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Abstract

We first prove two results which both imply that for any sequence B of asymptotic
density zero there exists an infinite sequence A such that the sum of any number of
distinct elements of A does not belong to B. Then, for any ε > 0, we construct an
infinite sequence of positive integers A = {a1 < a2 < a3 < . . . } satisfying an <

K(ε)(1 + ε)n for each n ∈ N such that no sum of some distinct elements of A is a
perfect square. Finally, given any finite set U ⊂ N, we construct a sequence A of the
same growth, namely, an < K(ε, U)(1 + ε)n for every n ∈ N such that no sum of its
distinct elements is equal to uvs with u ∈ U, v ∈ N and s > 2.

1 Introduction

Let B = {b1 < b2 < b3 < . . . } be an infinite sequence of positive integers. In this note we
are interested in the following two questions.

• For which B there exists an infinite sequence of positive integers A = {a1 < a2 <
a3 < . . . } such that ai1 + · · · + aim /∈ B for every m ∈ N and any distinct elements
ai1 , . . . , aim ∈ A?

• In the case when the answer is ‘yes’, how dense the sequence A can be?
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In his paper [2], F. Luca considered the case when B is the set of all perfect squares
{1, 4, 9, 16, 25, 36, . . . } and of all perfect powers {1, 4, 8, 9, 16, 25, 27, 32, 36, . . . }. He showed
that in both cases the answer to the first question is ‘yes’. In particular, it was observed in [2]
that the sum of any distinct Fermat numbers 22n

+ 1, n = 1, 2, . . . , is not a perfect square.
Moreover, it was proved that the sum of any distinct numbers of the form ap1p2...pn + 1,
n = n0, n0 + 1, . . . , where a > 2 is an integer, pk is the kth prime number and n0 = n0(a) is
an effectively computable constant, cannot be a perfect power.

2 Sets with asymptotic density zero

We begin with the following observation (see also [1]) which settles the first of the two
problems stated above for every set B satisfying lim supn→∞

(bn+1 − bn) = ∞.

Theorem 2.1. Let m ∈ N and let B = {b1 < b2 < b3 < . . . } be an infinite sequence

of positive integers satisfying lim supn→∞
(bn+1 − mbn) = ∞. Then there exists an infinite

sequence of positive integers A such that every sum over some elements of A, at most m of

which are equal, is not in B.

Proof. Take the smallest positive integer ℓ such that bℓ+1− bℓ > 2, and set a1 := bℓ +1. Then
a1 /∈ B. Suppose we already have a finite set {a1 < a2 < · · · < ak} such that all possible
(m + 1)k − 1 nonzero sums δ1a1 + · · ·+ δkak, where δ1, . . . , δk ∈ {0, 1, . . . ,m}, do not belong
to B. Put ak+1 := bl + 1, where l is the smallest positive integer for which bl+1 − mbl >

1+m+m(a1 + · · ·+ak) and bl > ak. Such an l exists, because lim supn→∞
(bn+1−mbn) = ∞.

Clearly, bl > ak implies that ak+1 > ak. In order to complete the proof of the theorem
(by induction) it suffices to show that no sum of the form δ1a1 + · · ·+ δkak + δk+1ak+1, where
δ1, . . . , δk+1 ∈ {0, 1, . . . ,m}, lies in B. If δk+1 = 0, this follows by our assumption, so suppose
that δk+1 > 1. Then δ1a1 + · · · + δkak + δk+1ak+1 is greater than ak+1 − 1 = bl and smaller
than

1 + m(a1 + · · ·+ ak + ak+1) 6 bl+1 −mbl −m + mak+1 = bl+1 −mbl −m + m(bl + 1) = bl+1,

so it is not in B, as claimed. ¤

Recall that the upper asymptotic density d(B) of the sequence B is defined as

d(B) = lim sup
N→∞

#{n ∈ N : bn 6 N}

N

(see, e.g., 1.2 in [4]). Similarly, the lower asymptotic density d(B) is defined as d(B) =
lim infN→∞ N−1#{n ∈ N : bn 6 N}. If d(B) = d(B), then the common value d(B) =
d(B) = d(B) is said to be the asymptotic density of B.

