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Abstract

Let PCn be the semigroup of all decreasing and order-preserving partial transfor-
mations of a finite chain. It is shown that |PCn| = rn, where rn is the large (or double)
Schröder number. Moreover, the total number of idempotents of PCn is shown to be
(3n + 1)/2.

1 Introduction and Preliminaries

Consider a finite chain, say Xn = {1, 2, . . . , n} under the natural ordering and let Tn and Pn

be the full transformation semigroup and the semigroup of all partial transformations on Xn,
under the usual composition, respectively. We shall call a partial transformation α : Xn →
Xn, order-decreasing (order-increasing) or simply decreasing (increasing) if xα ≤ x (xα ≥ x)
for all x in Dom α, and α is order-preserving if x ≤ y implies xα ≤ yα for x, y in Dom α.
The semigroup of all decreasing full transformations is denoted by Dn, while the semigroup
of all order-preserving full transformations is denoted by On, and Dn ∩On is denoted by Cn.

Various enumerative problems of an essentially combinatorial nature have been considered
for certain classes of semigroups of transformations. For example, Howie [9] showed that the
order and number of idempotents of On are, respectively,

|On| =

(

2n− 1
n− 1

)

and |E(On)| = F2n,

where F2n is the alternate Fibonacci number given by F1 = F2 = 1. More recently, Higgins
[6] showed in particular, that |Cn| is the n-th Catalan number given by

|Cn| =
1

n+ 1

(

2n
n

)
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and |E(Cn)| = 2n−1. Further combinatorial properties for Cn were investigated by Laradji
and Umar [10], where they showed that the number of maps in Cn such that |Im α| = r is
the triangle of Narayana [17, A001263] numbers given by

|{α ∈ Cn : |Im α| = r}| =
1

n− r + 1

(

n− 1
r − 1

)(

n
r

)

.

This paper investigates combinatorial properties of PCn, the semigroup of all decreasing and
order-preserving partial transformations, along the lines of [10]. An alternative approach to
finding the order and number of idempotents in PCn is given in [11], however, the advantage
of the approach given in this paper is that we get along the way some known triangular
arrays of integers as well as some new ones, which are not yet listed in [17]. Ironically, it
is this paper that motivated [11] and [12]. The following is a list (which is by no means
exhaustive) of papers and books [1, 2, 3, 4, 5, 6, 8, 9, 20, 21, 22] each of which contains some
interesting combinatorial results pertaining to semigroups of transformations. Initially, the
only reference we could find about PCn is Higgins [7, theorem 4.2], where it is shown that
any finite R -trivial semigroup S divides some monoid PCn. However, the referee drew our
attention to [15] and [18] where presentations of PCn on a chain and trees, respectively,
were studied and also to [14] where PCn is studied in connection with theoretical computer
science.

In Section 2, we give the necessary definitions that we need in the paper. In Section 3,
we obtain the order of PCn as the large or double Schröder number [13], via some natural
equivalences on PCn. In Section 4, we show that the set of all idempotents of PCn is of
cardinality (3n + 1)/2, again, via some natural equivalences on E(PCn).

For standard terms and concepts in transformation semigroup theory see [5] or [8].
We now recall some definitions and notations to be used in the paper. Consider Xn =
{1, 2, . . . , n} and let α : Xn → Xn be a partial transformation. We shall denote by Dom α
and Im α, the domain and image set of α, respectively. The semigroup Pn, of all partial
transformations contains two important subsemigroups which have been studied recently.
They are PDn and POn the semigroups of all order-decreasing and order-preserving partial
transformations, respectively (see [23] and [3, 4]). Now let

PCn = PDn ∩ POn (1.1)

be the semigroup of all decreasing and order-preserving partial transformations of Xn.

2 The order of PCn

Our main objective in this section is to obtain a formula for |PCn|. We initiate our investi-
gation by considering two natural equivalences on PCn. The first equivalence is defined by
equality of widths (width of α := |Dom α|), while the second equivalence is defined by equal-
ity of waists (waist of α := max(Im α)). Taking the intersection of these two equivalences
leads to the following definition of f(n, r, k) as

f(n, r, k) = |{α ∈ PCn : |Dom α| = r ∧max(Im α) = k}|. (2.1)
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Then clearly we have
f(n, 0, 0) = 1, f(n, n, 1) = 1

and
f(n, r, 0) = 0 (if r > 0), f(n, 0, k) = 0 (if k > 0).

