
23 11

Article 02.2.4
Journal of Integer Sequences, Vol. 5 (2002),2

3

6

1

47

On an Integer Sequence Related to a Product
of Trigonometric Functions, and its

Combinatorial Relevance

Dorin Andrica
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Abstract

In this paper it is shown that for n ≡ 0 or 3 (mod 4), the middle term S(n) in
the expansion of the polynomial (1 + x)(1 + x2) · · · (1 + xn) occurs naturally when one
analyzes when a discontinuous product of trigonometric functions is a derivative of a
function. This number also represents the number of partitions of Tn/2 = n(n+ 1)/4,
(where Tn is the nth triangular number) into distinct parts less than or equal to n.
It is proved in a constructive way that S(n) ≥ 6S(n − 4) for every n ≥ 8, and an
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asymptotic evaluation of S(n)1/n is obtained as a consequence of the unimodality of
the coefficients of this polynomial. Also an integral expression of S(n) is deduced.

1 Notation and preliminary results

In a paper of Andrica [3] the following necessary and sufficient condition that some product
of derivatives is also a derivative is deduced:

Theorem 1.1 Let n1, . . . , nk ≥ 0 be integers with n1 + . . . + nk ≥ 1 and let α1, . . . , αk be
real numbers different from zero. The function fα1,...,αk

n1,...,nk
: R → R, defined by

fα1,...,αk
n1,...,nk

(x) =

{
cosn1(α1/x) · · · cosnk(αk/x), if x 6= 0;
α, if x = 0;

is a derivative if and only if

α =
1

2n1+...+nk
S(n1, . . . , nk;α1, . . . , αk),

where S(n1, . . . , nk;α1, . . . , αk) is the number of all choices of signs + and − such that

±α1 ± . . .± α1
︸ ︷︷ ︸

n1 times

±α2 ± . . .± α2
︸ ︷︷ ︸

n2 times

± . . . ±αk ± . . .± αk
︸ ︷︷ ︸

nk times

= 0. (1)

Note that this theorem extends one previously published in [2].

We shall present another combinatorial interpretations of the numbers

S(n1, . . . , nk;α1, . . . , αk)

and an integral representation, while the last section is devoted to the sequence S(n) =
S(1, . . . , 1
︸ ︷︷ ︸

n times

; 1, 2, 3, . . . , n) for n ≥ 1.

Let M be a multiset of type αn1

1 αn2

2 . . . αnk

k , i.e., a multiset containing αi with multiplicity
ni for every 1 ≤ i ≤ k. It is clear that S(n1, . . . , nk;α1, . . . αk) is the number of ordered
partitions having equal sums of M , i.e., of ordered pairs (C1, C2) such that C1 ∪ C2 = M ,
C1∩C2 = ∅ and∑x∈C1

x =
∑

y∈C2
y = 1

2

∑k
i=1 niαi. Indeed, there exists a bijection between

the set of all choices of + or − signs in (1) and the set of all ordered partitions with equal
sums of M defined as follows: We put αi from (1) in C1 if its sign is + and in C2 otherwise.

It is also clear that S(n1, . . . , nk;α1 . . . , αk) is the term not depending on z in the expan-
sion

F (z) =

(

zα1 +
1

zα1

)n1
(

zα2 +
1

zα2

)n2

. . .

(

zαk +
1

zαk

)nk

. (2)
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Wilf [10] outlines a proof that for n1 = n2 = . . . = nk = 1, the coefficient of zn in F (z)
represents the number of ways of choosing + or − signs such that ±α1 ± α2 ± . . .± αk = n.
If α1, . . . , αk are positive integers, from (2) one gets

F (z) = S(n1, . . . , nk;α1, . . . , αk) +
∑

α6=0

aαz
α, (3)

where the sum has only a finite number of terms and α and aα are integers. By substituting
z = cos t+ i sin t, t ∈ R in (3) one deduces

2n1+...+nk

k∏

j=1

(cosαjt)
nj = S(n1, . . . , nk;α1, . . . , αk) +

∑

α6=0

aα(cosαt+ i sinαt)

By integration on [0, 2π] we find the following integral expression of S(n1, . . . , nk;α1, . . . , αk):

S(n1, . . . , nk;α1, . . . , αk) =
2n1+...+nk

2π

∫ 2π

0

(cosα1t)
n1 · · · (cosαkt)nkdt.