Evidently, if B has asymptotic density zero then, for any positive integer k, there are
infinitely many positive integers N such that the numbers N + 1, N + 2, . . . , N + k do not
lie in B. This implies that the condition lim supn→∞

(bn+1 − bn) = ∞ holds. Hence, by
Theorem 2.1 with m = 1, for any sequence B of asymptotic density zero there exists an
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infinite sequence A such that the sum of any number of distinct elements of A is not in B.
It is well-known that the sequence of perfect powers has asymptotic density zero, so such an
A as claimed exists for B = {1, 4, 8, 9, 16, 25, 27, 32, 36, . . . }.

For m > 2, it can very often happen that bn+1 < mbn for every n ∈ N. For such a set B
Theorem 2.1 is not applicable. However, its conclusion is true for any set B of asymptotic
density zero.

Theorem 2.2. Let m ∈ N and let B be an infinite sequence of positive integers of asymptotic

density zero. Then there exists an infinite sequence of positive integers A such that every

sum over some elements of A, at most m of which are equal, is not in B.

Proof. Once again, take the smallest positive integer ℓ such that bℓ+1 − bℓ > 2, and put
a1 := bℓ + 1. Then a1 /∈ B. Suppose we already have a finite set {a1 < a2 < · · · < ak} such
that all possible (m+1)k−1 nonzero sums δ1a1+· · ·+δkak, where δ1, . . . , δk ∈ {0, 1, . . . ,m}, do
not belong to B. It suffices to prove that there exists an integer ak+1 greater than ak such that,
for every i ∈ {1, . . . ,m}, the sum iak+1 + δkak + · · ·+ δ1a1, where δ1, . . . , δk ∈ {0, 1, . . . ,m},
is not in B.

Suppose that B = {b1 < b2 < b3 < . . . }. For any h ∈ N, the set {hb1 < hb2 < hb3 < . . . }
will be denoted by hB. Put Bi := m!

i
B for i = 1, 2, . . . ,m. Since d(Bi) = 0 for each i =

1, . . . ,m, we have d(B1∪· · ·∪Bm) = 0. Thus, for any v > m!(mS+1), where S := a1+· · ·+ak,
there is an integer u > m!ak such that the interval [u, u + v] is free of the elements of the set
B1 ∪ · · · ∪ Bm.

Put ak+1 := ⌊u/m!⌋ + 1. Clearly, ak+1 > ak. Furthermore, for any i ∈ {1, . . . ,m},
no element of Bi lies in [u, u + v]. Thus there is a nonnegative integer j = j(i) such that
m!bj/i < u and m!bj+1/i > u+v. (Here, for convenience of notation, we assume that b0 = 0.)
Hence iak+1 > iu/m! > bj and

iak+1 + mS < iak+1 + imS 6 i(u/m! + 1 + mS) < i(u + v)/m! < bj+1.

In particular, these inequalities imply that, for each i ∈ {1, . . . ,m}, the sum iak+1 + δkak +
· · ·+ δ1a1, where δ1, . . . , δk ∈ {0, 1, . . . ,m}, is between bj(i) +1 and bj(i)+1 − 1, hence it is not
in B. This completes the proof of the theorem. ¤

Several examples illustrating Theorem 2 will be given in Section 5. In particular, for any
ε > 0, there is a set B ⊂ N with asymptotic density d(B) < ε such that for any infinite set
A ⊆ N some of its distinct elements sum to an element lying in B. On the other hand, there
are sets B ⊆ N with asymptotic density 1 for which there exists an infinite set A whose
distinct elements do not sum to an element lying in B.

3 Infinite sets whose elements do not sum to a square

The second question concerning the ‘densiest’ sequence A for a fixed B seems to be much
more subtle. It seems likely that this question is very difficult already for the above mentioned
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sequence of perfect squares {1, 4, 9, 16, 25, 36, . . . }. The example of Fermat numbers 22n

+ 1,
n = 1, 2, . . . , given above is clearly not satisfactory, because this sequence grows very rapidly.

