

Journal of Integer Sequences, Vol. 6 (2003), Article 03.3.3

Matrix Transformations of Integer Sequences

Clark Kimberling Department of Mathematics University of Evansville 1800 Lincoln Avenue Evansville, IN 47722 ck6@evansville.edu

Abstract: The integer sequences with first term 1 comprise a group \mathcal{G} under convolution, namely, the Appell group, and the lower triangular infinite integer matrices with all diagonal entries 1 comprise a group \mathbb{G} under matrix multiplication. If $A \in \mathcal{G}$ and $M \in \mathbb{G}$, then $MA \in \mathcal{G}$. The groups \mathcal{G} and \mathbb{G} and various subgroups are discussed. These include the group $\mathbb{G}^{(1)}$ of matrices whose columns are identical except for initial zeros, and also the group $\mathbb{G}^{(2)}$ of matrices in which the odd-numbered columns are identical except for initial zeros and the same is true for even-numbered columns. Conditions are determined for the product of two matrices in $\mathbb{G}^{(m)}$ to be in $\mathbb{G}^{(1)}$. Conditions are also determined for two matrices in $\mathbb{G}^{(2)}$ to commute.

1 Introduction

Let \mathcal{G} be the set of integer sequences (a_1, a_2, a_3, \ldots) for which $a_1 = 1$. The notations $A = (a_1, a_2, a_3, \ldots)$, $B = (b_1, b_2, b_3, \ldots)$, $C = (c_1, c_2, c_3, \ldots)$ will always refer to elements of \mathcal{G} . The finite sequence $(a_1, a_2, a_3, \ldots, a_n)$ will be denoted by A_n , and likewise for B_n and C_n . Let \star denote convolution; i.e., if $C = A \star B$, then

$$c_n = \sum_{k=1}^n a_k b_{n-k+1},$$

which we shall sometimes write as $A_n \otimes B_n$, so that $A \star B$ is the sequence having $A_n \otimes B_n$ as *n*th term. Formally,

$$\sum_{k=1}^{\infty} c_k x^{k-1} = \left(\sum_{k=1}^{\infty} a_k x^{k-1}\right) \left(\sum_{k=1}^{\infty} b_k x^{k-1}\right).$$

In particular, if $c_1 = 1$ and $c_k = 0$ for $k \ge 2$, then the sequence B has generating function $1/(a_1 + a_2x + a_3x^2 + \cdots)$, and A and B are a pair of convolutory inverses.

Let \mathcal{G}_n denote the group of finite sequences A_n under \star ; the identity is $I_n = (1, 0, 0, \dots, 0)$, and A_n^{-1} is the sequence B_n given inductively by $b_1 = 1$ and

$$b_n = -\sum_{k=1}^{n-1} a_{n-k+1} b_k.$$
 (1)

for $n \geq 2$. The algebraic system (\mathcal{G}, \star) is a commutative group known as the Appell subgroup of the Riordan group. Its elements, the Appell sequences, are special cases of the Sheffler sequences, which play a leading role in the umbral calculus [2, Chapter 4]; however, the umbral developments are not used in this paper. In \mathcal{G} , the identity and A^{-1} are the limits of I_n and A_n^{-1} . (Here, limits are of the combinatorial kind: suppose j_1, j_2, j_3, \ldots is an unbounded nondecreasing sequence of positive integers and $\{a_{i,j}\}$ is a sequence of sequences such for each i,

$$(a_{k,1}, a_{k,2}, a_{k,3}, \dots, a_{k,j_i}) = (a_{i,1}, a_{i,2}, a_{i,3}, \dots, a_{i,j_i})$$

for every k > i. Then

$$\lim_{i\to\infty}(a_{i,1},a_{i,2},a_{i,3},\ldots)$$

is defined as the sequence $(a_1, a_2, a_3, ...)$ such that for every *n* there exists i_0 such that if $i > i_0$, then

 $(a_1, a_2, a_3, \dots, a_n) = (a_{i,1}, a_{i,2}, a_{i,3}, \dots, a_{i,n}).)$

The study of the group (\mathcal{G}, \star) , we shall soon see, is essentially that of a certain group of matrices. However, we shall consider first a more general group of matrices.

