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Abstract

The nearest integer continued fractions of Hurwitz, Minnegerode (NICF-H) and in
Perron’s book Die Lehre von den Kettenbrüchen (NICF-P) are closely related. Mid-
point criteria for solving Pell’s equation x2 − Dy2 = ±1 in terms of the NICF-H
expansion of

√
D were derived by H. C. Williams using singular continued fractions.

We derive these criteria without the use of singular continued fractions. We use an
algorithm for converting the regular continued fraction expansion of

√
D to its NICF-P

expansion.

1 Introduction

In Perron’s book [7, p. 143], a nearest integer continued fraction (Kettenbruch nach nächsten
Ganzen) expansion (NICF-P) of an irrational number ξ0 is defined recursively by

ξn = qn +
ǫn+1

ξn+1

,− 1
2

< ξn − qn < 1
2
, (1)
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where ǫn+1 = ±1, qn is an integer (the nearest integer to ξn) and sign(ǫn+1) = sign(ξn − qn).
Then we have the expansion

ξ0 = q0 +
ǫ1

q1
+ · · · + ǫn

qn
+ · · · (2)

where
qn ≥ 2, qn + ǫn+1 ≥ 2 for n ≥ 1. (3)

(Satz 10, [7, p. 169]).
A. Hurwitz [1] and B. Minnegerode [6] defined a related nearest integer continued fraction

(NICF-H) by

ξ′n = q′n − 1

ξ′n+1

,− 1
2

< ξ′n − q′n < 1
2
, (4)

where q′n is an integer. Then

ξ′0 = q′0 −
1
q′1

− · · · − 1
q′n

− · · · (5)

and we have |q′n| ≥ 2 for n ≥ 1. Also if one of q′1, q
′
2, . . ., say q′n, equals 2 (resp. −2), then

q′n+1 < 0 (resp. q′n+1 > 0) (Hurwitz [1, p. 372]). Section 2 relates the two types of continued
fraction.

In 1980, H. C. Williams gave six midpoint criteria for solving Pell’s equation x2 −Dy2 =
±1 in terms of the NICF-H expansion of

√
D (see Theorems 6 and 7, [9, pp. 12–13]). His

proof made extensive use of the singular continued fraction expansion of
√

D. Theorem
6 of section 3 of our paper gives the corresponding criteria for the NICF-P expansion of√

D. In an attempt to give a derivation of the latter criteria without the use of singular
continued fractions, the author studied the conversion of the regular continued fraction
(RCF) expansion of

√
D to the NICF given by Lemma 9 of section 5, where the RCF is

defined recursively by

ξn = an +
1

ξn+1

,

with an = ⌊ξn⌋, the integer part of ξn. Theorem 8 of section 4 shows that the central part of
a least period determines which of the criteria hold. Finally, Theorem 18, section 7, describes
the case where there are only odd-length unisequences, i.e., consecutive sequences of partial
quotients equal to 1, in the RCF expansion of

√
D; in this case the NICF-P expansion of√

D exhibits the usual symmetry properties of the RCF expansion.

2 Connections between the NICF-H and NICF-P ex-

pansions of an irrational number.

Lemma 1. Let q′n, ξ
′
n, A′

n/B′
n denote the n-th partial denominator, complete quotient and

convergent of the NICF-H expansion of an irrational number ξ0 and qn, ǫn, ξn, An/Bn denote
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the n-th partial denominator, partial numerator, complete quotient and convergent of the
NICF-P expansion of ξ0, where

A−1 = 1 = A′
−1, B−1 = 0 = B′

−1,

A−2 = 0 = A′
−2, B−2 = 1 = −B′

−2.

and for n ≥ −1,

An+1 = qn+1An + ǫn+1An−1, Bn+1 = qn+1Bn + ǫn+1Bn−1

A′
n+1 = q′n+1A

′
n − A′

n−1, B′
n+1 = q′n+1B

′
n − B′

n−1,

where ǫ0 = 1. Then
q′n = tnqn, ξ′n = tnξn, n ≥ 0, (6)

where t0 = 1 and tn = (−1)nǫ1 · · · ǫn, if n ≥ 1.

A′
n = snAn, B′

n = snBn, n ≥ −2, (7)

where s−2 = −1, s−1 = 1 and sn+1 = −sn−1ǫn+1 for n ≥ −1.

Remark 2. It follows that s0 = 1 and

s2i = (−1)iǫ2iǫ2i−2 · · · ǫ2, if i ≥ 1, (8)

s2i+1 = (−1)i+1ǫ2i+1ǫ2i−1 · · · ǫ1, if i ≥ 0, (9)

sn+1sn = tn+1, if n ≥ −1. (10)

Proof. We prove (6) by induction on n ≥ 0. These are true when n = 0. So we assume that
n ≥ 0 and (6) hold. Then

ξ′n+1 =
1

q′n − ξ′n
, ξn+1 =

ǫn+1

qn − ξn

, (11)

q′n = [ξ′n], qn = [ξn], (12)

where [x] denotes the nearest integer to x. Then

ξ′n+1 =
1

tnqn − tnξn

=
tn

qn − ξn

= tn(−ǫn+1ξn+1)

= tn+1ξn+1.

Next,
q′n+1 = [ξ′n+1] = [tn+1ξn+1] = tn+1[ξn+1] = tn+1qn+1.
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Finally, we prove (7) by induction on n ≥ −2. These hold for n = −2 and −1. So we assume
n ≥ −1 and

A′
n−1 = sn−1An−1, B′

n−1 = sn−1Bn−1, A′
n = snAn, B′

n = snBn.

Then

A′
n+1 = q′n+1A

′
n − A′

n−1

= (tn+1qn+1)(snAn) − sn−1An−1

= qn+1sn+1An − (−sn+1ǫn+1)An−1

= sn+1(qn+1An + ǫn+1An−1)

= sn+1An+1.

Similarly B′
n+1 = sn+1Bn+1.

Corollary 3. Suppose ξn, . . . , ξn+k−1 is a least period of NICF-P complete quotients for a
quadratic irrational ξ0.

(a) If ǫn+1 · · · ǫn+k = (−1)k, then
ξ′n, . . . , ξ

′
n+k−1

is a least period of NICF-H complete quotients for ξ0.

(b) If ǫn+1 · · · ǫn+k = (−1)k+1, then

ξ′n, . . . , ξ
′
n+k−1,−ξ′n, . . . ,−ξ′n+k−1 (13)

is a least period of NICF-H complete quotients for ξ0. Moreover

ξ0 = q′0 −
1
q′1

− · · · − 1
q′n
∗

− · · · − 1
q′n+k−1

− 1
−q′n

− · · · − 1
−q′n+k−1

∗

,

where the asterisks correspond to the least period (13).

