On an Integer Sequence Related to a Product of Trigonometric Functions, and its Combinatorial Relevance

Dorin Andrica
"Babeş-Bolyai" University
Faculty of Mathematics and Computer Science
Str. M. Kogǎlniceanu nr. 1
3400 Cluj-Napoca, Romania
dandrica@math.ubbcLuj.ro
Ioan Tomescu
University of Bucharest
Faculty of Mathematics and Computer Science
Str. Academiei, 14
R-70109 Bucharest, Romania
ioan@math.math.unibuc.ro

Abstract

In this paper it is shown that for $n \equiv 0$ or $3(\bmod 4)$, the middle term $S(n)$ in the expansion of the polynomial $(1+x)\left(1+x^{2}\right) \cdots\left(1+x^{n}\right)$ occurs naturally when one analyzes when a discontinuous product of trigonometric functions is a derivative of a function. This number also represents the number of partitions of $T_{n} / 2=n(n+1) / 4$, (where T_{n} is the nth triangular number) into distinct parts less than or equal to n. It is proved in a constructive way that $S(n) \geq 6 S(n-4)$ for every $n \geq 8$, and an

asymptotic evaluation of $S(n)^{1 / n}$ is obtained as a consequence of the unimodality of the coefficients of this polynomial. Also an integral expression of $S(n)$ is deduced.

1 Notation and preliminary results

In a paper of Andrica [3] the following necessary and sufficient condition that some product of derivatives is also a derivative is deduced:

Theorem 1.1 Let $n_{1}, \ldots, n_{k} \geq 0$ be integers with $n_{1}+\ldots+n_{k} \geq 1$ and let $\alpha_{1}, \ldots, \alpha_{k}$ be real numbers different from zero. The function $f_{n_{1}, \ldots, n_{k}}^{\alpha_{1}, \ldots, \alpha_{k}}: \mathbb{R} \rightarrow \mathbb{R}$, defined by

$$
f_{n_{1}, \ldots, n_{k}}^{\alpha_{1}, \ldots, \alpha_{k}}(x)= \begin{cases}\cos ^{n_{1}}\left(\alpha_{1} / x\right) \cdots \cos ^{n_{k}}\left(\alpha_{k} / x\right), & \text { if } x \neq 0 \\ \alpha, & \text { if } x=0\end{cases}
$$

is a derivative if and only if

$$
\alpha=\frac{1}{2^{n_{1}+\ldots+n_{k}}} S\left(n_{1}, \ldots, n_{k} ; \alpha_{1}, \ldots, \alpha_{k}\right),
$$

where $S\left(n_{1}, \ldots, n_{k} ; \alpha_{1}, \ldots, \alpha_{k}\right)$ is the number of all choices of signs + and - such that

$$
\begin{equation*}
\underbrace{ \pm \alpha_{1} \pm \ldots \pm \alpha_{1}}_{n_{1} \text { times }} \underbrace{ \pm \alpha_{2} \pm \ldots \pm \alpha_{2}}_{n_{2} \text { times }} \pm \ldots \underbrace{ \pm \alpha_{k} \pm \ldots \pm \alpha_{k}}_{n_{k} \text { times }}=0 \tag{1}
\end{equation*}
$$

Note that this theorem extends one previously published in [2].
We shall present another combinatorial interpretations of the numbers

$$
S\left(n_{1}, \ldots, n_{k} ; \alpha_{1}, \ldots, \alpha_{k}\right)
$$

and an integral representation, while the last section is devoted to the sequence $S(n)=$ $S(\underbrace{1, \ldots, 1}_{n \text { times }} ; 1,2,3, \ldots, n)$ for $n \geq 1$.