For any positive integer n, let \mathbb{G}_n be the set of lower triangular $n \times n$ integer matrices with all diagonal entries 1, and let \cdot denote matrix multiplication. Then (\mathbb{G}_n, \cdot) is a noncommutative group. Now let \mathbb{G} denote the set of lower triangular infinite integer matrices with all diagonal entries 1. In such a matrix, every column, excluding the zeros above the diagonal, is an element of \mathcal{G} , and (\mathbb{G}, \cdot) is a noncommutative group. Properties of matrices in \mathbb{G} arise via limits of those of matrices in \mathbb{G}_n . For example, if $M = (m_{ij}) \in \mathbb{G}$, then the matrix $M_n := (m_{ij})$, where $1 \leq i \leq n$ and $1 \leq j \leq n$, is an element of \mathbb{G}_n , and

$$M^{-1} = \lim_{n \to \infty} M_n^{-1}.$$

It is easy to check that if $A \in \mathcal{G}$ and $M \in \mathbb{G}$, then $M \cdot A \in \mathcal{G}$; here A is regarded as an infinite column vector.

Among subgroups of \mathbb{G} is the Riordan group (in the case that the coefficients are all integers) introduced in [3]. Although the Riordan group will not be further discussed in this paper, the reader may wish to consult the references listed at A053121 (the Catalan triangle) in [4].

Suppose $T = (t_1, t_2, t_3, \ldots) \in \mathcal{G}$. Let \mathbb{T} be the matrix in \mathbb{G} whose *i*th row is

$$t_i, t_{i-1}, \ldots, t_1, 0, 0 \ldots$$

so that the first column of \mathbb{T} is T, and each subsequent column contains T as a subsequence. Let $\mathbb{G}^{(1)}$ be the set of all such matrices \mathbb{T} . If \mathbb{T} and \mathbb{U} in $\mathbb{G}^{(1)}$ have first columns T and U, respectively, then the first column of $\mathbb{T} \cdot \mathbb{U}$ is the sequence $T \star U$, and $\mathbb{T} \cdot \mathbb{U} \in \mathbb{G}^{(1)}$. Clearly, $(\mathbb{G}^{(1)}, \cdot)$ is isomorphic to (\mathcal{G}, \star) . Matrices in $\mathbb{G}^{(1)}$ will be called *sequential matrices*.

One more property of the group \mathbb{G} , with easy and omitted proof, will be useful: if $M = (m_{ij}) \in \mathbb{G}$ and $f(M) := ((-1)^{i+j}m_{ij})$, then

$$(f(M))^{-1} = f(M^{-1}).$$
 (2)

2 The Appell group (\mathcal{G}, \star)

The first theorem in this section concerns the convolutory inverse of a linear recurrence sequence of order $m \geq 2$.

Theorem 1. Suppose $m \ge 2$, and $a_1 = 1, a_2, \ldots, a_m$ are initial values of an *m*th order recurrence sequence given by

$$a_n = u_1 a_{n-1} + u_2 a_{n-2} + \dots + u_m a_{n-m} + r_{n-m}$$
(3)

for $n \ge m+1$, where u_1, u_2, \ldots, u_m and r_1, r_2, r_3, \ldots are integers and $u_m \ne 0$. Then the convolutory inverse, B, of A, is a sequence

$$(1, b_2, \ldots, b_m, b_{m+1}, b_{m+2}, \ldots)$$

for which the subsequence $(b_{m+2}, b_{m+3}, \ldots)$ satisfies

$$b_n = \sum_{k=1}^{m-1} b_{n-k} c_k - B_{n-m} \circledast R_{n-m}$$

where

$$c_k = -a_{k+1} + \sum_{j=1}^k u_j a_{k+1-j}$$

for $n \ge m+2$.

Proof: By (1), $b_1 = a_1 = 1$. Also, $b_2 = -a_2$, and

$$b_n = -a_n b_1 - a_{n-1} b_2 - \dots - a_2 b_{n-1}$$

for $n \geq 3$. For the rest of this proof, assume that $n \geq m+2$, and for later convenience, let

$$s_n = -a_n b_1 - a_{n-1} b_2 - \dots - a_{m+2} b_{n-m-1}.$$

For $n \ge m+2$ (but not generally for n = m+1), the recurrence (1) gives

$$\sum_{k=1}^{m} u_k b_{n-k} = -\sum_{j=1}^{n-m-1} b_j \sum_{k=1}^{m} u_k a_{n-k-j+1} - U,$$

where

$$U = \sum_{k=1}^{m-1} u_k \sum_{j=2}^{m-k+1} a_j b_{n-k-j+1}.$$

Then

$$\sum_{k=1}^{m} u_k b_{n-k} = -\sum_{j=1}^{n-m-1} b_j (a_{n+1-j} - r_{n+1-j-m}) - U$$
$$= s_n + \sum_{j=1}^{n-m-1} b_j r_{n+1-j-m} - U$$
$$= b_n + \sum_{j=2}^{m+1} a_j b_{n+1-j} + \sum_{j=1}^{n-m-1} b_j r_{n+1-j-m} - U,$$

so that

$$b_n = \sum_{k=1}^m u_k b_{n-k} - \sum_{j=2}^{m+1} a_j b_{n+1-j} - \sum_{j=1}^{n-m-1} b_j r_{n+1-j-m} + U.$$
(4)

