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Abstract

We propose and discuss several simple ways of obtaining new enumerative sequences from existing ones. For
instance, the number of graphs considered up to the action of an involutory transformation is expressible as
the semi-sum of the total number of such graphs and the number of graphs invariant under the involution.
Another, less familiar idea concerns even- and odd-edged graphs: the difference between their numbers often
proves to be a very simple quantity (such as n!). More than 30 new sequences will be constructed by these
methods.
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1 Introduction

New realities set up new tasks. The On-line Encyclopedia of Integer Sequences [18] (in the sequel referred
to as the OEIS) is a rapidly growing facility, which has been playing a more and more important role in
mathematical research. To be a comprehensive reference source, the OEIS needs to include as many naturally
defined sequences as possible. The efforts of numerous enthusiasts have been directed towards promoting
this aim. The present work has been motivated by the same goals.
A fruitful idea is to generate new sequences from known ones. To implement it, various useful trans-

formations of sequences have been proposed — see [4, 5, 19, 20]. In most cases discussed hitherto, these
operations transform one sequence to another.
Here we consider some other operations of a similar type but which are less general, producing new

enumerative sequences for graphs from two other sequences (in most cases, as their semi-sum). The cor-
responding relations between the objects being counted are very simple, and, as a rule, already known.
However, they have never been analyzed systematically (this can be partially explained just by their sim-
plicity: serious researchers rarely considered them as deserving an independent formulation). As we will
see, our operations do result in new and interesting sequences. In a sense, they might be considered as
already implicitly present in the OEIS. However, they cannot be extracted by a formal rule and thus need
to be presented in the OEIS explicitly. At the same time, we should avoid trivial sequences — not all new
sequences deserve to be added to the OEIS. We will return to this question in Section 5.

1.1 Definitions, classes of graphs

In what follows, n denotes the order of a graph, i.e. the number of nodes (or vertices). For uniformity,
we always start with the case n = 1, and usually n takes all natural values. In other words, we deal with
sequences (or lists) of the form [a (1), a (2), a (3), . . .]. N denotes the number of edges (in digraphs they are
usually called arcs) and if there are n nodes and N edges we will sometimes speak of an (n,N) graph.
Φ stands for an arbitrary class of graphs, undirected or directed. Graphs may have loops but not multiple

edges (except for planar maps). The most important specific classes to be considered will be denoted by the
following capital Greek letters, sometimes equipped with a symbolic subscript:

• Γ (simple) undirected graphs

• Γl (undirected) graphs with loops, i.e. symmetric reflexive relations

• Γe even (i.e. eulerian) graphs

• Γm median graphs, i.e. (n,N)-graphs with N = dn(n− 1)/4e edges

• Γr regular graphs with unspecified degrees

• Γt (vertex-) transitive graphs

• Γc circulant graphs (i.e. Cayley graphs of cyclic groups)
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• ∆ digraphs

• ∆l (binary) relations, i.e. digraphs with loops

• ∆e balanced digraphs (i.e. eulerian digraphs: in-degree = out-degree for any vertex)

• ∆c circulant digraphs

• Ω oriented graphs, i.e. antisymmetric relations

• Θ tournaments, i.e. complete oriented graphs

• Λ planar maps (order = #(edges)).

1.2 Enumerative functions

Lower case letters will be used for the cardinalities (denoted by #) of subsets of labeled graphs, and the
corresponding capital letters will be used for unlabeled graphs of the same kind. The most important specific
quantities to be mentioned are the following:

• a,A = #(all graphs) in a class Φ

• c, C = #(connected graphs)

• d,D = #(disconnected graphs)

• b, B = #(doubly connected graphs) (both the graph and its complement are connected)

• s, S = #(strongly connected digraphs, or strong digraphs)

• G = #(unlabeled self-complementary undirected graphs)

• K = #(unlabeled graphs up to complementarity)

• fE, FE = #(graphs with even number of edges (or arcs)) and

• fO, FO = #(graphs with odd number of edges (or arcs)), where f = a, c, . . . , F = A,C, . . .

We denote the corresponding functions for n-graphs and (n,N)-graphs by f (Φ, n), F (Φ, n) and
f (Φ, n,N), F (Φ, n,N) (or merely f (n), f (n,N), etc. if the class is understood), where f and F refer
to labeled and unlabeled graphs respectively The corresponding exponential generating functions (e.g.f.) for
labeled graphs and ordinary generating functions (o.g.f.) for unlabeled graphs are denoted by f (z), f (n, x),
f (z, x) and F (z), F (n, x), F (z, x)), where the formal variable z corresponds to n and x corresponds to N .
In particular, in the labeled case,

f (z, x) =
∑

n≥1

f (n, x)
zn

n!
=
∑

n

∑

N

f (n,N)xN
zn

n!

(so as not to confuse f (n, x) with f (z, x)|z=n, the latter expression will not be used here).
We identify any function f (n) with the sequence of its values [f (1), f (2), f (3), . . .].
Sequences in [18] will be referred to by their A-numbers. (Many of these sequences were added as a result

of the present paper.)

