

Hankel Matrices and Lattice Paths

Wen-jin Woan
Department of Mathematics
Howard University
Washington, D.C. 20059, USA
Email address: wwoan@howard.edu

Abstract

Let H be the Hankel matrix formed from a sequence of real numbers $S=\left\{a_{0}=1, a_{1}, a_{2}, a_{3}, \ldots\right\}$, and let L denote the lower triangular matrix obtained from the Gaussian column reduction of H. This paper gives a matrix-theoretic proof that the associated Stieltjes matrix S_{L} is a tri-diagonal matrix. It is also shown that for any sequence (of nonzero real numbers) $T=\left\{d_{0}=1, d_{1}, d_{2}, d_{3}, \ldots\right\}$ there are infinitely many sequences such that the determinant sequence of the Hankel matrix formed from those sequences is T.

1. Introduction. In this paper we give a matrix-theoretic proof (Theorem 2.1) of one of the main theorems in [1]. In Section 2 we discuss the connection between the decomposition of a Hankel matrix and Stieltjes matrices, and in Section 3 we discuss the connection between certain lattice paths and Hankel matrices. Section 4 presents an explicit formula for the decomposition of a Hankel matrix.

Definition 1.1. Let $S=\left\{a_{0}=1, a_{1}, a_{2}, a_{3}, \ldots\right\}$ be a sequence of real numbers. The Hankel matrix generated by S is the infinite matrix

$$
H=\left[\begin{array}{cccccc}
1 & a_{1} & a_{2} & a_{3} & a_{4} & \cdot \\
a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & \cdot \\
a_{2} & a_{3} & a_{4} & a_{5} & a_{6} & \cdot \\
a_{3} & a_{4} & a_{5} & a_{6} & a_{7} & \cdot \\
a_{4} & a_{5} & a_{6} & a_{7} & a_{8} & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot
\end{array}\right]
$$

Definition 1.2. A lower triangular matrix

$$
L=\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & . \\
l_{10} & 1 & 0 & 0 & 0 & . \\
l_{20} & l_{21} & 1 & 0 & 0 & . \\
l_{30} & l_{31} & l_{32} & 1 & 0 & \cdot \\
l_{40} & l_{41} & l_{42} & l_{43} & 1 & . \\
. & . & . & . & . & .
\end{array}\right] .
$$

is said to be a Riordan matrix if there exist Taylor series $g(x)=1+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n}+\ldots$ and $f(x)=x+b_{2} x^{2}+b_{3} x^{3}+\ldots+b_{n} x^{n}+\ldots$ such that for every $k \geq 0$ the k-th column has ordinary generating function $g(x)(f(x))^{k}$.

Definition 1.3. The Stieltjes matrix of a lower triangular matrix L is the matrix S_{L} which satisfies $L S_{L}=L^{r}$ where L^{r} is the matrix obtained from L by deleting the first row of L.

Thus

$$
\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & . \\
l_{10} & 1 & 0 & 0 & 0 & \cdot \\
l_{20} & l_{21} & 1 & 0 & 0 & \cdot \\
l_{30} & l_{31} & l_{32} & 1 & 0 & \cdot \\
l_{40} & l_{41} & l_{42} & l_{43} & 1 & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot
\end{array}\right] S_{L}=\left[\begin{array}{cccccc}
l_{10} & 1 & 0 & 0 & 0 & \cdot \\
l_{20} & l_{21} & 1 & 0 & 0 & \cdot \\
l_{30} & l_{31} & l_{32} & 1 & 0 & \cdot \\
l_{40} & l_{41} & l_{42} & l_{43} & 1 & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot
\end{array}\right]
$$

