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Abstract

We say that 45 is a Kaprekar triple because 45% = 91125 and 9 + 11 + 25 = 45. We
find a necessary condition for the existence of Kaprekar triples which makes it quite
easy to search for them. We also investigate some Kaprekar triples of special forms.

1 Introduction

Kaprekar triples (sequence A006887, Sloan [[]) are numbers with a property which is easily
demonstrated by example. Observe that

8 =512, 5+1+2=S8,
45% = 91125, 9+ 11+ 25 = 45,
297% = 26198073, 26 + 198 + 073 = 297,

49493 = 121213882349, 1212 + 1388 + 2349 = 4949,
444433 = 87782935806307, 8778 + 29358 + 06307 = 44443,

565137% = 180493358291026353, 180493 + 358291 + 026353 = 565137.

Therefore 8, 45, 297, 4949, 44443, and 565137 are all examples of Kaprekar triples.
Kaprekar triples generalize the Kaprekar numbers (sequence A006886, Sloan [[]]), which
were introduced by Kaprekar [[], discussed by Charosh[f]], and completely characterized by
Tannucci [[J]. Kaprekar triples are mentioned in Wells’s Dictionary of Curious and Interesting
Numbers [[.
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Formally, an n-Kaprekar triple & (where n is a natural number) satisfies the pair of
equations

E=p- 10" 4¢-10" + 1,
k=p+q+r,

where 0 < r < 10", 0 < ¢ < 10", and p > 0 are integers. As the 3-Kaprekar triple 297 shows,
p may have fewer than n digits, and so may ¢ or r (note the leading zero in r = 073). The
stipulation that p > 0 precludes many otherwise trivial examples such as

100> = 0-10% +100-10* 4+ 0,
100 =04100+0,

i.e., 100 as a 4-Kaprekar triple. Having p > 0 also precludes 1 as a Kaprekar triple, in spite
of its inclusion in sequence A006887 by Sloan [f.

2 The Set (N)

Let N be a natural number such that N % 1 (mod 4). We define the set IC(IV) of positive
integers as follows: We say k € IC(N) if there exist nonnegative integers r < N, ¢ < N, and

a positive integer p, such that
k* = pN? +gN +r (1)

and such that
k=p+q+r. (2)

Although N satisfies (1) and (2) (with p = N, ¢ = r = 0), we nonetheless disallow N as
an element of JC(IV). Therefore, it follows that &k < N if k € KC(N). For, subtracting (2)
from (1) yields

k(k=1)(k+1) = (N=1{EN +1)+q), (3)
so that £ > N implies
q
k<p+ .

Since ¢/(k + 1) < 1, we have k < p. Since k < p contradicts (2), we have k = p, but this
implies ¢ = r = 0 and hence k = N by (1). Contradiction. Therefore k < N if k € IC(N).

Suppose k € IC(NV). Then (3) implies N — 1| k(k — 1)(k 4+ 1). Because N # 1 (mod 4),
there exist pairwise relatively prime integers d, d;, and ds such that

N—lzddldg, d‘k, d1|k—1, dQ‘k—l—l (4)

Since d | k we write
k=dm

for a positive integer m. Then d; | dm — 1 and ds | dm + 1 and so we have

dm =1 (mod d;), dm = -1 (mod ds). (5)



Let

51 = d_l (mod dl) , 52 = d_l (mod dg) s
p =d;t (mod dy), po =dyt (mod dy).

Then we have
m=¢&  (mod dy), m=—§ (mod dy),

so that by the Chinese remainder theorem we have

m = fllugdg — fg,uldl (mod dldg) . (6)

Moreover, m is the least positive residue such that (6) is satisfied; this is because dm = k <
N =ddid; + 1 and thus m < dyds.

For a positive integer n, we call d a unitary divisor of n if d [ n and (d,%) = 1. In this
case we write d||n. We have shown

Theorem 1 If N # 1 (mod 4), then every element k € K(N) is divisible by a unitary
divisor d of N — 1. If we write k = dm, then m satisfies (4) for some pair dy, ds, of unitary
divisors of N — 1 such that dydy = (N —1)/d.

