Journal of Integer Sequences, Vol. 9 (2006),

Infinite Sets of Integers Whose Distinct Elements Do Not Sum to a Power

Artūras Dubickas and Paulius Šarka
Department of Mathematics and Informatics
Vilnius University
Naugarduko 24
Vilnius LT-03225
Lithuania
arturas.dubickas@maf.vu.1t
paulius.sarka@mif.vu.1t

Abstract

We first prove two results which both imply that for any sequence B of asymptotic density zero there exists an infinite sequence A such that the sum of any number of distinct elements of A does not belong to B. Then, for any $\varepsilon>0$, we construct an infinite sequence of positive integers $A=\left\{a_{1}<a_{2}<a_{3}<\ldots\right\}$ satisfying $a_{n}<$ $K(\varepsilon)(1+\varepsilon)^{n}$ for each $n \in \mathbb{N}$ such that no sum of some distinct elements of A is a perfect square. Finally, given any finite set $U \subset \mathbb{N}$, we construct a sequence A of the same growth, namely, $a_{n}<K(\varepsilon, U)(1+\varepsilon)^{n}$ for every $n \in \mathbb{N}$ such that no sum of its distinct elements is equal to $u v^{s}$ with $u \in U, v \in \mathbb{N}$ and $s \geqslant 2$.

1 Introduction

Let $B=\left\{b_{1}<b_{2}<b_{3}<\ldots\right\}$ be an infinite sequence of positive integers. In this note we are interested in the following two questions.

- For which B there exists an infinite sequence of positive integers $A=\left\{a_{1}<a_{2}<\right.$ $\left.a_{3}<\ldots\right\}$ such that $a_{i_{1}}+\cdots+a_{i_{m}} \notin B$ for every $m \in \mathbb{N}$ and any distinct elements $a_{i_{1}}, \ldots, a_{i_{m}} \in A$?
- In the case when the answer is 'yes', how dense the sequence A can be?

In his paper [2], F. Luca considered the case when B is the set of all perfect squares $\{1,4,9,16,25,36, \ldots\}$ and of all perfect powers $\{1,4,8,9,16,25,27,32,36, \ldots\}$. He showed that in both cases the answer to the first question is 'yes'. In particular, it was observed in (2) that the sum of any distinct Fermat numbers $2^{2^{n}}+1, n=1,2, \ldots$, is not a perfect square. Moreover, it was proved that the sum of any distinct numbers of the form $a^{p_{1} p_{2} \ldots p_{n}}+1$, $n=n_{0}, n_{0}+1, \ldots$, where $a \geqslant 2$ is an integer, p_{k} is the k th prime number and $n_{0}=n_{0}(a)$ is an effectively computable constant, cannot be a perfect power.

2 Sets with asymptotic density zero

We begin with the following observation (see also [1]) which settles the first of the two problems stated above for every set B satisfying $\lim \sup _{n \rightarrow \infty}\left(b_{n+1}-b_{n}\right)=\infty$.

Theorem 2.1. Let $m \in \mathbb{N}$ and let $B=\left\{b_{1}<b_{2}<b_{3}<\ldots\right\}$ be an infinite sequence of positive integers satisfying $\lim \sup _{n \rightarrow \infty}\left(b_{n+1}-m b_{n}\right)=\infty$. Then there exists an infinite sequence of positive integers A such that every sum over some elements of A, at most m of which are equal, is not in B.

Proof. Take the smallest positive integer ℓ such that $b_{\ell+1}-b_{\ell} \geqslant 2$, and set $a_{1}:=b_{\ell}+1$. Then $a_{1} \notin B$. Suppose we already have a finite set $\left\{a_{1}<a_{2}<\cdots<a_{k}\right\}$ such that all possible $(m+1)^{k}-1$ nonzero sums $\delta_{1} a_{1}+\cdots+\delta_{k} a_{k}$, where $\delta_{1}, \ldots, \delta_{k} \in\{0,1, \ldots, m\}$, do not belong to B. Put $a_{k+1}:=b_{l}+1$, where l is the smallest positive integer for which $b_{l+1}-m b_{l} \geqslant$ $1+m+m\left(a_{1}+\cdots+a_{k}\right)$ and $b_{l} \geqslant a_{k}$. Such an l exists, because $\lim _{\sup }^{n \rightarrow \infty}\left(b_{n+1}-m b_{n}\right)=\infty$.

