
23 11

Article 03.3.4
Journal of Integer Sequences, Vol. 6 (2003),2

3

6

1

47

How to Differentiate a Number

Victor Ufnarovski
Centre for Mathematical Sciences
Lund Institute of Technology

P.O. Box 118
SE-221 00 Lund

Sweden
ufn@maths.lth.se
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Abstract. We define the derivative of an integer to be the map sending every prime to 1
and satisfying the Leibnitz rule. The aim of the article is to consider the basic properties of
this map and to show how to generalize the notion to the case of rational and arbitrary real
numbers. We make some conjectures and find some connections with Goldbach’s Conjecture
and the Twin Prime Conjecture. Finally, we solve the easiest associated differential equations
and calculate the generating function.

1 A derivative of a natural number

Let n be a positive integer. We would like to define a derivative n′ such that (n, n′) = 1
if and only if n is square-free (as is the case for polynomials). It would be nice to preserve
some natural properties, for example (nk)′ = knk−1n′. Because 12 = 1 we should have 1′ = 0
and n′ = (1 + 1 · · ·+ 1)′ = 0, if we want to preserve linearity. But if we ignore linearity and
use the Leibnitz rule only, we will find that it is sufficient to define p′ for primes p. Let us
try to define n′ by using two natural rules:

• p′ = 1 for any prime p,
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• (ab)′ = a′b+ ab′ for any a, b ∈ N (Leibnitz rule).

For instance,
6′ = (2 · 3)′ = 2′ · 3 + 2 · 3′ = 1 · 3 + 2 · 1 = 5.

Here is a list of the first 18 positive integers and their first, second and third derivatives:

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
n′ 0 1 1 4 1 5 1 12 6 7 1 16 1 9 8 32 1 21
n′′ 0 0 0 4 0 1 0 16 5 1 0 32 0 6 12 80 0 10
n′′′ 0 0 0 4 0 0 0 32 1 0 0 80 0 5 16 176 0 7

It looks quite unusual but first of all we need to check that our definition makes sense
and is well-defined.

Theorem 1 The derivative n′ can be well-defined as follows: if n =
∏k

i=1 p
ni

i is a factoriza-
tion in prime powers, then

n′ = n
k
∑

i=1

ni

pi
. (1)

It is the only way to define n′ that satisfies desired properties.

Proof. Because 1′ = (1 · 1)′ = 1′ · 1 + 1 · 1′ = 2 · 1′, we have only one choice for 1′ : it should
be zero. Induction and Leibnitz rule show that if the derivative is well-defined, it is uniquely
determined. It remains to check that the equation (1) is consistent with our conditions. It
is evident for primes and clear that (1) can be used even when some ni are equal to zero.
Let a =

∏k
i=1 p

ai

i and b =
∏k

i=1 p
bi

i . Then according to (1) the Leibnitz rule looks as

ab
k
∑

i=1

ai + bi
pi

=

(

a
k
∑

i=1

ai
pi

)

b+ a

(

b
k
∑

i=1

bi
pi

)

and the consistency is clear.

For example

(60)′ = (22 · 3 · 5)′ = 60 ·
(

2

2
+

1

3
+

1

5

)

= 60 + 20 + 12 = 92.

We can extend our definition to 0′ = 0, and it is easy to check that this does not contradict
the Leibnitz rule.

Note that linearity does not hold in general; for many a, b we have (a + b)′ 6= a′ + b′.
Furthermore (ab)′′ 6= a′′ + 2a′b′ + b′′ because we need linearity to prove this. It would be
interesting to describe all the pairs (a, b) that solve the differential equation (a+b)′ = a′+b′.
We can find one of the solutions, (4, 8) in our table above. This solution can be obtained
from the solution (1, 2) by using the following result.
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Theorem 2 If (a+ b)′ = a′ + b′, then for any natural k, we have

(ka+ kb)′ = (ka)′ + (kb)′.

The same holds for the inequalities

(a+ b)′ ≥ a′ + b′ ⇒ (ka+ kb)′ ≥ (ka)′ + (kb)′,

(a+ b)′ ≤ a′ + b′ ⇒ (ka+ kb)′ ≤ (ka)′ + (kb)′.

Moreover, all these can be extended for linear combinations, for example:

(
∑

γiai)
′ =
∑

γi(ai)
′ ⇒ (k

∑

γiai)
′ =
∑

γi(kai)
′.

Proof. The proof is the same for all the cases, so it is sufficient to consider only one of them,
for example the case ≥ with two summands:

(ka+ kb)′ = (k(a+ b))′ = k′(a+ b) + k(a+ b)′ =

k′a+ k′b+ k(a+ b)′ ≥ k′a+ k′b+ ka′ + kb′ = (ka)′ + (kb)′.

Corollary 1

(3k)′ = k′ + (2k)′; (2k)′ ≥ 2k′; (5k)′ ≤ (2k)′ + (3k)′; (5k)′ = (2k)′ + 3(k)′.

Proof.
3′ = 1′ + 2′; 2′ ≥ 1′ + 1′; 5′ ≤ 2′ + 3′; 5′ = 2′ + 3 · 1′.

Here is the list of all (a, b) with a < b ≤ 100, gcd(a, b) = 1, for which (a+ b)′ = a′ + b′ :

(1, 2), (4, 35), (4, 91), (8, 85), (11, 14), (18, 67), (26, 29),

(27, 55), (35, 81), (38, 47), (38, 83), (50, 79), (62, 83), (95, 99).

A similar result is

Theorem 3 For any natural k > 1,

n′ ≥ n⇒ (kn)′ > kn.

Proof.
(kn)′ = k′n+ kn′ > kn′ ≥ kn.

The following theorem shows that every n > 4 that is divisible by 4 satisfies the condition
n′ > n.
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Theorem 4 If n = pp ·m for some prime p and natural m > 1, then n′ = pp(m +m′) and
limk→∞ n(k) =∞.