and so

$$
\begin{gathered}
S_{L}=L^{-1} L^{r}=\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & \cdot \\
-l_{10} & 1 & 0 & 0 & 0 & \cdot \\
\times & -l_{21} & 1 & 0 & 0 & \cdot \\
\times & \times & -l_{32} & 1 & 0 & \cdot \\
\times & \times & \times & -l_{43} & 1 & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot
\end{array}\right]\left[\begin{array}{cccccc}
l_{10} & 1 & 0 & 0 & 0 & \cdot \\
l_{20} & l_{21} & 1 & 0 & 0 & \cdot \\
l_{30} & l_{31} & l_{32} & 1 & 0 & \cdot \\
l_{40} & l_{41} & l_{42} & l_{43} & 1 & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot
\end{array}\right] \\
\\
=\left[\begin{array}{cccccc}
b_{0} & 1 & 0 & 0 & 0 & \cdot \\
c_{0} & b_{1} & 1 & 0 & 0 & \cdot \\
\times & c_{1} & b_{2} & 1 & 0 & \cdot \\
\times & \times & c_{2} & b_{3} & 1 & \cdot \\
\times & \times & \times & c_{3} & b_{4} & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot
\end{array}\right]
\end{gathered}
$$

where

$$
\begin{gathered}
b_{0}=l_{10}, b_{k}=l_{k+1, k}-l_{k, k-1}, k>0, \\
c_{0}=l_{2,0}-l_{1,0}^{2}, c_{k}=\left(l_{k, k-1} l_{k+1, k}-l_{k+1, k-1}\right)-l_{k+1, k}^{2}+l_{k+2, k}, k>0 .
\end{gathered}
$$

Definition 1.4. Let L and S_{L} be as in Definition 1.3. We define

$$
D_{L}=\left[\begin{array}{cccccc}
d_{0} & 0 & 0 & 0 & 0 & . \\
0 & d_{1} & 0 & 0 & 0 & . \\
0 & 0 & d_{2} & 0 & 0 & . \\
0 & 0 & 0 & d_{3} & 0 & . \\
0 & 0 & 0 & 0 & d_{4} & . \\
. & . & . & . & . & .
\end{array}\right]
$$

to be the diagonal matrix with diagonal entries given by $d_{0}=1, d_{k+1}=d_{k} c_{k}$ for $k>0$.

2. Stieltjes and Hankel Matrices.

The following two theorems are proved in [1].
Theorem 2.1. Let L be a lower triangular matrix and let $D=D_{L}$ be the diagonal matrix with nonzero diagonal entries $\left\{d_{i}\right\}$ as in Definition 1.4. Then $L D L^{t}$ is a Hankel matrix if and only if S_{L} is a tri-diagonal matrix, i.e. if and only if

$$
S_{L}=\left[\begin{array}{cccccc}
b_{0} & 1 & 0 & 0 & 0 & . \\
c_{0} & b_{1} & 1 & 0 & 0 & . \\
0 & c_{1} & b_{2} & 1 & 0 & . \\
0 & 0 & c_{2} & b_{3} & 1 & . \\
0 & 0 & 0 & c_{3} & b_{4} & . \\
. & . & . & . & . & .
\end{array}\right]
$$

where $b_{0}=l_{1,0}, \quad c_{0}=d_{1}, \quad b_{k}=l_{k+1, k}-l_{k, k-1}, \quad c_{k}=\frac{d_{k+1}}{d_{k}}, \quad k \geq 1$.
Proof. Let $H=L D L^{t}$ be a Hankel matrix. Then

$$
L=H\left(D L^{t}\right)^{-1},
$$

$$
L^{r}=\left(H\left(D L^{t}\right)^{-1}\right)^{r}=H^{r}\left(D L^{t}\right)^{-1}
$$

$$
S_{L}=L^{-1} L^{r}=L^{-1}\left(H^{r}\left(D L^{t}\right)^{-1}\right)=\left(L^{-1} H^{r}\right)\left(D L^{t}\right)^{-1}
$$

Since H is a Hankel matrix, deleting the first row has the same effect as deleting the first column.