Now put n = m + 1 into (3) and substitute in (4) for a_{m+1} . The resulting coefficient of b_{n-m} is $-r_1$, and (4) simplifies to

$$b_n = \sum_{k=1}^{m-1} u_k b_{n-k} - \sum_{j=2}^m a_j b_{n+1-j} + \sum_{k=1}^{m-2} u_k \sum_{j=2}^{m-k} a_j b_{n-k-j+1} - \sum_{j=1}^{n-m} b_j r_{n+1-j-m}$$
$$= \sum_{k=1}^{m-1} b_{n-k} (-a_{k+1} + \sum_{j=1}^k u_j a_{k+1-j}) - \sum_{j=1}^{n-m} b_j r_{n+1-j-m}.$$

Corollary 1. If the recurrence for A in (3) is homogeneous of order $m \ge 2$, then the recurrence for the sequence (b_4, b_5, b_6, \ldots) is of order m - 1. If m = 2, then the convolutory inverse of A is the sequence

$$(b_1, b_2, b_3, \ldots) = (1, -a_2, f, (u_1 - a_2)f, (u_1 - a_2)^2 f, (u_1 - a_2)^3 f, \ldots),$$

where $f = a_2^2 - a_3$.

Proof: Homogeneity of a means that $r_n = 0$ for $n \ge 1$, so that $b_n = \sum_{k=1}^{m-1} c_k b_{n-k}$ for $n \ge m+2$.

Example 1. The Fibonacci sequence, A = (1, 1, 2, 3, 5, 8, ...), has inverse (1, -1, -1, 0, 0, 0, 0, 0, ...).

Example 2. The Lucas sequence, A = (1, 3, 4, 7, 11, 18, ...), has inverse, (1, -3, 5, -10, 20, -40, 80, ...), recurrent with order 1 beginning at the third term.

Example 3. Let A be the 2nd-order nonhomogeneous sequence given by $a_1 = 1$, $a_2 = 1$, and $a_n = a_{n-1} + a_{n-2} + n - 2$ for $n \ge 3$. The inverse of A is the sequence $B = (1, -1, -2, -1, 1, 4, 6, 4, -4, -11, \ldots)$ given for $n \ge 4$ by

$$b_n = -B_{n-2} \circledast R_{n-2} = -(b_1, b_2, \cdots, b_{n-2}) \star (1, 2, 3, \dots, n-2).$$

Example 4. Suppose that A and C are sequences in \mathcal{G} . Since \mathcal{G} is a group, there exists B in \mathcal{G} such that $A = B \star C$. For example, if A and C are the Fibonacci and Lucas sequences of Examples 1 and 2, then

$$B = A \star C^{-1} = (1, -2, 4, -8, 16, \ldots),$$

a 1st-order sequence.

Theorem 2. Let $B = (1, b_2, b_3, ...)$ be the convolutory inverse of $A = (1, a_2, a_3, ...)$, and let $\widehat{A} = (1, -a_2, a_3, -a_4, a_5, -a_6, ...)$. Then the convolutory inverse of \widehat{A} is the sequence $\widehat{B} = (1, -b_2, b_3, -b_4, b_5, -b_6, ...)$.

Proof: Apply (2) to the subgroup $\mathbb{G}^{(1)}$ of sequential matrices.