In this sense, much better is the sequence 22n−1, n = 1, 2, . . . . The sum of its distinct
elements

22n1−1 + · · · + 22nl−1 = 22n1−1(1 + 4n2−n1 + · · · + 4nl−n1),

where 1 6 n1 < · · · < nl, is not a perfect square, because it is divisible by 22n1−1, but not
divisible by 22n1 .

Smaller, but still of exponential growth, is the sequence 2 · 3n, n = 0, 1, 2, . . . . No sum of
its distinct elements is a perfect square, because

2(3n1 + · · · + 3nl) = 2 · 3n1(1 + 3n2−n1 + · · · + 3nl−n1) = h2

implies that n1 is even, so 2(1 + 3n2−n1 + · · · + 3nl−n1) must be a square too. However, this
number is of the form 3k + 2 with integer k, so it is not a perfect square.

A natural way to generate an infinite sequence whose distinct elements do not sum to
square is to start with c1 = 2. Then, for each n ∈ N, take the smallest positive integer cn+1

such that no sum of the form cn+1 + δncn + · · · + δ1c1, where δ1, . . . , δn ∈ {0, 1}, is a perfect
square. Clearly, c2 = 3, c3 = 5. Then, as 6 + 3 = 32, 7 + 2 = 32, 8 + 5 + 3 = 42, 9 = 32, we
obtain that c4 = 10, and so on. In the following table we give the first 18 elements of this
sequence:

n cn log cn n cn log cn

1 2 0.6931 10 2030 7.6157
2 3 1.0986 11 3225 8.0786
3 5 1.6094 12 8295 9.0234
4 10 2.3025 13 15850 9.6709
5 27 3.2958 14 80642 11.2977
6 38 3.6375 15 378295 12.8434
7 120 4.7874 16 1049868 13.8641
8 258 5.5529 17 3031570 14.9245
9 907 6.8101 18 12565348 16.3464

Here, the values of log cn are truncated at the fourth decimal place. At the first glance,
they suggest that the limit lim infn→∞ n−1 log cn is positive. If so, then the sequence cn,
n = 1, 2, 3, . . . , is of exponential growth too. It seems that the sequence cn, n = 1, 2, 3, . . . ,
i.e.,

2, 3, 5, 10, 27, 38, 120, 258, 907, 2030, 3225, 8295, 15850, 80642, 378295, 1049868, . . .

was not studied before. At least, it is not given in N.J.A. Sloane’s on-line encyclopedia of
integer sequences http://www.research.att.com/˜njas/sequences/. We thus raise the
following problem.

• Determine whether lim infn→∞ n−1 log cn is zero or a positive number.
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In the opposite direction, one can easily show that cn < 4n for each n > 1. Here is
the proof of this inequality by induction (due to a referee). Suppose that cn < 4n. If
cn+1 6 cn + 4n, then cn+1 < 4n + 4n < 4n+1. Otherwise, for each j = 1, 2, . . . , 4n, there exists
a set I = Ij ⊆ {1, 2, . . . , n} such that cn + j + S(I) = s2

j , where S(I) :=
∑

i∈I ci and sj ∈ N.
There are 2n different subsets I of {1, 2, . . . , n}, so the set {4n − 2n, . . . , 4n − 1, 4n} with
2n + 1 elements contains some two indices j < j′ for which the corresponding subsets I (and
so the values for S(I)) are equal. Subtracting cn + j + S(I) = s2

j from cn + j′ + S(I) = s2
j′ ,

we deduce that j′ − j = (sj′ − sj)(sj′ + sj). Since j′ − j 6 2n, we have sj′ + sj 6 2n, i.e.,
sj′ 6 2n − 1. Hence

4n − 2n < j′ < cn + j′ + S(I) = s2
j′ 6 (2n − 1)2 = 4n − 2n+1 + 1,

a contradiction.
Of course, cn < 4n implies that lim supn→∞

n−1 log cn < log 4. Our next theorem shows
that, for any fixed positive ε, there is a sequence A = {a1 < a2 < a3 < . . . } whose
distinct elements do not sum to a square and whose growth is small in the sense that
lim supn→∞

n−1 log an < ε.