2 Subtraction

We begin with the most trivial case: the subtraction method for calculating objects that do not belong to a
given subset of a set. In principle, this is an inexhaustible source of new sequences, but we restrict ourselves
to several interesting classes, some of which will be used in what follows.
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2.1 Disconnection

Consider an arbitrary class of graphs Φ. Using the above notation, we have for disconnected labeled graphs,

d (Φ, n) = a (Φ, n) − c (Φ, n) (1)

and for disconnected unlabeled graphs,

D (Φ, n) = A (Φ, n) − C (Φ, n) (1∗)

Usually c (n) is expressible in terms of a (n) and C (n) in terms of A (n), and vice versa, in one of several
ways depending on the labeling type and the repetition restrictions. See for example the transformations
EULERi/EULER/WEIGH for unlabeled graphs and LOG/EXP for labeled ones [4, 20]. Therefore d (n)
(and D (n)) can usually be expressed solely in terms of a (n) or c (n) (resp., in terms of A (n) or C (n)). In
any case, (1) and (1∗) are much easier for calculations if both a (n) and c (n) (resp., A (n) and C (n)) have
already been calculated.

2.2 Weak and strong digraphs

In the directed case (including the case of relations), connected digraphs are called weakly connected in
order to distinguish them from strongly connected ones. As in Section 2.1 we may consider two further
quantities: digraphs that are not strongly connected and (weakly) connected digraphs that are not strongly
connected. Only the latter quantity makes sense for tournaments, because all tournaments are weakly
connected. Neither notion makes sense for balanced digraphs, in which case weakly connected digraphs are
all strongly connected.
This idea is quite fruitful not only for most of the classes of digraphs defined above but also for example

for semi-regular digraphs: ones with the same out-degree at all vertices1.
One further notion, which we will use below (4.1.6), is that of a semi-strong digraph. A digraph is called

semi-strong if all its weakly connected components are strongly connected (in particular, strong digraphs are
semi-strong). In the unlabeled case, moreover, one should make a distinction between (at least) two kinds of
semi-strong digraphs: with or without repetitions (i.e. isomorphic components). Again, using the ordinary
enumerative relationship “connected – disconnected”, one can easily count semi-strong digraphs in any class
for which the number of strongly connected ones is known.
In practice, these transformations are less productive since strongly connected digraphs (especially unla-

beled ones) have been counted only for few types of digraphs (see, in particular, [26, 11, 12]); two of them
will be discussed in 4.1.5.

3 Involutory equivalence

Diverse involutory operations on graphs serve as a source of new sequences.

3.1 Complementarity

Several interesting enumerative sequences are related to the notion of complementary graph.
Many classes of graphs contain a uniquely defined complete graph (for every order). In particular, complete

graphs exist in the families of ordinary undirected graphs Γ, undirected graphs with loops Γl, directed graphs
∆ and relations ∆l. This notion allows us to introduce the complement of a graph. This is the graph on the
same vertices in which the edges are those not in the complete graph.

1And for abstract automata [7] (Sect. 6.5). Fully defined automata without outputs and initial states are semi-regular
digraphs which may be identified with tuples of mappings of the set of states to itself [12].
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3.1.1 Double connection

It is clear that the complement of a disconnected graph is connected. This simple assertion allows us to
easily count connected graphs (of given type Φ) whose complement is also connected and belongs to the
same class. We call them doubly connected. In the labeled case their number b (Φ, n) is given by

c (Φ, n) = b (Φ, n) + d (Φ, n),

whence by (1),
b (Φ, n) = 2c (Φ, n) − a (Φ, n). (2)

Likewise for unlabeled graphs,
B (Φ, n) = 2C (Φ, n) − A (Φ, n). (2∗)

Now, for labeled simple undirected graphs,
a (Γ, n) = [1, 2, 8, 64, 1024, 32768, 2097152, . . . ] = A006125 and
c (Γ, n) = [1, 1, 4, 38, 728, 26704, 1866256, . . . ] = A001187, resulting in
b (Γ, n) = [1, 0, 0, 12, 432, 20640, 1635360, . . . ] = A054913.
For labeled digraphs,
a (∆, n) = [1, 4, 64, 4096, 1048576, . . . ] = A053763 and
c (∆, n) = [1, 3, 54, 3834, 1027080, . . . ] = A003027, resulting in
b (∆, n) = [1, 2, 44, 3572, 1005584, . . . ] = A054914.
For unlabeled undirected graphs,
A (Γ, n) = [1, 2, 4, 11, 34, 156, 1044, 12346, 274668, . . . ] = A000088,
C (Γ, n) = [1, 1, 2, 6, 21, 112, 853, 11117, 261080, . . . ] = A001349, and we obtain
B (Γ, n) = [1, 0, 0, 1, 8, 68, 662, 9888, 247492, . . . ] = A054915.
For unlabeled undirected regular graphs,
A (Γr, n) = [1, 2, 2, 4, 3, 8, 6, 22, 26, 176, . . . ] = A005176,
C (Γr, n) = [1, 1, 1, 2, 2, 5, 4, 17, 22, 167, . . . ] = A005177 and
B (Γr, n) = [1, 0, 0, 0, 1, 2, 2, 12, 18, 158, . . . ] = A054916.
For vertex-transitive graphs,
A (Γt, n) = [2, 2, 4, 3, 8, 4, 14, 9, 22, . . . ] = A006799,
C (Γt, n) = [1, 1, 2, 2, 5, 3, 10, 7, 18, . . . ] = A006800 and
B (Γt, n) = [0, 0, 0, 1, 2, 2, 6, 5, 14, . . . ] = A054917.
For unlabeled digraphs,
A (∆, n) = [1, 3, 16, 218, 9608, 1540944, . . . ] = A000273,
C (∆, n) = [1, 2, 13, 199, 9364, 1530843, . . . ] = A003085 and
B (∆, n) = [1, 1, 10, 180, 9120, 1520742, . . . ] = A054918.
For unlabeled (reflexive) relations,
A (∆l, n) = [2, 10, 104, 3044, 291968, . . . ] = A000595, therefore, by the EULERi transformation [20],
C (∆l, n) = [2, 7, 86, 2818, 285382, . . . ] = A054919 and
B (∆l, n) = [2, 4, 68, 2592, 278796, . . . ] = A054920.
For unlabeled symmetric relations (undirected graphs with loops),
A (Γl, n) = [2, 6, 20, 90, 544, 5096, 79264, . . . ] = A000666, therefore, by the EULERi transformation,
C (Γl, n) = [2, 3, 10, 50, 354, 3883, 67994, . . . ] = A054921 and
B (Γl, n) = [2, 0, 0, 10, 164, 2670, 56724, . . . ] = A054922.
Undirected graphs with the median number of edges Γm need a slight modification of the present approach.