Slightly less clearly, we have

f(n, 1, k) = n− (k − 1) = n− k + 1 (2.2)

and

f(n, r, 1) =

(

n
r

)

(2.3)

In fact, f(n, 1, k) corresponds to the number of maps α (in PCn) with singleton domain
and hence Im α = {k}. Since by the order-decreasing property, x ∈ Dom α implies x ∈
{k, k+1, . . . , n}, the result now follows. As for f(n, r, 1), it corresponds to all subsets of Xn

of size r. A more general result is

Lemma 2.1 For all n ≥ r, k ≥ 0, we have

f(n, r, k) = f(n− 1, r, k) +
k
∑

t=0

f(n− 1, r − 1, t).

Proof. Essentially there are two cases to consider: n 6∈ Dom α and n ∈ Dom α. In the
former case there are clearly f(n−1, r, k) maps of this type. In the latter case, since nα = k,
it is not difficult to see that there are

k
∑

t=0

f(n− 1, r − 1, t)

maps of this type. Hence the result follows.
A closed formula for f(n, r, k) is possible, but before we propose this formula we would

like to state this lemma from [10, lemma 3.3] which is obtained by combining equations (3)
and (3b) from [16, p. 8].

Lemma 2.2 For any c ∈ R, and q,m ∈ N ∪ {0}, we have

m
∑

j=0

(c− j)

(

q + j
j

)

= (c−m− 1)

(

m+ q + 1
m

)

+

(

m+ q + 2
m

)

.

Proposition 2.3 Let f(n, r, k) be as defined in (2.1). Then for n ≥ r, k > 0, we have

f(n, r, k) =
n− k + 1

r

(

n− 1
r − 1

)(

k + r − 2
r − 1

)

=
n− k + 1

n

(

n
r

)(

k + r − 2
r − 1

)

.
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Proof. The proof is by induction, and by virtue of (2.2) and (2.3) which agree both with
the assertion we may suppose that the result is true for all 1 ≤ r, k ≤ n. We now prove that
it is true for all 1 ≤ r, k ≤ n+ 1. By Lemma 2.1 and the induction hypothesis successively,
we have

f(n+ 1, r, k) = f(n, r, k) +
k
∑

t=0

f(n, r − 1, t)

=
n− k + 1

n

(

n
r

)(

k + r − 2
r − 1

)

+
k
∑

t=0

n− t+ 1

n

(

n
r − 1

)(

r + t− 3
r − 2

)

=
1

n

{

n!(n− k + 1)

(n− r)!r(r − 1)!

(

k + r − 2
r − 1

)

+ (n+ 1)

(

n
r − 1

) k
∑

t=1

(

r + t− 3
r − 2

)

−

(

n
r − 1

) k
∑

t=1

t

(

r + t− 3
r − 2

)

}

=
1

n

(

n
r − 1

)

{

n− r + 1

r
(n− k + 1)

(

k + r − 2
r − 1

)

+ (n+ 1)
k−1
∑

t=0

(

r − 2 + t
r − 2

)

−

k−1
∑

t=0

(t+ 1)

(

r − 2 + t
r − 2

)

}

.

=
1

n

(

n
r − 1

){

(n− r + 1)(n− k + 1)

r

(

k + r − 2
r − 2

)

+
k−1
∑

t=0

(n− t)

(

r − 2 + t
r − 2

)

}

.

However, by Lemma 2.2

k−1
∑

t=0

(n− t)

(

r − 2 + t
r − 2

)

= (n− k)

(

k + r − 2
k − 1

)

+

(

k + r − 1
k − 1

)

and so

f(n+ 1, r, k) =
1

n

(

n
r − 1

){

(n− r + 1)(n− k + 1)

r

(

k + r − 2
r − 1

)

+(n− k)

(

k + r − 2
r − 1

)

+

(

k + r − 1
r

)}

=
1

n

(

n
r − 1

)(

k + r − 2
r − 1

){

(n− r + 1)(n− k + 1)

r

+(n− k) +
k + r − 1

r

}

=
1

r

(

n
r − 1

)(

k + r − 2
r − 1

)

(n+ 2− k)
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as required. To complete the induction step we still need to verify the result for f(n+1, n+
1, k) and f(n+1, r, n+1). By using Lemmas 2.1 and 2.2 and the induction hypothesis these
could be routinely verified. Thus the proof of Proposition 2.3 is complete.