Theorem 3.1. For any ε > 0 there is a positive constant K = K(ε) and an infinite sequence

A = {a1 < a2 < a3 < . . . } ⊂ N satisfying an < K(1 + ε)n for each n ∈ N such that the sum

of any number of distinct elements of A is not a perfect square.

Proof. Fix a prime number p to be chosen later and consider the following infinite set

A := {gp2m + p2m−1 : g ∈ {0, 1, . . . , p − 2}, m ∈ N}.

Each element of A in base p can be written as g100 . . . 0 with 2m− 1 zeros, where the ‘digit’
g is allowed to be zero. So all the elements of A are distinct.

First, we will show that the sum of any distinct elements of A is not a perfect square. As-
sume that there exists a sum S which is a perfect square. Suppose that for every t = 1, 2, . . . , l
the sum S contains st > 0 elements of the form gp2mt + p2mt−1, where g ∈ {0, 1, . . . , p − 2}
and 1 6 m1 < m2 < · · · < ml. Clearly, st 6 p − 1. Let us write S in the form

S = s1p
2m1−1 + h1p

2m1 + s2p
2m2−1 + h2p

2m2 + · · · + slp
2ml−1 + hlp

2ml

= p2m1−1(s1 + h1p + · · · + slp
2ml−2m1 + hlp

2ml−2m1+1) = p2m1−1(s1 + pH).

Now, since s1 ∈ {1, . . . , p−1} and since H is an integer, we see that S is divisible by p2m1−1,
but not by p2m1 , so it is not a perfect square.

It remains to estimate the size of the nth element an of A. Write n in the form n =
(p− 1)(m− 1)+ r, where r ∈ {1, . . . , p− 2, p− 1} and m > 1 is an integer. Suppose that the
elements of A are divided into consecutive equal blocks with p − 1 elements in each block.
Then all the elements of the mth block are of the form g100 . . . 0 (with 2m− 1 zeros), where
g = 0, 1, . . . , p − 2. Hence the nth element of A, where n = (p − 1)(m − 1) + r, is precisely
the rth element of the mth block, i.e., an = a(p−1)(m−1)+r = (r − 1)p2m + p2m−1. It follows
that

an 6 (p − 2)p2m + p2m−1 < p2m+1 = p2(n−r)/(p−1)+3 < p2n/(p−1)+3 = p3e(2n log p)/(p−1).

5



Clearly, (2 log p)/(p− 1) → 0 as p → ∞. Thus, for any ε > 0, there exists a prime number p
such that e(2 log p)/(p−1) < 1+ε. Take the smallest such a prime p = p(ε). Setting K(ε) := p(ε)3,
we obtain that an < K(ε)(1 + ε)n for each n ∈ N. ¤

4 Infinite sets whose elements do not sum to a power

Observe that distinct elements of the sequence 2 ·6n, n = 0, 1, 2, . . . , cannot sum to a perfect
power. Indeed,

S = 2(6n1 + · · · + 6nl) = 2n1+13n1(1 + 6n2−n1 + · · · + 6nl−n1),

where 0 6 n1 < · · · < nl, is not a perfect power, because n1 + 1 and n1 are exact powers of
2 and 3 in the prime decomposition of S. So if S > 1 were a kth power, where k is a prime
number (which can be assumed without loss of generality), then both n1 + 1 and n1 must
be divisible by k, a contradiction.

This example is already ‘better’ than the example ap1p2...pn + 1, n = n0, n0 + 1, . . . ,
given in [2] not only because it is completely explicit, but also because the sequence 2 · 6n,
n = 0, 1, 2, . . . , grows slower.