Proof. According to the Leibnitz rule and (1), n′ = (pp)′ ·m+ pp ·m′ = pp(m+m′) > n and
by induction n(k) ≥ n+ k.

The situation changes when the exponent of p is less than p.

Theorem 5 Let pk be the highest power of prime p that divides the natural number n. If
0 < k < p, then pk−1 is the highest power of p that divides n′. In particular, all the numbers
n, n′, n′′, . . . , n(k) are distinct.

Proof. Let n = pkm. Then n′ = kpk−1m+pkm′ = pk−1(km+pm′), and the expression inside
parentheses is not divisible by p.

Corollary 2 A positive integer n is square-free if and only if (n, n′) = 1.

Proof. If p2|n, then p|n′ and (n, n′) > 1. On the other hand, if p|n and p|n′ then p2|n.

2 The equation n′ = n

Let us solve some differential equations (using our definition of derivative) in positive integers.

Theorem 6 The equation n′ = n holds if and only n = pp, where p is any prime number.
In particular, it has infinitely many solutions in natural numbers.

Proof. If prime p divides n, then according to Theorem 5, at least pp should divide n or else
n′ 6= n. But Theorem 4 implies that in this case n = pp, which according to (1) is evidently
equal to n′.

Thus, considering the map n −→ n′ as a dynamical system, we have a quite interesting
object. Namely, we have infinitely many fixed points, 0 is a natural attractor, because all
the primes after two differentiations become zero. Now it is time to formulate the first open
problem.

Conjecture 1 There exist infinitely many composite numbers n such that n(k) = 0 for
sufficiently large natural k.

As we will see later, the Twin Prime Conjecture would fail if this conjecture is false.
Preliminary numerical experiments show that for non-fixed points either the derivatives n(k)

tend to infinity or become zero; however, we do not know how to prove this.

Conjecture 2 Exactly one of the following could happen: either n(k) = 0 for sufficiently
large k, or limk→∞ n(k) =∞, or n = pp for some prime p.
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According to Theorem 4, it is sufficient to prove that, for some k, the derivative n(k) is
divisible by pp (for example by 4). In particularly we do not expect periodic point except
fixed points pp.

Conjecture 3 The differential equation n(k) = n has only trivial solutions pp for primes p.

Theorem 5 gives some restrictions for possible nontrivial periods: if pk divides n the
period must be at least k + 1.

Conjecture 3 is not trivial even in special cases. Suppose, for example, that n has period
2, i.e. m = n′ 6= n and m′ = n. According to Theorem 4 and Theorem 5, both n and m
should be the product of distinct primes: n =

∏k
i=1 pi, m =

∏l
j=1 qj, where all primes pi are

distinct from all qj. Therefore, our conjecture in this case is equivalent to the following:

Conjecture 4 For any positive integers k, l, the equation

(

k
∑

i=1

1

pi

)(

l
∑

j=1

1

qj

)

= 1

has no solutions in distinct primes.

3 The equation n′ = a

We start with two easy equations.

Theorem 7 The differential equation n′ = 0 has only one positive integer solution n = 1.

Proof. Follows immediately from (1).

Theorem 8 The differential equation n′ = 1 in natural numbers has only primes as solu-
tions.

Proof. If the number is composite then according to Leibnitz rule and the previous theorem,
the derivative can be written as the sum of two positive integers and is greater than 1.

All other equations n′ = a have only finitely many solutions, if any.

Theorem 9 ([1]) For any positive integer n

n′ ≤ n log2 n

2
. (2)

If n is not a prime, then
n′ ≥ 2

√
n. (3)

More generally, if n is a product of k factors larger than 1, then

n′ ≥ kn
k−1

k . (4)
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Proof. If n =
∏k

i=1 p
ni

i , then

n ≥
k
∏

i=1

2ni ⇒ log2 n ≥
k
∑

i=1

ni.

According to (1) we now have

n′ = n

k
∑

i=1

ni

pi
≤ n

∑k
i=1 ni

2
≤ n log2 n

2
.

If n = n1n2n3 · · ·nk then, according to the Leibnitz rule,

n′ = n′1n2n3 · · ·nk + n1n
′
2n3 · · ·nk + n1n2n

′
3 · · ·nk + . . .+ n1n2n3 · · ·n′k ≥

n2n3n4 · · ·nk + n1n3n4 · · ·nk + n1n2n4 · · ·nk + . . .+ n1n2 · · ·nk−1 =

n

(

1

n1

+
1

n2

+ . . .+
1

nk

)

≥ n · k
(

1

n1

· 1
n2

· · · 1
nk

)
1
k

= k · n · n−1
k = k · n k−1

k .

Here we have replaced the arithmetic mean by the geometric mean.

Note that bounds (2) and (4) are exact for n = 2k.

Corollary 3 If the differential equation n′ = a has any solution in natural numbers, then it
has only finitely many solutions if a > 1.

Proof. The number n cannot be a prime. According to (3) the solutions must be no greater
than a2

4
.

What about the existence of solutions? We start with the even numbers.

Conjecture 5 The differential equation n′ = 2b has a positive integer solution for any
natural number b > 1.

A motivation for this is the famous

Conjecture 6 (Goldbach Conjecture) Every even number larger than 3 is a sum of two
primes.

So, if 2b = p+ q, then n = pq is a solution that we need. Inequality (3) helps us easy to
prove that the equation n′ = 2 has no solutions. What about odd numbers larger than 1?
It is easy to check with the help of (3) that the equation n′ = 3 has no solutions. For a = 5
we have one solution and more general have a theorem:

Theorem 10 Let p be a prime and a = p+2. Then 2p is a solution for the equation n′ = a.
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Proof. (2p)′ = 2′p+ 2p′ = p+ 2.