Let M be a multiset of type $\alpha_{1}^{n_{1}} \alpha_{2}^{n_{2}} \ldots \alpha_{k}^{n_{k}}$, i.e., a multiset containing α_{i} with multiplicity n_{i} for every $1 \leq i \leq k$. It is clear that $S\left(n_{1}, \ldots, n_{k} ; \alpha_{1}, \ldots \alpha_{k}\right)$ is the number of ordered partitions having equal sums of M, i.e., of ordered pairs (C_{1}, C_{2}) such that $C_{1} \cup C_{2}=M$, $C_{1} \cap C_{2}=\emptyset$ and $\sum_{x \in C_{1}} x=\sum_{y \in C_{2}} y=\frac{1}{2} \sum_{i=1}^{k} n_{i} \alpha_{i}$. Indeed, there exists a bijection between the set of all choices of + or - signs in (1) and the set of all ordered partitions with equal sums of M defined as follows: We put α_{i} from (1) in C_{1} if its sign is + and in C_{2} otherwise.

It is also clear that $S\left(n_{1}, \ldots, n_{k} ; \alpha_{1} \ldots, \alpha_{k}\right)$ is the term not depending on z in the expansion

$$
\begin{equation*}
F(z)=\left(z^{\alpha_{1}}+\frac{1}{z^{\alpha_{1}}}\right)^{n_{1}}\left(z^{\alpha_{2}}+\frac{1}{z^{\alpha_{2}}}\right)^{n_{2}} \ldots\left(z^{\alpha_{k}}+\frac{1}{z^{\alpha_{k}}}\right)^{n_{k}} \tag{2}
\end{equation*}
$$

Wilf (10] outlines a proof that for $n_{1}=n_{2}=\ldots=n_{k}=1$, the coefficient of z^{n} in $F(z)$ represents the number of ways of choosing + or - signs such that $\pm \alpha_{1} \pm \alpha_{2} \pm \ldots \pm \alpha_{k}=n$. If $\alpha_{1}, \ldots, \alpha_{k}$ are positive integers, from (2) one gets

$$
\begin{equation*}
F(z)=S\left(n_{1}, \ldots, n_{k} ; \alpha_{1}, \ldots, \alpha_{k}\right)+\sum_{\alpha \neq 0} a_{\alpha} z^{\alpha} \tag{3}
\end{equation*}
$$

where the sum has only a finite number of terms and α and a_{α} are integers. By substituting $z=\cos t+i \sin t, t \in \mathbb{R}$ in (3) one deduces

$$
2^{n_{1}+\ldots+n_{k}} \prod_{j=1}^{k}\left(\cos \alpha_{j} t\right)^{n_{j}}=S\left(n_{1}, \ldots, n_{k} ; \alpha_{1}, \ldots, \alpha_{k}\right)+\sum_{\alpha \neq 0} a_{\alpha}(\cos \alpha t+i \sin \alpha t)
$$

By integration on $[0,2 \pi]$ we find the following integral expression of $S\left(n_{1}, \ldots, n_{k} ; \alpha_{1}, \ldots, \alpha_{k}\right)$:

$$
S\left(n_{1}, \ldots, n_{k} ; \alpha_{1}, \ldots, \alpha_{k}\right)=\frac{2^{n_{1}+\ldots+n_{k}}}{2 \pi} \int_{0}^{2 \pi}\left(\cos \alpha_{1} t\right)^{n_{1}} \cdots\left(\cos \alpha_{k} t\right)^{n_{k}} d t
$$

2 A particular case and its connection with polynomial unimodality

An interesting particular case is obtained for $n_{1}=n_{2}=\ldots=n_{k}=1$ and $\alpha_{i}=i$ for every $1 \leq i \leq k$. In this case $S(n)$ is the number of ways of choosing + and - signs such that $\pm 1 \pm 2 \pm \ldots \pm n=0$. Since now $M=\{1,2, \ldots, n\}$ has sum $T_{n}=n(n+1) / 2$ and every class of an ordered bipartition of M must have sum $T_{n} / 2$, it follows that $S(n)=0$ for $n \equiv 1$ or $2(\bmod 4)$ and $S(n) \neq 0$ for $n \equiv 0$ or $3(\bmod 4)$. The following theorem proposes several equivalent definitions of the sequence $S(n)$ for $n \geq 1$.