2 A particular case and its connection with polynomial

unimodality

An interesting particular case is obtained for n1 = n2 = . . . = nk = 1 and αi = i for every
1 ≤ i ≤ k. In this case S(n) is the number of ways of choosing + and − signs such that
±1± 2± . . .±n = 0. Since now M = {1, 2, . . . , n} has sum Tn = n(n+1)/2 and every class
of an ordered bipartition of M must have sum Tn/2, it follows that S(n) = 0 for n ≡ 1 or
2 (mod 4) and S(n) 6= 0 for n ≡ 0 or 3 (mod 4). The following theorem proposes several
equivalent definitions of the sequence S(n) for n ≥ 1.

Theorem 2.1 For every n ≥ 1 the following properties are equivalent:
(i) S(n) is the number of choices of + and − signs such that ±1± 2± . . .± n = 0;
(ii) S(n) is the number of ordered bipartitions into classes having equal sums of {1, 2, . . . , n};
(iii) S(n) is the term not depending on x in the expansion of

(

x+
1

x

)(

x2 +
1

x2

)

. . .

(

xn +
1

xn

)

;

(iv) S(n) is the number of partitions of Tn/2 into distinct parts, less than or equal to n, if
n ≡ 0 or 3 (mod 4), and S(n) = 0 otherwise;
(v) S(n) is the number of distinct subsets of {1, . . . , n} whose elements sum to Tn/2 if

n ≡ 0 or 3 (mod 4), and S(n) = 0 if n ≡ 1 or 2 (mod 4);
(vi) S(n) is the coefficient of xTn/2 in the polynomial Gn(x) = (1 + x)(1 + x2) . . . (1 + xn)

when n ≡ 0 or 3 (mod 4), and S(n) = 0 otherwise;
(vii)

S(n) =
2n−1

π

∫ 2π

0

cos t cos 2t · · · cosnt dt;
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(viii) S(n)/2n is the unique real number α having the property that the function f : R → R,
defined by

f(x) =

{
cos(1/x) cos(2/x) · · · cos(n/x), if x 6= 0;
α, if x = 0;

is a derivative.

Proof: Some equivalences are obvious or were shown in the general case. For example, the
equivalence between (ii) and (v) is given by the bijection ϕ defined for every bipartition
M = C1 ∪ C2 such that

∑

x∈C1
x =

∑

y∈C2
y by ϕ(C1 ∪ C2) = C1 ⊂M .

Let us denote

Gn(x) = (1 + x)(1 + x2) . . . (1 + xn) =
Tn∑

i=0

G(n, i)xi. (4)

Note that the property that the coefficient of xi in Gn(x) is the number of distinct subsets of
{1, . . . , n} whose elements sum to i was used by Friedman and Keith [5] to deduce a necessary
and sufficient condition for the existence of a basic (n,k) magic carpet. Stanley [9], using
the “hard Lefschetz theorem” from algebraic geometry, proved that the posets M(n) of all
partitions of integers into distinct parts less than or equal to n are rank unimodal, by showing
the existence of a chain decomposition forM(n). This fact is equivalent to the unimodality of
the polynomial Gn(x), which implies that S(n) is the maximum coefficient in the expansion
of Gn(x) for n ≡ 0 or 3 (mod 4). Stanley’s proof was subsequently simplified by Proctor [6].

The property of symmetry of the coefficients in (4), namely G(n, i) = G(n, Tn − i) for
every 0 ≤ i ≤ Tn was pointed out by Friedman and Keith[5]; they also found the recurrence
G(n, i) = G(n− 1, i) +G(n− 1, i− n). This latter recurrence, which is a consequence of the
identity Gn(x) = Gn−1(x)(1+xn), allows us to compute any finite submatrix of the numbers
G(n, i) and thus the numbers S(n) = G(n, Tn/2).

Some values of S(n), starting with n = 3, are given in the following table:

n S(n) n S(n) n S(n) n S(n)
3 2 13 0 23 99,820 33 0
4 2 14 0 24 187,692 34 0
5 0 15 722 25 0 35 221,653,776
6 0 16 1,314 26 0 36 425,363,952
7 8 17 0 27 1,265,204 37 0
8 14 18 0 28 2,399,784 38 0
9 0 19 8,220 29 0 39 3,025,553,180

10 0 20 15,272 30 0 40 5,830,034,720
11 70 21 0 31 16,547,220 41 0
12 124 22 0 32 31,592,878 42 0

and thus the terms different from zero form a subsequence of the sequence A025591 in Sloane
[7].

