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Abstract

In this paper we investigate some algorithms which produce Bernoulli numbers,
Euler numbers, and tangent numbers. We also give closed formulae for Euler num-
bers and tangent numbers in terms of Stirling numbers of the second kind.
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1. Introduction

Recently M. Kaneko (ref. [4]) reformulated Akiyama and Tanigawa’s algorithm
for computing Bernoulli numbers as follows:

Proposition 1 (ref. [4]). Given an initial sequence a0,m (m = 0, 1, 2, · · · ), define
sequences an,m (n ≥ 1) recursively by

an,m = (m+ 1) · (an−1,m − an−1,m+1) (n ≥ 1,m ≥ 0).
Then the leading elements are given by

an,0 =
n∑
m=0

(−1)mm!
{
n+ 1

m+ 1

}
a0,m, (1)

where the Stirling numbers of the second kind
{
n
m

}
are defined by

(ex − 1)m
m!

=
∞∑
n=m

{
n

m

}
xn

n!
.
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Suppose the initial sequence is a0,m = 1/(m + 1). Then the Akiyama and
Tanigawa algorithm is the following. Begin with the 0-th row 1, 1/2, 1/3, 1/4,
1/5, 1/6, · · · The recursive rule gives the first row 1 · (1 − 1/2), 2 · (1/2 − 1/3),
3 · (1/3− 1/4), 4 · (1/4− 1/5), · · · which is 1/2, 1/3, 1/4, 1/5, · · · . The 2nd row is
given by 1·(1/2−1/3), 2·(1/3−1/4), 3·(1/4−1/5), · · · , etc. The Akiyama-Tanigawa
matrix an,m is then

1 1/2 1/3 1/4 1/5 1/6 1/7 1/8 1/9 1/10 1/11 ...
1/2 1/3 1/4 1/5 1/6 1/7 1/8 1/9 1/10 1/11 ...
1/6 1/6 3/20 2/15 5/42 3/28 7/72 4/45 9/110 ...
0 1/30 1/20 2/35 5/84 5/84 7/120 28/495 ...
−1/30 −1/30 −3/140−1/1050 1/140 49/3960...
0 −1/42 −1/28 −4/105−1/28 −29/924...
1/42 1/42 1/140 −1/105−5/231...
0 1/30 1/20 8/165 ...
−1/30 −1/30 1/220 ...
0 −5/66 ...
5/66 ...
...

M. Kaneko [4] gave a direct proof that the leading element an,0 in the above
array is Bn(1), where the Bernoulli polynomials Bn(x) are defined by

text

et − 1 =
∞∑
n=0

Bn(x)t
n

n!
.

Note that Bernoulli numbers Bn can be defined as Bn(0).
In the sequel we denote the above algorithm as the A-algorithm. Let us change

the recursive step in the A-algorithm to

an,m = m · an−1,m − (m+ 1) · an−1,m+1 (n ≥ 1,m ≥ 0).

Proposition 2. Given an initial sequence a0,m (m = 0, 1, 2, · · · ), define the se-
quences an,m (n ≥ 1) recursively by

an,m = m · an−1,m − (m+ 1) · an−1,m+1, (n ≥ 1,m ≥ 0). (2)

Then

an,0 =
n∑
m=0

(−1)mm!
{
n

m

}
a0,m. (3)

We call the algorithm in Proposition 2 the B-algorithm. If we again start with
the initial sequence a0,m = 1/(m+ 1), then (cf. Eq. (6.99) or p. 560 of [2])

an,0 =
n∑
m=0

(−1)mm!{n
m

}
m+ 1

= Bn = Bn(0).

In fact, we have the following theorem:
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Theorem 1. Suppose the initial sequence a0,m (m = 0, 1, 2, · · · ) has the ordinary
generating function

A(x) =

∞∑
m=0

a0,mx
m.