Immediately, we have

Corollary 2.4 [10, proposition 3.10]. Let Cn be the semigroup of all decreasing and order-
preserving full transformations of Xn. Then

|{α ∈ Cn : max(Im α) = k}| = f(n, n, k) =
n− k + 1

n

(

n+ k − 2
n− 1

)

.

Corollary 2.5 For n ≥ r ≥ 1, we have

f(n, r, r) =
n− r + 1

n

(

n
r

)(

2r − 2
r − 1

)

.

Lemma 2.6 Let G(n, k) =
∑n

r=0 f(n, r, k). Then

G(n, k) =
n− k + 1

n

n
∑

r=0

(

n
r

)(

k + r − 2
r − 1

)

.

Proposition 2.7 Let G(n, k) =
n
∑

r=0

f(n, r, k). Then G(n, 0) = 1, G(n, 1) =

2n − 1, G(n, n) = 1
n

∑n

r=0

(

n
r

)(

n+ r − 2
r − 1

)

, and for 2 ≤ k ≤ n, we have

G(n, k) = 2G(n− 1, k)−G(n− 1, k − 1) +G(n, k − 1).

Proof. Since the initial and boundary conditions are clear it remains to show the recurrence:

G(n, k) =
n
∑

r=0

f(n, r, k) =
n
∑

r=0

{

f(n− 1, r, k) +
k
∑

t=1

f(n− 1, r − 1, t)

}

=
n−1
∑

r=0

f(n− 1, r, k) +
k
∑

t=0

n
∑

r=0

f(n− 1, r − 1, t)

= G(n− 1, k) +
k
∑

t=0

G(n− 1, t) (2.4)

= 2G(n− 1, k) +
k−1
∑

t=0

G(n− 1, t).

Thus from (2.4) we have

G(n, k − 1) = G(n− 1, k − 1) +
k−1
∑

t=0

G(n− 1, t)
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and so
G(n, k)−G(n, k − 1) = 2G(n− 1, k)−G(n− 1, k − 1)

from which the result follows.

Proposition 2.8 Let F (n, r) =
n
∑

k=0

f(n, r, k). Then

F (n, r) =
1

n

(

n
r

)(

n+ r
n− 1

)

.

Proof. The proof is direct by using Lemma 2.2 and Proposition 2.3. Thus we have

F (n, r) =
n
∑

k=0

f(n, r, k) =
n
∑

k=0

n− k + 1

n

(

n
r

)(

k + r − 2
r − 1

)

=
1

n

(

n
r

) n
∑

k=0

[n− (k − 1)]

(

k + r − 2
k − 1

)

=
1

n

(

n
r

) n
∑

k=0

[n− (k − 1)]

(

(r − 1) + (k − 1)
k − 1

)

=
1

n

(

n
r

) n−1
∑

t=0

(n− t)

(

(r − 1) + t
t

)

=
1

n

(

n
r

)(

n+ r
r − 1

)

as required.

Corollary 2.9 [6, theorem 3.1]. Let Cn be the semigroup of all decreasing and order-
preserving full transformations of Xn. Then

|Cn| = F (n, n) =
1

n

(

2n
n− 1

)

.

Remark 2.1 The triangular array of numbers G(n, k), f(n, r, r) and F (n, r) are not yet
listed in Sloane’s encyclopaedia of integer sequences [17]. For some selected values of these
numbers, see Tables 1-3.

From [13] and [19] we deduce that the large (or double) Schröder number denoted by rn

could be defined as

rn =
1

n+ 1

n
∑

r=0

(

n+ 1
n− r

)(

n+ r
r

)

.

Moreover, rn satisfies the recurrence:

(n+ 2)rn+1 = 3(2n+ 1)rn − (n− 1)rn−1 (2.5)

for n ≥ 1, with initial conditions r0 = 1 and r1 = 2. The (small) Schröder number is usually
denoted by sn and defined as s0 = 1, sn = rn/2 (n ≥ 1) and so it satisfies the same recurrence
as rn.
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   k 
n 