$$
\begin{gathered}
L^{-1} H=D L^{t}=\left[\begin{array}{llllll}
d_{0} & d_{0} l_{10} & d_{0} l_{20} & d_{0} l_{3,0} & d_{0} l_{4,0} & . \\
0 & d_{1} & d_{1} l_{21} & d_{1} l_{31} & d_{1} l_{41} & \cdot \\
0 & 0 & d_{2} & d_{2} l_{32} & d_{2} l_{42} & \cdot \\
0 & 0 & 0 & d_{3} & d_{3} l_{43} & \cdot \\
0 & 0 & 0 & 0 & d_{4} & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot
\end{array}\right], \\
L^{-1} H^{r}=L^{-1} H^{c}=\left(L^{-1} H\right)^{c}=\left[\begin{array}{llllll}
d_{0} l_{10} & d_{0} l_{20} & d_{0} l_{30} & d_{0} l_{4,0} & \cdot \\
d_{1} & d_{1} l_{21} & d_{1} l_{31} & d_{1} l_{41} & \cdot \\
0 & d_{2} & d_{2} l_{32} & d_{2} l_{42} & \cdot \\
0 & 0 & d_{3} & d_{3} l_{43} & \cdot \\
0 & 0 & 0 & d_{4} & \cdot \\
\cdot & \cdot & . & \cdot & \cdot
\end{array}\right],
\end{gathered}
$$

$$
\begin{gathered}
S_{L}=\left(L^{-1} H\right)^{c}\left(D L^{t}\right)^{-1}=\left[\begin{array}{llllll}
d_{0} l_{10} & d_{0} l_{20} & d_{0} l_{30} & d_{0} l_{4,0} & \cdot \\
d_{1} & d_{1} l_{21} & d_{1} l_{31} & d_{1} l_{41} & \cdot \\
0 & d_{2} & d_{2} l_{32} & d_{2} l_{42} & \cdot \\
0 & 0 & d_{3} & d_{3} l_{43} & \cdot \\
0 & 0 & 0 & d_{4} & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot
\end{array}\right]\left[\begin{array}{llllll}
\frac{1}{d_{0}} & \times & \times & \times & \times & \cdot \\
0 & \frac{1}{d_{1}} & \times & \times & \times & \cdot \\
0 & 0 & \frac{1}{d_{2}} & \times & \times & \cdot \\
0 & 0 & 0 & \frac{1}{d_{3}} & \times & \cdot \\
0 & 0 & 0 & 0 & \frac{1}{d_{4}} & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot
\end{array}\right] \\
\\
=\left[\begin{array}{cccccc}
b_{0} & 1 & 0 & 0 & 0 & \cdot \\
c_{0} & b_{1} & 1 & 0 & 0 & \cdot \\
0 & c_{1} & b_{2} & 1 & 0 & \cdot \\
0 & 0 & c_{2} & b_{3} & 1 & \cdot \\
0 & 0 & 0 & c_{3} & b_{4} & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot
\end{array}\right]
\end{gathered}
$$

where

$$
b_{0}=l_{1,0}, \quad c_{0}=\frac{d_{1}}{d_{0}}=d_{1}, \quad b_{k}=l_{k+1, k}-l_{k, k-1}, \quad c_{k}=\frac{d_{k+1}}{d_{k}}, \quad k \geq 1 .
$$

Conversely, let S_{L} be a tri-diagonal matrix and let $H=L D L^{t}$. Then
$L^{-1} H^{r}=L^{-1}\left(L D L^{t}\right)^{r}=L^{-1}\left(L^{r} D L^{t}\right)=\left(L^{-1} L^{r}\right) D L^{t}=S_{L} D L^{t}$

