Journal of Integer Sequences, Vol. 15 (2012),

A Special Case of the Generalized Girard-Waring Formula

Mircea Merca
Department of Mathematics
University of Craiova
A. I. Cuza 13
Craiova, 200585
Romania
mircea.merca@profinfo.edu.ro

Abstract

In this note we introduce a new method to proving and discovering some identities involving binomial coefficents and factorials.

1 Introduction.

Let n be a positive integer. Being given a set of variables $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$, the k th elementary symmetric function $e_{k}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ on these variables is the sum of all possible products of k of these n variables, chosen without replacement

$$
e_{k}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sum_{1 \leq i_{1}<i_{2}<\ldots<i_{k} \leq n} x_{i_{1}} x_{i_{2}} \ldots x_{i_{k}}
$$

for $k=1,2, \ldots, n$. We set $e_{0}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=1$ by convention (a single choice of the empty product, if you like that kind of thing). For $k>n$ or $k<0$, we set $e_{k}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=0$.

The starting point of this paper is the following result:
Theorem 1. Let n be a positive integer and let $x_{1}, x_{2}, \ldots, x_{n}$ be n independent variables. Then

$$
\begin{equation*}
e_{k}\left(x_{1}^{2}, \ldots, x_{n}^{2}\right)=\sum_{i=-k}^{k}(-1)^{i} e_{k+i}\left(x_{1}, \ldots, x_{n}\right) e_{k-i}\left(x_{1}, \ldots, x_{n}\right) \tag{1}
\end{equation*}
$$

Proof. Taking into account that

$$
\prod_{i=1}^{n}\left(x+x_{i}\right)=\sum_{k=0}^{n} e_{n-k}\left(x_{1}, \ldots, x_{n}\right) x^{k}
$$

and

$$
e_{k}\left(-x_{1}, \ldots,-x_{n}\right)=(-1)^{k} e_{k}\left(x_{1}, \ldots, x_{n}\right)
$$

we can write

$$
\begin{align*}
\prod_{i=1}^{n}\left(x^{2}-x_{i}^{2}\right) & =\sum_{k=0}^{n} e_{n-k}\left(-x_{1}^{2}, \ldots,-x_{n}^{2}\right) x^{2 k} \\
& =\sum_{k=0}^{n}(-1)^{n-k} e_{n-k}\left(x_{1}^{2}, \ldots, x_{n}^{2}\right) x^{2 k} \tag{2}
\end{align*}
$$

On the other hand, we have

$$
\begin{align*}
\prod_{i=1}^{n} & \left(x^{2}-x_{i}^{2}\right)= \\
& =\left(\prod_{i=1}^{n}\left(x-x_{i}\right)\right)\left(\prod_{i=1}^{n}\left(x+x_{i}\right)\right) \\
& =\left(\sum_{k=0}^{n}(-1)^{n-k} e_{n-k}\left(x_{1}, \ldots, x_{n}\right) x^{k}\right)\left(\sum_{k=0}^{n} e_{n-k}\left(x_{1}, \ldots, x_{n}\right) x^{k}\right) \\
& =\sum_{k=0}^{n}\left(\sum_{i=0}^{2 k}(-1)^{n-i} e_{n-i}\left(x_{1}, \ldots, x_{n}\right) e_{n-2 k+i}\left(x_{1}, \ldots, x_{n}\right)\right) x^{2 k} \tag{3}
\end{align*}
$$

By (2) and (3), we deduce the relation

$$
(-1)^{n-k} e_{n-k}\left(x_{1}^{2}, \ldots, x_{n}^{2}\right)=\sum_{i=0}^{2 k}(-1)^{n-i} e_{n-i}\left(x_{1}, \ldots, x_{n}\right) e_{n-2 k+i}\left(x_{1}, \ldots, x_{n}\right)
$$

that can be rewritten in the following way

$$
\begin{aligned}
(-1)^{k} e_{k}\left(x_{1}^{2}, \ldots, x_{n}^{2}\right) & =\sum_{i=0}^{2(n-k)}(-1)^{n-i} e_{n-i}\left(x_{1}, \ldots, x_{n}\right) e_{2 k-n+i}\left(x_{1}, \ldots, x_{n}\right) \\
& =\sum_{i=k-n}^{n-k}(-1)^{k-i} e_{k-i}\left(x_{1}, \ldots, x_{n}\right) e_{k+i}\left(x_{1}, \ldots, x_{n}\right)
\end{aligned}
$$

Since $e_{k}\left(x_{1}, \ldots, x_{n}\right)=0$ for $k<0$ or $k>n$, we have

$$
\begin{align*}
& \sum_{i=k-n}^{n-k}(-1)^{i} e_{k-i}\left(x_{1}, \ldots, x_{n}\right) e_{k+i}\left(x_{1}, \ldots, x_{n}\right) \\
& \quad=\sum_{i=-k}^{k}(-1)^{i} e_{k-i}\left(x_{1}, \ldots, x_{n}\right) e_{k+i}\left(x_{1}, \ldots, x_{n}\right) \tag{4}
\end{align*}
$$

The proof is finished.
It is well-known that the power sum symmetric functions can be expressed in terms of elementary symmetric functions using Girard-Waring formula [3, eq. 8]. In [4, 5, 8], the Girard-Waring formula is generalised to monomial symmetric functions with equal exponents. The relation (1) is the case $n=2$ in the generalized Girard-Waring formula [8, Eq. (3)] and can be used to proving and discovering some identities. To illustrate this we present two applications involving binomial coefficients and Stirling numbers of the first kind.