Theorem 2.1 For every $n \geq 1$ the following properties are equivalent:
(i) $S(n)$ is the number of choices of + and - signs such that $\pm 1 \pm 2 \pm \ldots \pm n=0$;
(ii) $S(n)$ is the number of ordered bipartitions into classes having equal sums of $\{1,2, \ldots, n\}$;
(iii) $S(n)$ is the term not depending on x in the expansion of

$$
\left(x+\frac{1}{x}\right)\left(x^{2}+\frac{1}{x^{2}}\right) \ldots\left(x^{n}+\frac{1}{x^{n}}\right) ;
$$

(iv) $S(n)$ is the number of partitions of $T_{n} / 2$ into distinct parts, less than or equal to n, if $n \equiv 0$ or $3(\bmod 4)$, and $S(n)=0$ otherwise;
(v) $S(n)$ is the number of distinct subsets of $\{1, \ldots, n\}$ whose elements sum to $T_{n} / 2$ if $n \equiv 0$ or $3(\bmod 4)$, and $S(n)=0$ if $n \equiv 1$ or $2(\bmod 4)$;
(vi) $S(n)$ is the coefficient of $x^{T_{n} / 2}$ in the polynomial $G_{n}(x)=(1+x)\left(1+x^{2}\right) \ldots\left(1+x^{n}\right)$ when $n \equiv 0$ or $3(\bmod 4)$, and $S(n)=0$ otherwise;
(vii)

$$
S(n)=\frac{2^{n-1}}{\pi} \int_{0}^{2 \pi} \cos t \cos 2 t \cdots \cos n t d t
$$

(viii) $S(n) / 2^{n}$ is the unique real number α having the property that the function $f: \mathbb{R} \rightarrow \mathbb{R}$, defined by

$$
f(x)= \begin{cases}\cos (1 / x) \cos (2 / x) \cdots \cos (n / x), & \text { if } x \neq 0 \\ \alpha, & \text { if } x=0\end{cases}
$$

is a derivative.
Proof: Some equivalences are obvious or were shown in the general case. For example, the equivalence between (ii) and (v) is given by the bijection φ defined for every bipartition $M=C_{1} \cup C_{2}$ such that $\sum_{x \in C_{1}} x=\sum_{y \in C_{2}} y$ by $\varphi\left(C_{1} \cup C_{2}\right)=C_{1} \subset M$.
Let us denote

$$
\begin{equation*}
G_{n}(x)=(1+x)\left(1+x^{2}\right) \ldots\left(1+x^{n}\right)=\sum_{i=0}^{T_{n}} G(n, i) x^{i} \tag{4}
\end{equation*}
$$

Note that the property that the coefficient of x^{i} in $G_{n}(x)$ is the number of distinct subsets of $\{1, \ldots, n\}$ whose elements sum to i was used by Friedman and Keith [5] to deduce a necessary and sufficient condition for the existence of a basic (n, k) magic carpet. Stanley [9], using the "hard Lefschetz theorem" from algebraic geometry, proved that the posets $M(n)$ of all partitions of integers into distinct parts less than or equal to n are rank unimodal, by showing the existence of a chain decomposition for $M(n)$. This fact is equivalent to the unimodality of the polynomial $G_{n}(x)$, which implies that $S(n)$ is the maximum coefficient in the expansion of $G_{n}(x)$ for $n \equiv 0$ or $3(\bmod 4)$. Stanley's proof was subsequently simplified by Proctor [6].