Then the leading elements an,0 (n = 0, 1, 2, . . . ) have exponential generating func-
tion

B(x) =
∞∑
n=0

an,0
xn

n!

given by exA(1− ex) for the A-algorithm and A(1− ex) for the B-algorithm.
Consider now the initial sequence a0,m = 1/2

m in the A-algorithm and B-
algorithm, respectively. We obtain the leading elements an,0 as En(1) and En(0),
respectively, where the Euler polynomials En(x) are defined by

2ext

et + 1
=

∞∑
n=0

En(x)t
n

n!
.

Note that the Euler numbers En can be defined as 2
nEn(1/2). Alternatively we

may define the Euler numbers by

secx =
∞∑
n=0

(−1)nE2n
(2n)!

x2n.

They are closely related to the tangent numbers Tn (cf. [3]), which are defined by

tanx =
∞∑
n=0

(−1)n+1T2n+1
(2n+ 1)!

x2n+1, T0 = 1.

Moreover, if we take the initial sequence to be

a0,m = (−1)[m/4] · 2−[m/2] · (1− δ4,m+1), where δ4,i =

{
1, if 4|i,
0, otherwise.

in the A-algorithm and B-algorithm, respectively, the leading elements an,0 become
En and Tn, respectively. We now give the proof of the above statements.

2. Proof of Proposition 2 and Theorem 1

To prove Proposition 2, we use a similar trick to that used in the proof of
Proposition 2 in [4]. Put

gn(t) =
∞∑
m=0

an,mt
m.
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By the recursion Eq.(2) we have for n ≥ 1

gn(t) =

∞∑
m=0

(m · an−1,m − (m+ 1) · an−1,m+1)tm

=
∞∑
m=0

(m+ 1)an−1,m+1tm+1 −
∞∑
m=0

(m+ 1)an−1,m+1tm

= (t− 1)
∞∑
m=0

(m+ 1)an−1,m+1tm

= (t− 1) d
dt
gn−1(t) =

(
(t− 1) d

dt

)n
g0(t).

Using the recursion for the Stirling numbers of second kind{
n+ 1

m+ 1

}
= (m+ 1)

{
n

m+ 1

}
+

{
n

m

}
,

and mathematical induction on n, we have (ref. p. 310 in [2])(
(t− 1) d

dt

)n
=

n∑
m=0

{
n

m

}
(t− 1)m

(
d

dt

)m
.

Therefore

gn(t) =

n∑
m=0

{
n

m

}
(t− 1)m

(
d

dt

)m
g0(t).

Setting t = 0 we get the assertion of Proposition 2

an,0 =
n∑
m=0

{
n

m

}
(−1)mm!a0,m. �

Now we give the proof of Theorem 1. In the A-algorithm we use the identity
which appeared in Eq. (3) of [4]:

ex(ex − 1)m
m!

=
∞∑
n=m

{
n+ 1

m+ 1

}
xn

n!
,

and Eq.(1). Then the exponential generating function for the leading elements an,0
is

B(x) =
∞∑
n=0

an,0
xn

n!
=

∞∑
n=0

(
n∑
m=0

(−1)mm!
{
n+ 1

m+ 1

}
a0,m

)
xn

n!

=
∞∑
m=0

(−1)mm!a0,m
∞∑
n=m

{
n+ 1

m+ 1

}
xn

n!

=
∞∑
m=0

(−1)mm!a0,m e
x(ex − 1)m
m!

= ex
∞∑
m=0

(1− ex)ma0,m = exA(1− ex).
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Next we treat the B-algorithm case. Using Eq.(3) we have

B(x) =
∞∑
n=0

an,0
xn

n!
=

∞∑
n=0

(
n∑
m=0

(−1)mm!
{
n

m

}
a0,m

)
xn

n!

=
∞∑
m=0

(−1)mm!a0,m
∞∑
n=m

{
n

m

}
xn

n!

=
∞∑
m=0

(−1)mm!a0,m (e
x − 1)m
m!

=
∞∑
m=0

(1− ex)ma0,m = A(1− ex).

This completes the proof of Theorem 1. �

3. Euler numbers and Tangent numbers

Theorem 2. Set a0,m = 1/2
m for m ≥ 0 in the A-algorithm and B-algorithm.