2 Identities involving binomial coefficients

Let us consider the binomial coefficients

$$
\binom{n}{k}=e_{k}(\underbrace{1, \ldots, 1}_{n}) .
$$

The following identity is a direct consequence of Theorem 1.
Corollary 1. Let k and n be two nonnegative integers. Then

$$
\sum_{i=-k}^{k}(-1)^{i}\binom{n}{k+i}\binom{n}{k-i}=\binom{n}{k}
$$

Taking into account that

$$
\sum_{k=0}^{n}\binom{n}{k}=2^{n} \quad \text { and } \quad \sum_{k=0}^{n}\binom{n}{k}^{2}=\binom{2 n}{n}
$$

by Corollary 1, we obtain a new identity:
Corollary 2. Let n be a positive integer. Then

$$
\sum_{0<i \leq k<n}(-1)^{i}\binom{n}{k+i}\binom{n}{k-i}=2^{n-1}-\binom{2 n-1}{n} .
$$

This corollary is related in [7] with the sequences A108958. By Theorem 1, we obtain the following result which is a generalization of Corollary 1.

Corollary 3. Let k and n be two positive integers, and let p be a real number. Then

$$
\begin{gathered}
\sum_{i=-k}^{k}(-1)^{i}\left(1+\frac{(p-1)(k+i)}{n}\right)\left(1+\frac{(p-1)(k-i)}{n}\right)\binom{n}{k+i}\binom{n}{k-i} \\
=\left(1+\frac{\left(p^{2}-1\right) k}{n}\right)\binom{n}{k}
\end{gathered}
$$

Proof. Taking into account that

$$
e_{k}\left(x_{1}, \ldots, x_{n}\right)=e_{k}\left(x_{1}, \ldots, x_{n-1}\right)+x_{n} e_{k-1}\left(x_{1}, \ldots, x_{n-1}\right),
$$

we can write

$$
\begin{aligned}
e_{k}(\underbrace{1, \ldots, 1}_{n-1}, p) & =\binom{n-1}{k}+p\binom{n-1}{k-1} \\
& =\binom{n}{k}+(p-1) \frac{k}{n}\binom{n}{k} \\
& =\left(1+\frac{(p-1) k}{n}\right)\binom{n}{k} .
\end{aligned}
$$

According to Theorem 1, the corollary is proved.
The following result is a consequence of Corollary 3.
Corollary 4. Let k and n be two positive integers. Then

$$
\sum_{i=1}^{k}(-1)^{i+1} i^{2}\binom{n}{k+i}\binom{n}{k-i}=\frac{k(n-k)}{2}\binom{n}{k} .
$$

Proof. Replacing p by 2 in Corollary 3, we obtain

$$
\begin{aligned}
\left(1+\frac{3 k}{n}\right)\binom{n}{k}= & \sum_{i=-k}^{k}(-1)^{i}\left(1+\frac{k-i}{n}\right)\left(1+\frac{k+i}{n}\right)\binom{n}{k-i}\binom{n}{k+i} \\
= & \sum_{i=-k}^{k}(-1)^{i}\left(1+\frac{2 k}{n}+\frac{k^{2}-i^{2}}{n^{2}}\right)\binom{n}{k-i}\binom{n}{k+i} \\
= & \left(1+\frac{k}{n}\right)^{2} \sum_{i=-k}^{k}(-1)^{i}\binom{n}{k-i}\binom{n}{k+i} \\
& \quad-\left(\frac{1}{n}\right)^{2} \sum_{i=-k}^{k}(-1)^{i} i^{2}\binom{n}{k-i}\binom{n}{k+i}
\end{aligned}
$$

Now, we use Corollary 1 and, after some simple calculations, we obtain

$$
\sum_{i=-k}^{k}(-1)^{i+1} i^{2}\binom{n}{k-i}\binom{n}{k+i}=k(n-k)\binom{n}{k}
$$

The corollary is proved.
Remark. To prove Corollary 4 we use Corollary 3 with $p=2$. In fact, we could choose for p any value with the exception of 1 . Corollary 4 is related in [7] with the sequence A094305.