Clearly, $b_{l} \geqslant a_{k}$ implies that $a_{k+1}>a_{k}$. In order to complete the proof of the theorem (by induction) it suffices to show that no sum of the form $\delta_{1} a_{1}+\cdots+\delta_{k} a_{k}+\delta_{k+1} a_{k+1}$, where $\delta_{1}, \ldots, \delta_{k+1} \in\{0,1, \ldots, m\}$, lies in B. If $\delta_{k+1}=0$, this follows by our assumption, so suppose that $\delta_{k+1} \geqslant 1$. Then $\delta_{1} a_{1}+\cdots+\delta_{k} a_{k}+\delta_{k+1} a_{k+1}$ is greater than $a_{k+1}-1=b_{l}$ and smaller than

$$
1+m\left(a_{1}+\cdots+a_{k}+a_{k+1}\right) \leqslant b_{l+1}-m b_{l}-m+m a_{k+1}=b_{l+1}-m b_{l}-m+m\left(b_{l}+1\right)=b_{l+1},
$$

so it is not in B, as claimed.
Recall that the upper asymptotic density $\bar{d}(B)$ of the sequence B is defined as

$$
\bar{d}(B)=\limsup _{N \rightarrow \infty} \frac{\#\left\{n \in \mathbb{N}: b_{n} \leqslant N\right\}}{N}
$$

(see, e.g., 1.2 in (4]). Similarly, the lower asymptotic density $\underline{d}(B)$ is defined as $\underline{d}(B)=$ $\liminf _{N \rightarrow \infty} N^{-1} \#\left\{n \in \mathbb{N}: b_{n} \leqslant N\right\}$. If $\bar{d}(B)=\underline{d}(B)$, then the common value $d(B)=$ $\bar{d}(B)=\underline{d}(B)$ is said to be the asymptotic density of B.

Evidently, if B has asymptotic density zero then, for any positive integer k, there are infinitely many positive integers N such that the numbers $N+1, N+2, \ldots, N+k$ do not lie in B. This implies that the condition $\limsup _{n \rightarrow \infty}\left(b_{n+1}-b_{n}\right)=\infty$ holds. Hence, by Theorem 2.1 with $m=1$, for any sequence B of asymptotic density zero there exists an
infinite sequence A such that the sum of any number of distinct elements of A is not in B. It is well-known that the sequence of perfect powers has asymptotic density zero, so such an A as claimed exists for $B=\{1,4,8,9,16,25,27,32,36, \ldots\}$.

For $m \geqslant 2$, it can very often happen that $b_{n+1}<m b_{n}$ for every $n \in \mathbb{N}$. For such a set B Theorem 2.1 is not applicable. However, its conclusion is true for any set B of asymptotic density zero.

Theorem 2.2. Let $m \in \mathbb{N}$ and let B be an infinite sequence of positive integers of asymptotic density zero. Then there exists an infinite sequence of positive integers A such that every sum over some elements of A, at most m of which are equal, is not in B.

Proof. Once again, take the smallest positive integer ℓ such that $b_{\ell+1}-b_{\ell} \geqslant 2$, and put $a_{1}:=b_{\ell}+1$. Then $a_{1} \notin B$. Suppose we already have a finite set $\left\{a_{1}<a_{2}<\cdots<a_{k}\right\}$ such that all possible $(m+1)^{k}-1$ nonzero sums $\delta_{1} a_{1}+\cdots+\delta_{k} a_{k}$, where $\delta_{1}, \ldots, \delta_{k} \in\{0,1, \ldots, m\}$, do not belong to B. It suffices to prove that there exists an integer a_{k+1} greater than a_{k} such that, for every $i \in\{1, \ldots, m\}$, the sum $i a_{k+1}+\delta_{k} a_{k}+\cdots+\delta_{1} a_{1}$, where $\delta_{1}, \ldots, \delta_{k} \in\{0,1, \ldots, m\}$, is not in B.