The property of symmetry of the coefficients in (4), namely $G(n, i)=G\left(n, T_{n}-i\right)$ for every $0 \leq i \leq T_{n}$ was pointed out by Friedman and Keith ; they also found the recurrence $G(n, i)=G(n-1, i)+G(n-1, i-n)$. This latter recurrence, which is a consequence of the identity $G_{n}(x)=G_{n-1}(x)\left(1+x^{n}\right)$, allows us to compute any finite submatrix of the numbers $G(n, i)$ and thus the numbers $S(n)=G\left(n, T_{n} / 2\right)$.

Some values of $S(n)$, starting with $n=3$, are given in the following table:

n	$S(n)$	n	$S(n)$	n	$S(n)$	n	$S(n)$
3	2	13	0	23	99,820	33	0
4	2	14	0	24	187,692	34	0
5	0	15	722	25	0	35	$221,653,776$
6	0	16	1,314	26	0	36	$425,363,952$
7	8	17	0	27	$1,265,204$	37	0
8	14	18	0	28	$2,399,784$	38	0
9	0	19	8,220	29	0	39	$3,025,553,180$
10	0	20	15,272	30	0	40	$5,830,034,720$
11	70	21	0	31	$16,547,220$	41	0
12	124	22	0	32	$31,592,878$	42	0

and thus the terms different from zero form a subsequence of the sequence A025591 in Sloane [7].

Another recurrence satisfied by the numbers $G(n, i)$ is the following:

Lemma 2.2 We have $G(n, i)=\sum_{j \geq 0} G(n-1-j, i-n+j)$.
Proof: Let $\mathcal{P}(k, i)$ denote the set of partitions of i into distinct parts such that the maximum part is equal to k. It is clear that

$$
G(n, i)=\left|\bigcup_{j \geq 0} \mathcal{P}(n-j, i)\right|=\sum_{j \geq 0}|\mathcal{P}(n-j, i)|=\sum_{j \geq 0} G(n-1-j, i-n+j)
$$

Indeed, there is a bijection between the set of partitions of i into distinct parts such that the maximum part equals $n-j$ and the set of partitions of $i-n+j$ into distinct parts less than or equal to $n-1-j$, defined by deleting the maximum part, equal to $n-j$, in any partition in $\mathcal{P}(n-j, i)$. Hence $|\mathcal{P}(n-j, i)|=G(n-1-j, i-n+j)$.

Theorem 2.3 For any $n \geq 8$ we have $S(n) \geq 6 S(n-4)$.
Proof: For $n \leq 11$ this inequality is verified by inspection.
For $n \geq 12$ we shall propose a constructive proof yielding for any ordered partition of $\{1, \ldots, n-4\}$ in two classes C_{1} and C_{2} with equal sums six ordered partitions of $\{1, \ldots, n\}$ in two classes C_{1}^{\prime} and C_{2}^{\prime} having equal sums and all partitions generated will be distinct. Indeed, for any ordered bipartition with equal sums $\{1, \ldots, n-4\}=C_{1} \cup C_{2}$ we can generate six ordered bipartitions with equal sums $\{1, \ldots, n\}=\mathrm{C}_{1}^{\prime} \cup \mathrm{C}_{2}^{\prime}$ as follows:
(a) $\mathrm{C}_{1}^{\prime}=C_{1} \cup\{n-3, n\}$ and $\mathrm{C}_{2}^{\prime}=C_{2} \cup\{n-2, n-1\}$;
(b) $\mathrm{C}_{1}^{\prime}=C_{1} \cup\{n-2, n-1\}$ and $\mathrm{C}_{2}^{\prime}=C_{2} \cup\{n-3, n\}$;
(c) Without loss of generality suppose $1 \in C_{1}$. We define $\mathrm{C}_{1}^{\prime \prime}=C_{1} \backslash\{1\}, \mathrm{C}_{2}^{\prime \prime}=C_{2} \cup\{1\}$, $\mathrm{C}_{1}^{\prime}=\mathrm{C}_{1}^{\prime \prime} \cup\{n-2, n\}$ and $\mathrm{C}_{2}^{\prime}=\mathrm{C}_{2}^{\prime \prime} \cup\{n-3, n-1\}$;
(d) Without loss of generality suppose $2 \in C_{1}$. Now $\mathrm{C}_{1}^{\prime \prime}=C_{1} \backslash\{2\}, \mathrm{C}_{2}^{\prime \prime}=C_{2} \cup\{2\}$, $\mathrm{C}_{1}^{\prime}=\mathrm{C}_{1}^{\prime \prime} \cup\{n-1, n\}, \mathrm{C}_{2}^{\prime}=\mathrm{C}_{2}^{\prime \prime} \cup\{n-3, n-2\}$.