Proof. Suppose ξn, . . . , ξn+k−1 is a least period of NICF-P complete quotients for ξ0. Then
ξn = ξn+k. Hence from (6),

tnξ
′
n = tn+kξ

′
n+k

(−1)nǫ1 · · · ǫnξ
′
n = (−1)n+kǫ1 · · · ǫn+kξ

′
n+k

ξ′n = (−1)kǫn+1 · · · ǫn+kξ
′
n+k. (14)

(a) Suppose ǫn+1 · · · ǫn+k = (−1)k. Then (14) gives

ξ′n = ξ′n+k.

Then because ξ′n, . . . , ξ
′
n+k−1 are distinct, they form a least period of complete quotients for

the NICF-H expansion of ξ0.
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(b) Suppose ǫn+1 · · · ǫn+k = (−1)k+1. Then (14) gives

ξ′n = −ξ′n+k.

Similarly
ξ′n+1 = −ξ′n+k+1, . . . , ξ

′
n+k−1 = −ξ′n+2k−1.

Also ξ′n = −ξ′n+k = −(−ξ′n+2k) = ξ′n+2k. Hence

ξ′n, . . . , ξ
′
n+k−1, ξ

′
n+k, . . . , ξ

′
n+2k−1 (15)

form a period of complete quotients for the NICF-H expansion of ξ0. However sequence (15)
is identical with

ξ′n, . . . , ξ
′
n+k−1,−ξ′n, . . . ,−ξ′n+k−1,

whose members are distinct. Hence (15) form a least period of complete quotients for the
NICF-H expansion of ξ0.

Corollary 4. Let k and p be the period-lengths of the NICF-P and RCF expansions of a
quadratic irrational ξ0 not equivalent to (1 +

√
5)/2. Then

(a) if p is even, the period-length of the NICF-H expansion of ξ0 is equal to k;

(b) if p is odd, the period-length of the NICF-H expansion of ξ0 is equal to 2k and the
NICF-H expansion has the form

ξ0 = q′0 −
1
q′1

− · · · − 1
q′n
∗

− · · · − 1
q′n+k−1

− 1
−q′n

− · · · − 1
−q′n+k−1

∗

.

Proof. Let ξn, . . . , ξn+k−1 be a least period of NICF-P complete quotients. Suppose that r of
the partial numerators ǫn+1, . . . , ǫn+k of the NICF-P expansion of ξ0 are equal to −1. Now
by Theorem 4 of Matthews and Robertson [5], p = k + r and hence

ǫn+1 · · · ǫn+k = (−1)r = (−1)k+p.

Then according as p is even or odd, ǫn+1 · · · ǫn+k = (−1)k or (−1)k+1 and Corollary 3 applies.

Remark 5. This result was obtained by Hurwitz and Minnegerode for the special case
ξ0 =

√
D.

We give some examples.

(1) ξ0 = (12 +
√

1792)/16, (Tables 1 and 2). Here k = 4, r = 2, ξ1, ξ2, ξ3, ξ4 form a
period of NICF-P complete quotients, ǫ2ǫ3ǫ4ǫ5 = (−1)(1)(−1)(1) = 1 = (−1)k and the
NICF-P and NICF-H expansions have the same period-length. Also p = 6.

(2) ξ0 = (5 +
√

13)/4, (Table 3 and 4). Here k = 3, r = 2 and ξ0, ξ1, ξ2 form a period
of NICF-P complete quotients, ǫ1ǫ2ǫ3 = (1)(−1)(−1) = 1 = (−1)k+1 and the NICF-H
period-length is twice the NICF-P period-length. Also p = 5.
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Table 1: NICF-P expansion for (12 +
√

1792)/16
i ξi ǫi bi Ai/Bi

0 12+
√

1792
16

1 3 3/1

1 36+
√

1792
31

1 3 10/3

2 57+
√

1792
47

−1 2 17/5

3 37+
√

1792
9

1 9 163/48

4 44+
√

1792
16

−1 5 798/235

5 36+
√

1792
31

1 3 2557/753

Table 2: NICF-H expansion for (12 +
√

1792)/16
i ξi ǫi bi Ai/Bi

0 12+
√

1792
16

−1 3 3/1

1 36+
√

1792
−31

−1 −3 −10/−3

2 57+
√

1792
−47

−1 −2 17/5

3 37+
√

1792
9

−1 9 163/48

4 44+
√

1792
16

−1 5 798/235

5 36+
√

1792
−31

−1 −3 −2557/−753

3 NICF-P midpoint criteria for Pell’s equation

Theorem 6. Let k and p be the respective period-lengths of NICF-P and RCF expansions
of

√
D. Then precisely one of the following must hold for the NICF-P expansion of

√
D:

1) Pρ = Pρ+1, k = 2ρ, p = 2h. Then

Ak−1 = Bρ−1Aρ + ǫρAρ−1Bρ−2,

Bk−1 = Bρ−1(Bρ + ǫρBρ−2).

2) Pρ+1 = Pρ + Qρ, k = 2ρ, p = 2h. Then

Ak−1 = Bρ−1Aρ + Aρ−1Bρ−2 − Aρ−1Bρ−1,

Bk−1 = Bρ−1(Bρ + Bρ−2 − Bρ−1).

3) Qρ = Qρ+1 and

(a) ǫρ+1 = −1, k = 2ρ + 1, p = 2h, or

(b) ǫρ+1 = 1, k = 2ρ + 1, p = 2h − 1.

Then

Ak−1 = AρBρ + ǫρ+1Aρ−1Bρ−1,

Bk−1 = B2
ρ + ǫρ+1B

2
ρ−1.
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Table 3: NICF-P expansion for (5 +
√

13)/4
i ξi ǫi bi Ai/Bi

0 5+
√

13
4

1 2 2/1

1 3+
√

13
1

1 7 15/7

2 4+
√

13
3

−1 3 43/20

3 5+
√

13
4

−1 2 71/33

Table 4: NICF-H expansion for (5 +
√

13)/4
i ξi ǫi bi Ai/Bi

0 5+
√

13
4

1 2 2/1

1 3+
√

13
−1

−1 −7 −15/−7

2 4+
√

13
−3

−1 −3 43/20

3 5+
√

13
−4

−1 −2 −71/−33

4 3+
√

13
1

−1 7 −540/−251

5 4+
√

13
3

−1 3 −1549/−720

6 5+
√

13
4

−1 2 −2558/−1189

4) Pρ+1 = Qρ + 1
2
Qρ+1, ǫρ+1 = −1, k = 2ρ + 1, p = 2h − 1. Then

Ak−1 = AρBρ + 2Aρ−1Bρ−1 − (AρBρ−1 + BρAρ−1),

Bk−1 = B2
ρ + 2B2

ρ−1 − 2BρBρ−1.