Some other primes also can be obtained as a derivative of a natural number (e.g. 7), but
it is more interesting which of numbers cannot. Here is a list of all a ≤ 1000 for which the
equation n′ = a has no solutions (obtained using Maple and (3)):

2, 3, 11, 17, 23, 29, 35, 37, 47, 53, 57, 65, 67, 79, 83, 89, 93, 97, 107, 117, 125, 127,

137, 145, 149, 157, 163, 173, 177, 179, 189, 197, 205, 207, 209, 217, 219, 223, 233,

237, 245, 257, 261, 277, 289, 303, 305, 307, 317, 323, 325, 337, 345, 353, 367, 373,

377, 379, 387, 389, 393, 397, 409, 413, 415, 427, 429, 443, 449, 453, 457, 473, 477,

485, 497, 499, 509, 513, 515, 517, 529, 531, 533, 537, 547, 553, 561, 569, 577, 593,

597, 605, 613, 625, 629, 639, 657, 659, 665, 673, 677, 681, 683, 697, 699, 709, 713,

715, 733, 747, 749, 757, 765, 769, 777, 781, 783, 785, 787, 793, 797, 805, 809, 817,

819, 827, 833, 835, 845, 847, 849, 853, 857, 869, 873, 877, 881, 891, 895, 897, 907,

917, 925, 933, 937, 947, 953, 963, 965, 967, 981, 989, 997.

Note that a large portion of them (69 from 153) are primes, one of them (529 = 232) is a
square, and some of them (e.g. 765 = 32 ·5 ·17) have at least 4 prime factors. In general it is
interesting to investigate the behavior of the “integrating” function I(a) which calculates for
every a the set of solutions of the equation n′ = a and its weaker variant i(a) that calculates
the number of such solutions. As we have seen above I(0) = {0, 1}, I(1) consist of all primes
and i(2) = i(3) = i(11) = · · · = i(997) = 0. Here is a list of the those numbers a ≤ 100 that
have more than one “integral” (i.e. i(a) ≥ 2). For example 10 has two “integrals” (namely
I(10) = {21, 25}) and 100 has six (I(100) = {291, 979, 1411, 2059, 2419, 2491}).

[10, 2], [12, 2], [14, 2], [16, 3], [18, 2], [20, 2],

[21, 2], [22, 3], [24, 4], [26, 3], [28, 2], [30, 3],

[31, 2], [32, 4], [34, 4], [36, 4], [38, 2], [39, 2],

[40, 3], [42, 4], [44, 4], [45, 2], [46, 4], [48, 6],

[50, 4], [52, 3], [54, 5], [55, 2], [56, 4], [58, 4],

[60, 7], [61, 2], [62, 3], [64, 5], [66, 6], [68, 3],

[70, 5], [71, 2], [72, 7], [74, 5], [75, 3], [76, 5],

[78, 7], [80, 6], [81, 2], [82, 5], [84, 8], [86, 5],

[87, 2], [88, 4], [90, 9], [91, 3], [92, 6], [94, 5],

[96, 8], [98, 3], [100, 6].

Note that only three of them are primes. To complete the picture it remains to list the set
of those a <= 100 for which i(a) = 1.

4, 5, 6, 7, 8, 9, 13, 15, 19, 25, 27, 33, 41,

43, 49, 51, 59, 63, 69, 73, 77, 85, 95, 99.
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Theorem 11 The function i(n) is unbounded for n > 1.

Proof. Suppose that i(n) < C for all n > 1 for some constant C. Then

2n
∑

k=2

i(k) < 2Cn

for any n. But for any two primes p, q the product pq belongs to I(p+ q) thus

2n
∑

k=2

i(k) >
∑

p≤q≤n

′
1 =

π(n)(π(n) + 1)

2
>

π(n)2

2
,

where
∑′ means that the sum runs over the primes, and π(n) is the number of primes not

exceeding n. This leads to the inequality

2Cn >
π(n)2

2
⇒ π(n) < 2

√
Cn,

which contradicts the known asymptotic behavior π(n) ≈ n
lnn

.

It would be interesting to prove a stronger result.

Conjecture 7 For any nonnegative m there exists infinitely many a such that i(a) = m.

Another related conjecture is the following:

Conjecture 8 There exists an infinite sequence an of different natural numbers such that
a1 = 1, (an)

′ = an−1 for n = 2, 3 . . .

Here is an example of possible beginning of such a sequence:

1← 7← 10← 25← 46← 129← 170← 501← 414← 2045.

The following table shows the maximum of i(n) depending of the number m of (not
necessary different) prime factors in the factorization of n for n ≤ 1000.

m 1 2 3 4 5 6 7 8 9
i(n) 8 22 35 46 52 52 40 47 32

The next more detailed picture shows the distribution of i(n) depending of the number
m for i(n) < 33. Note that maximum possible i(n) is equal 52, so we have only part of a
possible table. We leave to the reader the pleasure of making some natural conjectures.

8



i(n)\m 1 2 3 4 5 6 7 8 9
0 69 49 28 6 1 0 0 0 0
1 46 89 35 8 3 1 0 0 0
2 25 44 18 7 1 0 0 0 0
3 13 16 17 7 0 0 0 0 0
4 9 12 8 5 2 0 1 0 0
5 2 6 3 4 0 1 0 0 0
6 1 7 8 1 2 0 0 0 0
7 1 10 4 3 2 1 0 0 0
8 2 3 8 3 2 2 0 1 0
9 0 8 6 7 4 0 0 0 0
10 0 3 7 5 1 1 0 0 0
11 0 8 13 2 1 2 0 0 0
12 0 4 4 5 2 0 1 0 1
13 0 3 10 5 2 2 1 0 0
14 0 7 7 5 4 1 1 0 0
15 0 8 8 3 3 1 0 0 0
16 0 1 15 6 5 1 0 0 0
17 0 10 4 8 2 0 0 0 0
18 0 3 4 5 2 1 1 0 0
19 0 4 5 9 4 2 1 1 0
20 0 3 7 1 0 1 0 1 0
21 0 0 5 2 4 3 0 1 0
22 0 1 2 5 1 0 1 0 0
23 0 0 4 1 1 1 2 0 0
24 0 0 1 6 3 1 0 0 0
25 0 0 3 2 1 1 0 0 0
26 0 0 1 2 4 1 0 1 0
27 0 0 2 1 2 1 0 0 0
28 0 0 1 1 0 1 1 0 0
29 0 0 2 2 1 0 1 0 0
30 0 0 1 1 1 0 0 0 0
31 0 0 1 4 3 0 0 0 0
32 0 0 0 6 1 1 1 0 1

