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Abstract

In this note we introduce a new method to proving and discovering some identities

involving binomial coefficents and factorials.

1 Introduction.

Let n be a positive integer. Being given a set of variables {x1, x2, . . . , xn}, the kth elementary
symmetric function ek(x1, x2, . . . , xn) on these variables is the sum of all possible products
of k of these n variables, chosen without replacement

ek(x1, x2, . . . , xn) =
∑

1≤i1<i2<...<ik≤n

xi1xi2 . . . xik
,

for k = 1, 2, . . . , n. We set e0(x1, x2, . . . , xn) = 1 by convention (a single choice of the empty
product, if you like that kind of thing). For k > n or k < 0, we set ek(x1, x2, . . . , xn) = 0.

The starting point of this paper is the following result:

Theorem 1. Let n be a positive integer and let x1, x2, . . . , xn be n independent variables.

Then

ek

(
x2

1, . . . , x
2
n

)
=

k∑

i=−k

(−1)iek+i (x1, . . . , xn) ek−i (x1, . . . , xn) . (1)
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Proof. Taking into account that
n∏

i=1

(x + xi) =
n∑

k=0

en−k (x1, . . . , xn) xk

and
ek (−x1, . . . ,−xn) = (−1)kek (x1, . . . , xn) ,

we can write
n∏

i=1

(
x2 − x2

i

)
=

n∑

k=0

en−k

(
−x2

1, . . . ,−x2
n

)
x2k

=
n∑

k=0

(−1)n−ken−k

(
x2

1, . . . , x
2
n

)
x2k . (2)

On the other hand, we have
n∏

i=1

(
x2 − x2

i

)
=

=

(
n∏

i=1

(x − xi)

)(
n∏

i=1

(x + xi)

)

=

(
n∑

k=0

(−1)n−ken−k (x1, . . . , xn) xk

)(
n∑

k=0

en−k (x1, . . . , xn) xk

)

=
n∑

k=0

(
2k∑

i=0

(−1)n−ien−i (x1, . . . , xn) en−2k+i (x1, . . . , xn)

)

x2k . (3)

By (2) and (3), we deduce the relation

(−1)n−ken−k

(
x2

1, . . . , x
2
n

)
=

2k∑

i=0

(−1)n−ien−i (x1, . . . , xn) en−2k+i (x1, . . . , xn) ,

that can be rewritten in the following way

(−1)kek

(
x2

1, . . . , x
2
n

)
=

2(n−k)
∑

i=0

(−1)n−ien−i (x1, . . . , xn) e2k−n+i (x1, . . . , xn)

=
n−k∑

i=k−n

(−1)k−iek−i (x1, . . . , xn) ek+i (x1, . . . , xn) .

Since ek (x1, . . . , xn) = 0 for k < 0 or k > n, we have

n−k∑

i=k−n

(−1)iek−i (x1, . . . , xn) ek+i (x1, . . . , xn)

=
k∑

i=−k

(−1)iek−i (x1, . . . , xn) ek+i (x1, . . . , xn) . (4)
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The proof is finished.

It is well-known that the power sum symmetric functions can be expressed in terms
of elementary symmetric functions using Girard-Waring formula [3, eq. 8]. In [4, 5, 8], the
Girard-Waring formula is generalised to monomial symmetric functions with equal exponents.
The relation (1) is the case n = 2 in the generalized Girard-Waring formula [8, Eq. (3)] and
can be used to proving and discovering some identities. To illustrate this we present two
applications involving binomial coefficients and Stirling numbers of the first kind.

2 Identities involving binomial coefficients

Let us consider the binomial coefficients
(

n

k

)

= ek(1, . . . , 1
︸ ︷︷ ︸

n

) .

The following identity is a direct consequence of Theorem 1.

Corollary 1. Let k and n be two nonnegative integers. Then

k∑

i=−k

(−1)i

(
n

k + i

)(
n

k − i

)

=

(
n

k

)

.

Taking into account that

n∑

k=0

(
n

k

)

= 2n and
n∑

k=0

(
n

k

)2

=

(
2n

n

)

,

by Corollary 1, we obtain a new identity:

Corollary 2. Let n be a positive integer. Then

∑

0<i≤k<n

(−1)i

(
n

k + i

)(
n

k − i

)

= 2n−1 −

(
2n − 1

n

)

.

This corollary is related in [7] with the sequences A108958. By Theorem 1, we obtain
the following result which is a generalization of Corollary 1.