Then the leading elements an,0 for n ≥ 0 are given by En(1) and En(0), respectively.
Proof. In the B-algorithm,

A(1− ex) =
∞∑
m=0

(1− ex)ma0,m

=
∞∑
m=0

(
1− ex
2

)m
=

2

ex + 1
.

The exponential generating functions for En(0) and En(1) are 2/(e
x + 1) and

2ex/(ex + 1), respectively. Using Theorem 1 completes the proof. �

Theorem 3. Set

a0,m = (−1)[m/4] · 2−[m/2] · (1− δ4,m+1), where δ4,i =

{
1, if 4|i,
0, otherwise,

in the A-algorithm and B-algorithm. Then the leading elements an,0 are En and
Tn, respectively.

Proof. The exponential generating functions for En and Tn are 2e
x/(e2x + 1) and

2/(e2x + 1), respectively. From the results of Theorem 1, we only need to prove
that A(1− ex) = 2/(e2x + 1) in the B-algorithm. We have

A(1− ex) =
∞∑
m=0

(1− ex)ma0,m

=
∞∑
k=0

(−1)k(1− ex)4k
22k

+
∞∑
k=0

(−1)k(1− ex)4k+1
22k

+
∞∑
k=0

(−1)k(1− ex)4k+2
22k+1

.
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Let

D(x) =
∞∑
k=0

(−1)k(1− ex)4k
22k

=
4

(e2x − 4ex + 5)(e2x + 1) .

Then

A(1− ex) = D(x) + (1− ex)D(x) + (1− e
x)2

2
D(x)

= D(x) · (1 + 1− ex + 1− 2e
x + e2x

2
)

=
4

(e2x − 4ex + 5)(e2x + 1) ·
e2x − 4ex + 5

2
=

2

e2x + 1
.

This completes the proof. �

The following is the matrix generated by Theorem 3 for the Euler numbers En:

1 1 1/2 0 -1/4 -1/4 -1/8 0 1/16 1/16 1/32 ...
0 1 3/2 1 0 -3/4 -7/8 -1/2 0 5/16 ...
-1 -1 3/2 4 15/4 3/4 -21/8 -4 -45/16 ...
0 -5 -15/2 1 15 81/4 77/8 -19/2 ...
5 5 -51/2 -56 -105/4 255/4 1071/8...
0 61 183/2 -119 -450 -1683/4...
-61 -61 1263/21324 -585/4 ...
0 -1385 -4155/25881 ...
1385 1385 -47751/2...
0 50521 ...
-50521 ...
...

The following is the matrix generated by Theorem 3 for the tangent numbers Tn:

1 1 1/2 0 -1/4 -1/4 -1/8 0 1/16 1/16 1/32 0 ...
-1 0 1 1 1/4 -1/2 -3/4 -1/2 -1/16 1/4 5/16 ...
0 -2 -1 2 7/2 2 -1 -3 -11/4 -7/8 ...
2 0 -8 -8 4 16 15 1 -113/8...
0 16 8 -40 -64 -10 83 120 ...
-16 0 136 136 -206 -548 -342 ...
0 -272 -136 1232 1916 -688 ...
272 0 -3968 -3968 11104 ...
0 7936 3968 -56320...
-7936 0 176896...
0 -353792...
353792...
...

Using Eq.(1) and Eq.(3) in Theorem 2 and 3, we can give closed formulae for
En(0), En(1), En, and Tn.
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Corollary.

En(0) =

n∑
m=0

(−1)mm!{n
m

}
2m

,

En(1) =
n∑
m=0

(−1)mm!{n+1
m+1

}
2m

,

En =
n∑
m=0

(−1)mm!
{
n+ 1

m+ 1

}
a0,m,

Tn =

n∑
m=0

(−1)mm!
{
n

m

}
a0,m,

where {a0,m}∞m=0 is the initial sequence in Theorem 3.
Remark. A referee mentions that the B-algorithm may well yield other notable
sequences. For instance, the Bell numbers can be obtained from the initial sequence
(−1)n/n!, since their exponential generating function is

B(x) = A(1− ex) =
∞∑
m=0

(ex − 1)m
m!

= ee
x−1.
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