Example 5. Let A be the sequence given by $a_n = \lfloor n\tau \rfloor$, where $\tau = (1 + \sqrt{5})/2$. Then

 $A = (1, 3, 4, 6, 8, 9, 11, 12, \ldots)$ and $A^{-1} = (1, -3, 5, -9, 17, -30, 52, -90, \ldots).$

Let A be the sequence given by $a_n = (-1)^{n-1} \lfloor n\tau \rfloor$. Then

$$A = (1, -3, 4, -6, 8, -9, 11, -12, \ldots)$$
 and $A^{-1} = (1, 3, 5, 9, 17, 30, 52, 90, \ldots).$

Example 6. Let A be the Catalan sequence, given by $a_n = \frac{1}{n} \begin{pmatrix} 2n-2\\ n-1 \end{pmatrix}$. Then

$$A = (1, 1, 2, 5, 14, 42, 132, 429, 1430, \ldots)$$

$$A^{-1} = (1, -1, -1, -2, -5, -14, -42, -132, \ldots).$$

Example 7. Let A be the sequence of central binomial coefficients, given by $a_n = \begin{pmatrix} 2n-2 \\ n-1 \end{pmatrix}$, Then $A = (1, 2, 6, 20, 70, 252, 924, \ldots)$ and $A^{-1} = (1, -2, -2, -4, -10, -28, -84, -264, \ldots),$

with obvious connections to the Catalan sequence.

Certain operations on sequences in \mathcal{G} are easily expressed in terms of convolution. Two of these operations are given as follows. Suppose x is an integer, and $A = (1, a_2, a_3, \ldots)$ is a sequence in \mathcal{G} , with inverse $B = (1, b_2, b_3, \ldots)$. Then

$$(1, xa_2, xa_3, xa_4, \ldots) = (1, (1-x)b_2, (1-x)b_3, (1-x)b_4, \ldots) \star A$$

and

$$(1, x, a_2, a_3, \ldots) = (1, x + b_2, (x - 1)b_2 + b_3, (x - 1)b_3 + b_4, \ldots) \star A.$$

Stated in terms of power series

$$a(t) = 1 + a_2t + a_3t^2 + \cdots$$
 and $1/a(t) = b(t) = 1 + b_2t + b_3t^2 + \cdots$,

the two operations correspond to the identities

$$xa(t) + 1 - x = [(1 - x)b(t) + x]a(t);$$

$$ta(t) + 1 + (x - 1)t = \{b(t) + [(x - 1)b(t) + 1]t\}a(t).$$

3 The group $(\mathbb{G}^{(m)}, \cdot)$

Recall that the set \mathbb{G} consists of the lower triangular infinite integer matrices with all diagonal entries 1. Define ' on \mathbb{G} as follows: if $A \in \mathbb{G}$, then A' is the matrix that remains when row 1 and column 1 of A are removed. Clearly $A' \in \mathbb{G}$. Define

$$A^{(0)} = A,$$
 $A^{(n)} = (A^{(n-1)})'$

for $n \geq 1$. Let

$$\mathbb{G}^{(m)} = \{ A \in \mathbb{G} : A^{(m)} = A \}$$

for $m \geq 0$. Note that $(\mathbb{G}^{(1)}, \cdot)$ is the group of sequential matrices introduced in Section 1, and $\mathbb{G}^{(m)} \subset \mathbb{G}^{(d)}$ if and only if d|m.

Theorem 3. $(G^{(m)}, \cdot)$ is a group for $m \ge 0$.

Proof: $(\mathbb{G}^{(0)}, \cdot)$ is the group (\mathbb{G}, \cdot) . For $m \geq 1$, first note that (AB)' = A'B', so that, inductively, $(AB)^{(q)} = A^{(q)}B^{(q)}$ for all $q \geq 1$. In particular, if A and B are in $\mathbb{G}^{(m)}$, then

$$(AB)^{(m)} = A^{(m)}B^{(m)} = AB,$$

so that $AB \in \mathbb{G}^{(m)}$. Moreover,

$$(A^{-1})^{(m)} = (A^{(m)})^{-1} = A^{-1},$$

so that $A^{-1} \in \mathbb{G}^{(m)}$.

4 The group $(\mathbb{G}^{(2)}, \cdot)$

Suppose that A, B, C, D are sequences in \mathcal{G} . Let $\langle A; B \rangle$ denote the matrix in $\mathbb{G}^{(2)}$ whose first column is $A = (a_1, a_2, \ldots)$ and whose second column is $(0, b_1, b_2, \ldots)$, where $a_1 = b_1 = 1$. We shall see that the product $\langle A; B \rangle \cdot \langle C; D \rangle$ is given by certain "mixed convolutions." Write $\langle A; B \rangle \cdot \langle C; D \rangle$ as $\langle U; V \rangle$. Then

$$u_n = \begin{cases} (a_1, b_2, a_3, \dots, b_{n-1}, a_n) \star (c_1, c_2, \dots, c_n), & \text{if } n \text{ is odd}; \\ (b_1, a_2, b_3, \dots, b_{n-1}, a_n) \star (c_1, c_2, \dots, c_n), & \text{if } n \text{ is even}; \end{cases}$$

$$v_n = \begin{cases} (b_1, a_2, b_3, \dots, a_{n-1}, b_n) \star (d_1, d_2, \dots, d_n), & \text{if } n \text{ is odd;} \\ (a_1, b_2, a_3, \dots, a_{n-1}, b_n) \star (d_1, d_2, \dots, d_n), & \text{if } n \text{ is even.} \end{cases}$$