Nothing unusual arises for orders n = 4k or 4k + 1. However for n ≡ 2, 3 (mod 4), the graph and its
complement have different numbers of edges, namely dn(n−1)/4e and dn(n−1)/4e −1. We will use a prime
′ in the symbols for the latter case. Now, in order to count doubly connected median graphs, one should,
instead of doubling C (Γm, n) as in (2∗), take the sum C (Γm, n) + C

′(Γm, n). In other words we have

B (Γm, n) = C (Γm, n) + C
′(Γm, n) − A (Γm, n). (2′)

Indeed, we have C = B +D′ and A′ = C ′ +D′. By definition, A′ counts graphs that are complementary to
ones counted by A, i.e. A = A′. These equalities give (2′).
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Numerically, for unlabeled undirected graphs with n nodes and N = dn(n− 1)/4e edges,
A (Γm, n) = [1, 1, 1, 3, 6, 24, 148, 1646, 34040, . . . ] = A000717,
C (Γm, n) = [1, 1, 1, 2, 5, 22, 138, 1579, 33366, . . . ] = A001437
and by the two-parameter table A054924,
C ′(Γm, n) = [1, 0, 0, 2, 5, 19, 132, 1579, 33366, . . . ] = A054926, whence
B (Γm, n) = [1, 0, 0, 1, 4, 17, 122, 1512, 32692, . . . ] = A054927.
Of course, such a generalization can be applied to other similar classes of graphs (for example, regular of

prescribed degree).

3.1.2 Self-complementarity

Next we consider various classes of graphs that are invariant with respect to complementarity. Apart
from the classes mentioned in 3.1.1, complementarity is applicable, e.g., to the class of regular graphs of
unspecified degrees Γr, regular undirected graphs of degree (n− 1)/2 (n odd), median n-graphs for n(n− 1)
divisible by 4, undirected eulerian graphs Γe of odd order, balanced digraphs ∆e, arbitrary tournaments Θ
and regular tournaments Θr. On the other hand, e.g., the following classes are not invariant with respect to
complementarity: undirected eulerian graphs of even order, graphs with one cycle, graphs without 1-valent
nodes, regular undirected graphs of a given degree (not equal to (n− 1)/2), oriented graphs (except for
tournaments), functional digraphs, acyclic digraphs and so on.
For a class of unlabeled graphs Φ counted by A (Φ, n), let G (Φ, n) count self-complementary graphs

(i.e. graphs isomorphic to their complements). We may ask: what is the number K (Φ, n) of graphs in Φ
considered up to complementarity?
The complement of a graph looks even more natural if one deals with the pair consisting of a graph

and its complement: this may be interpreted as a complete graph with edges of two colors. In these terms,
K (Φ, n) means the number of edge-2-colored unlabeled complete graphs whose colors are interchangeable
and both one-colored edge subgraphs belong to Φ. The answer to the last question is now very simple:

K (Φ, n) =
A (Φ, n) + G (Φ, n)

2
. (3)