$$
=\left[\begin{array}{cccccc}
b_{0} & 1 & 0 & 0 & 0 & \cdot \\
c_{0} & b_{1} & 1 & 0 & 0 & \cdot \\
0 & c_{1} & b_{2} & 1 & 0 & \cdot \\
0 & 0 & c_{2} & b_{3} & 1 & \cdot \\
0 & 0 & 0 & c_{3} & b_{4} & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot
\end{array}\right]\left[\begin{array}{llllll}
d_{0} & d_{0} l_{10} & d_{0} l_{20} & d_{0} l_{3,0} & d_{0} l_{4,0} & \cdot \\
0 & d_{1} & d_{1} l_{21} & d_{1} l_{31} & d_{1} l_{41} & \cdot \\
0 & 0 & d_{2} & d_{2} l_{32} & d_{2} l_{42} & \cdot \\
0 & 0 & 0 & d_{3} & d_{3} l_{43} & \cdot \\
0 & 0 & 0 & 0 & d_{4} & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot
\end{array}\right]
$$

Therefore

$$
\begin{aligned}
& \left(L^{-1} H^{r}\right)_{n, k}=c_{n-1} d_{n-1} l_{k, n-1}+b_{n} d_{n} l_{k, n}+d_{n+1} l_{k, n+1} \\
& =\frac{d_{n}}{d_{n-1}} d_{n-1} l_{k, n-1}+b_{n} d_{n} l_{k, n}+c_{n} d_{n} l_{k, n+1} \\
& =d_{n}\left(l_{k, n-1}+b_{n} l_{k, n}+c_{n} l_{k, n+1}\right) \\
& =d_{n} l_{k+1, n}=\left(D L^{t}\right)_{n, k+1}=\left(D L^{t}\right)_{n, k}^{c}=\left(L^{-1} H\right)_{n, k}^{c}=\left(L^{-1} H^{c}\right)_{n, k} .
\end{aligned}
$$

We have shown that $L^{-1} H^{r}=L^{-1} H^{c}$, and so $H^{r}=H^{c}$. Hence H is a Hankel matrix.
Theorem 2.2. L is a Riordan matrix (i.e. $b_{k}=b_{1}=b$ and $c_{k}=c_{1}=c$ for $k \geq 1$) if and only if $f=x\left(1+b f+c f^{2}\right)$ and

$$
g=\frac{1}{1-x b_{0}-x c_{0} f},
$$

where f, g are as in Definition 1.2.
See [1] for the proof.
Corollary 2.3. Let $T=\left\{d_{0}=1, d_{1}, d_{2}, d_{3}, \ldots\right\}$ be any sequence of (nonzero) real numbers. Then there exists a sequence $S=\left\{a_{0}=1, a_{1}, a_{2}, a_{3}, \ldots\right\}$ such that T is equal to the sequence of diagonal entries of D in the decomposition $H=L D L^{t}$ of the Hankel matrix generated by S.

Proof. As in Theorem 2.1, let $c_{0}=d_{1}, c_{k}=\frac{d_{k+1}}{d_{k}}, k \geq 1$, and form the Stieltjes matrix

$$
S_{L}=\left[\begin{array}{cccccc}
b_{0} & 1 & 0 & 0 & 0 & . \\
c_{0} & b_{1} & 1 & 0 & 0 & . \\
0 & c_{1} & b_{2} & 1 & 0 & . \\
0 & 0 & c_{2} & b_{3} & 1 & . \\
0 & 0 & 0 & c_{3} & b_{4} & . \\
. & . & . & . & . & .
\end{array}\right]
$$

where the $b_{i} \mathrm{~S}$ are arbitrary. By Definition 1.3 there is a lower triangular matrix L such that $L S_{L}=L^{r}$. Let S be the sequence formed by the first column of L and let H denote the Hankel matrix generated by S. By Theorem 2.1 the diagonal entries of D in the decomposition $H=L D L^{t}$ form the sequence T.