If N # 1 (mod 4), then Theorem 1 gives a necessary condition for finding elements k
of IL(N), and hence it may be applied to find an upper bound for |[IC(N)|, the number of
elements in (V). For, if N —1 has the unique prime factorization given by N —1 = H§:1 i,
then we call the prime powers p;* the components of N — 1. Then d||N — 1 if and only if
d is a product of components of N — 1 (including the empty product 1). We refer to ¢, the
number of components of N — 1, as w(N —1). Thus by Theorem 1, if N # 1 (mod 4) then

K(N)| < 370, (7)

It is possible to define IC(N) when N =1 (mod 4). In this case, the factors d, dy, and dy
in (4) will be pairwise relatively prime if and only if d is even. If this is so, we may proceed
exactly as above, so that (7) is still true.

Otherwise d is odd. Since 2”||N — 1 for some v > 2, we have either 2||d;, 2"7!||ds, or,
2"71|dy, 2||dy. Note that these two cases are identical when 22||N — 1. In either case, the
equations (5) still hold, and since (d,d;) = (d,dz) = 1, we see that m may be determined
uniquely modulo [dy, ds]. Here, d||N — 1, and d; and dy are each some power of 2 multiplied
by an odd unitary divisor of N — 1. Thus (7) still holds in the case when N =1 (mod 4).

3 Kaprekar Triples

In the notation of the previous section,we refer to the set U, K(10™) as the set of Kaprekar
triples. If we prefer, we may refer to the set C(10"), for fixed n, as the set of n-Kaprekar
triples. To illustrate Theorem 1, consider the set of 6-Kaprekar triples, and note the factor-
ization

10°—1=3%.7-11-13-37.



We may take d = 27, d; = 259, and dy = 143. Then

51:487 52:537 legou /L2:96,

giving

m = 143 -96 - 48 — 259 - 90 - 53 = 20931  (mod 37037) .
Therefore

m = 20931, d=27, k = 20931 - 27 = 565137.
Since

565137% = 180493358291026353 ,
565137 = 180493 + 358291 + 026353 ,

we have 565137 € K(10°). To show that the conditions in Theorem 1 are not sufficient,
consider d = 297, dy = 37, and dy = 91. Here,

61:17 52:197 ”1:327 “2:247

giving
m = 3257, d =297, k =967329.
However,
967329 = 905154309885752289 ,
but

905154 + 309885 + 752289 = 1967328,

and so 967329 ¢ K(10°). Note that 1967328 = 967329 + (10° — 1). Experimentally, we have
seen that roughly one fourth of the 3*(N=1 possible triples (d,d;, dy) of unitary divisors of
N — 1 produce an element k € IC(NN) when Theorem 1 is applied. The other three fourths
produce k such that when p, ¢, and r in (1) are obtained we get

p+qg+r=k+(N—-1)

instead of (2). Generally, the larger the value of w(N — 1), the closer to 1:3 the ratio of
elements of IC(IV) to non-elements becomes.
We provide some data for N = 10", for various values of n, where “ratio” refers to the

ratio [KC(10" — 1)|/3«(10"=1);



n o 3wA0"=LKC(107)]  ratio

5 27 ) 0.185185
6 243 37 0.152263
727 8 0.296296
10 243 64 0.263374
12 2187 527 0.240969
15 729 195 0.267490
19 9 1 0.111111
20 6561 1649 0.251334
21 2187 538 0.245999
23 9 1 0.111111

24 59049 14702 0.248980
30 1594323 398838 0.250161
42 4782969 1196902  0.250242
64 43046721 10759839 0.249957
80 14348907 3587901  0.250047

4 Applications

It is a simple matter to search for Kaprekar triples by applying Theorem 1. To do so, one
only needs the factorizations of 10™ — 1 for n > 1, which are easily available (for example
see Brillhart et al. [1]).