Indeed, every graph appears twice in different pairs (graph, complement) as the first or second component,
except for the self-complementary graphs, which appear in only one pair. Each pair presents one graph up
to complementarity, so 2K (n) = A (n) + G (n) (cf. [6]).
This composition can be applied:

to undirected graphs, where A (Γ, n) = A000088 is given above and
G (Γ, n) = [1, 0, 0, 1, 2, 0, 0, 10, 36, . . . ] = A000171, resulting in the sequence
K (Γ, n) = [1, 1, 2, 6, 18, 78, 522, 6178, 137352, . . . ] = A007869;
to digraphs, where A (∆, n) = A000273 and
G (∆, n) = [1, 1, 4, 10, 136, 720, 44224, . . . ] = A003086, resulting in
K (∆, n) = [1, 2, 10, 114, 4872, 770832, . . . ] = A054928;
to tournaments, where
A (Θ, n) = [1, 1, 2, 4, 12, 56, 456, 6880, 191536, . . . ] = A000568 and
G (Θ, n) = G (Ω, n) = [1, 1, 2, 2, 8, 12, 88, 176, 2752, . . . ]) = A002785, resulting in
K (Θ, n) = [1, 1, 2, 3, 10, 34, 272, 3528, 97144, . . . ] = A059735;
to median n-graphs for n = 4k or 4k + 1 (that is, n = 1, 4, 5, 8, 9 . . .), where
A (Γm, n) = [1, 3, 6, 1646, 34040, . . . ] = the corresponding subsequence of A000717 (see 3.1.1) and
G (Γm, n) = G (Γ, n) = [1, 1, 2, 10, 36, . . . ] = A000171 without zeros (see above), resulting in
K (Γm, n) = [1, 2, 4, 828, 17038, . . . ], n ≡ 0, 1 (mod 4);
to circulant graphs, where
A (Γc, n) = [1, 2, 2, 4, 3, 8, 4, 12, 8, 20, 8, 48, 14, 48, 44, 84, 36, 192, . . . ]) = A049287 and
G (Γc, n) = [1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 4, 0, . . . ] = A049289, resulting in
K (Γc, n) = [1, 1, 1, 2, 2, 4, 2, 6, 4, 10, 4, 24, 8, 24, 22, 42, 20, 96, . . . ] = A054929;
and to circulant digraphs, where
A (∆c, n) = [1, 2, 3, 6, 6, 20, 14, 46, 51, 140, 108, . . . ] = A049297 and
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G (∆c, n) = [1, 0, 1, 0, 2, 0, 2, 0, 3, 0, 4, . . . ] = A049309, resulting in
K (∆c, n) = [1, 1, 2, 3, 4, 10, 8, 23, 27, 70, 56, . . . ] = A054930.
In the last two cases, G (n) differ from the corresponding sequences in OEIS by additional zeros inter-

spersed appropriately in order to cover all orders.
One further class of graphs worth mentioning in this respect is that of bipartite graphs; we refer to [16]

for enumerative results concerning the function G for such graphs.
In general, this idea can be productively applied to a class of graphs whenever we know any two out of

the three corresponding sequences.

3.1.3 A combination

Somewhat more artificially we can apply the same approach to connected graphs, i.e. we consider the number
L (n) of unlabeled connected graphs up to complementarity. Complementarity clearly preserves the subclass
of connected graphs whose complement is also connected. Thus formula (3) is applicable, giving rise to
L (n) = (B (n) + G (n))/2, where B (n) is determined by formula (2∗). Thus

L (Φ, n) = C (Φ, n) −
A (Φ, n) − G (Φ, n)

2
. (4)

So, for unlabeled undirected connected graphs, we obtain
L (Γ, n) = [1, 0, 0, 1, 5, 34, 331, 4949, 123764, . . . ] = A054931,
and for digraphs,
L (∆, n) = [1, 1, 7, 95, 4628, 760731, . . . ] = A054932.

3.2 Arc reversal

We can apply the same idea to other involutory transformations.
Consider first the reversal of arcs in digraphs. Now

KR(Φ, n) =
A (Φ, n) + GR(Φ, n)

2
, (3R)

where GR stands for the number of self-converse digraphs and KR for the number of (unlabeled) digraphs
considered up to reversing the arcs.
For digraphs, A (∆, n) = A000273 (see 3.1.1),

GR(∆, n) = [1, 3, 10, 70, 708, 15224, . . . ] = A002499 and we obtain
KR(∆, n) = [1, 3, 13, 144, 5158, 778084, . . . ] = A054933.
For relations, A (∆l, n) = A000595,
GR(∆l, n) = [2, 8, 44, 436, 7176, 222368, . . . ] = A002500 and
KR(∆l, n) = [2, 9, 74, 1740, 149572, 48575680, . . . ] = A029849.
For oriented graphs,
A (Ω, n) = [1, 2, 7, 42, 582, 21480, 2142288, . . . ] = A001174,
GR(Ω, n) = [1, 2, 5, 18, 102, 848, 12452, . . . ] = A005639 and we obtain
KR(Ω, n) = [1, 2, 6, 30, 342, 11164, 1077370, . . . ] = A054934.

3.3 Planar maps

Equation (3) has a form which is intrinsic for unlabeled objects possessing an additional involutory transfor-
mation. Such transformations occur in particular for geometric and topological objects like planar maps.2

2We notice incidentally that formula (3) is a particular case (for the group of order 2) of the result known as Burnside’s
Lemma. Formulae (2) and (2∗) are also particular cases of (3).
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3.3.1 Duality and reflection

The idea can be applied to planar maps (or maps on other surfaces) with respect to topological duality.
For the number A (Φ, n) of unrooted (= unlabeled) planar maps with n edges in a class of maps Φ and the
corresponding number GD(Φ, n) of self-dual maps, we have, similarly to (3),

KD(Φ, n) =
A (Φ, n) + GD(Φ, n)