Example 2.4. Let $T=\{1,1,2,5,14,42,132, \ldots\}$ be the Catalan sequence ($\mathbf{A 0 0 0 1 0 8}$ in [2]) and let

$$
S_{L}=\left[\begin{array}{cccccc}
0 & 1 & 0 & 0 & 0 & . \\
1 & 0 & 1 & 0 & 0 & . \\
0 & 2 & 0 & 1 & 0 & . \\
0 & 0 & \frac{5}{2} & 0 & 1 & . \\
0 & 0 & 0 & \frac{14}{5} & 0 & . \\
. & . & . & . & . & .
\end{array}\right]
$$

Then

$$
\begin{aligned}
& L=\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & . \\
0 & 1 & 0 & 0 & 0 & \cdot \\
1 & 0 & 1 & 0 & 0 & . \\
0 & 3 & 0 & 1 & 0 & . \\
3 & 0 & \frac{11}{2} & 0 & 1 & . \\
. & . & . & . & . & .
\end{array}\right], \\
& L D L^{t}=\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & \cdot \\
0 & 1 & 0 & 0 & 0 & \cdot \\
1 & 0 & 1 & 0 & 0 & \cdot \\
0 & 3 & 0 & 1 & 0 & \cdot \\
3 & 0 & \frac{11}{2} & 0 & 1 & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot
\end{array}\right]\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & \cdot \\
0 & 1 & 0 & 0 & 0 & \cdot \\
0 & 0 & 2 & 0 & 0 & \cdot \\
0 & 0 & 0 & 5 & 0 & \cdot \\
0 & 0 & 0 & 0 & 14 & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot
\end{array}\right]\left[\begin{array}{cccccc}
1 & 0 & 1 & 0 & 3 & \cdot \\
0 & 1 & 0 & 3 & 0 & \cdot \\
0 & 0 & 1 & 0 & \frac{11}{2} & \cdot \\
0 & 0 & 0 & 1 & 0 & \cdot \\
0 & 0 & 0 & 0 & 1 & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot
\end{array}\right] \\
& =\left[\begin{array}{cccccc}
1 & 0 & 1 & 0 & 3 & . \\
0 & 1 & 0 & 3 & 0 & . \\
1 & 0 & 3 & 0 & 14 & . \\
0 & 3 & 0 & 14 & 0 & . \\
3 & 0 & 14 & 0 & \frac{167}{2} & . \\
. & . & . & . & . & .
\end{array}\right]=H .
\end{aligned}
$$

3. Lattice Paths and Hankel Matrices

We consider those lattice paths in the Cartesian plane running from $(0,0)$ that use steps from $S=\{u=(1,1), h=(1,0), d=(1,-1)\}$ with assigned weights 1 for u, w_{1} for h and w_{2} for d. Let $L(n, k)$ be the set of paths that never go below the x-axis and end at (n, k). The weight of a path is the product of the weights of its steps. Let $l_{n, k}$ be the sum of the weights of all the paths in $L(n, k)$. See also [3], [4].

Theorem 3.1. Let $L=\left(l_{n, k}\right)_{n, k \geq 0}$. Then L is a lower triangular matrix, the Stieltjes matrix of L is

$$
S_{L}=\left[\begin{array}{cccccc}
w_{1} & 1 & 0 & 0 & 0 & . \\
w_{2} & w_{1} & 1 & 0 & 0 & . \\
0 & w_{2} & w_{1} & 1 & 0 & . \\
0 & 0 & w_{2} & w_{1} & 1 & . \\
0 & 0 & 0 & w_{2} & w_{1} & . \\
. & . & . & . & . & .
\end{array}\right]
$$

and $H=L D L^{t}$ is the Hankel matrix generated by the first column of L and $d_{k}=w_{2}^{k}$ for $k>0$.
Proof. From Theorem 2.1.
Example 3.2. For $w_{1}=0, w_{2}=1, L$ is the Catalan matrix. For $w_{1}=t, w_{2}=1, L$ is the t-Motzkin matrix. In both cases D is the identity matrix. For example, when $t=1$,