5) Pρ = Qρ + 1
2
Qρ−1, ǫρ = −1, k = 2ρ, p = 2h − 1. Then

Ak−1 = 2Aρ−1Bρ−1 + Aρ−2Bρ−2 − (Aρ−1Bρ−2 + Bρ−1Aρ−2)

Bk−1 = 2B2
ρ−1 + B2

ρ−2 − 2Bρ−1Bρ−2.

Proof. We only exhibit the calculations for criterion 1) of Theorem 6. This corresponds to
criterion 1) of Theorem 6, Williams [9, p. 12], which states that P ′

ρ = P ′
ρ+1, k = 2ρ, p = 2h

and

|A′
k−1| = |B′

ρ−1A
′
ρ − A′

ρ−1B
′
ρ−2|, (16)

|B′
k−1| = |B′

ρ−1(B
′
ρ − B′

ρ−2)|. (17)

Then from equations (7),

B′
ρ−1A

′
ρ − A′

ρ−1B
′
ρ−2 = sρ−1sρBρ−1Aρ − sρ−1sρ−2Aρ−1Bρ−2

= tρBρ−1Aρ − tρ−1Aρ−1Bρ−2

= −tρ−1ǫρBρ−1Aρ − tρ−1Aρ−1Bρ−2

= −tρ−1ǫρ(Bρ−1Aρ + ǫρAρ−1Bρ−2).
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Hence
|B′

ρ−1A
′
ρ − A′

ρ−1B
′
ρ−2| = Bρ−1Aρ + ǫρAρ−1Bρ−2 (18)

as Bρ−1Aρ ≥ Aρ−1Bρ−2. Hence (16) and (18) give the first result of criterion 1) above. Next,

B′
ρ−1(B

′
ρ − B′

ρ−2) = sρ−1Bρ−1(sρBρ − sρ−2Bρ−2)

= Bρ−1(tρBρ − tρ−1Bρ−2)

= Bρ−1(−tρ−1ǫρBρ − tρ−1Bρ−2)

= −tρ−1ǫρBρ−1(Bρ + ǫρBρ−2).

Hence
|B′

ρ−1(B
′
ρ − B′

ρ−2)| = Bρ−1(Bρ + ǫρBρ−2) (19)

and (17) and (19) give the second result of criterion 1) above.

Remark 7. John Robertson in an email to the author, dated November 26, 2007, noted
the following errors in Williams [9, pp. 12–13]:

(i) Criterion 3), Theorem 6, page 12, should be

|A′
π−1| = A′

ρB
′
ρ − A′

ρ−1B
′
ρ−1,

|B′
π−1| = B′

ρ

2 − B′2
ρ−1.

(ii) Criterion 6), Theorem 7, page 13, should be

|A′
π−1| = 2A′

ρ−1B
′
ρ−1 + A′

ρ−2B
′
ρ−2 − |A′

ρ−1B
′
ρ−2 + B′

ρ−1A
′
ρ−2|,

|B′
π−1| = 2B′2

ρ−1 + B′2
ρ−2 − 2|B′

ρ−2B
′
ρ−1|.

4 Midpoint criteria in terms of unisequences

The RCF of
√

D, with period-length p, has the form

√
D =

{

[a0, a1, . . . , ah−1, ah−1 . . . , a1, 2a0] if p = 2h − 1;
[a0, a1, . . . , ah−1, ah, ah−1, . . . , a1, 2a0] if p = 2h.

(20)

We have Euler’s midpoint formulae for solving Pell’s equation x2 − Dy2 = ±1 using the
regular continued fraction (see Dickson [3, p. 358]):

Qh−1 = Qh,

A2h−2 = Ah−1Bh−1 + Ah−2Bh−2,

B2h−2 = B2
h−1 + B2

h−2,

if p = 2h − 1;

Ph = Ph+1,

A2h−1 = AhBh−1 + Ah−1Bh−2,

B2h−1 = Bh−1(Bh + Bh−2),
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if p = 2h. We also need the following symmetry properties from Perron [7, p. 81]:

at = ap−t, t = 1, 2, . . . , p − 1, (21)

Pt+1 = Pp−t, t = 0, 1, . . . , p − 1, (22)

Qt = Qp−t, t = 0, 1, . . . , p. (23)

Theorem 8. Using the notation of (20), in relation to Theorem 6, we have

(1) If p = 2h − 1, h > 1 and ah−1 > 1, or p = 1, we get criterion 3).

(2) If p = 2h, h > 1 and ah−1 > 1, ah > 1, or p = 2 and a1 > 1, we get criterion 1).

(3) Suppose p = 2h and ah−1 = 1, ah > 1, so that ah is enclosed by two M-unisequences.
Then

(a) if M ≥ 2 is even, we get criterion 2).

(b) if M is odd, we get criterion 1).

(4) Suppose the centre of a period contains an M-unisequence, M ≥ 1.

(a) If M is odd, then p = 2h and we get criterion 1) if M = 4t + 3, criterion 3) if
M = 4t + 1.

(b) If M is even, then p = 2h − 1 and we get criterion 4) if M = 4t, criterion 5) if
M = 4t + 2.

Before we can prove Theorem 8, we need some results on the RCF to NICF-P conversion.

5 The RCF to NICF-P conversion and its properties

Lemma 9. Let ξ0 = P0+
√

D
Q0

have NICF-P and RCF expansions:

ξ0 = a′
0 +

ǫ1|
|a′

1

+ · · · = a0 +
1|
|a1

+ · · · ,

with complete quotients ξ′m, ξm, respectively. Define f(m) recursively for m ≥ 0 by f(0) = 0
and

f(m + 1) =

{

f(m) + 1, if ǫm+1 = 1;

f(m) + 2, if ǫm+1 = −1.
(24)

Then for m ≥ 0,

ǫm+1 =

{

1, if af(m)+1 > 1;

−1, if af(m)+1 = 1,
(25)

ξ′m =

{

ξf(m), if ǫm = 1;

ξf(m) + 1, if ǫm = −1,
(26)
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a′
m =











af(m), if ǫm = 1 and ǫm+1 = 1;

af(m) + 1, if ǫmǫm+1 = −1;

af(m) + 2, if ǫm = −1 and ǫm+1 = −1.