4 The equation n′′ = 1

The main conjecture for the second-order equations is the following:

Conjecture 9 The differential equation n′′ = 1 has infinitely many solutions in natural
numbers.

Theorem 10 shows that 2p is a solution if p, p + 2 are primes. So the following famous
conjecture would be sufficient to prove.
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Conjecture 10 (prime twins) There exists infinitely many pairs p, p+2 of prime numbers.

The following problem is another alternative which would be sufficient:

Conjecture 11 (prime triples) There exists infinitely many triples p, q, r of prime num-
bers such that P = pq + pr + qr is a prime.

Such a triple gives a solution n = pqr to our equation, because n′ = P. In reality all the
solutions can be described as follows.

Theorem 12 A number n is a solution of the differential equation n′′ = 1 if and only if the
three following conditions are valid:

1. The number n is a product of different primes: n =
∏k

i=1 pi.

2.
∑k

i=1 1/pi =
p
n
, where p is a prime.

3. If k is even, then the smallest prime of pi should be equal to 2.

Proof. If n = p2m for some prime p then n′ = p(2m + pm′) is not prime and according to
Theorem 8 the number n cannot be a solution. So, it is a product of different primes. Then
the second condition means that n′ is a prime and by Theorem 8 it is necessary and sufficient
to be a solution. As to the number k of factors it cannot be even if all primes pi are odd,
because n′ in this case is (as the sum of k odd numbers) even and larger than two.

5 Derivative for integers

It is time to extend our definition to integers.

Theorem 13 A derivative is uniquely defined over the integers by the rule

(−x)′ = −x′.

Proof. Because (−1)2 = 1 we should have (according to the Leibnitz rule) 2(−1)′ = 0 and
(−1)′ = 0 is the only choice. After that (−x)′ = ((−1) · x)′ = 0 · x′ + (−1) · x′ = −x′ is the
only choice for negative −x and as a result is true for positive integers also. It remains to
check that the Leibnitz rule is still valid. It is sufficient to check that it is valid for −a and
b if it was valid for a and b. It follows directly:

((−a) · b)′ = −(a · b)′ = −(a′ · b+ a · b′) = −a′ · b+ (−a) · b′ = (−a)′ · b+ (−a) · b′.
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6 Derivative for rational numbers

The next step is to differentiate a rational number. We start from the positive rationals.
The shortest way is to use (1). Namely, if x =

∏k
i=1 p

xi

i is a a factorization of a rational
number x in prime powers, (where some xi may be negative) then we put

x′ = x
k
∑

i=1

xi

pi
(5)

and the same proof as in Theorem 1 shows that this definition is still consistent with the
Leibnitz rule.

Here is a table of derivatives of i/j for small i, j.

i/j 1 2 3 4 5 6 7 8 9 10

1 0
−1
4

−1
9

−1
4

−1
25

−5
36

−1
49

−3
16

−2
27

−7
100

2 1 0
1

9

−1
4

3

25

−1
9

5

49

−1
4

−1
27

−1
25

3 1
−1
4

0
−1
2

2

25

−1
4

4

49

−7
16

−1
9

−11
100

4 4 1
8

9
0

16

25

1

9

24

49

−1
4

4

27

3

25

5 1
−3
4

−2
9
−1 0

−19
36

2

49

−13
16

−7
27

−1
4

6 5 1 1
−1
4

19

25
0

29

49

−1
2

1

9

2

25

7 1
−5
4

−4
9

−3
2

−2
25

−29
36

0
−19
16

−11
27

−39
100

8 12 4
28

9
1

52

25

8

9

76

49
0

20

27

16

25

9 6
3

4
1
−3
4

21

25

−1
4

33

49

−15
16

0
−3
100

10 7 1
11

9

−3
4

1
−2
9

39

49
−1 1

27
0

A natural property is the following:

Theorem 14 For any two rationals a, b we have

(a

b

)′

=
a′b− ab′

b2
.

A derivative can be well defined for rational numbers using this formula and this is the only
way to define a derivative over rationals that preserves the Leibnitz rule.
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Proof. If a =
∏k

i=1 p
ai

i , b =
∏k

i=1 p
ai

i then we have

(a

b

)′

= (
k
∏

i=1

pai−bi

i )′ = (
k
∏

i=1

pai−bi

i )
k
∑

i=1

ai − bi
pi

=

(a

b

)

k
∑

i=1

ai
pi
−
(

ab

b2

) k
∑

i=1

bi
pi

=
a′

b
− ab′

b2
=

a′b− ab′

b2
.

Let us check uniqueness. If n is an integer then n · 1
n
= 1 and the Leibnitz rule demands

n′ · 1
n
+ n

(

1

n

)′

= 0⇒
(

1

n

)′

= − n′

n2
.

After that

(a

b

)′

=

(

a · 1
b

)′

= a′ · 1
b
+ a ·

(

1

b

)′

=
a′

b
− a ·

(

b′

b2

)

=
a′b− ab′

b2

is the only choice that satisfies the Leibnitz rule. This proves uniqueness. To prove that
such a definition is well-defined, it is sufficient to see that

(ac

bc

)′

=
(ac)′(bc)− (ac)(bc)′

(bc)2
=

(a′c+ ac′)(bc)− (ac)(b′c+ bc′)

b2c2
=

(a′bc2 + abc′c)− (ab′c2 + abcc′)

b2c2
=

a′b− ab′

b2

has the same value.