2
, (3D)

where KD(Φ, n) denotes the number of unrooted maps considered up to duality.
At present, a formula for GD(Φ, n) seems to be known in only one case, namely, for the class Φ = Λ of

all planar maps considered on the sphere with a distinguished orientation [13]. In this case,

K+D (Λ, n) =
A+(Λ, n) + G+D(Λ, n)

2
, (3D+)

where the superscript + means enumeration up to orientation-preserving transformations. Now,
A+(Λ, n) = [2, 4, 14, 57, 312, 2071, 15030, 117735, 967850, 8268816, . . . ] = A006384 and
G+D(Λ, n) = [0, 2, 0, 9, 0, 69, 0, 567, 0, 5112, . . . ] = A006849 interspersed with 0s. Hence
K+D (Λ, n) = [1, 3, 7, 33, 156, 1070, 7515, 59151, 483925, 4136964, . . . ] = A054935.
Instead of duality, let us consider reflections. We obtain the formula

A (Λ, n) =
A+(Λ, n) + Gach(Λ, n)

2
, (3a)

whereGach(Λ, n) denotes the number of achiral maps (i.e. maps isomorphic to their mirror images) considered
up to orientation-preserving isomorphisms.
Thus from

A (Λ, n) = [2, 4, 14, 52, 248, 1416, 9172, 66366, 518868, 4301350, . . . ] = A006385 we have
Gach(Λ, n) = [2, 4, 14, 47, 184, 761, 3314, 14997, 69886, 333884, . . . ] = A054936. Here it is perhaps more
natural to consider maps of the complementary class, i.e. chiral maps, i.e.

Gch(Λ, n) = A
+(Λ, n) −A (Λ, n) = A (Λ, n) − Gach(Λ, n).

Hence
Gch(Λ, n) = [0, 0, 0, 5, 64, 655, 5858, 51369, 448982, 3967466, . . . ] = A054937.
It would also be interesting to investigate planar maps with respect to the central symmetry.

3.3.2 Circular objects

By circular objects we refer to various classes of geometric figures defined inside a disk, or, more concretely,
inside a convex (regular) polygon. Examples are necklaces (i.e. strings considered up to rotations), triangu-
lations of a polygon and other types of dissections (that is, non-separable outerplanar maps).
Enumerative results for necklaces are well known and widely represented in the OEIS. In particular, there

are many sequences enumerating necklaces that can be turned over; such necklaces are sometimes called
bracelets. For any type of necklace, the same semi-sum formula connects three corresponding sequences that
enumerate, respectively, necklaces, bracelets and strings up to both rotations and turning over (i.e. reversal
or reflection). So whenever two sequences are known, the third can immediately be obtained. Moreover, just
as for maps (see 3.3.1), instead of bracelets it is sometimes useful to switch to their complementary set, i.e.
to count necklaces that are not isomorphic to their reversals.
Another natural transformation of necklaces is an interchange between bead colors (or string letters).

Again, if this is an involution (such as the transposition of two colors), then three appropriate quantities
arise which are connected by the same formula (see [6]). Moreover, one may combine this involution with
the reversal and count necklaces up to this combined transformation as well as those invariant with respect
to it.
An unusual instance of the semi-sum formula arises for two-color necklaces with 2n beads in which

opposite beads have different colors. In other words, these are necklaces that are self-dual with respect to a
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180◦ rotation combined with the transposition of the colors. According to [14], the number of such self-dual
necklaces is given by the expression

Q (n) =
h (n) + 2b(n−1)/2c

2
,

where

h (n) =
1

2n

∑

k|n, k odd

φ (k) 2n/k

involving the Euler totient function φ (n). This is the sequence
Q (n) = Q (Ψ, n) = [1, 1, 2, 2, 4, 5, 9, 12, 23, 34, 63,. . . ] = A007147.
At the same time,

h (n) = h (Θ, n) = [1, 1, 2, 2, 4, 6, 10, 16, 30, 52, 94,. . . ] = A000016 enumerates so-called vortex-free
labeled tournaments (see in particular [8], p. 14). It is curious to notice that there is also a sensible shift
transformation of Q (n): according to [1],

Q (n) − [n2/12] − 1

enumerates a class of polytopal spheres, where square brackets mean the nearest integer. Numerically this
is
[0, 0, 0, 0, 1, 1, 4, 6, 15, 25, 52, . . . ] = A059736.
Other specific examples of self-dual necklaces can be found, e.g., in [14, 17]. Instead of discussing them

here, we turn to an important but less familiar class Ξ of circular object called chord diagrams. A chord
diagram is a set of chords between pairwise different nodes lying on an oriented circle. Chords may intersect
and their sets are considered up to an isotopy transforming the circle to itself. If no restrictions are imposed,
the number of chord diagrams A+(Ξ, n) with n chords and the number of reversible (achiral) chord diagrams
Gach(Ξ, n) can easily be evaluated (see details in [25, 2]). The corresponding (3a)-type formula has A (Ξ, n)
on the left-hand side, where A (Ξ, n) denotes the number of chord diagrams considered up to reflection.
Numerically,

A+(Ξ, n) = [1, 2, 5, 18, 105, 902, 9749, 127072, 1915951, . . . ] = A007769 and
Gach(Ξ, n) = [1, 2, 5, 16, 53, 206, 817, 3620, 16361, . . . ] = A018191, therefore
A (Ξ, n) = [1, 2, 5, 17, 79, 554, 5283, 65346, 966156, . . . ] = A054499. So, for the complementary sequence
of chiral chord diagrams Gch(Ξ, n) = A (Ξ, n) − Gach(Ξ, n) we obtain
Gch(Ξ, n) = [0, 0, 0, 1, 26, 348, 4466, 61726, 949795, . . . ] = A054938.