Suppose that $B=\left\{b_{1}<b_{2}<b_{3}<\ldots\right\}$. For any $h \in \mathbb{N}$, the set $\left\{h b_{1}<h b_{2}<h b_{3}<\ldots\right\}$ will be denoted by $h B$. Put $B_{i}:=\frac{m!}{i} B$ for $i=1,2, \ldots, m$. Since $d\left(B_{i}\right)=0$ for each $i=$ $1, \ldots, m$, we have $d\left(B_{1} \cup \cdots \cup B_{m}\right)=0$. Thus, for any $v>m!(m S+1)$, where $S:=a_{1}+\cdots+a_{k}$, there is an integer $u>m!a_{k}$ such that the interval $[u, u+v]$ is free of the elements of the set $B_{1} \cup \cdots \cup B_{m}$.

Put $a_{k+1}:=\lfloor u / m!\rfloor+1$. Clearly, $a_{k+1}>a_{k}$. Furthermore, for any $i \in\{1, \ldots, m\}$, no element of B_{i} lies in $[u, u+v]$. Thus there is a nonnegative integer $j=j(i)$ such that $m!b_{j} / i<u$ and $m!b_{j+1} / i>u+v$. (Here, for convenience of notation, we assume that $b_{0}=0$.) Hence $i a_{k+1}>i u / m!>b_{j}$ and

$$
i a_{k+1}+m S<i a_{k+1}+i m S \leqslant i(u / m!+1+m S)<i(u+v) / m!<b_{j+1} .
$$

In particular, these inequalities imply that, for each $i \in\{1, \ldots, m\}$, the sum $i a_{k+1}+\delta_{k} a_{k}+$ $\cdots+\delta_{1} a_{1}$, where $\delta_{1}, \ldots, \delta_{k} \in\{0,1, \ldots, m\}$, is between $b_{j(i)}+1$ and $b_{j(i)+1}-1$, hence it is not in B. This completes the proof of the theorem.

Several examples illustrating Theorem 2 will be given in Section 5. In particular, for any $\varepsilon>0$, there is a set $B \subset \mathbb{N}$ with asymptotic density $d(B)<\varepsilon$ such that for any infinite set $A \subseteq \mathbb{N}$ some of its distinct elements sum to an element lying in B. On the other hand, there are sets $B \subseteq \mathbb{N}$ with asymptotic density 1 for which there exists an infinite set A whose distinct elements do not sum to an element lying in B.

3 Infinite sets whose elements do not sum to a square

The second question concerning the 'densiest' sequence A for a fixed B seems to be much more subtle. It seems likely that this question is very difficult already for the above mentioned
sequence of perfect squares $\{1,4,9,16,25,36, \ldots\}$. The example of Fermat numbers $2^{2^{n}}+1$, $n=1,2, \ldots$, given above is clearly not satisfactory, because this sequence grows very rapidly.

In this sense, much better is the sequence $2^{2 n-1}, n=1,2, \ldots$ The sum of its distinct elements

$$
2^{2 n_{1}-1}+\cdots+2^{2 n_{l}-1}=2^{2 n_{1}-1}\left(1+4^{n_{2}-n_{1}}+\cdots+4^{n_{l}-n_{1}}\right),
$$

where $1 \leqslant n_{1}<\cdots<n_{l}$, is not a perfect square, because it is divisible by $2^{2 n_{1}-1}$, but not divisible by $2^{2 n_{1}}$.

Smaller, but still of exponential growth, is the sequence $2 \cdot 3^{n}, n=0,1,2, \ldots$ No sum of its distinct elements is a perfect square, because

$$
2\left(3^{n_{1}}+\cdots+3^{n_{l}}\right)=2 \cdot 3^{n_{1}}\left(1+3^{n_{2}-n_{1}}+\cdots+3^{n_{l}-n_{1}}\right)=h^{2}
$$

implies that n_{1} is even, so $2\left(1+3^{n_{2}-n_{1}}+\cdots+3^{n_{l}-n_{1}}\right)$ must be a square too. However, this number is of the form $3 k+2$ with integer k, so it is not a perfect square.