(27)

Proof. See Theorem 2, Matthews and Robertson [5].

Remark 10. By virtue of (24) and (26), we say that the ξ′m are obtained from the ξn in
jumps of 1 or 2.

Lemma 11. Let ξ0 = (a0, a1, . . .) be an RCF expansion. Then if [x] denotes the nearest
integer to x, we have

[ξn] =

{

an, if an+1 > 1;

an + 1, if an+1 = 1.

Proof. If [ξn] = an + 1, then ξn > an + 1
2

and hence an+1 = 1, whereas if [ξn] = an, then
ξn < an + 1

2
and hence an+1 > 1.

Lemma 12. Let ξ0 = P0+
√

D
Q0

have NICF-P expansion

ξ0 = a′
0 +

ǫ1|
|a′

1

+ · · · .

Then

A′
m =

{

Af(m) if ǫm+1 = 1;

Af(m)+1 if ǫm+1 = −1,
(28)

where f(m) is defined by (24). Equivalently, in the notation of Bosma [2, p. 372], if
n(k) = f(k + 1) − 1 for k ≥ −1, then

n(k) =

{

n(k − 1) + 1, if ǫk+1 = 1;

n(k − 1) + 2, if ǫk+1 = −1
(29)

and (28) has the simpler form

A′
k = An(k) for k ≥ 0. (30)

Remark 13. From (25) and (29), we see that ǫm+1 = −1 implies an(m) = 1.

Proof. (by induction). We first prove (30) for k = 0. We use Lemma 11.

ǫ1 = 1 =⇒ a1 > 1 =⇒ [ξ0] = a0

=⇒ A′
0 = A0.

ǫ1 = −1 =⇒ a1 = 1 =⇒ [ξ0] = a0 + 1 = a0a1 + 1

=⇒ A′
0 = A1.

10



We next prove (30) for k = 1. We have to prove

A′
1 =

{

Af(1) if ǫ2 = 1;

Af(1)+1 if ǫ2 = −1,

where

f(1) =

{

1 if ǫ1 = 1;

2 if ǫ1 = −1.

i.e.,

A′
1 =











A1 if ǫ1 = 1, ǫ2 = 1;

A2 if ǫ1ǫ2 = −1;

A3 if ǫ1 = −1, ǫ2 = −1.

Now A′
1 = a′

0a
′
1 + ǫ1. We have

a′
0 =

{

a0 if ǫ1 = 1;

a0 + 1 if ǫ1 = −1

and

a′
1 =











af(1) if ǫ1 = 1 = ǫ2;

af(1) + 1 if ǫ1ǫ2 = −1;

af(1) + 2 if ǫ1 = −1 = ǫ2.

Hence

a′
1 =



















a1 if ǫ1 = 1 = ǫ2;

a1 + 1 if ǫ1 = 1, ǫ2 = −1;

a2 + 1 if ǫ1 = −1, ǫ2 = 1;

a2 + 2 if ǫ1 = −1, ǫ2 = −1.

Case 1. ǫ1 = 1 = ǫ2. Then A′
1 = a0a1 + 1 = A1.

Case 2. ǫ1 = 1, ǫ2 = −1. Then a2 = 1 and

A′
1 = a0(a1 + 1) + 1,

A2 = (a0a1 + 1)a2 + a0 = a0a1 + 1 + a0 = A′
1.

Case 3. ǫ1 = −1, ǫ2 = 1. Then a1 = 1 and

A′
1 = (a0 + 1)(a2 + 1) − 1

= a0a2 + a0 + a2,

A2 = (a0a1 + 1)a2 + a0

= (a0 + 1)a2 + a0 = A′
1.

Case 4. ǫ1 = −1 = ǫ2. Then a1 = 1 = a3 and

A′
1 = (a0 + 1)(a2 + 2) − 1

= a0a2 + a2 + 2a0 + 1.
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Also

A3 = a3A2 + A1

= A2 + A1

= ((a0a1 + 1)a2 + a0) + (a0a1 + 1)

= ((a0 + 1)a2 + a0) + (a0 + 1) = A′
1.

Finally, let k ≥ 0 and assume (30) holds for k and k + 1 and use the equation

A′
k+2 = a′

k+2A
′
k+1 + ǫk+2A

′
k.

Then from (27), with j = n(k + 1) + 1, we have

a′
k+2 =











aj if ǫk+2 = 1, ǫk+3 = 1;

aj + 1 if ǫk+2ǫk+3 = −1;

aj = 2 if ǫk+2 = −1 = ǫk+3.

(31)

Case 1. Suppose ǫk+2 = 1 = ǫk+3 = 1. Then

n(k + 1) = n(k) + 1 = j − 1, n(k + 2) = n(k + 1) + 1 = j

and
A′

k+2 = ajAj−1 + Aj−2 = Aj = An(k+2).

Case 2. Suppose ǫk+2 = 1, ǫk+3 = −1. Then

n(k + 1) = n(k) + 1 = j − 1, n(k + 2) = n(k + 1) + 2 = j + 1

and
A′

k+2 = (aj + 1)Aj−1 + Aj−2.

Now ǫk+3 = −1 implies 1 = an(k+2) = aj+1, so Aj+1 = Aj + Aj−1. Hence

A′
k+2 = Aj+1 = An(k+2).

Case 3. Suppose ǫk+2 = −1, ǫk+3 = 1. Then

n(k + 1) = n(k) + 2 = j − 1, n(k + 2) = n(k + 1) + 1 = j

and
A′

k+2 = (aj + 1)Aj−1 − Aj−3.

Now ǫk+2 = −1 implies 1 = an(k+1) = aj−1, so Aj−1 = Aj−2 + Aj−3. Hence

A′
k+2 = ajAj−1 + Aj−2 = Aj = An(k+2).

Case 4. Suppose ǫk+2 = −1 = ǫk+3. Then

n(k + 1) = n(k) + 2 = j − 1, n(k + 2) = n(k + 1) + 2 = j + 1
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and
A′

k+2 = (aj + 2)Aj−1 − Aj−3.

Now ǫk+3 = −1 =⇒ 1 = an(k+2) = aj+1 and ǫk+2 = −1 =⇒ 1 = an(k+1) = aj−1, so

Aj+1 = Aj + Aj−1 and Aj−1 = Aj−2 + Aj−3.

Hence

A′
k+2 = (aj + 2)Aj−1 − (Aj−1 − Aj−2)

= Aj + Aj−1 = Aj+1 = An(k+2).

Lemma 14. Each an > 1, n ≥ 1 will be visited by the algorithm of Lemma 9, i.e., there
exists an m such that n = f(m).