Another recurrence satisfied by the numbers G(n, i) is the following:
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Lemma 2.2 We have G(n, i) =
∑

j≥0 G(n− 1− j, i− n+ j).

Proof: Let P(k, i) denote the set of partitions of i into distinct parts such that the maximum
part is equal to k. It is clear that

G(n, i) =

∣
∣
∣
∣
∣

⋃

j≥0

P(n− j, i)

∣
∣
∣
∣
∣
=
∑

j≥0

|P(n− j, i)| =
∑

j≥0

G(n− 1− j, i− n+ j).

Indeed, there is a bijection between the set of partitions of i into distinct parts such that
the maximum part equals n− j and the set of partitions of i− n+ j into distinct parts less
than or equal to n − 1 − j, defined by deleting the maximum part, equal to n − j, in any
partition in P(n− j, i). Hence |P(n− j, i)| = G(n− 1− j, i− n+ j).

Theorem 2.3 For any n ≥ 8 we have S(n) ≥ 6S(n− 4).

Proof: For n ≤ 11 this inequality is verified by inspection.
For n ≥ 12 we shall propose a constructive proof yielding for any ordered partition of

{1, . . . , n−4} in two classes C1 and C2 with equal sums six ordered partitions of {1, . . . , n} in
two classes C′

1
and C′

2
having equal sums and all partitions generated will be distinct. Indeed,

for any ordered bipartition with equal sums {1, . . . , n − 4} = C1 ∪ C2 we can generate six
ordered bipartitions with equal sums {1, . . . , n} = C′

1
∪ C′

2
as follows:

(a) C′
1
= C1 ∪ {n− 3, n} and C′

2
= C2 ∪ {n− 2, n− 1};

(b) C′
1
= C1 ∪ {n− 2, n− 1} and C′

2
= C2 ∪ {n− 3, n};

(c) Without loss of generality suppose 1 ∈ C1. We define C′′
1
= C1\{1}, C′′2 = C2 ∪ {1},

C′
1
= C′′

1
∪ {n− 2, n} and C′

2
= C′′

2
∪ {n− 3, n− 1};

(d) Without loss of generality suppose 2 ∈ C1. Now C′′
1
= C1\{2}, C′′2 = C2 ∪ {2},

C′
1
= C′′

1
∪ {n− 1, n}, C′

2
= C′′

2
∪ {n− 3, n− 2}.

Case (e) is a little more complicated, but we will be able to do it by combining two simple
transformations.

(e) Suppose 1 ∈ C1. If n − 4 belongs to the same class, we define C′′
1
= C1\{1, n − 4},

C′′
2
= C2 ∪ {1, n− 4}, C′

1
= C′′

1
∪ {n− 3, n− 2, n− 1} and C′

2
= C′′

2
∪ {n}. This transformation

resolves the imbalance of 2n− 6 between C′′
1
and C′′

2
and will be called of type A.

Otherwise 1 ∈ C1 and n − 4 ∈ C2. If 2 ∈ C2 one defines C′′
2
= C2\{2, n − 4}, C′′

1
=

C1 ∪ {2, n − 4}, C′
1
= C′′

1
∪ {n − 1} and C′

2
= C′′

2
∪ {n, n − 2, n − 3}. This transformation

balances classes C′′
1
and C′′

2
by 2n− 4 and will be called of type B.

Otherwise 2 ∈ C1, hence C1 = {1, 2, . . .} and C2 = {n − 4, . . .}. If n − 5 ∈ C1 then
C′′
1
= C1\{2, n− 5}, C′′

2
= C2 ∪ {2, n− 5}, C′

1
= C′′

1
∪ {n− 3, n− 2, n− 1} and C′

2
= C′′

2
∪ {n}.

Otherwise n− 5 ∈ C2, hence C1 = {1, 2, . . .}, C2 = {n− 4, n− 5, . . .}. Now if 3 ∈ C2 we
move 3 and n− 5 into C1 and apply a type B transformation.

Otherwise 3 ∈ C1 and if n − 6 ∈ C1, we add n − 6 and 3 to C2 and apply a type A
transformation; otherwise C1 = {1, 2, 3, . . .} and C2 = {n− 4, n− 5, n− 6, . . .} and so on.
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Note that a transformation of type A or B can be applied to every partition π = C1 ∪C2

of {1, . . . , n− 4} since otherwise π must have classes C1 = {1, 2, 3, . . .} and C2 = {n− 4, n−
5, n− 6, . . .} such that for every k ∈ C1 verifying 1 ≤ k ≤ (n− 4)/2, the number n− k − 3
belongs to C2. But this contradicts the property that C1 and C2 have the same sum for
every n ≥ 8.