A natural way to generate an infinite sequence whose distinct elements do not sum to square is to start with $c_{1}=2$. Then, for each $n \in \mathbb{N}$, take the smallest positive integer c_{n+1} such that no sum of the form $c_{n+1}+\delta_{n} c_{n}+\cdots+\delta_{1} c_{1}$, where $\delta_{1}, \ldots, \delta_{n} \in\{0,1\}$, is a perfect square. Clearly, $c_{2}=3, c_{3}=5$. Then, as $6+3=3^{2}, 7+2=3^{2}, 8+5+3=4^{2}, 9=3^{2}$, we obtain that $c_{4}=10$, and so on. In the following table we give the first 18 elements of this sequence:

n	c_{n}	$\log c_{n}$	n	c_{n}	$\log c_{n}$
1	2	0.6931	10	2030	7.6157
2	3	1.0986	11	3225	8.0786
3	5	1.6094	12	8295	9.0234
4	10	2.3025	13	15850	9.6709
5	27	3.2958	14	80642	11.2977
6	38	3.6375	15	378295	12.8434
7	120	4.7874	16	1049868	13.8641
8	258	5.5529	17	3031570	14.9245
9	907	6.8101	18	12565348	16.3464

Here, the values of $\log c_{n}$ are truncated at the fourth decimal place. At the first glance, they suggest that the limit $\lim \inf _{n \rightarrow \infty} n^{-1} \log c_{n}$ is positive. If so, then the sequence c_{n}, $n=1,2,3, \ldots$, is of exponential growth too. It seems that the sequence $c_{n}, n=1,2,3, \ldots$, i.e.,

$$
2,3,5,10,27,38,120,258,907,2030,3225,8295,15850,80642,378295,1049868, \ldots
$$

was not studied before. At least, it is not given in N.J.A. Sloane's on-line encyclopedia of integer sequences http://www.research.att.com/ n njas/sequences/. We thus raise the following problem.

- Determine whether $\lim \inf _{n \rightarrow \infty} n^{-1} \log c_{n}$ is zero or a positive number.

In the opposite direction, one can easily show that $c_{n}<4^{n}$ for each $n \geqslant 1$. Here is the proof of this inequality by induction (due to a referee). Suppose that $c_{n}<4^{n}$. If $c_{n+1} \leqslant c_{n}+4^{n}$, then $c_{n+1}<4^{n}+4^{n}<4^{n+1}$. Otherwise, for each $j=1,2, \ldots, 4^{n}$, there exists a set $I=I_{j} \subseteq\{1,2, \ldots, n\}$ such that $c_{n}+j+S(I)=s_{j}^{2}$, where $S(I):=\sum_{i \in I} c_{i}$ and $s_{j} \in \mathbb{N}$. There are 2^{n} different subsets I of $\{1,2, \ldots, n\}$, so the set $\left\{4^{n}-2^{n}, \ldots, 4^{n}-1,4^{n}\right\}$ with $2^{n}+1$ elements contains some two indices $j<j^{\prime}$ for which the corresponding subsets I (and so the values for $S(I)$) are equal. Subtracting $c_{n}+j+S(I)=s_{j}^{2}$ from $c_{n}+j^{\prime}+S(I)=s_{j^{\prime}}^{2}$, we deduce that $j^{\prime}-j=\left(s_{j^{\prime}}-s_{j}\right)\left(s_{j^{\prime}}+s_{j}\right)$. Since $j^{\prime}-j \leqslant 2^{n}$, we have $s_{j^{\prime}}+s_{j} \leqslant 2^{n}$, i.e., $s_{j^{\prime}} \leqslant 2^{n}-1$. Hence

$$
4^{n}-2^{n}<j^{\prime}<c_{n}+j^{\prime}+S(I)=s_{j^{\prime}}^{2} \leqslant\left(2^{n}-1\right)^{2}=4^{n}-2^{n+1}+1
$$

a contradiction.
Of course, $c_{n}<4^{n}$ implies that $\lim \sup _{n \rightarrow \infty} n^{-1} \log c_{n}<\log 4$. Our next theorem shows that, for any fixed positive ε, there is a sequence $A=\left\{a_{1}<a_{2}<a_{3}<\ldots\right\}$ whose distinct elements do not sum to a square and whose growth is small in the sense that $\limsup \operatorname{sim}_{n \rightarrow} n^{-1} \log a_{n}<\varepsilon$.

