in using processes to implement virtual memory and 1/0.
It is hoped that this will be investigated as part of the future porting of Thoth to
machines whose hardware supports demand paging and segmentation.

The work on verification in Chapter 6 should be developed further. The outline
of verification should be made much more complete and a more rigorous. It would
be nice to establish a level of rigor and a style of presentation comparable to that of
mathematics to present a convincing yet readable verification of the system. Such a
verification could act as a detailed level of documentation plus a measure of assurance
to users of the system. It could also provide a wealth of problems to motivate work
on new verification technigues and to motivate rethinking and redesigning parts of the
system.

Much of the work done on Thoth to date can be viewed as a software implemen-
tation of a desirable machine. Hopefully, besides improving this abstraction, future
work will improve the implementation of this abstraction both in software and in the
exploration of its implementation in firmware and hardware. For example, the basic
process switching operations could be implemented in firmware on some machines.

In conclusion, the use of many small processes in programs raises many design
and implementation questions. While the literature contains theoretical work in this
area, little seems to have been implemented and tested. This thesis is based on work
aimed at exploring the practical value of multi-process structuring using conventional
hardware. The implementation work involved has been considerable, much of it not
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of research interest. However, in exploring engineering issues, implementation and
testing is required. Hopefully, further use of Thoth and the ideas presented here will
support the conclusions of this thesis and motivate further research in this area.
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