Taking into account the identities

$$
\sum_{k=0}^{n} k\binom{n}{k}=n 2^{n-1} \quad \text { and } \quad \sum_{k=0}^{n} k^{2}\binom{n}{k}=n(n+1) 2^{n-2}
$$

by Corollary 4, we get the following identity:
Corollary 5. Let n be a nonnegative integer. Then

$$
\sum_{0<i \leq k<n}(-1)^{i+1} i^{2}\binom{n}{k+i}\binom{n}{k-i}=n(n-1) 2^{n-3} .
$$

This corollary is related in [7] with the sequence A001788.
At the end of this section we propose the following two exercises:
Exercise 1. Let $x_{1}, x_{2}, \ldots, x_{n}$ be the zeros of the polynomial

$$
x^{n}+\sum_{k=1}^{n}(-1)^{k} k\binom{n}{k} x^{n-k} .
$$

Show that

$$
e_{k}\left(x_{1}^{2}, x_{2}^{2}, \ldots, x_{n}^{2}\right)=n^{2}\binom{n-1}{k-1}+(-1)^{k} 4 k\binom{n}{2 k} .
$$

Exercise 2. Let k and n be two positive integers. Prove that

$$
\sum_{i=1}^{k}(-1)^{i} i^{4}\binom{n}{k+i}\binom{n}{k-i}=\frac{k(n-k)(k(n-k)-n)}{2}\binom{n}{k}
$$

3 Central factorial numbers of the first kind

The numbers

$$
\begin{equation*}
s(n+1, n+1-k)=(-1)^{k} e_{k}(1,2, \ldots, n) \tag{5}
\end{equation*}
$$

are known as Stirling numbers of the first kind. They are the coefficients in the expansion

$$
(x)_{n}=\sum_{k=0}^{n} s(n, k) x^{k}
$$

where $(x)_{n}$ is the falling factorial, namely

$$
(x)_{n}=\prod_{k=0}^{n-1}(x-k)
$$

(see [1, p. 278]).

Similarly, the central factorial numbers of the first kind are defined in Riordan's book [6, p. 213-217] by

$$
x^{[n]}=\sum_{k=0}^{n} t(n, k) x^{k},
$$

where

$$
x^{[n]}=x\left(x+\frac{n}{2}-1\right)_{n-1} .
$$

It is clearly that the $t(n, k)$ are not always integers. For $n=2 m$, we have

$$
x^{[2 m]}=\prod_{k=0}^{m-1}\left(x^{2}-k^{2}\right)=\sum_{k=0}^{m} t(2 m, 2 k) x^{2 k} .
$$

In [2] the central factorial numbers of the first kind with even indices are denoted by $u(n, k)=$ $t(2 n, 2 k)$. Thus, we can see that

$$
\begin{equation*}
u(n+1, n+1-k)=(-1)^{k} e_{k}\left(1^{2}, 2^{2}, \ldots, n^{2}\right) \tag{6}
\end{equation*}
$$

Corollary 6. Let k and n be two positive integers such that $k \leq n$. Then

$$
u(n, k)=\sum_{i=-k}^{k}(-1)^{n-k+i} s(n, k+i) s(n, k-i)
$$

Proof. By (1), (5) and (6), we deduce that

$$
u(n, n-k)=\sum_{i=-k}^{k}(-1)^{k+i} s(n, n-k+i) s(n, n-k-i) .
$$

According to (4), the corollary is proved.
Corollary 6 is related in [7] to the sequences A008955, A000330, A000596, A000597, A001819, A001820, A001821 and A204579.

4 Acknowledgement

The author would like to thank Professor Jiang Zeng from Institut Camille Jordan, Université Lyon 1 for his support. The author expresses his gratitude to Oana Merca for the careful reading of the manuscript and helpful remarks.

References

[1] Ch. A. Charalambides, Enumerative Combinatorics, Chapman \& Hall/CRC Press, 2002.
[2] Y. Gelineau and J. Zeng, Combinatorial interpretations of the Jacobi-Stirling numbers, Electron. J. Combin. 17 (2010), Paper \#R70.
[3] H. W. Gould, The Girard-Waring power sum formulas for symmetric functions and Fibonacci sequences. Fibonacci Quart. 37 (2) (1999) 135-140.
[4] J. Konvalina, A generalization of Waring's formula, J. Combin. Theory Ser. A 75 (2) (1996) 281-294.
[5] J. Konvalina, A note on a generalization of Waring's formula, Adv. in Appl. Math. 20 (1998) 392-393.
[6] J. Riordan, Combinatorial Identities, John Wiley \& Sons, New York, 1968.
[7] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, Published electronically at http://oeis.org, 2012.
[8] J. Zeng, On a generalization of Waring's formula, Adv. in Appl. Math. 19 (1997) 450452.

2010 Mathematics Subject Classification: Primary 05E05, 05A19; Secondary 11B65, 11B73. Keywords: binomial coefficient, central factorial numbers, Stirling number, symmetric function, generalized Girard-Waring formula.
(Concerned with sequences $\underline{A 000330}, \underline{A 000346}, \underline{A 000596}, \underline{A 000597}, \underline{A 001788}, \underline{A 001819}, \underline{A 001820}$, A001821, $\underline{\text { A008955 }}, \underline{\mathrm{A} 094305, ~} \underline{\mathrm{~A} 108958}$, and A135065.)

Received April 26 2012; revised version received May 28 2012. Published in Journal of Integer Sequences, June 122012.

Return to Journal of Integer Sequences home page.