In particular $\langle A; B \rangle \cdot \langle B; A \rangle$ is the sequential matrix of the sequence $A \star B$.

Recursive formulas for columns of $\langle A; B \rangle^{-1}$ can also be given: write $\langle A; B \rangle^{-1}$ as $\langle X; Y \rangle$, so that $\langle A; B \rangle \cdot \langle X; Y \rangle$ is the identity matrix. Each nondiagonal entry of $\langle A; B \rangle \cdot \langle X; Y \rangle$ is zero, so that, solving inductively for x_1, x_2, x_3, \ldots and y_1, y_2, y_3, \ldots gives

$$x_n = \begin{cases} -a_n - b_{n-1}x_2 - a_{n-2}x_3 - \dots - b_2x_{n-1}, & \text{if } n \text{ is odd;} \\ -a_n - b_{n-1}x_2 - a_{n-2}x_3 - \dots - a_2x_{n-1}, & \text{if } n \text{ is even;} \end{cases}$$
(5)

$$y_n = \begin{cases} -b_n - a_{n-1}y_2 - b_{n-2}y_3 - \dots - a_2y_{n-1}, & \text{if } n \text{ is odd;} \\ -b_n - a_{n-1}y_2 - b_{n-2}y_3 - \dots - b_2y_{n-1}, & \text{if } n \text{ is even.} \end{cases}$$
(6)

Example 8. Example 6 shows that the Catalan sequence satisfies the equation

$$(1, a_2, a_3, \ldots)^{-1} = (1, -1, -a_2, -a_3, \ldots),$$

which we abbreviate as $A^{-1} = (1, -A)$. It is natural to ask whether there are sequences A and B for which

$$\langle A; B \rangle^{-1} = \langle 1, -A; B \rangle.$$
(7)

This problem is solved as follows. Write the first and second columns of $\langle 1, -A; B \rangle$ as $(1, x_2, x_3, ...)$ and $(0, 1, y_2, y_3, ...)$, respectively. Equation (7) implies $x_n = -a_{n-1}$ and $y_n = b_n$ for $n \ge 2$. Thus, $b_2 = y_2$, but also, by (6), $y_2 = -b_2$, so that $b_2 = 0$. Inductively, (6) and (7) imply $b_n = 0$ for all $n \ge 3$, so that B is the convolutory identity sequence: B = (1, 0, 0, 0, ...). Using this fact together with (5) gives

$$x_n = \begin{cases} -a_n - a_{n-2}x_3 - a_{n-4}x_5 - \dots - a_2x_{n-1}, & \text{if } n \text{ is even}; \\ -a_n - a_{n-2}x_3 - a_{n-4}x_5 - \dots - a_3x_{n-2}, & \text{if } n \text{ is odd}; \end{cases}$$

so that, substituting $x_k = -a_{k-1}$, we have a recurrence for A:

$$a_n = \begin{cases} a_{n-1} + a_{n-2}a_2 + a_{n-4}a_4 + \dots + a_2a_{n-2} & \text{if } n \text{ is even;} \\ a_{n-1} + a_{n-2}a_2 + a_{n-4}a_4 + \dots + a_3a_{n-3} & \text{if } n \text{ is odd;} \end{cases}$$

with initial values $a_1 = 1$, $a_2 = 1$. This sequence, listed as A047749 in [4], is given by

$$a_n = \begin{cases} \frac{1}{2m+1} \begin{pmatrix} 3m \\ m \end{pmatrix}, & \text{if } n = 2m; \\ \frac{1}{2m+1} \begin{pmatrix} 3m+1 \\ m+1 \end{pmatrix}, & \text{if } n = 2m+1. \end{cases}$$