Proof. Let an > 1 and f(m) ≤ n < f(m + 1). If f(m) < n, then f(m + 1) = f(m) + 2 and
ǫm+1 = −1; also n = f(m) + 1. Then from (25), an = af(m)+1 = 1.

Note that in the RCF to NICF-P transformation, we have f(k) = p, where k is the
NICF-P period-length.

Lemma 15. Suppose that RCF partial quotients ar and as satisfy ar > 1, as > 1, r < s.
Then the number J of jumps in the RCF to NICF-P transformation when starting from ar

and finishing at as is J = (s− r + E)/2, where E is the number of even unisequences in the
interval [ar, as]. Here we include zero unisequences [ai, ai+1], where ai > 1 and ai+1 > 1.

Proof. Suppose the unisequences in [ar, as] have lengths m1, . . . ,mN and let ji be the number
of jumps occurring in a unisequence of length mi. Then

ji =
mi + 1 + ei

2
, where ei =

{

0 if mi is odd;

1 if mi is even.

Then

J =
N

∑

i=1

ji =
N

∑

i=1

mi + 1 + ei

2

= 1
2
(N +

N
∑

i=1

mi) +
E

2

=
s − r

2
+

E

2
=

s − r + E

2
.

Corollary 16. The number of jumps in the interval [a0, ar], ar > 1, equals the number in
the interval [ap−r, ap], where p is the period-length and r ≤ p/2.

Proof. This follows from Lemma 15 and the symmetry of an RCF period.
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6 Proof of Theorem 8

We use the notation of Lemmas 9 and 12.
Case (1)(i). Assume p = 2h − 1, h > 1 and there is an even length unisequence, or no
unisequence, on each side of ah−1 > 1, ah > 1, e.g.,

√
73 = [8, 1

∗
, 1, 5, 5, 1, 1, 16

∗
] or

√
89 =

[9, 2
∗
, 3, 3, 2, 18

∗
]. Let f(m) = h − 1, where m is the number of jumps in [a0, ah−1]. Then

f(m + 1) = h and

ξ′m = ξh−1, ǫm = 1,

ξ′m+1 = ξh, ǫm+1 = 1.

By Corollary 16, m is also the number of jumps in [ah, ap]. There is also one jump in
[ah−1, ah]. Hence k = 2m + 1. As Qh−1 = Qh, we have Q′

m = Q′
m+1, which is criterion 3) of

Theorem 6. Also

ǫm = 1 =⇒ f(m) = f(m − 1) + 1, A′
m−1 = Af(m−1),

ǫm+1 = 1 =⇒ f(m + 1) = f(m) + 1, A′
m = Af(m).

Hence A′
m−1 = Ah−2, A′

m = Ah−1, B′
m−1 = Bh−2, B′

m = Bh−1 and

Ap−1 = Ah−1Bh−1 + Ah−2Bh−2

= A′
mB′

m + A′
m−1B

′
m−1

= A′
mB′

m + ǫm+1A
′
m−1B

′
m−1.

Also

Bp−1 = B2
h−1 + B2

h−2

= B′2
m + B′2

m−1

= B′2
m + ǫm+1B

′2
m−1.

If p = 1,
√

D = [a, 2a] and the NICF and RCF expansions are identical. Also Q′
0 = Q′

1 =
1, ǫ1 = 1 and we have criterion 3).
Case (1)(ii). Assume p = 2h − 1, with an odd length unisequence on each side of ah−1 >
1, ah > 1, e.g.,

√
113 = [10, 1

∗
, 1, 1, 2, 2, 1, 1, 1, 20

∗
]. Let f(m) = h− 1. Then f(m+1) = h and

ξ′m = ξh−1 + 1, ǫm = −1,

ξ′m+1 = ξh, ǫm+1 = 1,

and as in Case (1)(i), k = 2m + 1. As Qh−1 = Qh, we have Q′
m = Q′

m+1, which is criterion
3). Also

ǫm = −1 =⇒ f(m) = f(m − 1) + 2, A′
m−1 = Af(m−1)+1,

ǫm+1 = 1 =⇒ f(m + 1) = f(m) + 1, A′
m = Af(m).
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Hence A′
m−1 = Ah−2, A′

m = Ah−1 and B′
m−1 = Bh−2, B′

m = Bh−1. Then as in Case (1)(i),
we get

A′
mB′

m + ǫm+1A
′
m−1B

′
m−1 = Ap−1 and B′2

m + ǫm+1B
′2
m−1 = Bp−1.

Case (2) Assume p = 2h, h > 1, ah−1 > 1, ah > 1, e.g.,
√

92 = [9, 1
∗
, 1, 2, 4, 2, 1, 1, 18

∗
].

Let f(m) = h. Then f(m + 1) = h + 1 and

ξ′m = ξh, ǫm = 1,

ξ′m+1 = ξh+1, ǫm+1 = 1,

Also by Corollary 16, m is the number of jumps in [ah, ap]. Hence k = 2m. Then Ph = Ph+1

gives P ′
m = P ′

m+1 and we have criterion 1) of Theorem 6. Also

ǫm = 1 =⇒ f(m) = f(m − 1) + 1, A′
m−1 = Af(m−1),

ǫm+1 = 1 =⇒ f(m + 1) = f(m) + 1, A′
m = Af(m).

Hence A′
m−1 = Ah−1, A′

m = Ah and B′
m−1 = Bh−1, B′

m = Bh. Then

Ap−1 = AhBh−1 + Ah−1Bh−2

= A′
mB′

m−1 + A′
m−1Bh−2. (32)

But Bh−2 = Bh − ahBh−1 = B′
m − a′

mBm−1 = B′
m−2. Hence (32) gives

Ap−1 = A′
mB′

m−1 + A′
m−1B

′
m−2

= A′
mB′

m−1 + ǫmA′
m−1B

′
m−2.

Also

Bp−1 = Bh−1(Bh + Bh−2)

= B′
m−1(B

′
m + B′

m−2).

Case (3)(a). Assume p = 2h, with an even length unisequence each side of ah > 1, e.g.,√
21 = [4, 1

∗
, 1, 2, 1, 1, 8

∗
]. Let f(m) = h. Then f(m + 1) = h + 2. As in Case(2), k = 2m.

Also

ξ′m = ξh, ǫm = 1,

ξ′m+1 = ξh+2 + 1, ǫm+1 = −1.

Then

ǫm = 1 =⇒ f(m) = f(m − 1) + 1, A′
m−1 = Af(m−1),

ǫm+1 = −1 =⇒ f(m + 1) = f(m) + 2, A′
m = Af(m)+1.