Corollary 3. Let k and n be two positive integers, and let p be a real number. Then

k∑

i=−k

(−1)i

(

1 +
(p − 1)(k + i)

n

)(

1 +
(p − 1)(k − i)

n

)(
n

k + i

)(
n

k − i

)

=

(

1 +
(p2 − 1)k

n

)(
n

k

)

.
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Proof. Taking into account that

ek (x1, . . . , xn) = ek (x1, . . . , xn−1) + xnek−1 (x1, . . . , xn−1) ,

we can write

ek(1, . . . , 1
︸ ︷︷ ︸

n−1

, p) =

(
n − 1

k

)

+ p

(
n − 1

k − 1

)

=

(
n

k

)

+ (p − 1)
k

n

(
n

k

)

=

(

1 +
(p − 1)k

n

)(
n

k

)

.

According to Theorem 1, the corollary is proved.

The following result is a consequence of Corollary 3.

Corollary 4. Let k and n be two positive integers. Then

k∑

i=1

(−1)i+1i2
(

n

k + i

)(
n

k − i

)

=
k(n − k)

2

(
n

k

)

.

Proof. Replacing p by 2 in Corollary 3, we obtain

(

1 +
3k

n

)(
n

k

)

=
k∑

i=−k

(−1)i

(

1 +
k − i

n

)(

1 +
k + i

n

)(
n

k − i

)(
n

k + i

)

=
k∑

i=−k

(−1)i

(

1 +
2k

n
+

k2 − i2

n2

)(
n

k − i

)(
n

k + i

)

=

(

1 +
k

n

)2 k∑

i=−k

(−1)i

(
n

k − i

)(
n

k + i

)

−

(
1

n

)2 k∑

i=−k

(−1)ii2
(

n

k − i

)(
n

k + i

)

Now, we use Corollary 1 and, after some simple calculations, we obtain

k∑

i=−k

(−1)i+1i2
(

n

k − i

)(
n

k + i

)

= k(n − k)

(
n

k

)

.

The corollary is proved.

Remark. To prove Corollary 4 we use Corollary 3 with p = 2. In fact, we could choose for p

any value with the exception of 1. Corollary 4 is related in [7] with the sequence A094305.
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Taking into account the identities

n∑

k=0

k

(
n

k

)

= n2n−1 and
n∑

k=0

k2

(
n

k

)

= n(n + 1)2n−2 ,

by Corollary 4, we get the following identity:

Corollary 5. Let n be a nonnegative integer. Then

∑

0<i≤k<n

(−1)i+1i2
(

n

k + i

)(
n

k − i

)

= n(n − 1)2n−3 .

This corollary is related in [7] with the sequence A001788.
At the end of this section we propose the following two exercises:

Exercise 1. Let x1, x2, . . . , xn be the zeros of the polynomial

xn +
n∑

k=1

(−1)kk

(
n

k

)

xn−k .

Show that

ek

(
x2

1, x
2
2, . . . , x

2
n

)
= n2

(
n − 1

k − 1

)

+ (−1)k4k

(
n

2k

)

.

Exercise 2. Let k and n be two positive integers. Prove that

k∑

i=1

(−1)ii4
(

n

k + i

)(
n

k − i

)

=
k(n − k)(k(n − k) − n)

2

(
n

k

)

.

3 Central factorial numbers of the first kind

The numbers
s(n + 1, n + 1 − k) = (−1)kek(1, 2, . . . , n) (5)

are known as Stirling numbers of the first kind. They are the coefficients in the expansion

(x)
n

=
n∑

k=0

s(n, k)xk ,

where (x)
n

is the falling factorial, namely

(x)
n

=
n−1∏

k=0

(x − k)

(see [1, p. 278]).
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Similarly, the central factorial numbers of the first kind are defined in Riordan’s book [6,
p. 213-217] by

x[n] =
n∑

k=0

t(n, k)xk ,

where
x[n] = x

(

x +
n

2
− 1
)

n−1
.

It is clearly that the t(n, k) are not always integers. For n = 2m, we have

x[2m] =
m−1∏

k=0

(
x2 − k2

)
=

m∑

k=0

t(2m, 2k)x2k .

In [2] the central factorial numbers of the first kind with even indices are denoted by u(n, k) =
t(2n, 2k). Thus, we can see that

u(n + 1, n + 1 − k) = (−1)kek(1
2, 22, . . . , n2) . (6)

Corollary 6. Let k and n be two positive integers such that k ≤ n. Then

u(n, k) =
k∑

i=−k

(−1)n−k+is(n, k + i)s(n, k − i) .

Proof. By (1), (5) and (6), we deduce that

u(n, n − k) =
k∑

i=−k

(−1)k+is(n, n − k + i)s(n, n − k − i) .

According to (4), the corollary is proved.

Corollary 6 is related in [7] to the sequences A008955, A000330, A000596, A000597,
A001819, A001820, A001821 and A204579.
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