For negative rationals we can proceed as above and put (−x)′ = −x′.

7 Rational solutions of the equation x′ = a.

Unexpectedly the equation x′ = 0 has nontrivial rational solutions, for instance x = 4/27.
We can describe all of them.

Theorem 15 Let k be some natural number, {pi, i = 1, . . . k} be a set of different prime
numbers and {αi, i = 1, . . . k} be a set of integers such that ∑k

i=1 αi = 0. Then

x = ±
k
∏

i=1

pαipi

i

are solutions of the differential equation x′ = 0 and any other nonzero solution can be obtained
in this manner.
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Proof. Because (−x)′ = −x′ it is sufficient to consider positive solutions only. Let x =
∏k

i=1 p
ai

i Then from (5)
k
∑

i=1

ai
pi

= 0⇒
k
∑

i=1

ai ·Qi = 0,

where Qi =
(

∏k
j=1 pj

)

/pi is not divisible by pi. Thus ai should be divisible by pi and αi =
ai

pi
.

Other equations are more difficult.

Conjecture 12 The equation x′ = 1 has only primes as positive rational solutions.

Note that there exists a negative solution, namely x = − 5
4
. One possible solution of this

equation would be x = n
pp for some natural n and prime p. Because x′ = n′−n

pp in this case we
can reformulate the conjecture as

Conjecture 13 Let p be a prime. The equation n′ = n+ pp has no natural solutions except
n = qpp, where q is a prime.

Note, that according to Theorem 5 if a solution n is divisible by p it should be divisible by
pp. Therefore n = mpp and pp(m′+m) = pp(m+1) by Theorem 4 and m should be a prime.
Thus it is sufficient to prove that any solution is divisible by p.

We do not expect that it is possible to integrate every rational number, though we do
not know a counterexample.

Conjecture 14 There exists a such that the equation x′ = a has no rational solutions.

The first natural candidates do not verify the conjecture:

(−21

16
)′ = 2; (−13

4
)′ = 3; (−22

27
)′ =

1

3
.

8 Logarithmic derivative

One thing that is still absent in our picture is the analogue of the logarithm – the primitive
of 1

n
. Because our derivative is not linear we cannot expect that the logarithm of the product

is equal to the sum of logarithms. Instead this is true for its derivative. So let us define
a logarithmic derivative ld(x) as follows. If x =

∏k
i=1 p

xi

i for different primes pi and some
integers xi, then

ld(x) =
k
∑

i=1

xi

pi
, ld(−x) = ld(x), ld(0) =∞.

In other words

ld(x) =
x′

x
.

Theorem 16 For any rational numbers

ld(xy) = ld(x) + ld(y).

13



Proof.

ld(xy) =
(xy)′

xy
=

x′y + xy′

xy
=

x′

x
+
y′

y
= ld(x) + ld(y).

It is useful to divide every integer number into large and small parts. Let sign(x)x =
|x| =∏k

i=1 p
xi

i and xi = aipi + ri, where 0 ≤ ri < pi. We define

P (x) = sign(x)
k
∏

i=1

paipi

i , R(x) =
k
∏

i=1

pri

i , A(x) =
k
∑

i=1

ai.

Theorem 17 The following properties hold

• ld(x) = A(x) + ld(R(x)).

• x′ = A(x)x+ P (x)(R(x))′ = x(A(x) + ld(R(x))).

• If x is a nonzero integer, then

x|x′ ⇔ ld(x) ∈ Z⇔ R(x) = 1.

• if
(

a
b

)′
is an integer, and gcd(a, b) = 1 then R(b) = 1.

Proof. First we have

ld(x) = ld(P (x)R(x)) = ld(P (x)) + ld(R(x)) = A(x) + ld(R(x)).

Using this we get

x′ = xld(x) = x(A(x) + ld(R(x))) = xA(x) + xld(R(x)) =

xA(x) + P (x)R(x)ld(R(x)) = A(x)x+ P (x)(R(x))′.

If R(x) 6= 1 then the sum

ld(R(x)) =
k
∑

i=1

ri
pi

cannot be an integer. Otherwise

ld(R(x))
k
∏

i=1

pi =
k
∑

i=1

riQi,

and if 0 < rj < pj then an integer on the left hand side is divisible by pj, but on the right

hand side is not because Qj =
∏k

i=1 pi

pj
and all primes pi are different. The last statement

follows from Theorem 14.

Now we are able to solve the equation x′ = αx with rational α in the rationals. We have
already solved this equation in the case α = 0, so let α 6= 0.

14



Theorem 18 Let α = a
b
be a rational number with gcd(a, b) = 1, b > 0. Then

• The equation
x′ = αx (6)

has nonzero rational solutions if and only if b is a product of different primes or b = 1.

• If x0 is a nonzero particular solution (6) and y is any rational solution of the equation
y′ = 0 then x = x0y is also a solution of (6) and any solution of (6) can be obtained
in this manner.

• To obtain a particular solution of the equation (6) it is sufficient to decompose α into
the elementary fractions:

α =
a

b
= bαc+

k
∑

i=1

ci
pi
,

where b =
∏k

i=1 pi, 1 ≤ |ci| < pi. Then

x0 = 4bαc
k
∏

i=1

pci

i

is a particular solution. (Of course the number 4 can be replaced by pp for any prime
p).

Proof. The equation (6) is equivalent to the equation

ld(x) = α⇔ A(x) + ld(R(x)) = α =
a

b
.