Hence A′
m−1 = Ah−1, A′

m = Ah+1 and B′
m−1 = Bh−1, B′

m = Bh+1.
We prove criterion 2) of Theorem 6, P ′

m+1 = P ′
m + Q′

m, i.e., Ph+2 + Qh+2 = Ph + Qh.
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We note from Theorem 10.19, Rosen [8], that ah+1 = 1 implies Ph+2 + Ph+1 = Qh+1. Also

P 2
h+2 = D − Qh+1Qh+2,

P 2
h+1 = D − QhQh+1.

Hence

P 2
h+2 − P 2

h+1 = Qh+1(Qh − Qh+2)

= (Ph+2 + Ph+1)(Qh − Qh+2).

Hence

Ph+2 − Ph+1 = Qh − Qh+2,

Ph+2 + Qh+2 = Ph+1 + Qh

= Ph + Qh (33)

We next prove

Ap−1 = B′
m−1(A

′
m − A′

m−1) + A′
m−1B

′
m−2, (34)

Bp−1 = B′
m−1(B

′
m − B′

m−1 + B′
m−2). (35)

First note that by equations (27), ǫm = 1 and ǫm+1 = 1 imply

a′
m = af(m) + 1 = ah + 1.

Also ah+1 = 1 implies Bh+1 = Bh + Bh−1, i.e., B′
m = Bh + B′

m−1. Hence

Bh−2 = Bh − ahBh−1

= (B′
m − B′

m−1) − (a′
m − 1)B′

m−1

= B′
m − a′

mB′
m−1 = B′

m−2.

Then

Ap−1 = AhBh−1 + Ah−1Bh−2

= (A′
m − A′

m−1)B
′
m−1 + A′

m−1B
′
m−2,

proving (34). Also

Bp−1 = Bh−1(Bh + Bh−2)

= B′
m−1(B

′
m − B′

m−1 + B′
m−2),

proving (35).

If p = 2 and a1 > 1, then D = a2 + b, 1 < b < 2a, b dividing 2a (Rosen [8, p. 389]). Then√
D = [a, 2a/b

∗
, 2a

∗
] and the NICF and RCF expansions are identical. Then ξ′1 = a+

√
D

b
, ξ′2 =

a +
√

D,P ′
1 = P ′

2 = a, ǫ1 = 1 and we have criterion 1).
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Case (3)(b). Assume p = 2h, with an odd length unisequence each side of ah > 1, e.g.,√
14 = [3, 1

∗
, 2, 1, 6

∗
]. Let f(m) = h. Then f(m + 1) = h + 2 and k = 2m. Then

ξ′m = ξh + 1, ǫm = −1,

ξ′m+1 = ξh+2 + 1, ǫm+1 = −1.

Then

ǫm = −1 =⇒ f(m) = f(m − 1) + 2, A′
m−1 = Af(m−1)+1,

ǫm+1 = −1 =⇒ f(m + 1) = f(m) + 2, A′
m = Af(m)+1.

We have A′
m−1 = Ah−1, A′

m = Ah+1, B′
m−1 = Bh−1, B′

m = Bh+1. Then using (33), we get

P ′
m+1 = Ph+2 + Qh+2 = Ph + Qh = P ′

m,

which is criterion 1) of Theorem 6.
As ǫm = −1, it remains to prove

Ap−1 = B′
m−1A

′
m − A′

m−1B
′
m−2

Bp−1 = B′
m−1(B

′
m − B′

m−2).

First, ah+1 = 1 implies Ah+1 = Ah + Ah−1, i.e., A′
m = Ah + Ah−1. Also ǫm = −1 = ǫm+1

implies a′
m = af(m) + 2 = ah + 2. Hence

−B′
m−2 = ǫmB′

m−2

= B′
m − a′

mB′
m−1

= (Bh + Bh−1) − (ah + 2)Bh−1

= Bh − Bh−1 − ahBh−1

= Bh−2 − Bh−1.

Hence

B′
m−1A

′
m − A′

m−1B
′
m−2 = Bh−1(Ah + Ah−1) − Ah−1(Bh−1 − Bh−2)

= Bh−1Ah + Ah−1Bh−2

= Ap−1.

Finally,

B′
m−1(B

′
m − B′

m−2) = Bh−1((Bh + Bh−1) + (Bh−2 − Bh−1))

= Bh−1(Bh + Bh−2)

= Bp−1.

Case (4)(a). Assume p = 2h with an M -unisequence, M odd, at the centre of a period.
There are two cases:
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M = 4t + 3, e.g.,
√

88 = [9, 2
∗
, 1, 1, 1, 2, 18

∗
]. Let f(m) = h. Then f(m + 1) = h + 2 and

ξ′m = ξh + 1, ǫm = −1;

ξ′m+1 = ξh+2 + 1, ǫm+1 = −1.

and as with case (3)(b), we have criterion 1) of Theorem 6. Now m is the number of jumps
in [a0, ah]. Then we have a central unisequence [ar, ap−r] of length 4t + 3. There are t + 1
jumps of 2 in [ar, ah], so r + 2t + 2 = h. Let J be the number of jumps in [a0, ar]. Hence
m = J + (t + 1). There are t + 1 jumps of 2 in [ah, ap−r] and J jumps in [ap−r, ap]. Hence

k = (J + t + 1) + (t + 1) + J = 2(J + t + 1) = 2m.

M = 4t + 1, e.g.,
√

91 = [9, 1
∗
, 1, 5, 1, 5, 1, 1, 18

∗
]. Let f(m) = h − 1. Then f(m + 1) = h + 1

and
ξ′m+1 = ξh+1 + 1, ǫm+1 = −1.

Also ξ′m = ξh−1 or ξh−1 + 1. We have a central unisequence [ar, ap−r] of length 4t + 1. There
are t jumps of 2 in [ar, ah−1], so r + 2t = h − 1. Let J be the number of jumps in [a0, ar].
Hence m, being the number of jumps in [a0, ah−1] satisfies m = J + t. There is also one jump
in [ah−1, ah+1], t jumps of 2 in [ah+1, ap−r] and J jumps in [ap−r, ap]. Hence

k = (J + t) + 1 + t + J = 2(J + t) + 1 = 2m + 1.