4 Even- and odd-edged graphs

Consider a specific type of sequence: the numbers fE(n) and fO(n) of graphs (of a given class with unspecified
numbers of edges) with even and odd numbers of edges. In some non-trivial cases one can easily express
both numbers in terms of the numbers of the corresponding graphs. We use a formal approach based on
generating functions. The formulae arising in this way are fairly uniform, but require individual proofs.
The general idea (going back to [6]) is to evaluate the difference fE(Φ, n)− fO(Φ, n) (in other words, this
is a weighted enumeration of graphs, where an (n,N)-graph gets the weight (−1)N ). It is clearly equal to
f (Φ, n,−1) and often turns out to be a very simple function.
We also consider analogous sequences FE(n) and FO(n) for unlabeled graphs, but here fewer results have

been obtained.

4.1 Labeled graphs

4.1.1 Connected graphs

For the class Γ, as we know, the e.g.f. of the number c (n,N) of labeled connected (n,N)-graphs satisfies
the equation

c (z, x) = log (1 + a (z, x)),
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where the corresponding o.g.f. for n-graphs for varying N are a (n, x) = (1 + x)n(n−1)/2 and
c (n, x) =

∑
N c (n,N)x

N (Γ is dropped everywhere for simplicity). Thus a (n,−1) = 0 for n > 1,
a (1,−1) = 1 and a (z,−1) = z. Hence c (z,−1) = log (1 + z) and

cE(n) − cO(n) = c (n,−1) = −(−1)
n(n− 1)!.

This is Amer. Math. Monthly problem #6673, and in [22] one can find another proof and a generalization
to k-component graphs. We notice also that (−1)n−1(n− 1)! is the Möbius function of the lattice of set
partitions.
Finally, cE(n) + cO(n) = c (n), hence

cE(Γ, n) =
c (Γ, n) − (−1)n(n− 1)!

2

and

cO(Γ, n) =
c (Γ, n) + (−1)n(n− 1)!

2
.

Numerically (with c (Γ, n) = [1, 1, 4, 38, 728, 26704, 1866256. . . ] = A001187,
cE(Γ, n) = [1, 0, 3, 16, 376, 13292, 933488, . . . ] = A054939 and
cO(Γ, n) = [0, 1, 1, 22, 352, 13412, 932768, . . . ] = A054940.

4.1.2 Connected digraphs

The same result is valid for (weakly) connected labeled digraphs ∆ (see my comment in [22]); in the proof
we need only use the generating function (1 + x)n(n−1) instead of (1 + x)n(n−1)/2.

4.1.3 Symmetric relations

For the class of graphs with loops Γl, the same proof with (1 + x)
n(n+1)/2 instead of (1 + x)n(n−1)/2 results

in a (z,−1) = 0 and c (n,−1) = 0. Hence

cE(Γl, n) = cO(Γl, n) = c (Γl, n)/2

(by complementarity, this is evident for n ≡ 1, 2 (mod 4)).

4.1.4 Oriented graphs

For oriented graphs Ω, we work with the polynomials a (n, x) = (1 + 2x)n(n−1)/2, so that
a (n,−1) = (−1)n(n−1)/2. Now a (z,−1) = cos (z) + sin (z)− 1 and

c (Ω, z,−1) = log (cos (z) + sin (z)).

Therefore
cE(Ω, n) − cO(Ω, n) = [1, -2, 4, -16, 80, -512, 3904, -34816, . . . ], which is A000831 (the expansion of
(1 + tan x)/(1− tan x)) up to alternating signs.
cE(Ω, n) + cO(Ω, n) = c (Ω, n) = [1, 2, 20, 624, 55248, 13982208, . . . ] = A054941. Thus
cE(Ω, n) = [1, 0, 12, 304, 27664, 6990848, . . . ] = A054942 and
cO(Ω, n) = [0, 2, 8, 320, 27584, 6991360, . . . ] = A054943.

4.1.5 Strongly connected digraphs

Proposition. For labeled strong digraphs,

sE(∆, n) − sO(∆, n) = (n− 1)! . (5)
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Remark. This is the Amer. Math. Monthly problem [15] mentioned earlier without proof in [22].

Proof. Let s (n,N) = s (∆, n,N). The left-hand difference in (5) is s (n,−1). According to [11] (cf.
also [26]),

s (z, x) = − log (1 − v (z, x)),

where v (z, x) =
∑
n≥1 v (n, x)z

n/n!, v (n, x) = a (n, x)u (n, x), a (n, x) = (1 + x)n(n−1)/2,
a (z, x) =

∑
n≥1 a (n, x)z

n/n! (hence a (n,N) = a (Γ, n,N) is the number of all labeled undirected graphs)
and

u (z, x) =
∑

n≥1

u (n, x)
zn

n!
= 1 −

1

1 + a (z, x)
. (6)

As we saw in 4.1.1, a (n,−1) = 0 for n > 1. Moreover, a (1,−1) = u (1,−1) = 1. Therefore
v (z,−1) = z, whence s (z,−1) = − log (1− z) and s (n,−1) = (n− 1)!.

