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Abstract

In this note we introduce a new method to proving and discovering some identities
involving binomial coefficents and factorials.

1 Introduction.

Let n be a positive integer. Being given a set of variables {z1, xs, . .., 2, }, the kth elementary
symmetric function ey (xy, z9,...,z,) on these variables is the sum of all possible products

of k of these n variables, chosen without replacement

er(xy, Toy ..., Tp) = E Tiy Ty - - Ty
1< <9<, . <1, <n

for k =1,2,...,n. Weset eq(x1,2s,...,2,) =1 by convention (a single choice of the empty
product, if you like that kind of thing). For k > n or k < 0, we set ex(z1,x2,...,2,) =0.
The starting point of this paper is the following result:

Theorem 1. Let n be a positive integer and let xy,xo,...,x, be n independent variables.
Then
k
€k (95?7%21) = Z(_l)zek—&-i (1, o) €5 (1, .., Tn) (1)
i=—k
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Proof. Taking into account that

n n
H(x—l—xl) = Zen,k(xl,...,xn)xk
k=0

i=1
and
er (=1, —x,) = (—1)kek (X1, ..., Tp)

we can write

n
2\ .2k
Hx—a; = Eenk :1:1,... n)x

=1
n

— Z(_l)n_ke”—k (23,...,225) 2% . (2)

k=0
On the other hand, we have

n
[[6 <) -

=1
(H (x — ;) > (H(x—i—xl))
i—1 i=1
< )R, k(asl,...,xn).rk> (Zen_k (xl,...,xn)xk>
k=0 k=0
= ( (=) ep_i (21, ..., 7) €n_opgi (T1, . ... ,a:n)> 2 (3)
k=0 =0
By (2) and (3), we deduce the relation
2%k
(=) *enp (2f,...,27) = Z(—l)”ﬂen,i (X1, @) €n—opri (T1, -, Tp)
i=0

that can be rewritten in the following way

2(n—k)
(—1)ke, (w%, . ,a:i) = Z (=) en_i (z1,...,Tn) €p—nti (T1,. .., 2p)
i=0
n—k
= Z ()" epi (21, .-, 20) €ppi (21, .., 1)
i=k—n
Since ey, (z1,...,2,) =0 for k < 0 or k > n, we have
n—k
(=D 'ep—i (21, ..., Tp) €rri (T1, .-, Tp)
i=k—n
k
- ( 1) €k—i (l‘b ) ) Ck+i (xh 7xn) (4)
i=—k



The proof is finished. O

It is well-known that the power sum symmetric functions can be expressed in terms
of elementary symmetric functions using Girard-Waring formula [3, eq. 8]. In [4, 5, 8], the
Girard-Waring formula is generalised to monomial symmetric functions with equal exponents.
The relation (1) is the case n = 2 in the generalized Girard-Waring formula [8, Eq. (3)] and
can be used to proving and discovering some identities. To illustrate this we present two
applications involving binomial coefficients and Stirling numbers of the first kind.

2 Identities involving binomial coefficients

Let us consider the binomial coefficients

The following identity is a direct consequence of Theorem 1.
Corollary 1. Let k and n be two nonnegative integers. Then

i,f_l)i<kii) (ﬂz) - (Z) |

Taking into account that
" /n "L\ 2n
2 ()= 20 -0
by Corollary 1, we obtain a new identity:

Corollary 2. Let n be a positive integer. Then

() )

This corollary is related in [7] with the sequences A108958. By Theorem 1, we obtain
the following result which is a generalization of Corollary 1.

Corollary 3. Let k and n be two positive integers, and let p be a real number. Then

3o (1 ) () (1) ()
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Proof. Taking into account that

e (T1, -, ) = € (T1, oo, Tno1) + T (T1, 00 Toa)

we can write

(e ).

According to Theorem 1, the corollary is proved. O]
The following result is a consequence of Corollary 3.

Corollary 4. Let k and n be two positive integers. Then

Sev=e( ) () =2 ().

=1

Proof. Replacing p by 2 in Corollary 3, we obtain

() () - e (=S (5 ()G
B i:i_,f—l)i <1+%+ = 1-2) (kiz) (k:i)
- () Zeo) )
() e )

Now, we use Corollary 1 and, after some simple calculations, we obtain

.ik(_l)miz (ki z) (k Z z) = Hn—k) <Z> |

1=

The corollary is proved. O

Remark. To prove Corollary 4 we use Corollary 3 with p = 2. In fact, we could choose for p
any value with the exception of 1. Corollary 4 is related in [7] with the sequence A094305.
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Taking into account the identities

Z k (Z) =n2"! and Z k? (Z) =n(n+1)2""2,
k=0 k=0

by Corollary 4, we get the following identity:

Corollary 5. Let n be a nonnegative integer. Then

> (-t (k‘iz) </<:71 Z) =n(n—1)2""3

0<i<k<n

This corollary is related in [7] with the sequence A001788.
At the end of this section we propose the following two exercises:

Exercise 1. Let x1, 9, ...,x, be the zeros of the polynomial

"+ Z(—l)kk <Z> "k
k=1
Show that

n—1 n
e (2,02, a2) = (k_ 1) ; (—1)’“4k<2k> |

Exercise 2. Let k and n be two positive integers. Prove that

Su(2 ) () e iehn )

=1

3 Central factorial numbers of the first kind

The numbers
s(n+1,n+1—k)=(=1)%e(1,2,...,n) (5)
are known as Stirling numbers of the first kind. They are the coefficients in the expansion

n

(2), = 3 s(n k)* |

k=0

where (z), is the falling factorial, namely

(see [1, p. 278]).


http://oeis.org/A001788

Similarly, the central factorial numbers of the first kind are defined in Riordan’s book [6,
p. 213-217] by

n

g = Z t(n, k)"

k=0
where

) — ( 2_1)
x xx+2 L

It is clearly that the t(n, k) are not always integers. For n = 2m, we have

x[Qm]:ﬁ x —k2 :ZtQm 2k)x
k=0

In [2] the central factorial numbers of the first kind with even indices are denoted by u(n, k) =
t(2n,2k). Thus, we can see that

un +1,n+1—k) = (=1)%e,(1%,2%,...,n%) . (6)

Corollary 6. Let k and n be two positive integers such that k < n. Then

k

u(n,k) =Y (1" s(n, k+i)s(n, k — i) .

i——k
Proof. By (1), (5) and (6), we deduce that

u(n,n —k) = Z (=) s(n,n —k+14)s(n,n —k —1i) .

According to (4), the corollary is proved. ]

Corollary 6 is related in [7] to the sequences A008955, A000330, A000596, A000597,
A001819, A001820, A001821 and A204579.
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