0 1 2 3 4 5 6 7 ∑ ),( knG

 
0 1        1 

1 1 1       2 

2 1 3 2      6 

3 1 7 8 6     22 

4 1 15 24 28 22    90 

5 1 31 64 96 112 90   394 

6 1 63 160 288 416 484 394  1806 

7 1 127 384 800 1344 1896 2200 1806 8558 

 
     Table 1. G(n, k) 
 

 
   r 
n 

0 1 2 3 4 5 6 7 ∑ ),,( rrnf

 
0 1        1 

1 1 1       2 

2 1 2 1      4 

3 1 3 4 2     10 

4 1 4 9 12 5    31 

5 1 5 16 36 40 14   112 

6 1 6 25 80 150 140 42  444 

7 1 7 36 150 400 630 504 132 1860 

 
     Table 2. f(n, r, r) 

 
   r 
n 

0 1 2 3 4 5 6 7 ∑ ),( rnF

 
0 1        1 

1 1 1       2 

2 1 3 2      6 

3 1 6 10 5     22 

4 1 10 30 35 14    90 

5 1 15 70 140 126 42   394 

6 1 21 140 420 630 462 132  1806 

7 1 28 252 1050 2310 2772 1716 429 8558 

 
     Table 3. F(n, r) 
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Remark 2.2 The double Schröder number is the number of all lattice paths in the Cartesian
plane that start at (0, 0), end at (n, n), contain no points above the line y = x, and are
composed only of steps (1, 0), (0, 1) and (1, 1), i.e.,→, ↑ and↗. The authors [11] established
a bijection between the set of all such paths and PCn, and hence the order of PCn was
deduced.

We now have the main result of this section:

Theorem 2.10 Let PCn be as defined in (1.1). Then |PCn| = rn, the double Schröder
number.

Proof. It is clear from Proposition 2.8 that

|PCn| =
n
∑

r=0

F (n, r) =
n
∑

r=0

1

n

(

n
r

)(

n+ r
n− 1

)

=
1

n+ 1

n
∑

r=0

(

n+ 1
n− r

)(

n+ r
r

)

= rn.

We conclude the section with the following congruence result.

Proposition 2.11 If n is prime then rn ≡ 4 (mod n).

Proof. Since rn =
n
∑

r=0

1

r + 1

(

n
r

)(

n+ r
n

)

and if n is prime then n|

(

n
r

)

, it follows

that the only values of r that may not produce terms divisible by n in the sum are: 0, n− 1
and n. Hence

rn ≡ 1 +
1

n
· n

(

2n− 1
n

)

+
1

n+ 1

(

2n
n

)

(mod n)

= 1 +

(

2n− 1
n

)

+
1

n+ 1

(

2n
n

)

(mod n).

Now let A =

(

2n− 1
n

)

, then n!(n− 1)!A = (2n− 1)!, that is

(n− 1)!A = (n+ 1)(n+ 2) · · · · · [n+ (n− 1)] ≡ (n− 1)! (mod n).

Thus since (n, (n− 1)!) = 1, it follows that

A ≡ 1 (mod n).

Clearly, 2A =

(

2n
n

)

so that

1

n+ 1

(

2n
n

)

≡ 2A (mod n)

and hence
rn ≡ 4 (mod n).
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3 The number of idempotents

As stated in the introduction the number of idempotents of various classes of semigroups of
transformations has been computed. For further results see [1, 12, 20, 21, 22]. Our main
task in this section is to compute the number of all idempotents in PCn. As in the previous
section, we consider

e(n, r, k) = |{α ∈ PCn : α2 = α, |Dom α| = r ∧max(Im α) = k}|. (3.1)

Then clearly we have

e(n, r, 0) =

{

1 (r = 0);
0 (r > 0);

, e(n, 0, k) =

{

1 (k = 0);
0 (k > 0);

and

e(n, r, 1) =

(

n− 1
r − 1

)

.

The latter corresponds to the number of all idempotents α in PCn of width r and Im α = {1},
that is the number of all subsets of Xn each containing the element 1 and of size r. More
generally, we have

Lemma 3.1 For all n ≥ r, k ≥ 1 and n > k, we have

e(n, r, k) = e(n− 1, r, k) + e(n− 1, r − 1, k).

Proof. If n 6∈ Dom α then n 6∈ Im α, by idempotency and so there are e(n − 1, r, k)
idempotents of this type. If on the other hand n ∈ Dom α then nα = k < n and of course
kα = k. It is now not difficult to see that the number of such idempotents is e(n−1, r−1, k).
Hence the result follows.

Lemma 3.2 For n ≥ r ≥ 1, e(n, r, n) =
n−1
∑

t=0

e(n− 1, r − 1, t) .

Proof. Since n = max(Im α), it follows by the order-decreasing property that nα−1 = {n}

and so there is no interference with the elements of Xn \ {n} of which there are
n−1
∑

t=0

e(n −

1, r − 1, t) possible idempotents.