Different proofs can be found in [24].

Corollary.

sE(∆, n) =
s (∆, n) + (n− 1)!

2

and

sO(∆, n) =
s (∆, n) − (n− 1)!

2
.

Thus, from s (∆, n) = [1, 1, 18, 1606, 565080, . . . ] = A003030, we obtain
sE(∆, n) = [1, 1, 10, 806, 282552, . . . ] = A054944 and
sO(∆, n) = [0, 0, 8, 800, 282528, . . . ] = A054945.
Let

v (n) = v (∆, n) = 2n(n−1)/2u (n),

where the e.g.f. u (z) = 1 − 1/(1 + a (z)) and a (z) =
∑
n≥1 2

n(n−1)/2zn/n!. It is known that u (n)
enumerates strong labeled tournaments (see, e.g., [7], (5.2.4)). So this is the sequence
u (n) = s (Θ, n) = [1, 0, 2, 24, 544, 22320, 1677488, . . . ] = A054946. The factors 2n(n−1)/2 form the
sequence
a (Γ, n) = a (Θ, n) = [1, 2, 8, 64, 1024, 32768, 2097152, . . . ] = A006125. Thus
v (n) = [1, 0, 16, 1536, 557056, 731381760, . . . ] = A054947.

4.1.6 A digression: semi-strong digraphs

As we pointed out in [11], v (n) = sO(∆, n) − sE(∆, n), where sE(∆, n) and sO(∆, n) are the numbers of
semi-strong digraphs (see 2.2) with an even and odd number of components. Moreover,
sO(∆, n) + sE(∆, n) = sW(∆, n), where sW(∆, n) denotes the number of labeled semi-strong digraphs,
which is easily expressed via s (∆, n) by the EXP transformation [4, 20]. This provides a way to evaluate
sE(∆, n) and sO(∆, n). Specifically,
sW(∆, n) = [1, 2, 22, 1688, 573496, 738218192, . . . ] = A054948,
sO(∆, n) = [1, 1, 19, 1612, 565276, 734799976, . . . ] = A054949 and
sE(∆, n) = [0, 1, 3, 76, 8220, 3418216, . . . ] = A054950.
There is a similar formula for the corresponding odd-even difference for unlabeled semi-strong digraphs

with mutually non-isomorphic components: V (n) = SO(∆, n) − SE(∆, n). This alternating sum plays a
key role in the enumeration of unlabeled strongly connected digraphs [11]:
1 −
∑
n V (n)z

n =
∏
n(1 − z

n)S (∆,n). From these formulae one can extract SE(∆, n) and SO(∆, n). First
we need to evaluate V (n). In [11] we gave a direct (though difficult) formula and numerical data for the
corresponding two-parametric function V (n,N). But now we may proceed in the opposite direction, using
the above expression and known values of S (∆, n). Numerically,
S (∆, n) = [1, 1, 5, 83, 5048, 1047008, . . . ] = A035512, whence we evaluate
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V (n) = [1, 1, 4, 78, 4960, 1041872, . . . ] = A054951. Now SO(∆, n) + SE(∆, n) = SW(∆, n), the number of
semi-strong digraphs with pairwise different components. We have 1 +

∑
n S
W(∆, n)zn =

∏
n(1 + z

n)S (∆,n)

(this series corresponds to the WEIGH transformation [4, 5, 20]). Therefore
SW(∆, n) = [1, 1, 6, 88, 5136, 1052154, . . . ] = A054952. Thus
SO(∆, n) = [1, 1, 5, 83, 5048, 1047013, . . . ] = A054953 and
SE(∆, n) = [0, 0, 1, 5, 88, 5141, . . . ] = A054954.
Evidently, other types of disconnected (di)graphs, labeled or unlabeled, specified by the parity of the

number of components are also worth considering.

4.1.7 Eulerian digraphs

The next assertion is new.

Proposition. For labeled balanced digraphs,

aE(∆e, n) =
a (∆e, n) + n!

2
(7E)

and

aO(∆e, n) =
a (∆e, n) − n!

2
. (7O)

For labeled Eulerian (i.e. connected balanced) digraphs,

cE(∆e, n) =
c (∆e, n) + (n− 1)!

2
(8E)

and

cO(∆e, n) =
c (∆e, n) − (n− 1)!

2
. (8O)

Proof. According to Theorem 2 of [10], the o.g.f. a (∆e, n, x) of balanced digraphs can be expressed by a
formula in terms of m-roots of unity, m ≥ n. Choosing m = n, and putting x := −1, we have from that
formula,

a (∆e, n,−1) = n
−nn!

∏

1≤k 6=l≤n

(1 − wk−l),

where w is a primitive n-root of unity. Thus

a (∆e, n,−1) = n
−nn!

n∏

r=1

(1 − wr)n.