Example 9. Let $a_n = 1$ and $b_n = F_n$ for $n \ge 1$, where F_n denotes the Fibonacci sequence in Example 1. Let C be the sequence given by $c_1 = 1$, $c_2 = -1$, $c_3 = 0$, $c_4 = 1$, and $c_n = 2^{\lfloor (n-5)/2 \rfloor}$ for $n \ge 5$. Let D be the sequence given by $d_1 = 1$, $d_2 = -1$, $d_3 = -1$, and $d_n = -c_{n+1}$ for $n \ge d_4$. Then $\langle A; B \rangle^{-1} = \langle C; D \rangle$. **Theorem 4.** If any three of four sequences A, B, C, D in G are given, then the fourth sequence is uniquely determined by the condition that $\langle A; B \rangle \cdot \langle C; D \rangle$ be a sequential matrix.

Proof: The requirement that $\langle A; B \rangle \cdot \langle C; D \rangle$ be a sequential matrix is equivalent to an infinite system of equations, beginning with

$$d_{1} = 1$$

$$b_{2} + d_{2} = a_{2} + c_{2}$$

$$b_{3} + a_{2}d_{2} + d_{3} = a_{3} + b_{2}c_{2} + c_{3}$$

For $n \geq 3$, the system can be expressed as follows:

$$b_n + a_{n-1}d_2 + b_{n-2}d_3 + \dots + h_2d_{n-1} + d_n$$

= $a_n + b_{n-1}c_2 + a_{n-2}c_3 + \dots + h'_2c_{n-1} + c_n,$ (8)

where $h_2 = a_2$ if n is odd, $h_2 = b_2$ if n is even; and $h'_2 = b_2$ if n is odd, $h'_2 = a_2$ if n is even.

Equations (8) show that each of the four sequences is determined by the other three.

Example 10. By (8), D is determined by A, B, C in accord with the recurrence

$$d_n = a_n + c_2 b_{n-1} + c_3 a_{n-2} + c_4 b_{n-3} + \dots + c_{n-1} h'_2 + c_n -b_n - d_2 a_{n-1} - d_3 b_{n-2} - d_4 a_{n-3} \dots - d_{n-1} h_2.$$
(9)

Suppose $a_n = b_n = c_{n-2} = 0$ for $n \ge 3$. Then by (9),

$$d_n = \begin{cases} -b_2 d_{n-1} - a_3 d_{n-2}, & \text{if } n \text{ is even;} \\ -a_2 d_{n-1} - b_3 d_{n-2}, & \text{if } n \text{ is odd;} \end{cases}$$

for $n \ge 4$, with $d_1 = 1$, $d_2 = a_2 - b_2$, $d_3 = a_3 - a_2d_2 - b_3d_1$. If $(a_1, a_2, a_3) = (1, -1, -1)$ and $(b_1, b_2, b_3) = (1, -2, -1)$ and $c_1 = 1$, then

 $D = (1, 1, 1, 3, 4, 11, 15, 41, 56, 153, \ldots),$

which, except for the initial 1, is the sequence of denominators of the convergents to $\sqrt{3}$, indexed in [4] as A002530. In this example, $\langle A; B \rangle \cdot \langle C; D \rangle$ is the sequential matrix with first three terms 1, -1, -1 and all others zero.

Theorem 5. If A, B, C in G are given and $|a_2| = 1$, then there exists a unique sequence D in G such that $\langle A; B \rangle \cdot \langle C; D \rangle = \langle C; D \rangle \cdot \langle A; B \rangle$.

Proof: Write $\langle A; B \rangle \cdot \langle C; D \rangle$ as (s_{ij}) and $\langle C; D \rangle \cdot \langle A; B \rangle$ as (t_{ij}) . Equating $s_{n+1,1}$ and $t_{n+1,1}$ and solving for d_n give

$$d_n = \frac{1}{a_2}(u_n - v_n)$$
(10)

for $n \geq 3$, where

$$u_n = \begin{cases} c_2b_n + c_3a_{n-1} + c_4b_{n-2} + \dots + c_na_2, & \text{if } n \text{ is odd;} \\ c_2b_n + c_3a_{n-1} + c_4b_{n-2} + \dots + c_nb_2, & \text{if } n \text{ is even;} \end{cases}$$
$$v_n = \begin{cases} a_3c_{n-1} + a_4d_{n-2} + \dots + a_nc_2, & \text{if } n \text{ is odd;} \\ a_3c_{n-1} + a_4d_{n-2} + \dots + a_nd_2, & \text{if } n \text{ is even;} \end{cases}$$

with $d_1 = 1$, $d_2 = b_2 c_2/a_2$. A sequence D is now determined by (10); we shall refer to the foregoing as part 1.