Because A(x) is an integer and ld(R(x)) =
∑k

i=1
ri

pi
, the natural number b should be equal

to the product of the different primes or should be equal to 1. Suppose that b is of this type.
Then

ld

(

4bαc
k
∏

i=1

pci

i

)

= bαc+
k
∑

i=1

ci
pi

= α

and we obtain a desired particular solution. If y′ = 0 and x0 any particular solution then

(x0y)
′ = x′0y + x0y

′ = αx0y,

also satisfies (6). Finally, if x′ = αx and y = x
x0

then

ld(y) = ld(x)− ld(x0) = 0

means that y is a solution of the equation y′ = 0.

For instance the equation x′ = x
4
has no solutions, x0 = 2

3
is a partial solution of the

equation x′ = x
6
and to obtain all nonzero solutions we need to multiply x0 with any y such

that R(y) = 1, A(y) = 0.
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9 How to differentiate irrational numbers

The next step is to try to generalize our definition to irrational numbers. The equation
(1) can still be used in the more general situation. But first we need to think about the
correctness of the definition.

Lemma 1 Let {p1, . . . , pk} be a set of different primes and {x1, . . . , xk} a set of rationals.
Then

P =
k
∏

i=1

pxi

i = 1⇔ x1 = x2 = · · · = xk = 0.

Proof. It is evident if all xi are integers, because the primes are different. If they are rational,
let us choose a natural m such that all yi = mxi are integer. Then Pm = 1 too and we get
yi = 0⇒ xi = 0.

Now we can extend our definition to any real number x that can be written as a product
x =

∏k
i=1 p

xi

i for different primes pi and some nonzero rationals xi. The previous lemma
shows that this form is unique and as above we can define

x′ = x
k
∑

i=1

xi

pi
.

The proof for the Leibnitz rule is still valid too and we skip it. For example we have

(
√
3)′ = (31/2)′ = 31/21/2

3
=

√
3

6
.

More generally we have the following convenient formula:

Theorem 19 Let x, y be rationals and x be positive. Then

(xy)′ = yxy−1x′ =
yx′

x
xy = yxyld(x). (7)

Proof. If x =
∏k

i=1 p
xi

i , then

(xy)′ = (
k
∏

i=1

pyxi

i )′ = xy

k
∑

i=1

yxi

pi
= yxy−1x

k
∑

i=1

xi

pi
= yxy−1x′.

An interesting corollary is

Corollary 4 Let a, b, c, d be rationals such that ab = cd (a, c being positive). Then

b · ld(a) = d · ld(c)

and
a′bc = c′ad.

In particular, for the case a = b, c = d, we have

aa = cc ⇒ a′ = c′.
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As an example we can check directly that xy = yx has the solutions

x =

(

m+ 1

m

)m

; y =

(

m+ 1

m

)m+1

,

thus
x′

x2
=

y′

y2
,

so the equation x′ = x2

4
has at least two solutions obtained from m = 1.

Another example is

(1/2)1/2 = (1/4)1/4 ⇒
(

1

2

)′

=

(

1

4

)′

= −
(

1

4

)

.

In general it is not difficult to prove that all rational solutions of the equation xx = yy have
the form

x =

(

m

m+ 1

)m

, y =

(

m

m+ 1

)m+1

for some natural m. Direct calculations give the same result as above:

x′ = m

(

m

m+ 1

)m−1(
m

m+ 1

)′

= (m+ 1)

(

m

m+ 1

)m(
m

m+ 1

)′

= y′

and shows that this works even for rational m.
It would be natural to extend our definition to infinite products: if x =

∏∞
i=1 p

xi

i is
convergent then it is easy to show that the sum x

∑∞
i=1

xi

pi
is also convergent. However, the

problem is that the sum is not necessary convergent to zero, when x = 1. This is a reason why
such a natural generalization of the derivative is not well-defined. Maybe a more natural
approach is to restrict possible products, but we still do not know a nice solution of the
problems that arise. But there is another way, which we consider in Section 11.

10 Arithmetic Derivative for UFD

The definition of the derivative and most of the proofs are based only on the fact that that
every natural number has a unique factorization into primes. So it is not difficult to transfer
it to an arbitrary UFD (unique factorization domain) R using the same definition: p′ = 1
for every “canonical” prime (irreducible) element, the Leibnitz rule and additionally u′ = 0
for all units (invertible elements) in R. For example we can do it for a polynomial ring K[x]
or for the Gaussian numbers a + bi. In the first case the canonical irreducible polynomials
are monic, in the second the canonical primes are “positive” primes [3]. This leads to a well-
defined derivative for the field of fractions. Note also, that even the condition UFD is not
necessary – we only need to have a well-defined derivative, i.e. independent of factorization.
We do not plan to develop the theory in this more abstract direction and restrict ourselves
by the following trivial (but interesting) result.
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Theorem 20 Let K be a field of characteristic zero and with the derivative f ′ in K[x] is

defined as above. Let d
dx
be a usual derivative. Then f ′(x) = df(x)

dx
if and only if the polynomial

f(x) is a product of linear factors.

Proof. Because both derivatives are equal to zero on constants they coincide on linear
polynomials. If f(x) has no linear irreducible factors then f ′(x) has smaller degree then
df(x)
dx

. Otherwise f(x) = l(x)g(x) for some linear polynomial l(x) and

f ′(x)− df(x)

dx
= l′(x)g(x) + l(x)g′(x)− dl(x)

dx
g(x)− l(x)

dg(x)

dx
=

l(x)

(

g′(x)− dg(x)

dx

)

and we can use induction.