But
∏
r(1− w

r) = n, since this is merely the polynomial (zn − 1)/(z − 1) evaluated at z = 1. Thus,

a (∆e, n,−1) = n!

This implies formulae (7E) and (7O).
Now, for connected balanced digraphs, cE(∆e, n) − cO(∆e, n) = c (∆e, n,−1). As usual,

c (∆e, z, x) = log (1 + a (∆e, z, x)). By the above formulae, a (∆e, z,−1) = z/(1− z), thus we have
log (1 + z/(1− z)) =

∑
n≥1 z

n/n and c (∆e, n,−1) = (n− 1)!.
Numerically we obtain the following sequences:

a (∆e, n) = [1, 2, 10, 152, 7736, 1375952, . . . ] = A007080 whence by (7E),
aE(∆e, n) = [1, 2, 8, 88, 3928, 688336, . . . ] = A054955, and by (7O),
aO(∆e, n) = [0, 0, 2, 64, 3808, 687616, . . . ] = A054956. Now (by the LOG transformation),
c (∆e, n) = [1, 1, 6, 118, 7000, 1329496, . . . ] = A054957 so that
cE(∆e, n) = [1, 1, 4, 62, 3512, 664808, . . . ] = A054958 and
cO(∆e, n) = [0, 0, 2, 56, 3488, 664688, . . . ] = A054959.

12

http://www.research.att.com/cgi-bin/access.cgi/as/njas/sequences/eisA.cgi?Anum=054951
http://www.research.att.com/cgi-bin/access.cgi/as/njas/sequences/eisA.cgi?Anum=054952
http://www.research.att.com/cgi-bin/access.cgi/as/njas/sequences/eisA.cgi?Anum=054953
http://www.research.att.com/cgi-bin/access.cgi/as/njas/sequences/eisA.cgi?Anum=054954
http://www.research.att.com/cgi-bin/access.cgi/as/njas/sequences/eisA.cgi?Anum=007080
http://www.research.att.com/cgi-bin/access.cgi/as/njas/sequences/eisA.cgi?Anum=054955
http://www.research.att.com/cgi-bin/access.cgi/as/njas/sequences/eisA.cgi?Anum=054956
http://www.research.att.com/cgi-bin/access.cgi/as/njas/sequences/eisA.cgi?Anum=054957
http://www.research.att.com/cgi-bin/access.cgi/as/njas/sequences/eisA.cgi?Anum=054958
http://www.research.att.com/cgi-bin/access.cgi/as/njas/sequences/eisA.cgi?Anum=054959


4.2 Unlabeled graphs

Here we restrict ourselves to one class of graphs, Γ (but compare also 4.1.6). Consider the dif-
ference AE(Γ, n) − AO(Γ, n). This is clearly the value at x = −1 of the corresponding o.g.f.
A (Γ, n, x) =

∑
N A (Γ, n,N)x

N . According to the Pólya enumeration theorem (see for example [7], (4.1.8)),

A (Γ, n, x) = Z (S(2)n , 1 + x, 1 + x
2, . . .),

where Z (S
(2)
n , z1, z2, . . .) denotes the cycle index of the symmetric group Sn in its induced action on the

2-subsets of vertices. Thus

AE(Γ, n) − AO(Γ, n) = Z (S
(2)
n , 0, 2, 0, 2, . . .). (9)

We see that the right-hand side coincides with the formula (6.2.3) in [7] for the number G (Γ, n) of self-
complementary graphs. Thus [23], AE(Γ, n) − AO(Γ, n) = G (Γ, n). But
AE(Γ, n) + AO(Γ, n) = A (Γ, n). Therefore

AE(Γ, n) =
A (Γ, n) + G (Γ, n)

2
(10E)

and

AO(Γ, n) =
A (Γ, n) − G (Γ, n)

2
. (10O)

So, comparing formulae (10E) and (3), we obtain the following identity:

AE(Γ, n) = K (Γ, n).

We note also that AE(Γ, n) = AO(Γ, n) = A (Γ, n)/2 if n = 4k + 2 or 4k + 3.
From the numerical data for A (Γ, n) and G (Γ, n) (or, instead, K (Γ, n)) presented in 3.1.1, one gets

AO(Γ, n) = [0, 1, 2, 5, 16, 78, 522, 6168, 137316, . . . ] = A054960.
Similar assertions are valid for arbitrary digraphs and some other classes of graphs.

5 Concluding remark

In principle, there is an easy way to obtain numerous new sequences from known ones. Namely, if a (n) and
b (n) count objects of two types, then of course their product a (n)b (n) counts ordered pairs of objects, and
their sum a (n) + b (n) counts objects of their disjoint union. As a rule this can hardly be considered as a
really fruitful idea: in general, such pairs and the union are unnatural. But sometimes, the term-by-term
product (and, still more often, the sum) of two sequences turns out to have a natural interpretation, though
possibly unexpected. In this work we encountered various sequences that can be presented as the semi-sum
or sum of two other sequences. Only one sequence (namely, v (n) in 4.1.5) was presented as the product of
two sequences (one of which is, moreover, primitive). Several more such examples can be found in [9]. As
far as I know, no systematic investigations of such meaningful operations has been undertaken so far.
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