Theorem 3.1. For any $\varepsilon>0$ there is a positive constant $K=K(\varepsilon)$ and an infinite sequence $A=\left\{a_{1}<a_{2}<a_{3}<\ldots\right\} \subset \mathbb{N}$ satisfying $a_{n}<K(1+\varepsilon)^{n}$ for each $n \in \mathbb{N}$ such that the sum of any number of distinct elements of A is not a perfect square.

Proof. Fix a prime number p to be chosen later and consider the following infinite set

$$
A:=\left\{g p^{2 m}+p^{2 m-1}: g \in\{0,1, \ldots, p-2\}, m \in \mathbb{N}\right\}
$$

Each element of A in base p can be written as $\overline{g 100 \ldots 0}$ with $2 m-1$ zeros, where the 'digit' g is allowed to be zero. So all the elements of A are distinct.

First, we will show that the sum of any distinct elements of A is not a perfect square. Assume that there exists a sum S which is a perfect square. Suppose that for every $t=1,2, \ldots, l$ the sum S contains $s_{t}>0$ elements of the form $g p^{2 m_{t}}+p^{2 m_{t}-1}$, where $g \in\{0,1, \ldots, p-2\}$ and $1 \leqslant m_{1}<m_{2}<\cdots<m_{l}$. Clearly, $s_{t} \leqslant p-1$. Let us write S in the form

$$
\begin{gathered}
S=s_{1} p^{2 m_{1}-1}+h_{1} p^{2 m_{1}}+s_{2} p^{2 m_{2}-1}+h_{2} p^{2 m_{2}}+\cdots+s_{l} p^{2 m_{l}-1}+h_{l} p^{2 m_{l}} \\
=p^{2 m_{1}-1}\left(s_{1}+h_{1} p+\cdots+s_{l} p^{2 m_{l}-2 m_{1}}+h_{l} p^{2 m_{l}-2 m_{1}+1}\right)=p^{2 m_{1}-1}\left(s_{1}+p H\right) .
\end{gathered}
$$

Now, since $s_{1} \in\{1, \ldots, p-1\}$ and since H is an integer, we see that S is divisible by $p^{2 m_{1}-1}$, but not by $p^{2 m_{1}}$, so it is not a perfect square.

It remains to estimate the size of the nth element a_{n} of A. Write n in the form $n=$ $(p-1)(m-1)+r$, where $r \in\{1, \ldots, p-2, p-1\}$ and $m \geqslant 1$ is an integer. Suppose that the elements of A are divided into consecutive equal blocks with $p-1$ elements in each block. Then all the elements of the m th block are of the form $\overline{g 100 \ldots 0}$ (with $2 m-1$ zeros), where $g=0,1, \ldots, p-2$. Hence the nth element of A, where $n=(p-1)(m-1)+r$, is precisely the r th element of the m th block, i.e., $a_{n}=a_{(p-1)(m-1)+r}=(r-1) p^{2 m}+p^{2 m-1}$. It follows that

$$
a_{n} \leqslant(p-2) p^{2 m}+p^{2 m-1}<p^{2 m+1}=p^{2(n-r) /(p-1)+3}<p^{2 n /(p-1)+3}=p^{3} e^{(2 n \log p) /(p-1)} .
$$

Clearly, $(2 \log p) /(p-1) \rightarrow 0$ as $p \rightarrow \infty$. Thus, for any $\varepsilon>0$, there exists a prime number p such that $e^{(2 \log p) /(p-1)}<1+\varepsilon$. Take the smallest such a prime $p=p(\varepsilon)$. Setting $K(\varepsilon):=p(\varepsilon)^{3}$, we obtain that $a_{n}<K(\varepsilon)(1+\varepsilon)^{n}$ for each $n \in \mathbb{N}$.

4 Infinite sets whose elements do not sum to a power

Observe that distinct elements of the sequence $2 \cdot 6^{n}, n=0,1,2, \ldots$, cannot sum to a perfect power. Indeed,

$$
S=2\left(6^{n_{1}}+\cdots+6^{n_{l}}\right)=2^{n_{1}+1} 3^{n_{1}}\left(1+6^{n_{2}-n_{1}}+\cdots+6^{n_{l}-n_{1}}\right),
$$

where $0 \leqslant n_{1}<\cdots<n_{l}$, is not a perfect power, because $n_{1}+1$ and n_{1} are exact powers of 2 and 3 in the prime decomposition of S. So if $S>1$ were a k th power, where k is a prime number (which can be assumed without loss of generality), then both $n_{1}+1$ and n_{1} must be divisible by k, a contradiction.