Proposition 3.3 Let e(n, r) =
n
∑

k=0

e(n, r, k). For n ≥ r > 0, we have

e(n, r) = 2r−1

(

n
r

)

.
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Proof. First note that e(n, 1) is the number of all idempotents of width 1, that is of the
form Dom α = {x} of which there are n of them and this agrees with the assertion of the
proposition. Suppose now by way of induction e(n, r) is true for all n > r > 0. Then using
Lemmas 3.1 and 3.2 and the induction hypothesis successively, we have

e(n, r) =
n
∑

k=0

e(n, r, k) = e(n, r, n) +
n−1
∑

k=0

e(n, r, k)

=
n−1
∑

t=0

e(n− 1, r − 1, t) +
n−1
∑

k=0

{e(n− 1, r, k) + e(n− 1, r − 1, k)}

= 2e(n− 1, r − 1) + e(n− 1, r) (r ≥ 2)

= 2 · 2r−2

(

n− 1
r − 1

)

+ 2r−1

(

n− 1
r

)

= 2r−1

(

n
r

)

as required.

Corollary 3.4 [6, theorem 3.19]. Let Cn be the semigroup of all decreasing and order-
preserving full transformations of Xn. Then

|E(Cn)| = e(n, n) = 2n−1.

We now have the main result of this section:

Proposition 3.5 Let PCn be as defined in (1.1). Then |E(PCn)| =
1
2
(3n + 1).

Proof.

|E(PCn)| =
n
∑

r=0

e(n, r) = 1 +
n
∑

r=1

e(n, r) = 1 +
n
∑

r=1

2r−1

(

n
r

)

= 1 +
1

2

n
∑

r=1

2r

(

n
r

)

= 1 +
1

2
(3n − 1) =

1

2
(3n + 1).

Let g(n, k) be the number of maps in PCn of waist k. Then g(n, k) =
n
∑

r=0

e(n, r, k), and

a closed formula for g(n, k) is now possible. First we show the following lemma:

Lemma 3.6 For all n ≥ k > 0, g(n, k) = 2n−kg(k, k).

Proof.

g(n, k) =
n
∑

r=0

e(n, r, k) =
n
∑

r=0

{e(n− 1, r, k) + e(n− 1, r − 1, k)} = 2g(n− 1, k).

By iteration we have
g(n, k) = 2n−kg(k, k)

as required.

Now let en =
n
∑

k=0

g(n, k). Then we have
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Lemma 3.7 g(n, n) = en−1.

Proof.

g(n, n) =
n
∑

r=0

e(n, r, n) =
n
∑

r=0

n
∑

t=0

e(n− 1, r − 1, t)

=
n
∑

t=0

n
∑

r=0

e(n− 1, r − 1, t) =
n
∑

t=0

g(n− 1, t) = en−1.

Proposition 3.8 Let g(n, k) =
n
∑

r=0

e(n, r, k). For n ≥ k > 0, we have

g(n, k) = 2n−k−1(3k−1 + 1).

Proof. By Lemmas 3.6 and 3.7 and Proposition 3.5 successively we have

g(n, k) = 2n−kg(k, k) = 2n−k · 2−1(3k−1 + 1) = 2n−k−1(3k−1 + 1) (k < n),

as required. Moreover, by Lemma 3.7 and Proposition 3.5

g(n, n) = en−1 =
1

2
(3n−1 + 1) = 2−1(3n−1 + 1)

as required. Hence the proof is complete.

Remark 3.1 The triangular array of numbers e(n, r) is referred to in [17, A082137] as square
arrays of transforms of binomial coefficients, read by anti-diagonals. But the triangular array
of numbers g(n, k) is not yet listed in [17]. For some selected values of these numbers, see
Tables 4 and 5.
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r 
n 

0 1 2 3 4 5 6 7 ∑ ),( rne  

0 1        1 

1 1 1       2 

2 1 2 2      5 

3 1 3 6 4     14 

4 1 4 12 16 8    41 

5 1 5 20 40 40 16   122 

6 1 6 30 80 120 96 32  365 

7 1 7 42 140 280 336 224 64 1094 

 
     Table 4. e(n, r) 

 
k 
n 

0 1 2 3 4 5 6 7 ∑ ),( kng

 
0 1        1 

1 1 1       2 

2 1 2 2      5 

3 1 4 4 5     14 

4 1 8 8 10 14    41 

5 1 16 16 20 28 41   122 

6 1 32 32 40 56 82 122  365 

7 1 64 64 80 112 164 244 365 1094 

 
     Table 5. g(n, k) 
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