$$
\begin{aligned}
L & =\left[\begin{array}{llllll}
1 & 0 & 0 & 0 & 0 & \cdot \\
1 & 1 & 0 & 0 & 0 & \cdot \\
2 & 2 & 1 & 0 & 0 & \cdot \\
4 & 5 & 3 & 1 & 0 & \cdot \\
9 & 12 & 9 & 4 & 1 & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot
\end{array}\right] \\
L D L^{t} & =\left[\begin{array}{llllll}
1 & 1 & 2 & 4 & 9 & \cdot \\
1 & 2 & 4 & 9 & 21 & \cdot \\
2 & 4 & 9 & 21 & 51 & \cdot \\
4 & 9 & 21 & 51 & 127 & \cdot \\
9 & 21 & 51 & 127 & 323 & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot
\end{array}\right]=H
\end{aligned}
$$

where $S=\{1,1,2,4,9,21,51, \ldots\}$ is the Motzkin sequence $\mathbf{A 0 0 1 0 0 6}$.
Theorem 3.3. If w_{1}, w_{2} depend on the height k, i.e. $w_{1}(k)=b_{k}$ and $w_{2}(k+1)=c_{k}$, then

$$
S_{L}=\left[\begin{array}{cccccc}
b_{0} & 1 & 0 & 0 & 0 & . \\
c_{0} & b_{1} & 1 & 0 & 0 & . \\
0 & c_{1} & b_{2} & 1 & 0 & . \\
0 & 0 & c_{2} & b_{3} & 1 & . \\
0 & 0 & 0 & c_{3} & b_{4} & . \\
. & . & . & . & . & .
\end{array}\right]
$$

and $H=L D L^{t}$ is the Hankel matrix generated by the first column of L and $d_{k}=\Pi_{i \leq k} c_{i}$.
Proof. From Theorem 2.1.
See Example 2.4 for an illustration.

4. Gaussian Column Reduction

Let $S=\left\{a_{0}=1, a_{1}, a_{2}, a_{3}, \ldots\right\}$ be a sequence of real numbers and let H denote the Hankel matrix generated by S. All the results in this section are well-known in matrix theory. We shall express the entries of L in term of S. We assume that H is positive definite.

Lemma 4.1. The decomposition of a positive definite Hankel matrix $H=L D U$ is unique and $U=L^{t}$, where L is a lower triangular matrix with diagonal entries $1, D$ is a diagonal matrix and U is an upper triangular matrix with diagonal entries 1 .

Proof. Let $L D U=H=L_{1} D_{1} U_{1}$. Then $D U U_{1}^{-1}=L^{-1} L_{1} D_{1}$ is both an upper and lower triangular matrix, hence $U U_{1}^{-1}=L^{-1} L_{1}=I$ is the infinite identity matrix.

Let H_{n} be the truncated submatrix of H with $n \geq 0$. For example,

$$
H_{3}=\left[\begin{array}{cccc}
1 & a_{1} & a_{2} & a_{3} \\
a_{1} & a_{2} & a_{3} & a_{4} \\
a_{2} & a_{3} & a_{4} & a_{5} \\
a_{3} & a_{4} & a_{5} & a_{6}
\end{array}\right], \quad H_{4}=\left[\begin{array}{ccccc}
1 & a_{1} & a_{2} & a_{3} & a_{4} \\
a_{1} & a_{2} & a_{3} & a_{4} & a_{5} \\
a_{2} & a_{3} & a_{4} & a_{5} & a_{6} \\
a_{3} & a_{4} & a_{5} & a_{6} & a_{7} \\
a_{4} & a_{5} & a_{6} & a_{7} & a_{8}
\end{array}\right]
$$