Then Q′
m+1 = Qh+1 and Q′

m = Qh−1, so Qh−1 = Qh+1 implies Q′
m = Q′

m+1 and we have
criterion 3) of Theorem 6. We have A′

m = Af(m)+1 = Ah. Also, regardless of the sign of ǫm,
we have A′

m−1 = Ah−2. We now prove

Ak−1 = A′
mB′

m − A′
m−1B

′
m−1, (36)

Bk−1 = B′2
m − B′2

m−1. (37)

Noting that ah = 1 gives Ah = Ah−1 + Ah−2 and Bh = Bh−1 + Bh−2, we have

A′
mB′

m − A′
m−1B

′
m−1 = AhBh − Ah−2Bh−2

= Ah(Bh−1 + Bh−2) − (Ah − Ah−1)Bh−2

= AhBh−1 + Ah−1Bh−2

= Ap−1.

Also

B′2
m − B′2

m−1 = B2
h − B2

h−2

= (Bh − Bh−2)(Bh + Bh−2)

= Bh−1(Bh + Bh−2)

= Bp−1.

Case (4)(b) Assume p = 2h − 1 with an M -unisequence, M even, at the centre of a period.
There are two cases:
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M = 4t, e.g.,
√

13 = [3, 1
∗
, 1, 1, 1, 6

∗
]. Let f(m) = h − 1. Then f(m + 1) = h + 1 and

ξ′m = ξh−1 + 1, ǫm = −1,

ξ′m+1 = ξh+1 + 1, ǫm+1 = −1.

We have a central unisequence [ar, ap−r] of length 4t with r + 2t = h − 1. Let J be the
number of jumps in [a0, ar]. There are t jumps of 2 in [ar, ah−1]. Hence m, being the number
of jumps in [a0, ah−1] satisfies m = J + t. There are also t jumps of 2 in [ah−1, ap−r−1], one
jump in [ap−r−1, ap−r] and J jumps in [ap−r, ap]. Hence

k = (J + t) + t + 1 + J = 2(J + t) + 1 = 2m + 1.

Then

ǫm = −1 =⇒ f(m) = f(m − 1) + 2, A′
m−1 = Af(m−1)+1,

ǫm+1 = −1 =⇒ f(m + 1) = f(m) + 2, A′
m = Af(m)+1.

We have A′
m−1 = Ah−2, A′

m = Ah. We now verify criterion 4) of Theorem 6.

P ′
m+1 = Q′

m + 1
2
Q′

m+1. (38)

We note that ah = 1 implies Ph+1 = Qh − Ph. Then

P ′
m+1 = Ph+1 + Qh+1

= Qh − Ph + Qh+1.

Also
Q′

m + 1
2
Q′

m+1 = Qh−1 + 1
2
Qh+1.

Hence (38) holds if and only if

Qh − Ph + Qh+1 = Qh−1 + 1
2
Qh+1,

i.e., Qh−1 − Ph + Qh+1 = Qh−1 + 1
2
Qh+1,

i.e., Ph = 1
2
Qh+1.

However

P 2
h = D − Qh−1Qh,

P 2
h+1 = D − QhQh+1,

P 2
h − P 2

h+1 = Qh(Qh+1 − Qh−1),

Ph − Ph+1 = Qh+1 − Qh−1,

Ph − (Qh − Ph) = Qh+1 − Qh,

2Ph = Qh+1.

Next we prove

Ap−1 = A′
mB′

m + 2A′
m−1B

′
m−1 − (A′

mB′
m−1 + B′

mA′
m−1), (39)

Bp−1 = B′2
m + 2B′2

m−1 − 2B′
mB′

m−1. (40)
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Let
T = A′

mB′
m + 2A′

m−1B
′
m−1 − (A′

mB′
m−1 + B′

mA′
m−1).

Then

T = AhBh + 2Ah−2Bh−2 − (AhBh−2 + BhAh−2)

= Ah(Bh − Bh−2) + Ah−2(Bh−2 − Bh) + Ah−2Bh−2

= AhBh−1 − Ah−2Bh−1 + Ah−2Bh−2

= AhBh−1 + Ah−2(Bh−2 − Bh−1)

= (Ah−1 + Ah−2)Bh−1 + Ah−2(Bh−2 − Bh−1)

= Ah−1Bh−1 + Ah−2Bh−2

= Ap−1.

Also

B′2
m + 2B′2

m−1 − 2B′
mB′

m−1 = B2
h + 2B2

h−2 − 2BhBh−2

= Bh(Bh − 2Bh−2) + 2B2
h−2

= (Bh−1 + Bh−2)(Bh−1 − Bh−2) + 2B2
h−2

= B2
h−1 − B2

h−2 + 2B2
h−2

= B2
h−1 + B2

h−2

= Bp−1.

M = 4t+2, e.g.,
√

29 = [5, 2
∗
, 1, 1, 2, 10

∗
]. Let f(m) = h. Then ǫm = −1 and ξ′m = ξh+1. Also

f(m) = f(m − 1) + 2, so A′
m−1 = Af(m−1)+1 = Ah−1. Then we have a central unisequence

[ar, ap−r] of length 4t + 2. There are t + 1 jumps in [ar, ah], so r + 2t + 2 = h. Let J be
the number of jumps in [a0, ar]. Hence m, being the number of jumps in [a0, ah] satisfies
m = J + t + 1. There are also t jumps of 2 in [ah, ap−r−1], one jump in [ap−r−1, ap−r] and J
jumps in [ap−r, ap]. Hence

k = (J + t + 1) + t + 1 + J = 2(J + t + 1) = 2m.

We now verify Case 5) of the midpoint criteria:

P ′
m = Q′

m + 1
2
Q′

m−1. (41)

Then, as ξ′m−1 = ξh−2 or ξh−2 + 1, we have Q′
m−1 = Qh−2 and

P ′
m = Q′

m + 1
2
Q′

m−1 ⇐⇒ Ph + Qh = Qh + 1
2
Qh−2

⇐⇒ Ph = 1
2
Qh−2.

But ah−1 = 1 implies Ph = Qh−1 − Ph−1. Hence

P 2
h−1 − P 2

h = (D − Qh−2Qh−1) − (D − Qh−1Qh),

(Ph−1 − Ph)Qh−1 = Qh−1(Qh − Qh−2),

Ph−1 − Ph = Qh − Qh−2,

Qh−1 − 2Ph = Qh−1 − Qh−2,

2Ph = Qh−2.
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Next we prove

Ap−1 = 2A′
m−1B

′
m−1 + A′

m−2B
′
m−2 − (A′

m−1B
′
m−2 + B′

m−1A
′
m−2), (42)

Bp−1 = 2B′2
m−1 + B′2

m−2 − 2B′
m−1B

′
m−2. (43)

Note that regardless of the sign of ǫm−1, we have A′
m−2 = Ah−3.