It is necessary to check that the equations $s_{n+1,2} = t_{n+1,2}$ implied by

$$\langle A; B \rangle \cdot \langle C; D \rangle = \langle C; D \rangle \cdot \langle A; B \rangle$$

do not impose requirements on the sequence D that are not implied by those already shown to determine D. In fact, the equations $s_{n+1,2} = t_{n+1,2}$ with initial value $d_1 = 1$ determine exactly the same sequence D. To see that this is so, consider the mapping $\langle A; B \rangle' = \langle B; A \rangle$. It is easy to prove the following lemma:

$$(\langle A; B \rangle \cdot \langle C; D \rangle)' = \langle B; A \rangle \cdot \langle D; C \rangle.$$

By part 1 applied to $\langle B; A \rangle \cdot \langle D; C \rangle$ and $\langle D; C \rangle \cdot \langle B; A \rangle$, the first column of $\langle B; A \rangle \cdot \langle D; C \rangle$ equals the first column of $\langle D; C \rangle \cdot \langle B; A \rangle$. Therefore, by the lemma, the second column of $\langle A; B \rangle \cdot \langle C; D \rangle$ equals the second column of $\langle C; D \rangle \cdot \langle A; B \rangle$, which is to say that the equations $s_{n+1,2} = t_{n+1,2}$ hold.

Example 11. Let $a_1 = 1$, $a_2 = 1$, and $a_n = 0$ for $n \ge 3$. Let *B* be the Fibonacci sequence. Let $C = (1, 1, 0, 1, 0, 0, \ldots)$, with $c_n = 0$ for $n \ge 5$. Then *D* is given by $d_1 = 1$, $d_2 = 1$, $d_3 = 2$, and $d_n = L_{n-1}$ for $n \ge 4$, where (L_n) is the Lucas sequence, as in Example 1. Writing $\langle A; B \rangle \cdot \langle C; D \rangle$ as $\langle U, V \rangle$, we have $\langle U, V \rangle = \langle C; D \rangle \cdot \langle A; B \rangle$, where $U = (1, 2, 1, 3, 4, 7, 11, 18, \ldots)$ and $V = (1, 2, 5, 9, 20, 32, 66, 105, 207, \ldots)$.

5 Generalization of Theorem 4

It is natural to ask what sort of generalization Theorem 4 has for $m \geq 3$. The notation $\langle A; B \rangle$ used for matrices in $\mathbb{G}^{(2)}$ is now generalized in the obvious manner to $\langle A_1, A_2, \ldots, A_m \rangle$ in $\mathbb{G}^{(m)}$, where A_i is a sequence (a_{i1}, a_{i2}, \ldots) having $a_{i1} = 1$, for $i = 1, 2, \ldots, m$.

Theorem 4A. Suppose A_1, A_2, \ldots, A_m and B_i for some i satisfying $1 \le i \le m$ are given. Then sequences B_j for $j \ne i$ are uniquely determined by the condition that $\langle A_1, A_2, \ldots, A_m \rangle \cdot \langle B_1, B_2, \ldots, B_m \rangle$ be a sequential matrix. Conversely, suppose B_1, B_2, \ldots, B_m and A_i for some i satisfying $1 \le i \le m$ are given. Then sequences A_j for $j \ne i$ are uniquely determined by the condition that $\langle A_1, A_2, \ldots, A_m \rangle \cdot \langle B_1, B_2, \ldots, B_m \rangle$ be a sequential matrix.

Proof: Let U = AB. For given A, each column of B uniquely determines the corresponding column of U, and each column of U determines the corresponding column of B. Thus, under

the hypothesis that a particular column B_i of B is given, the equation U = AB determines the corresponding column of U. Consequently, as U is a sequential matrix, every column of U is determined, and this implies that every column of B is determined.

For the converse, suppose B, together with just one column A_i of A, are given, and that the product U = AB is sequential. As a first induction step,

$$a_{21}b_{11} + a_{22}b_{21} = a_{32}b_{22} + a_{33}b_{32} = \cdots$$
 (11)

As $a_{i+1,i}$ is given, equations (11) show that $a_{h+1,h}$ is determined for all $h \ge 1$. Assume for arbitrary $k \ge 1$ that $a_{h+j,h}$ is determined for all j satisfying $1 \le j \le k$, for all $h \ge 1$. As U is sequential,

$$a_{k+1,1}b_{11} + a_{k+1,2}b_{21} + \dots + a_{k+1,k+1}b_{k+1,1}$$

$$= a_{k+2,2}b_{22} + a_{k+2,3}b_{32} + \dots + a_{k+2,k+2}b_{k+2,2}$$

$$= \dots \qquad (12)$$

As $a_{k+i,i}$ is given, equations (12) and the induction hypothesis show that $a_{k+h,h}$ is determined for all $h \ge 1$. Thus, by induction, A is determined.