Let $H_{n}(k)$ be the matrix obtained from H_{n} by replacing the last column of H_{n} by $a_{k}, a_{k+1}, a_{k+2}, \ldots, a_{k+n}$. For example,

$$
H_{3}(1)=\left[\begin{array}{cccc}
1 & a_{1} & a_{2} & a_{1} \\
a_{1} & a_{2} & a_{3} & a_{2} \\
a_{2} & a_{3} & a_{4} & a_{3} \\
a_{3} & a_{4} & a_{5} & a_{4}
\end{array}\right], \quad H_{3}(5)=\left[\begin{array}{cccc}
1 & a_{1} & a_{2} & a_{5} \\
a_{1} & a_{2} & a_{3} & a_{6} \\
a_{2} & a_{3} & a_{4} & a_{7} \\
a_{3} & a_{4} & a_{5} & a_{8}
\end{array}\right] .
$$

Let $h_{i}=\operatorname{det} H_{i}$ and define an infinite upper triangular matrix $R=\left(r_{n, k}\right)$ in term of (n, k) cofactor of H_{k} by $r_{n, k}=0$ for $k<n$, and

$$
r_{n, k}=\frac{1}{h_{k-1}}(-1)^{n+k+2} \operatorname{det}\left[\begin{array}{ccccc}
1 & a_{1} & a_{2} & \cdot & a_{k-1} \\
a_{1} & a_{2} & a_{3} & . . & a_{k} \\
a_{2} & a_{3} & a_{4} & \cdot & a_{k+1} \\
\cdot & \cdot & \cdot & \cdot & \cdot \cdot \\
a_{n-1} & a_{n} & a_{n+1} & \cdot & a_{k+n-2} \\
a_{n+1} & a_{n+2} & a_{n+3} & \cdot & a_{k+n} \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
a_{k} & a_{k+1} & a_{k+2} & \cdot & a_{k+k}
\end{array}\right]
$$

for $k \geq n$. For example,

$$
r_{2,4}=\frac{1}{h_{3}}(-1)^{(2+4)+2} \operatorname{det}\left[\begin{array}{cccc}
1 & a_{1} & a_{2} & a_{3} \\
a_{1} & a_{2} & a_{3} & a_{4} \\
a_{3} & a_{4} & a_{5} & a_{6} \\
a_{4} & a_{5} & a_{6} & a_{7}
\end{array}\right]
$$

Remark 4.2. $H R=L D$, where $L=\left(l_{n, k}\right)$ is the Gaussian column reduction of the Hankel matrix H and D is the diagonal matrix with diagonal entries $\left\{d_{i}\right\}, R^{-1}=L^{t}$ with $d_{i}=\frac{h_{i}}{h_{i-1}}$ and $l_{n, k}=\frac{1}{h_{k-1}} \operatorname{det} H_{k}(n)$.

Remark 4.3. If L is a Riordan matrix, then for $i \geq 1, c=c_{i}=\frac{d_{i+1}}{d_{i}}=\frac{h_{i+1} h_{i-1}}{h_{i} h_{i}}$ and $b=b_{i}=$ $l_{i+1, i}-l_{i, i-1}=\frac{1}{h_{i-1}} \operatorname{det} H_{i}(i+1)-\frac{1}{h_{i-2}} \operatorname{det} H_{i-1}(i)$ is a recurrence relation for the sequence S.

Example 4.4. Let $S=\{1,3,13,63,321,1683,8989,48639,265729, \ldots\}$ be the central Delannoy numbers A 001850 and let H be the Hankel matrix generated by S. Then