As above, we can also consider the sequence 2, 3, 10, 18, . . . , starting with e1 = 2, whose
each ‘next’ element en+1 > en, where n > 1, is the smallest positive integer preserving the
property that no sum of the form δ1e1 + · · · + δnen + en+1, where δ1, . . . , δn ∈ {0, 1}, is a
perfect power. By an argument which is slightly more complicated than the one given for
cn, one can prove again that en < 4n for n large enough.

However, our aim is to prove the existence of the sequence whose nth element is bounded
from above by K(ε)(1 + ε)n for n ∈ N. For this, we shall generalize Theorem 2 as follows:

Theorem 4.1. Let U be the set of positive integers of the form qα1

1 . . . qαk

k , where q1, . . . , qk

are some fixed prime numbers and α1, . . . , αk run through all nonnegative integers. Then,

for any ε > 0, there is a positive constant K = K(ε, U) and an infinite sequence A = {a1 <
a2 < a3 < . . . } ⊂ N satisfying an < K(1+ ε)n for n ∈ N such that the sum of any number of

distinct elements of A is not equal to uvs with positive integers u, v, s such that u ∈ U and

s > 2.

In particular, Theorem 3 with U = {1} implies a more general version of Theorem 2 with
‘perfect square’ replaced by ‘perfect power’.

Proof. Fix two prime numbers p and q satisfying p < q < 2p. Here, the prime number p
will be chosen later, whereas, by Bertrand’s postulate, the interval (p, 2p) always contains at
least one prime number, so we can take q to be any of those primes. Consider the following
infinite set

A := {gpm+1qm + pmqm−1 : g ∈ {1, . . . , p − 1}, m ∈ N}.
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The inequality pm+2qm+1 + pm+1qm > (p− 1)pm+1qm + pmqm−1 implies that all the elements
of A are distinct. Also, as above, by dividing the sequence A into consecutive equal blocks
with p − 1 elements each, we find that

an = rpm+1qm + pmqm−1

for n = (p − 1)(m − 1) + r, where m ∈ N and r ∈ {1, . . . , p − 2, p − 1}.
Assume that there exists a sum S of some distinct an which is of the form uvs. Without

loss of generality we may assume that s > 2 is a prime number. Suppose that for every
t = 1, 2, . . . , l the sum S contains st > 0 elements of the form gpmt+1qmt + pmtqmt−1, where
g ∈ {1, . . . , p − 1} and 1 6 m1 < m2 < · · · < ml. Clearly, st 6 p − 1, so, in particular,
1 6 s1 6 p − 1. Then, as above, S = pm1qm1−1(s1 + pqH) with an integer H. If q > p > qk,
then p, q /∈ U, so the equality uvs = pm1qm1−1(s1 + pqH) implies that s|m1 and s|(m1 − 1),
a contradiction.

Using an = rpm+1qm + pmqm−1, where n = (p − 1)(m − 1) + r and p < q < 2p, we find
that

an < (p − 1)q2m+1 + q2m−1 < q2m+2 < (2p)2(n−r)/(p−1)+4 < (2p)4e(2n log(2p))/(p−1).

For any ε > 0, there exists a positive number pε such that e(2 log(2p))/(p−1) < 1 + ε for
each p > pε. Take the smallest prime number p = p(ε) greater than max{pε, qk}, and put
K(ε, qk) = K(ε, U) := 2p(ε)4. Then an < K(ε, U)(1 + ε)n for each n ∈ N, as claimed. ¤

5 Concluding remarks

We do not give any lower bounds for the nth element an of the ‘densiest’ sequence A =
{a1 < a2 < . . . } whose distinct elements do not sum to a square or, more generally, to
a power. As a first step towards solution of this problem, it would be of interest to find
out whether every infinite sequence of positive integers A which has a positive asymptotic
density (i.e., d(A) > 0) contains some elements that sum to a square. It is essential that we
can only sum distinct elements of A, because, for any nonempty set A ⊂ N, there is a sumset
A + A + · · · + A which contains a square. In this direction, we can mention the following
result of T. Schoen [3]: if A is a set of positive integers with asymptotic density d(A) > 2/5
then the sumset A + A contains a perfect square. For more references on sumset related
results see the recent book [5] of T. Tao and V. H. Vu.