Case (e) is a little more complicated, but we will be able to do it by combining two simple transformations.
(e) Suppose $1 \in C_{1}$. If $n-4$ belongs to the same class, we define $\mathrm{C}_{1}^{\prime \prime}=C_{1} \backslash\{1, n-4\}$, $\mathrm{C}_{2}^{\prime \prime}=C_{2} \cup\{1, n-4\}, \mathrm{C}_{1}^{\prime}=\mathrm{C}_{1}^{\prime \prime} \cup\{n-3, n-2, n-1\}$ and $\mathrm{C}_{2}^{\prime}=\mathrm{C}_{2}^{\prime \prime} \cup\{n\}$. This transformation resolves the imbalance of $2 n-6$ between $\mathrm{C}_{1}^{\prime \prime}$ and $\mathrm{C}_{2}^{\prime \prime}$ and will be called of type A .

Otherwise $1 \in C_{1}$ and $n-4 \in C_{2}$. If $2 \in C_{2}$ one defines $\mathrm{C}_{2}^{\prime \prime}=C_{2} \backslash\{2, n-4\}, \mathrm{C}_{1}^{\prime \prime}=$ $C_{1} \cup\{2, n-4\}, \mathrm{C}_{1}^{\prime}=\mathrm{C}_{1}^{\prime \prime} \cup\{n-1\}$ and $\mathrm{C}_{2}^{\prime}=\mathrm{C}_{2}^{\prime \prime} \cup\{n, n-2, n-3\}$. This transformation balances classes $\mathrm{C}_{1}^{\prime \prime}$ and $\mathrm{C}_{2}^{\prime \prime}$ by $2 n-4$ and will be called of type B .

Otherwise $2 \in C_{1}$, hence $C_{1}=\{1,2, \ldots\}$ and $C_{2}=\{n-4, \ldots\}$. If $n-5 \in C_{1}$ then $\mathrm{C}_{1}^{\prime \prime}=C_{1} \backslash\{2, n-5\}, \mathrm{C}_{2}^{\prime \prime}=C_{2} \cup\{2, n-5\}, \mathrm{C}_{1}^{\prime}=\mathrm{C}_{1}^{\prime \prime} \cup\{n-3, n-2, n-1\}$ and $\mathrm{C}_{2}^{\prime}=\mathrm{C}_{2}^{\prime \prime} \cup\{n\}$.

Otherwise $n-5 \in C_{2}$, hence $C_{1}=\{1,2, \ldots\}, C_{2}=\{n-4, n-5, \ldots\}$. Now if $3 \in C_{2}$ we move 3 and $n-5$ into C_{1} and apply a type B transformation.

Otherwise $3 \in C_{1}$ and if $n-6 \in C_{1}$, we add $n-6$ and 3 to C_{2} and apply a type A transformation; otherwise $C_{1}=\{1,2,3, \ldots\}$ and $C_{2}=\{n-4, n-5, n-6, \ldots\}$ and so on.

Note that a transformation of type A or B can be applied to every partition $\pi=C_{1} \cup C_{2}$ of $\{1, \ldots, n-4\}$ since otherwise π must have classes $C_{1}=\{1,2,3, \ldots\}$ and $C_{2}=\{n-4, n-$ $5, n-6, \ldots\}$ such that for every $k \in C_{1}$ verifying $1 \leq k \leq(n-4) / 2$, the number $n-k-3$ belongs to C_{2}. But this contradicts the property that C_{1} and C_{2} have the same sum for every $n \geq 8$.