So, for the complex polynomials both definitions coincide. On the other hand (x2 + x+
1)′ = d

dx
(x2 + x + 1) = 1 in Z2[x], though (x2 + x + 1) is irreducible, thus characteristic

restrictions are essential.
Let us now look at the Gaussian numbers. We leave to the reader the pleasure of creating

similar conjectures as for integers, for example the analogs of Goldbach and prime twins
conjectures (twins seem to be pairs with distance

√
2 between two elements; more history

and variants can be found in “The Gaussian zoo” [5]). We go into another direction.
Note, that because 2+ i and 2− i are “positive” primes and 5 = (2+ i)(2− i), we should

have 5′ = (2 + i) + (2 − i) = 4, but this does not coincide with the earlier definition. So it
may be is time to change our point of view radically.

11 Generalized derivatives

Our definition is based on two key points – the Leibnitz rule and p′ = 1 for primes. If we
skip the second one and use the Leibnitz rule only we get a more general definition of D(x).
Now, if x =

∏k
i=1 p

xi

i , then

D(x) = x
k
∑

i=1

xiD(pi)

pi
,

and we can again repeat most of the proofs above. But it is much more natural to use
another approach.

Theorem 21 Let R be a commutative ring without zero divisors and let L : R∗ −→ R+ be
a homomorphism of its multiplicative semigroup to the additive group. Then a map

D : R −→ R,D(x) = xL(x), D(0) = 0

satisfies the Leibnitz rule. Conversely, if D(xy) = D(x)y + xD(y) then L(x) = D(x)
x
is a

homomorphism. If R is a field then L is a group homomorphism and

D

(

x

y

)

=
D(x)y − xD(y)

y2
.

18



Proof.

D(xy)−D(x)y − xD(y) = xyL(xy)− xL(x)y − xyL(y) = xy(L(xy)− L(x)− L(y))

and we see that the Leibnitz rule is equivalent to the homomorphism condition. If R is
a field then the semigroup homomorphism is automatically the group homomorphism and
L(1/x) = −L(x) which is sufficient to get

D

(

1

y

)

=

(

1

y

)

(−L(y)) = −D(y)

y2
.

Then it remains to repeat the proof of Theorem 14.

Corollary 5 There exist infinitely many possibilities to extend the derivative x′, constructed
in Section 9 on Q to all real numbers preserving the Leibnitz rule.

Proof. We start from the positive numbers. It is sufficient to extend ld(x). Note that the
multiplicative group of positive real numbers is isomorphic to the additive group and both
of them are vector spaces over rationals. In Section 9 a map ld(x) is defined over a subspace
and there are infinitely many possibilities to extend a linear map from a subspace to the
whole space. Obviously it would be a group homomorphism and this gives a derivative for
positive numbers. For the negative numbers we proceed as in Section 5.

Note that the Axiom of Choice is being used here. It would be nice to find some “natural”
extension, which preserves condition (7), but note that no such extension can be continuous.
To show this let us consider a sequence

xn =
2an

3n
, an = bn log2 3c.

It is bounded and has a convergent subsequence (even convergent to 1.) But

lim
n→∞

(xn)
′ = lim

n→∞
xn

(an
2
− n

3

)

=∞.

An example of continuous generalized derivative gives us D(x) = x ln x. It is easy to
construct a surjective generalized derivative in the set of integers, and is impossible to make
it injective (because D(1) = D(−1) = D(0) = 0). But probably even the following conjecture
is true.

Conjecture 15 There is no generalized derivative D(x) which is bijection between the set
of natural numbers and the set of nonnegative integers.

We can even hope for a stronger variant:

Conjecture 16 For any generalized derivative D(x) on the set of integers there exist two
different positive integers which have the same derivative.

Returning to the generalized derivatives in Q or R let us investigate their structure as a
set.
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Theorem 22 If D1, D2 are two generalized derivatives and a, b are some real numbers then
aD1 + bD2 and [D1, D2] = D1D2 − D2D1 are generalized derivatives too. Nevertheless the
set of all generalized derivatives is not a Lie algebra.

Proof. We have

(aD1 + bD2)(xy) = aD1(xy) + bD2(xy) = aD1(x)y + axD1(y) + bD2(x)y + bxD2(y) =

aD1(x)y + bD2(x)y + xaD1(y) + xbD2(y) = (aD1 + bD2)(x)y + x(aD1 + bD2)(y).

In the same way:

[D1, D2](xy) = (D1D2−D2D1)(xy) = D1D2(xy)−D2D1(xy) =

D1(D2(x)y + xD2(y))−D2(D1(x)y + xD1(y)) =

D1(D2(x))y +D2(x)D1(y) +D1(x)D2(y) + xD1(D2(y))−
(D2(D1(x))y +D1(x)D2(y) +D2(x)D1(y) + xD2(D1(y))) =

D1(D2(x))y + xD1(D2(y))−D2(D1(x))y − xD2(D1(y)) =

[D1, D2](x)y + x[D1, D2](y).

But the commutator is not bilinear: in general

[aD1 + bD2, D3] 6= a[D1, D3] + b[D2, D3]

so we have no Lie algebra structure.

Let us define D(pi) as a derivative which maps a prime pi to 1 and other primes pj to zero.
Then [D(pi), D(pj)] = 0, but already [3D(2), D(3)] = −D(2). Nevertheless every generalized
derivative D can be uniquely written as

D =
∞
∑

i=1

D(pi)D(pi).

12 The generating function

Let D(x) be a generalized derivative over the reals and L(x) = D(x)
x

be corresponding loga-
rithmic derivative. Let

HD(t) =
∞
∑

n=0

D(n)tn, HL(t) =
∞
∑

n=1

L(n)tn

be their generating functions.

20



Theorem 23 The generating functions HD(t), HL(t) can be be calculated as follows:

HD(t) = t
d

dt
(HL(t)) .

HL(t) =
∑

p

′
L(p)

∞
∑

j=1

tp

1− tpj ,

where the first sum runs over all primes.

Proof. The first formula is equivalent to the condition D(n) = n · L(n). As to the second
formula it is sufficient to prove it for the special case when L(p) = 1 for some prime p and
L(q) = 0 for all other primes. Then we need to prove that

∞
∑

n=0

L(n)tn =
∞
∑

j=1

tp

1− tpj .