$$
\begin{aligned}
& H=\left[\begin{array}{ccccc}
1 & 3 & 13 & 63 & \cdot \\
3 & 13 & 63 & 321 & \cdot \\
13 & 63 & 321 & 1683 & \cdot \\
63 & 321 & 1683 & 8989 & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot
\end{array}\right], \\
& R=\left[\begin{array}{ccccc}
1 & -3 & 5 & -9 & . \\
0 & 1 & -6 & 21 & \cdot \\
0 & 0 & 1 & -9 & . \\
0 & 0 & 0 & 1 & \cdot \\
. & . & . & . & .
\end{array}\right], \\
& L D=H R=\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & . \\
3 & 4 & 0 & 0 & \cdot \\
13 & 24 & 8 & 0 & . \\
63 & 132 & 72 & 16 & . \\
. & \cdot & \cdot & \cdot & .
\end{array}\right], \\
& R^{t} H R=D=\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & \cdot \\
0 & 4 & 0 & 0 & \cdot \\
0 & 0 & 8 & 0 & \cdot \\
0 & 0 & 0 & 16 & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot
\end{array}\right], \\
& L=H R D^{-1}=\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & . \\
3 & 1 & 0 & 0 & \cdot \\
13 & 6 & 1 & 0 & \cdot \\
63 & 33 & 9 & 1 & . \\
\cdot & \cdot & \cdot & \cdot & .
\end{array}\right], \\
& S_{L}=L^{-1} L^{r}=R^{t} L^{r}=\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & \cdot \\
-3 & 1 & 0 & 0 & \cdot \\
5 & -6 & 1 & 0 & \cdot \\
-9 & 21 & -9 & 1 & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot
\end{array}\right]\left[\begin{array}{llllll}
3 & 1 & 0 & 0 & 0 & \cdot \\
13 & 6 & 1 & 0 & 0 & \cdot \\
63 & 33 & 9 & 1 & 0 & \cdot \\
321 & 180 & 62 & 12 & 1 & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot
\end{array}\right] \\
& =\left[\begin{array}{ccccc}
3 & 1 & 0 & 0 & \cdot \\
4 & 3 & 1 & 0 & \cdot \\
0 & 2 & 3 & 1 & \cdot \\
0 & 0 & 2 & 3 & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot
\end{array}\right],
\end{aligned}
$$

$$
\begin{gathered}
L D L^{t}=\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & \cdot \\
3 & 1 & 0 & 0 & \cdot \\
13 & 6 & 1 & 0 & \cdot \\
63 & 33 & 9 & 1 & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot
\end{array}\right]\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & \cdot \\
0 & 4 & 0 & 0 & \cdot \\
0 & 0 & 8 & 0 & \cdot \\
0 & 0 & 0 & 16 & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot
\end{array}\right]\left[\begin{array}{ccccc}
1 & 3 & 13 & 63 & \cdot \\
0 & 1 & 6 & 33 & \cdot \\
0 & 0 & 1 & 9 & \cdot \\
0 & 0 & 0 & 1 & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot
\end{array}\right] \\
\\
=\left[\begin{array}{ccccc}
1 & 3 & 13 & 63 & \cdot \\
3 & 13 & 63 & 321 & \cdot \\
13 & 63 & 321 & 1683 & \cdot \\
63 & 321 & 1683 & 8989 & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot
\end{array}\right]=H .
\end{gathered}
$$

Remark 4.5. If H is the Hankel matrix corresponding to a sequence S, then by Theorem 3.1 and Theorem 3.3 we may use lattice paths to find L, the Gaussian column reduction of H.

Acknowledgment. The author would like to thank Professor Ralph Turner for his help in rewriting the paper.

References

[1] P. Peart and W. J. Woan, Generating functions via Hankel and Stieltjes matrices, J. of Integer Sequences, 3 (2) (2000), Article 00.2.1.
[2] Sloane, N. J. A. The On-Line Encyclopedia of Integer Sequences. Published electronically at http://www.oeis.org.
[3] R. Sulanke, Moments of generalized Motzkin paths, J. Integer Sequences 3 (1) (2000), Article 00.1.1.
[4] J. G. Wendel, Left-continuous random walk and the Lagrange expansion, Amer. Math. Monthly 82 (1975), 494-499.
(Mentions sequences A000108, A001006, and A001850.)

Received September 19, 2000; published in Journal of Integer Sequences, April 24, 2001.

Return to Journal of Integer Sequences home page.