Theorem 4A shows that Theorem 4 extends to $\mathbb{G}^{(m)}$. The method of proof of Theorem 4A clearly applies to \mathbb{G} , so that Theorem 4A extends to \mathbb{G} .

6 Transformations involving divisors

We return to the general group (\mathbb{G}, \cdot) for a discussion of several specific matrix transformations involving divisors of integers. The first is given by the left summatory matrix,

$$T(n,k) = \begin{cases} 1, & \text{if } k|n; \\ 0, & \text{otherwise.} \end{cases}$$

The inverse of T is the left Möbius transformation matrix. The matrices T and T^{-1} are indexed as A077049 and A077050 in [4], where transformations by T and T^{-1} of selected sequences in \mathcal{G} are referenced. In general, if A is a sequence written as an infinite column vector, then

$$T \cdot A = \{\sum_{k|n} a_k\}$$
 and $T^{-1} \cdot A = \{\sum_{k|n} \mu(k)a_k\},\$

that is, the summatory sequence of A and the Möbius transform of A, respectively.

Next, define the left summing matrix $S = \{s(n,k)\}$ and the left differencing matrix $D = \{d(n,k)\}$ by

$$\begin{split} s(n,k) &= \begin{cases} 1, & \text{if } k \leq n; \\ 0, & \text{otherwise.} \end{cases} \\ d(n,k) &= \begin{cases} (-1)^{n+k}, & \text{if } k = n \text{ or } k = n-1; \\ 0, & \text{otherwise.} \end{cases} \end{split}$$

Note that $D = S^{-1}$.

Example 12. Suppose that a sequence $C = (1, c_2, c_3, ...)$ in \mathcal{G} is transformed to a sequence $A = (1, a_2, a_3, ...)$ by the sums $a_n = \sum_{k=1}^n c_k \lfloor n/k \rfloor$. In order to solve this system of equations, let $U(n, k) = \lfloor n/k \rfloor$ for $k \ge 1$, $n \ge 1$. Then $U = S \cdot T$, so that $U^{-1} = T^{-1} \cdot D$, which means that

$$c_n = \sum_{d|n} \mu(d)(a_{n/d} - a_{n/d-1}),$$

where $a_0 := 0$. If $a_n = 1$ for every $n \ge 1$, then $c_n = \mu(n)$. If $a_n = n$, then C is the convolutory identity, $(1, 0, 0, 0, \ldots)$. If $a_n = \binom{n+1}{2}$, then $c_n = \varphi(n)$. If $a_n = \binom{n+2}{3}$, then C is the sequence indexed as A000741 in [4] and discussed in [1] in connection with compositions of integers with relatively prime summands.

References

- H. W. Gould, Binomial coefficients, the bracket function, and compositions with relatively prime summands, *Fibonacci Quart.* 2 (1964) 241–260.
- [2] Steven Roman, The Umbral Calculus, Academic Press, New York, 1984.
- [3] Louis W. Shapiro, Seyoum Getu, Wen-Jin Woan, and Leon C. Woodson, The Riordan group, Disc. Appl. Math. 34 (1991) 229–239.
- [4] N. J. A. Sloane *The On-Line Encyclopedia of Integer Sequences*, http://www.research.att.com/~njas/sequences.

2000 Mathematics Subject Classification: Primary 11A25. Keywords: Appell sequence, convolution, Fibonacci sequence, linear recurrence, Riordan group, sequential matrix.

(Concerned with sequences <u>A000045</u>, <u>A000108</u> <u>A000142</u> <u>A000201</u> <u>A000204</u> <u>A000741</u> <u>A000984</u> <u>A002530</u> <u>A047749</u> <u>A077049</u> <u>A077050</u> <u>A077605</u> <u>A077606</u>.)

Received November 13, 2002; revised versions received January 28, 2003; September 2, 2003. Published in *Journal of Integer Sequences*, September 8, 2003.

Return to Journal of Integer Sequences home page.