This example is already 'better' than the example $a^{p_{1} p_{2} \ldots p_{n}}+1, n=n_{0}, n_{0}+1, \ldots$, given in (2] not only because it is completely explicit, but also because the sequence $2 \cdot 6^{n}$, $n=0,1,2, \ldots$, grows slower.

As above, we can also consider the sequence $2,3,10,18, \ldots$, starting with $e_{1}=2$, whose each 'next' element $e_{n+1}>e_{n}$, where $n \geqslant 1$, is the smallest positive integer preserving the property that no sum of the form $\delta_{1} e_{1}+\cdots+\delta_{n} e_{n}+e_{n+1}$, where $\delta_{1}, \ldots, \delta_{n} \in\{0,1\}$, is a perfect power. By an argument which is slightly more complicated than the one given for c_{n}, one can prove again that $e_{n}<4^{n}$ for n large enough.

However, our aim is to prove the existence of the sequence whose nth element is bounded from above by $K(\varepsilon)(1+\varepsilon)^{n}$ for $n \in \mathbb{N}$. For this, we shall generalize Theorem 2 as follows:

Theorem 4.1. Let U be the set of positive integers of the form $q_{1}^{\alpha_{1}} \ldots q_{k}^{\alpha_{k}}$, where q_{1}, \ldots, q_{k} are some fixed prime numbers and $\alpha_{1}, \ldots, \alpha_{k}$ run through all nonnegative integers. Then, for any $\varepsilon>0$, there is a positive constant $K=K(\varepsilon, U)$ and an infinite sequence $A=\left\{a_{1}<\right.$ $\left.a_{2}<a_{3}<\ldots\right\} \subset \mathbb{N}$ satisfying $a_{n}<K(1+\varepsilon)^{n}$ for $n \in \mathbb{N}$ such that the sum of any number of distinct elements of A is not equal to $u v^{s}$ with positive integers u, v, s such that $u \in U$ and $s \geqslant 2$.

In particular, Theorem 3 with $U=\{1\}$ implies a more general version of Theorem 2 with 'perfect square' replaced by 'perfect power'.

Proof. Fix two prime numbers p and q satisfying $p<q<2 p$. Here, the prime number p will be chosen later, whereas, by Bertrand's postulate, the interval $(p, 2 p)$ always contains at least one prime number, so we can take q to be any of those primes. Consider the following infinite set

$$
A:=\left\{g p^{m+1} q^{m}+p^{m} q^{m-1}: g \in\{1, \ldots, p-1\}, m \in \mathbb{N}\right\} .
$$

The inequality $p^{m+2} q^{m+1}+p^{m+1} q^{m}>(p-1) p^{m+1} q^{m}+p^{m} q^{m-1}$ implies that all the elements of A are distinct. Also, as above, by dividing the sequence A into consecutive equal blocks with $p-1$ elements each, we find that

$$
a_{n}=r p^{m+1} q^{m}+p^{m} q^{m-1}
$$

for $n=(p-1)(m-1)+r$, where $m \in \mathbb{N}$ and $r \in\{1, \ldots, p-2, p-1\}$.
Assume that there exists a sum S of some distinct a_{n} which is of the form $u v^{s}$. Without loss of generality we may assume that $s \geqslant 2$ is a prime number. Suppose that for every $t=1,2, \ldots, l$ the sum S contains $s_{t}>0$ elements of the form $g p^{m_{t}+1} q^{m_{t}}+p^{m_{t}} q^{m_{t}-1}$, where $g \in\{1, \ldots, p-1\}$ and $1 \leqslant m_{1}<m_{2}<\cdots<m_{l}$. Clearly, $s_{t} \leqslant p-1$, so, in particular, $1 \leqslant s_{1} \leqslant p-1$. Then, as above, $S=p^{m_{1}} q^{m_{1}-1}\left(s_{1}+p q H\right)$ with an integer H. If $q>p>q_{k}$, then $p, q \notin U$, so the equality $u v^{s}=p^{m_{1}} q^{m_{1}-1}\left(s_{1}+p q H\right)$ implies that $s \mid m_{1}$ and $s \mid\left(m_{1}-1\right)$, a contradiction.