If $1 \in C_{2}$ this algorithm runs similarly and all partitions generated in this way are pairwise distinct.
(f) Suppose $3 \in C_{1}$. If $n-4 \in C_{1}$, we move 3 and $n-4$ into C_{2} and annihilate the imbalance equal to $2 n-2$ by defining $\mathrm{C}_{1}^{\prime}=\mathrm{C}_{1}^{\prime \prime} \cup\{n, n-1, n-3\}$ and $\mathrm{C}_{2}^{\prime}=\mathrm{C}_{2}^{\prime \prime} \cup\{n-2\}$ (a type C transformation).

Otherwise $C_{1}=\{3, \ldots\}, C_{2}=\{n-4, \ldots\}$. If $4 \in C_{2}$ we move 4 and $n-4$ into C_{1} which produces an imbalance equal to $2 n$; then define $\mathrm{C}_{1}^{\prime}=\mathrm{C}_{1}^{\prime \prime} \cup\{n-3\}$ and $\mathrm{C}_{2}^{\prime}=\mathrm{C}_{2}^{\prime \prime} \cup\{n, n-1, n-2\}$ (a type D transformation).

Otherwise $C_{1}=\{3,4, \ldots\}$ and $C_{2}=\{n-4, \ldots\}$. If $n-5 \in C_{1}$ we move 4 and $n-5$ into C_{2} and apply a type C transformation; otherwise $C_{1}=\{3,4, \ldots\}$ and $C_{2}=\{n-4, n-5, \ldots\}$. In this way we can apply a transformation of type C or D to every partition π of $\{1, \ldots, n-4\}$ since otherwise $C_{1}=\{3,4,5, \ldots\}, C_{2}=\{n-4, n-5, n-6, \ldots\}$ such that for every $k \in C_{1}$, $3 \leq k \leq(n-2) / 2$, we have $n-k-1 \in C_{2}$. This is a contradiction, since in this case C_{1} and C_{2} cannot have the same sum for every $n \geq 12$. As in the previous cases all partitions produced in this way are distinct.

This theorem has the following consequence:
Corollary 2.4 We have

$$
\begin{equation*}
S(n)>6^{n / 4} \approx 1.56508^{n} \tag{5}
\end{equation*}
$$

for every $n \equiv 0$ or $3(\bmod 4)$ and $n \geq 16$.
Proof: If $n=4 k$ one gets $S(4 k) \geq 6^{n / 4-4} S(16)>6^{n / 4}$ since $S(16)=1,314$. Similarly, $S(4 k+3) \geq 6^{k-3} S(15)=6^{(n-15) / 4} S(15)>6^{n / 4}$ because $S(15)=722$.

Note that in (5] the maximum coefficient in the polynomial $G_{n}(x)$, which coincides with $S(n)$ for $n \equiv 0$ or $3(\bmod 4)$, is bounded below by $2(n+1)$ for every $n \geq 10$.

Although the lower bound (5) is exponential, its order of magnitude is far from being exact, as can be seen below.
Lemma 2.5

$$
\begin{equation*}
\lim _{n \rightarrow \infty} S(4 n)^{1 /(4 n)}=\lim _{n \rightarrow \infty} S(4 n+3)^{1 /(4 n+3)}=2 \tag{6}
\end{equation*}
$$

Proof: Since the sequence of coefficients $(G(n, i))_{i=0, \ldots, T_{n}}$ in $G_{n}(x)$ is unimodal ([6, 7]) and symmetric, and the first and last coefficient are equal to 1 , it follows that for every $n \geq 5$, $n \equiv 0$ or $3(\bmod 4)$,

$$
S(n)>\frac{2^{n}-2}{T_{n}-1}>\frac{2^{n}}{T_{n}}=\frac{2^{n+1}}{n^{2}+n}
$$

Indeed, $\sum_{i=0}^{T_{n}} G(n, i)=G_{n}(1)=2^{n}$ and $T_{n}<2^{n-1}$ for every $n \geq 5$. On the other hand, $S(n)<2^{n}-2$, the number of ordered partitions having two classes of $\{1, \ldots, n\}$, and these two inequalities imply (6).