A ‘finite version’ of the problem on the ‘densiest’ set whose elements do not sum to a
square was recently considered by J. Cilleruelo [1]. He showed that there is an absolute
positive constant c such that, for any positive integer N > 2, there exists a subset A of
{1, 2, . . . , N} with > cN1/3 elements whose distinct elements do not sum to a perfect square.
In fact, by taking the largest prime number p 6 N1/3, we see that the set A := {p, p2 +
p, 2p2 +p, . . . , (p−2)p2 +p} with p−1 element is a subset of {1, 2, . . . , N}. Since any sum of
distinct elements of A is divisible by p, but not by p2, we conclude that no sum of distinct
elements of the set A of cardinality p − 1 > 1

2
N1/3 is a perfect power.
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Notice that in this type of questions not everything is determined by the density of
B. In fact, there are some ‘large’ sets B for which there is a ‘large’ set A whose elements
do not sum to an integer lying in B. For example, for the set of all odd positive integers
B = {1, 3, 5, 7, . . . } whose density d(B) is 1/2, the ‘densiest’ set A whose elements do not
sum to an odd number is the set of all even positive integers {2, 4, 6, 8, . . . } with density
d(A) = 1/2. On the other hand, taking B = {2, 4, 6, 8, . . . }, we see that no infinite sequence
A as required exists. Moreover, if B is the set of all positive integers divisible by m, where
m ∈ N is large, then the density d(B) = 1/m is small. However, by a simple argument
modulo m, it is easy to see that there is no infinite set A ⊂ N (and even no set A with
> m distinct positive integers) with the property that its distinct elements always sum to a
number lying outside B. Indeed, if a1, . . . , am ∈ N then either at least two of the following
m numbers Sj :=

∑j
i=1 ai, where j = 1, . . . ,m, say, Su and Sv (u < v, u, v ∈ {1, . . . ,m}) are

equal modulo m or m|St, where t ∈ {1, . . . ,m}. Therefore, either their difference Sv − Su =
au+1 + au+2 + · · · + av or St = a1 + · · · + at is divisible by m. In both cases, there is a sum
of distinct elements of {a1, a2, . . . , am} that lies in B.

It follows that if, for an infinite set B ⊂ N, there exists an infinite sequence of positive
integers A = {a1 < a2 < a3 < . . . } for which ai1 + · · · + aim /∈ B for every m ∈ N and any
distinct elements ai1 , . . . , aim ∈ A, then B must have the following property. For each m ∈ N

there are infinitely many k ∈ N such that km /∈ B.
This necessary condition is not sufficient. Take, for instance, B := N \ {j2 : j ∈ N}.

Then, for each m ∈ N, there are infinitely many positive integers k, say, k = ℓ2m, where
ℓ = 1, 2, . . . , such that km = (ℓm)2 /∈ B. However, there does not exist an infinite set of
positive integers A = {a1 < a2 < a3 < . . . } such that for any n ∈ N and any distinct
ai1 , . . . , ain ∈ A the sum ai1 + · · · + ain is a perfect square. See, e.g., the proposition in the
same paper [2], where this was proved in a more general form with ‘perfect square’ replaced
by ‘perfect power’.

Given any infinite set B ⊂ N, put K := N\B. Our first question stated in the introduction
can be also formulated in the following equivalent form.

• For which K = {k1 < k2 < k3 < . . . } ⊂ N there exists an infinite subsequence of
{ki1 < ki2 < ki3 < . . . } of K such that all possible sums over its distinct elements lie
in K?

Theorem 2.1 implies that if d(K) = 1 then such a subsequence exists. On the other hand,
take the sequence K of positive integers that are not divisible by m with asymptotic density
d(K) = 1 − 1/m (which is ‘close’ to 1 if m is ‘large’). Then such a subsequence does not
exist despite of d(K) being large. Finally, set D := {22j

: j ∈ N} and suppose that K is the
set of all possible finite sums over distinct elements of D. Then d(K) is easily seen to be 0,
but for K such a subsequence exists, e.g., D.
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