Using $a_{n}=r p^{m+1} q^{m}+p^{m} q^{m-1}$, where $n=(p-1)(m-1)+r$ and $p<q<2 p$, we find that

$$
a_{n}<(p-1) q^{2 m+1}+q^{2 m-1}<q^{2 m+2}<(2 p)^{2(n-r) /(p-1)+4}<(2 p)^{4} e^{(2 n \log (2 p)) /(p-1)} .
$$

For any $\varepsilon>0$, there exists a positive number p_{ε} such that $e^{(2 \log (2 p)) /(p-1)}<1+\varepsilon$ for each $p>p_{\varepsilon}$. Take the smallest prime number $p=p(\varepsilon)$ greater than $\max \left\{p_{\varepsilon}, q_{k}\right\}$, and put $K\left(\varepsilon, q_{k}\right)=K(\varepsilon, U):=2 p(\varepsilon)^{4}$. Then $a_{n}<K(\varepsilon, U)(1+\varepsilon)^{n}$ for each $n \in \mathbb{N}$, as claimed.

5 Concluding remarks

We do not give any lower bounds for the nth element a_{n} of the 'densiest' sequence $A=$ $\left\{a_{1}<a_{2}<\ldots\right\}$ whose distinct elements do not sum to a square or, more generally, to a power. As a first step towards solution of this problem, it would be of interest to find out whether every infinite sequence of positive integers A which has a positive asymptotic density (i.e., $d(A)>0$) contains some elements that sum to a square. It is essential that we can only sum distinct elements of A, because, for any nonempty set $A \subset \mathbb{N}$, there is a sumset $A+A+\cdots+A$ which contains a square. In this direction, we can mention the following result of T. Schoen [3]: if A is a set of positive integers with asymptotic density $d(A)>2 / 5$ then the sumset $A+A$ contains a perfect square. For more references on sumset related results see the recent book [5] of T. Tao and V. H. Vu.

A 'finite version' of the problem on the 'densiest' set whose elements do not sum to a square was recently considered by J. Cilleruelo [1]. He showed that there is an absolute positive constant c such that, for any positive integer $N \geqslant 2$, there exists a subset A of $\{1,2, \ldots, N\}$ with $\geqslant c N^{1 / 3}$ elements whose distinct elements do not sum to a perfect square. In fact, by taking the largest prime number $p \leqslant N^{1 / 3}$, we see that the set $A:=\left\{p, p^{2}+\right.$ $\left.p, 2 p^{2}+p, \ldots,(p-2) p^{2}+p\right\}$ with $p-1$ element is a subset of $\{1,2, \ldots, N\}$. Since any sum of distinct elements of A is divisible by p, but not by p^{2}, we conclude that no sum of distinct elements of the set A of cardinality $p-1 \geqslant \frac{1}{2} N^{1 / 3}$ is a perfect power.

Notice that in this type of questions not everything is determined by the density of B. In fact, there are some 'large' sets B for which there is a 'large' set A whose elements do not sum to an integer lying in B. For example, for the set of all odd positive integers $B=\{1,3,5,7, \ldots\}$ whose density $d(B)$ is $1 / 2$, the 'densiest' set A whose elements do not sum to an odd number is the set of all even positive integers $\{2,4,6,8, \ldots\}$ with density $d(A)=1 / 2$. On the other hand, taking $B=\{2,4,6,8, \ldots\}$, we see that no infinite sequence A as required exists. Moreover, if B is the set of all positive integers divisible by m, where $m \in \mathbb{N}$ is large, then the density $d(B)=1 / m$ is small. However, by a simple argument modulo m, it is easy to see that there is no infinite set $A \subset \mathbb{N}$ (and even no set A with $\geqslant m$ distinct positive integers) with the property that its distinct elements always sum to a number lying outside B. Indeed, if $a_{1}, \ldots, a_{m} \in \mathbb{N}$ then either at least two of the following m numbers $S_{j}:=\sum_{i=1}^{j} a_{i}$, where $j=1, \ldots, m$, say, S_{u} and $S_{v}(u<v, u, v \in\{1, \ldots, m\})$ are equal modulo m or $m \mid S_{t}$, where $t \in\{1, \ldots, m\}$. Therefore, either their difference $S_{v}-S_{u}=$ $a_{u+1}+a_{u+2}+\cdots+a_{v}$ or $S_{t}=a_{1}+\cdots+a_{t}$ is divisible by m. In both cases, there is a sum of distinct elements of $\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$ that lies in B.