If n = pkm and gcd(p,m) = 1 then tn appears exactly in k sums

tp

1− tpj =
∞
∑

i=1

tip
j

for j = 1, 2, . . . , k. It only remains to note that L(n) = k.

Corollary 6

L(n!) =
n
∑

i=1

L(i) =
∑

p≤n

′
L(p)

∞
∑

j=1

⌊

n

pj

⌋

.

Proof. If we replace every tp

1−tp
j by

∑
b n

pj c

i=1 tip
j

we do not change the coefficients in tk for k ≤ n

and make them equal to zero for k > n. So it is sufficient to put t = 1 to get the desired b n
pj c

in every summand.

If we use the same L(x) that we used in the proof of the Theorem 23, we get the classical
Legendre theorem that calculates the maximal power of a prime p in n!.

On the other hand if we use L(x) = ld(x) we will be able, following Barbeau [1], to
estimate

∑n
i=1 ld(i). Let m = blog2 nc. Then we can change infinity in our sums to m. Using

standard estimates
∑

p≤n

′1

p
= O(lnm),

∑

p>n

′ n

p(p− 1)
<
∑

k>n

n

k(k − 1)
=
∑

k>n

n

(

1

k
− 1

k − 1

)

≤ 1,

∑

p≤n

′ n

pm+1(p− 1)
<
∑

p≤n

′ 2n

2m+1p(p− 1)
<
∑

k≤n

2n

nk(k − 1)
≤ 2,
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we get
n
∑

i=1

ld(i) =
∑

p≤n

′1

p

m
∑

j=1

⌊

n

pj

⌋

=
∑

p≤n

′1

p

(

m
∑

j=1

n

pj
+O(m)

)

=

∑

p≤n

′ n

pm+1

(

pm − 1

p− 1

)

+O(lnm)O(m) =
∑

p

′ n

p(p− 1)
−

−
∑

p>n

′ n

p(p− 1)
−
∑

p≤m

′ n

pm+1(p− 1)
+O(lnm)O(m) =

∑

p

′ n

p(p− 1)
+O(m lnm).

Theorem 24 [1] Let

C =
∑

p

′ 1

p(p− 1)
= 0.749 . . .

Then

ld(n!) =
n
∑

i=1

ld(i) = Cn+O ((lnn)(ln lnn))

n
∑

k=1

k′ =
C

2
n2 +O(n1+δ)

for any δ > 0.

Proof. The first formula is already proved. As to the second we have

n
∑

k=1

k′ =
n
∑

k=1

k · ld(k) =
n
∑

k=1

n
∑

i=k

ld(i) =

n
∑

k=1

(ld(n!)− ld((k − 1)!)) = nld(n!)−
n−1
∑

k=1

ld(k!) =

n(Cn+O(nδ))−
n−1
∑

k=1

(Ck +O(nδ)) =

Cn2 − C
n(n− 1)

2
+O(n1+δ) =

C

2
n2 +O(n1+δ).

We leave to the reader the pleasure to play with ζD(s) =
∑

n′

ns .
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13 Logical dependence of the conjectures

Here we would like to exhibit some of the logical dependence between the different conjectures
we have mentioned above. As we see the Conjectures 8 and 9 seem to be the key problems.

Theorem 25 The following picture describes the logical dependence between the different
conjectures.

(2)⇒ (3)⇒ (4),

(12)⇒ (13),

(5)⇐ (6,Goldbach),

(15)⇐ (16),

(11,Triples) (8)
⇓ ⇓

(10,Twins) ⇒ (9) ⇒ (1)
.

Additionally if Conjecture 1 is valid then either Conjecture 8 or Conjecture 9 is valid (or
both).

Proof. The only nontrivial dependence is the last one. Suppose that Conjecture 9 is wrong,
but Conjecture 1 is true. We need to show that Conjecture 8 is valid. Let Γ be the tree
having vertices 1 (the root), the primes p with i(p) > 0 and all composite n with n(k) = 0
for some k ≥ 1. Further, let Γ have edges from n to n′. By Conjecture 1, Γ is infinite. By
Theorem 8 and Corollary 3 the degree at each vertex different from 1 is finite. Also the
vertex 1 has finite degree since 9 is false. By Köning infinity lemma Γ contains an infinite
chain, ending in 1, which is Conjecture 8.

14 Concluding remarks

This article is our expression of the pleasure being a mathematician. We have written it
because we found the subject to be very attractive and wanted to share our joy with others.
To our surprise we did not find many references. In the article of A. Buium [2] and other
articles of this author (which are highly recommended) we at least have found that there
exists authors who can imagine a derivative without the linearity property. But the article
of E. J. Barbeau [1] was the only article that has direct connection to our topic. Most of
the material from this article we have repeated here (not always citing). We omitted only
the description of the numbers with derivatives that are divisible by 4 and his conjecture
that for every n there exists a prime p such that all derivatives n(k) are divisible by p for
sufficiently large k. In fact according to Theorems 4, 5 it is equivalent to be divisible by pp

for sufficiently large k. Thus this conjecture is a bit stronger then Conjecture 2.
The definition of the arithmetic derivative itself and its elementary properties was already

in the Putnam Prize competition (it was Problem 5 of the morning session in March 25,
1950, [4] ) and probably was known in folklore even earlier. What we have done is mainly
to generalize this definition in different directions, to solve some differential equations, to
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calculate the generating function and to invite the reader to continue work in this area. We
are grateful to our colleagues for useful discussion, especially to G. Almkvist, A. Chapovalov,
S. Dunbar, G. Galperin, S. Shimorin and the referee, who helped to improve the text. We
are especially grateful to J. Backelin, who helped us to reduce the number of conjectures by
suggesting ideas that translated them into theorems.
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