A better upper bound for $S(n)$ is $\binom{n}{\lfloor n / 2\rfloor} \leq C_{1} \frac{2^{n}}{\sqrt{n}}$ for some constant $C_{1}>0$. This follows from the following particular case of a result of Erdős (see [1] or (4)): Fix an interval of length 2 and consider the set of combinations $\sum_{i=1}^{n} \varepsilon_{i} i$, that lie within the interval, where $\varepsilon_{i} \in\{1,-1\}$ for every $1 \leq i \leq n$. The sets $\left\{i: \varepsilon_{i}=1\right\}$ that correspond to these combinations form an antichain in the poset of subsets of $\{1, \ldots, n\}$ ordered by inclusion. By Sperner's theorem (8] the maximum number of elements in such an antichain is $\binom{n}{\lfloor n / 2\rfloor}$, which is an upper bound for the number of combinations $\sum_{i=1}^{n} \varepsilon_{i} i$ that sum to 0 .

Conjecture 2.6 For $n \equiv 0$ or $3(\bmod 4)$ we have

$$
S(n) \sim \sqrt{6 / \pi} \cdot \frac{2^{n}}{n \sqrt{n}}
$$

where $f(n) \sim g(n)$ means that $\lim _{n \rightarrow \infty} f(n) / g(n)=1$.

This behavior was verified by computer experiments up to $n=100$.

3 Acknowledgements

The authors are grateful to J. Radcliffe from University of Nebraska (Lincoln) for useful discussions related to the upper bound for $S(n)$. Also, the authors are indebted to the referee of the paper for his/her very useful remarks, including the present form of Conjecture 2.6.

References

[1] M. Aigner and G.-M. Ziegler, Proofs from THE BOOK, Springer Verlag, Berlin, Heidelberg, 1998.
[2] D. Andrica and Ş. Buzeţeanu, On the product of two or more derivatives, Revue Roumaine Math. Pures Appl., 30 (1985), 703-710.
[3] D. Andrica, A combinatorial result concerning the product of more derivatives, Bull. Calcutta Math. Soc., 92 (4) (2000), 299-304.
[4] P. Erdős, On a lemma of Littlewood and Offord, Bull. Amer. Math. Soc., 5 (1945), 898-902.
[5] E. Friedman and M. Keith, Magic carpets, Journal of Integer Sequences, 3 (2000), Article 00.2.5.
[6] R. Proctor, Solution of two difficult combinatorial problems with linear algebra, Amer. Math. Monthly, 89 (1982), 721-734.
[7] N. J. A. Sloane The On-Line Encyclopedia of Integer Sequences, http://www.research.att.com/~njas/sequences/.
[8] E. Sperner, Ein Satz über Untermengen einer endlichen Menge, Math. Zeitschrift, 27 (1928), 544-548.
[9] R. Stanley, Weyl groups, the hard Lefschetz theorem, and the Sperner property, SIAM J. Alg. Discr. Math., 1 (1980), 164-184.
[10] H. Wilf, Generatingfunctionology, Academic Press, New York, 1994.

2000 Mathematics Subject Classification: 05A15, 05A16, 05A17, 05A18, 06A07, 11B75 .
Keywords: unimodal polynomial, triangular number, derivative, partition, Sperner's theorem, generating function
(Concerned with sequence A025591.)
Received September 25, 2002; revised version received November 3, 2002. Published in Journal of Integer Sequences November 14, 2002.

Return to Journal of Integer Sequences home pagd.