It follows that if, for an infinite set $B \subset \mathbb{N}$, there exists an infinite sequence of positive integers $A=\left\{a_{1}<a_{2}<a_{3}<\ldots\right\}$ for which $a_{i_{1}}+\cdots+a_{i_{m}} \notin B$ for every $m \in \mathbb{N}$ and any distinct elements $a_{i_{1}}, \ldots, a_{i_{m}} \in A$, then B must have the following property. For each $m \in \mathbb{N}$ there are infinitely many $k \in \mathbb{N}$ such that $k m \notin B$.

This necessary condition is not sufficient. Take, for instance, $B:=\mathbb{N} \backslash\left\{j^{2}: j \in \mathbb{N}\right\}$. Then, for each $m \in \mathbb{N}$, there are infinitely many positive integers k, say, $k=\ell^{2} m$, where $\ell=1,2, \ldots$, such that $k m=(\ell m)^{2} \notin B$. However, there does not exist an infinite set of positive integers $A=\left\{a_{1}<a_{2}<a_{3}<\ldots\right\}$ such that for any $n \in \mathbb{N}$ and any distinct $a_{i_{1}}, \ldots, a_{i_{n}} \in A$ the sum $a_{i_{1}}+\cdots+a_{i_{n}}$ is a perfect square. See, e.g., the proposition in the same paper [2], where this was proved in a more general form with 'perfect square' replaced by 'perfect power'.

Given any infinite set $B \subset \mathbb{N}$, put $K:=\mathbb{N} \backslash B$. Our first question stated in the introduction can be also formulated in the following equivalent form.

- For which $K=\left\{k_{1}<k_{2}<k_{3}<\ldots\right\} \subset \mathbb{N}$ there exists an infinite subsequence of $\left\{k_{i_{1}}<k_{i_{2}}<k_{i_{3}}<\ldots\right\}$ of K such that all possible sums over its distinct elements lie in K ?

Theorem 2.1 implies that if $d(K)=1$ then such a subsequence exists. On the other hand, take the sequence K of positive integers that are not divisible by m with asymptotic density $d(K)=1-1 / m$ (which is 'close' to 1 if m is 'large'). Then such a subsequence does not exist despite of $d(K)$ being large. Finally, set $D:=\left\{2^{2^{j}}: j \in \mathbb{N}\right\}$ and suppose that K is the set of all possible finite sums over distinct elements of D. Then $d(K)$ is easily seen to be 0 , but for K such a subsequence exists, e.g., D.

6 Acknowledgments

We are most grateful to the referee of this paper, who not only carefully read the paper, but also made several useful suggestions and also supplied us with a few recent references. We
thank A. Stankevičius, who computed the first 18 elements of the sequence $c_{n}, n=1,2, \ldots$. This research was supported in part by the Lithuanian State Studies and Science Foundation.

References

[1] J. Cilleruelo, Solution of the Problem 38, Gaceta de la Real Sociedad Matematica Española 9 (2006), 455-460.
[2] F. Luca, Infinite sets of positive integers whose sums are free of powers, Rev. Colomb. Matem. 36 (2002), 67-70.
[3] T. Schoen, On sets of natural numbers whose sumset is free of squares, J. Comb. Theory, Ser. A 88 (1999), 385-388.
[4] O. Strauch and Š. Porubský, Distribution of Sequences: A Sampler, Schriftenreihe der Slowakischen Akademie der Wissenschaften, Peter Lang, 2005.
[5] T. Tao and V. H. Vu, Additive Combinatorics, CUP, 2006.

2000 Mathematics Subject Classification: Primary 11A99; Secondary 11B05, 11B99. Keywords: infinite sequence, perfect square, power, asymptotic density, sumset.

Received November 13 2006; revised version received December 4 2006. Published in Journal of Integer Sequences, December 42006.

Return to Journal of Integer Sequences home pagd.