In this section we will discuss Kaprekar triples of certain forms. For example, consider
the set K(64M?) for some positive integer M. Since

64M?* —1 = (8M —1)(8M +1),

and since 8M — 1 and 8M + 1 are relatively prime, we can apply Theorem 1 by choosing d,
d;, and dy from among the unitary divisors 8M £ 1 and 1 of 64M? — 1. If we let dy = 1,
there are at least two ways to do this, one of which is to let d = 8M — 1 and dy = 8M + 1.
In this case we have & = 4M and & = pu; = ue = 1, and thus

m = dglugfl — dl,ulfg = —4M —1=4M (IﬂOd SM + ].),

taking the least positive residue modulo 8 M + 1. This gives k = dm = 4M(8M — 1).
Similarly, taking d = 8M + 1 and d; = 8M — 1 gives k = 4M (8M + 1).
Thus it is possible that 4M (8M =+ 1) are both elements of K(64M?). Indeed they are, for

k* = 64M>(8M £ 1)*
= 4096 M*(8M?* £ 3M) + 64M*(24M* + M),

and,
(8M?* £3M) + (24M* £ M) = 32M?* +4M = k.

Note that if n > 3 then 10%" is of the form 64M? with M = 53 - 10" 3. We have
Theorem 2 Forn > 3, the integers 5- 10"~ (10" £ 1) are 2n-Kaprekar triples.
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For example, 499500 and 500500 are both 6-Kaprekar triples, 49995000 and 50005000 are
both 8-Kaprekar triples, and so forth.

For positive integers r > 1 and n > 1, we refer to an element of K(r") as a base-r
Kaprekar triple. Note that if p > 3 then 22 has the form 64M? where M = 2P~3. Hence
2P=1(2P 4 1) are binary (or base-2) Kaprekar triples. Since every even perfect number has
the form 2P~1(2P — 1) where 2P — 1 is prime (a fact first proved by Euler), we have

Theorem 3 Fuvery even perfect number is a binary Kaprekar triple.

As examples, we see that

283 = 5. 64% + 23 - 64, 5423 =28;
496 = 116 - 1024% + 380 - 1024, 116 + 380 = 496;
81283 = 2000 - 163842 + 6128 - 16384, 2000 + 6128 = 8128.

We can also consider the set K(4096M*) for some positive integer M. Similarly as we
did above, we can show that 25603 + 4M belongs to this set. Letting M = 53 - 10"~ for
n > 3 gives us

Theorem 4 Ifn >3 then 5- 1031 + 5. 10" is a 4n-Kaprekar triple.
Hence 500000500 is a 12-Kaprekar triple:

500000500° = 1250003750003750001250000000
125 + 000375000375 + 000125000000 = 500000500 .

Also, 500000005000 is a 16-Kaprekar triple, 500000000050000 is a 20-Kaprekar triple, and
so forth.

5 Concluding Remarks

Theorem 2 shows that there always exists an n-Kaprekar triple when n > 6 is even. What
about odd n? By (7), there are fewer such triples when w(10™ — 1) is small. In fact,
w(10™ — 1) = 2 when n = 19, 23, and 317 (see Brillhart et. al. [1]), although it is not known
how long this list may be extended. The table following section 3 shows that an n-Kaprekar
exists when n = 19 or 23. However, a simple computer search reveals that no 317-Kaprekar
triples exist; thus there do not exist n-Kaprekar triples for every n.

A more general question is, are there certain forms of N for which IC(N) is empty? For
example, we can show K(N) = () whenever N > 8 is of the form p® + 1 for odd prime p
and a > 1; note that K(8) consists of the perfect number 6 by Theorem 3. Indeed, since
N —1=p* if k € (N) then by (4) one of three cases occur: (i) p® | k; (ii) p* | k —1; (iii)
p* | k+1.

In case (i), as k < N we must have k = p®. But here,

k* = (N —3)N?+2N + (N — 1),
(N=3)+2+(N—-1)=k+ (N —-1)#k.



In case (i) we have k =1 (mod p®) by (6).
In case (i), k = —1 (mod p®) by (6), which implies k = p® — 1. But

k> = (N —6)N*+ 11N + (N — 8),
(N=6)+114+ (N -8)=k+ (N —1) #k.

All three cases lead to contradiction (case (i) contradicts 1 < k < N).

On the other hand, there are forms of N for which IC(N) # 0 (as we've already seen
when N = 10?"). For example, it is straightforward to check that when N = 2" + 1, n > 2,
we have k =21 —1 € K(N).
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