To prove (42), let

T = 2A′
m−1B

′
m−1 + A′

m−2B
′
m−2 − (A′

m−1B
′
m−2 + B′

m−1A
′
m−2).

Then

T = 2Ah−1Bh−1 + Ah−3Bh−3 − (Ah−1Bh−3 + Bh−1Ah−3)

= 2Ah−1Bh−1 + (Ah−1 − Ah−2)(Bh−1 − Bh−2)

− Ah−1(Bh−1 − Bh−2) − Bh−1(Ah−1 − Ah−2)

= Ah−1Bh−1 + Ah−2Bh−2

= Ap−1.

Finally, we prove (43).

2B′2
m−1 + B′2

m−2 − 2B′
m−1B

′
m−2 = 2B2

h−1 + B2
h−3 − 2Bh−1Bh−3

= 2B2
h−1 + (Bh−1 − Bh−2)

2

− 2Bh−1(Bh−1 − Bh−2)

= B2
h−1 + B2

h−2

= Bp−1.

This completes the proof of Theorem 8.

7 RCF periods with only odd length unisequences

Lemma 17. Suppose there are no even length (≥ 2) unisequences in an RCF period of length
p for

√
D. If k is the NICF period-length and 0 ≤ t ≤ k/2, then

f(k − t) = p − f(t), (44)

Proof. Let f(t) = r. Then we have t jumps on [a0, ar]. Because of the symmetry of the
partial quotients and the absence of even length unisequences, we get the same t jumps
but in reverse order on [ap−r, ap]. There are k jumps on [a0, ap] and hence k − t jumps on
[a0, ap−r]. Hence f(k − t) = p − r = p − f(t).

Theorem 18. Suppose there are no even length (≥ 2) unisequences in a RCF period of
length p for

√
D. Then if k is the NICF period-length, for 1 ≤ t ≤ k/2, we have

(i) ǫt = ǫk+1−t;
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(ii) P ′
t = P ′

k+1−t;

(iii) Q′
t = Q′

k−t;

(iv) a′
t = a′

k−t,

where ξ′t =
P ′

t+
√

D

Q′

t
is the t-th complete quotient of the NICF-P expansion of

√
D.

Remark 19. In particular, if k = 2h, then (ii) implies P ′
h = P ′

h+1 and we have criterion
1) of Theorem 6; while if k = 2h + 1, then (iii) implies Q′

h = Q′
h+1 and we have criterion 3)

of Theorem 6.

Proof. (i) We use (24) and Lemma 17

ǫt = 1 ⇐⇒ f(t) = f(t − 1) + 1

⇐⇒ p − f(k − t) = p − f(k − t + 1) + 1

⇐⇒ f(k − t + 1) = f(k − t) + 1

⇐⇒ ǫk−t+1 = 1.

(ii) (a) Assume ǫt = 1. Then ǫk+1−t = 1 and f(t) = f(t− 1) + 1. Hence ξ′t = ξf(t) =
Pf(t)+

√
D

Qf(t)

and

ξ′k+1−t = ξf(k+1−t) = ξp−f(t−1) = ξp+1−f(t)

=
Pp+1−f(t) +

√
D

Qp+1−f(t)

=
Pf(t) +

√
D

Qf(t)−1

.

Hence P ′
t = Pf(t) = P ′

k+1−t.
(b) Assume ǫt = −1. Then ǫk+1−t = −1 and f(t) = f(t − 1) + 2.

Hence ξ′t = ξf(t) + 1 =
Pf(t)+Qf(t)+

√
D

Qf(t)
and

ξ′k+1−t = ξf(k+1−t) + 1 = ξp−f(t−1) + 1

=
Pp−f(t−1) +

√
D

Qp−f(t−1)

+ 1 =
Pf(t−1)+1 + Qf(t−1) +

√
D

Qf(t−1)

.

Hence

P ′
t = Pf(t) + Qf(t),

P ′
k+1−t = Pf(t−1)+1 + Qf(t−1)

= Pf(t)−1 + Qf(t)−2.
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For brevity, write r = f(t) − 1. We have to prove P ′
t = P ′

k+1−t, i.e.,

Pr + Qr−1 = Pr+1 + Qr+1. (45)

We have

P 2
r+1 − P 2

r = (D − QrQr+1) − (D − Qr−1Qr)

= Qr(Qr−1 − Qr+1). (46)

Now ǫt = −1 implies af(t−1)+1 = 1 = af(t)−1 = ar and hence Pr+1 + Pr = arQr = Qr. Then
(46) gives

Pr+1 − Pr = Qr−1 − Qr+1

and hence (45).
(iii) To prove Q′

t = Q′
k−t, we observe that

ξ′t = ξf(t) or ξf(t) + 1,

ξ′k−t = ξf(k−t) or ξf(k−t) + 1.

Then
Q′

k−t = Qf(k−t) = Qp−f(t) = Qf(t) = Q′
t.

(iv)

a′
t =











af(t) if (ǫt, ǫt+1) = (1, 1);

af(t) + 1 if (ǫt, ǫt+1) = (1,−1) or (−1, 1);

af(t) + 2 if (ǫt, ǫt+1) = (−1,−1).

a′
k−t =











af(k−t) if (ǫk−t, ǫk−t+1) = (1, 1);

af(k−t) + 1 if (ǫk−t, ǫk−t+1) = (1,−1) or (−1, 1);

af(k−t) + 2 if (ǫk−t, ǫk−t+1) = (−1,−1).

Then as (ǫt, ǫt+1) = (ǫk+1−t, ǫk−t) and af(k−t) = ap−f(t) = af(t), it follows that a′
t = a′

k−t.

We give examples of even and odd NICF period-length in which only odd length unisequences
occur.

(a)
√

1532 = [39, 7
∗
, 9, 1, 1, 1, 3, 1, 18, 1, 3, 1, 1, 1, 9, 7, 78

∗
]

= 39 +
1
7
∗

+
1
10

− 1
3
− 1

5
− 1

20
− 1

5
− 1

3
− 1

10
+

1
7

+
1
78
∗

.

Here p = 16, k = 10, P ′
5 = P ′

6.

(b)
√

277 = [16, 1
∗
, 1, 1, 4, 10, 1, 7, 2, 2, 3, 3, 2, 2, 7, 1, 10, 4, 1, 1, 1, 32

∗
] =

17 − 1
3
∗

− 1
5

+
1
11

− 1
8

+
1
2

+
1
2

+
1
3

+
1
3

+
1
2

+
1
2

+
1
8
− 1

11
+

1
5
− 1

3
− 1

34
∗

.

Here p = 21, k = 15, Q′
7 = Q′

8.
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