If 1 ∈ C2 this algorithm runs similarly and all partitions generated in this way are pairwise
distinct.

(f) Suppose 3 ∈ C1. If n − 4 ∈ C1, we move 3 and n − 4 into C2 and annihilate the
imbalance equal to 2n− 2 by defining C′

1
= C′′

1
∪ {n, n− 1, n− 3} and C′

2
= C′′

2
∪ {n− 2} (a

type C transformation).
Otherwise C1 = {3, . . .}, C2 = {n− 4, . . .}. If 4 ∈ C2 we move 4 and n− 4 into C1 which

produces an imbalance equal to 2n; then define C′
1
= C′′

1
∪{n−3} and C′

2
= C′′

2
∪{n, n−1, n−2}

(a type D transformation).
Otherwise C1 = {3, 4, . . .} and C2 = {n−4, . . .}. If n−5 ∈ C1 we move 4 and n−5 into C2

and apply a type C transformation; otherwise C1 = {3, 4, . . .} and C2 = {n−4, n−5, . . .}. In
this way we can apply a transformation of type C or D to every partition π of {1, . . . , n− 4}
since otherwise C1 = {3, 4, 5, . . .}, C2 = {n− 4, n− 5, n− 6, . . .} such that for every k ∈ C1,
3 ≤ k ≤ (n − 2)/2, we have n − k − 1 ∈ C2. This is a contradiction, since in this case C1

and C2 cannot have the same sum for every n ≥ 12. As in the previous cases all partitions
produced in this way are distinct.

This theorem has the following consequence:

Corollary 2.4 We have
S(n) > 6n/4 ≈ 1.56508n (5)

for every n ≡ 0 or 3 (mod 4) and n ≥ 16.

Proof: If n = 4k one gets S(4k) ≥ 6n/4−4S(16) > 6n/4 since S(16) = 1, 314. Similarly,
S(4k + 3) ≥ 6k−3S(15) = 6(n−15)/4S(15) > 6n/4 because S(15) = 722.

Note that in [5] the maximum coefficient in the polynomial Gn(x), which coincides with
S(n) for n ≡ 0 or 3 (mod 4), is bounded below by 2(n+ 1) for every n ≥ 10.

Although the lower bound (5) is exponential, its order of magnitude is far from being
exact, as can be seen below.

Lemma 2.5

lim
n→∞

S(4n)1/(4n) = lim
n→∞

S(4n+ 3)1/(4n+3) = 2. (6)

Proof: Since the sequence of coefficients (G(n, i))i=0,...,Tn
in Gn(x) is unimodal ([6, 7]) and

symmetric, and the first and last coefficient are equal to 1, it follows that for every n ≥ 5,
n ≡ 0 or 3 (mod 4),

S(n) >
2n − 2

Tn − 1
>

2n

Tn
=

2n+1

n2 + n
.

Indeed,
∑Tn

i=0 G(n, i) = Gn(1) = 2n and Tn < 2n−1 for every n ≥ 5. On the other hand,
S(n) < 2n − 2, the number of ordered partitions having two classes of {1, . . . , n}, and these
two inequalities imply (6).
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A better upper bound for S(n) is
(

n
bn/2c

)
≤ C1

2n√
n
for some constant C1 > 0. This follows

from the following particular case of a result of Erdős (see [1] or [4]): Fix an interval of
length 2 and consider the set of combinations

∑n
i=1 εii, that lie within the interval, where

εi ∈ {1,−1} for every 1 ≤ i ≤ n. The sets {i : εi = 1} that correspond to these combinations
form an antichain in the poset of subsets of {1, . . . , n} ordered by inclusion. By Sperner’s
theorem [8] the maximum number of elements in such an antichain is

(
n

bn/2c
)
, which is an

upper bound for the number of combinations
∑n

i=1 εii that sum to 0.

Conjecture 2.6 For n ≡ 0 or 3 (mod 4) we have

S(n) ∼
√

6/π · 2n

n
√
n
,

where f(n) ∼ g(n) means that limn→∞ f(n)/g(n) = 1.

This behavior was verified by computer experiments up to n = 100.
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