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Preface

Welcome to the 23rd International Workshop on Description Logics, DL 2010,
in Waterloo, Canada. The workshop continues the long-standing tradition of
international workshops devoted to discussing developments and applications of
knowledge representation formalisms and systems based on Description Logics.
The list of the International Workshops on Description Logics can be found at
http://dl.kr.org.

There were 48 papers submitted each of which was reviewed by at least three
members of the program committee or additional reviewers recruited by the PC
members.

In addition to the presentation of the accepted papers, posters, and demos the
following speakers agreed to give invited talks at the workshop:

– From DL to SMT (and back?)
Roberto Sebastiani (Trento)

– Searching for the Holy Grail.
Ian Horrocks (Oxford)

– Composing and Inverting Schema Mappings.
Phokion Kolaitis (UC Santa Cruz and IBM Research - Almaden)

The organizers of the DL 2010 workshop gratefully acknowledge the logistical and
financial support of the Fields Institute (http://www.fields.utoronto.ca/),
and the logistical support and use of facilities provided by the University of
Waterloo.

Our thanks go to all the authors for submitting to DL, and to the invited speak-
ers, PC members, and all additional reviewers who made the technical pro-
gramme possible. The organization of the workshop also greatly beneted from the
help of many people at the University of Waterloo, in particular Jeff Pound and
Jiewen Wu for helping with the local organization and the DL 2010 WEB site. Fi-
nally, we would like to acknowledge that the work of the PC was greatly simplied
by using the EasyChair conference management system (www.easychair.org)
developed by Andrei Voronkov.

Volker Haarslev, David Toman, and Grant Weddell
2010 PC chairs and organizers
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Part I

Invited Talks





From DL to SMT (and back?)

Roberto Sebastiani

Trento

Satisfiability Modulo Theory (SMT) is the problem of checking the satisfia-
bility of first-order formulas with respect to some background theories. In recent
years, SMT has become increasingly popular due to its success in encoding and
solving many real-world problems in important applications domains that in-
clude formal verification, scheduling and compiler optimization. To this extent,
very-efficient SMT solvers have been developed combining the power of SAT
solvers with the expressiveness of dedicated decision procedures for several the-
ories of practical interest (including, e.g., the theory linear arithmetic, of arrays,
and of bit-vectors). In this talk I will survey my many-year experience in SMT,
which initially largely benefitted from ideas coming from my previous work on
satisfiability in ALC. I will highlight techniques and ideas which may be of inter-
est to the DL community and hint at some ongoing work in which DL reasoning
largely benefits from SAT and SMT techniques.
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Searching for the Holy Grail

Ian Horrocks

Oxford

In this talk I will review my personal odyssey from Grail to the Semantic
Web and back again: a fifteen-year (and counting) mission to explore strange
new worlds; to seek out new logics and new applications; to boldly go where
no description logician has gone before. I will try to identify important lessons
that I have learned along the way about the theory and practice of logic based
knowledge representation (and I will try to avoid further mixing of metaphors),
but like any ”road movie”, the journey should be at least as important as the
destination.
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Composing and Inverting Schema Mappings

Phokion Kolaitis

UC Santa Cruz and IBM Research - Almaden

Schema mappings are high-level specifications that describe the relationship
between two database schemas. Schema mappings constitute the essential build-
ing blocks in formalizing the main data inter-operability tasks, including data
exchange and data integration. Several different operators on schema mappings
have been introduced and studied in considerable depth. Among these, the com-
position operator and the inverse operator are the most fundamental and promi-
nent ones. The aim of this talk is to present an overview of results about two
these operators, and to illustrate their applications to schema evolution.
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Temporal Conceptual Modelling with DL-Lite

A. Artale,1 R. Kontchakov,2 V. Ryzhikov,1 and M. Zakharyaschev2

1 KRDB Research Centre
Free University of Bozen-Bolzano

I-39100 Bolzano, Italy
lastname @inf.unibz.it

2 Dept. of Comp. Science and Inf. Sys.
Birkbeck College

London WC1E 7HX, UK
{roman,michael}@dcs.bbk.ac.uk

1 Introduction

Conceptual modelling formalisms such as the Entity-Relationship model (ER)
and Unified Modelling Language (UML) have become a de facto standard in
database design by providing visual means to describe application domains in a
declarative and reusable way. On the other hand, both ER and UML turned out
to be closely connected with description logics that are underpinned by formal
semantics and thus capable of providing services for effective reasoning over
conceptual models; see, e.g., [11, 4].

Temporal conceptual data models (TCMs) [18, 25] have been introduced in
the context of temporal databases [20, 15, 13]. In this case, apart from the classi-
cal constructs—such as inheritance between classes and relationships, cardinality
constraints restricting participation in relationships, and disjointness and cover-
ing constraints—temporal constructs are used to capture the temporal behaviour
of various components of conceptual schemas. Such constructs can be grouped
into 3 categories. Timestamping constraints discriminate between those classes,
relationships and attributes that change over time and those that are time-
invariant [28, 18, 16, 6, 25]. Evolution constraints control how domain elements
evolve over time by ‘migrating’ from one class to another [19, 23, 26, 25, 3]. We
distinguish between qualitative evolution constraints describing generic tempo-
ral behaviour, and quantitative ones specifying the exact moment of migration.
Temporal cardinality constraints restrict the number of times an instance of a
class participates in a relationship. Snapshot cardinality constraints do it at each
moment of time, while lifespan cardinality constraints impose restrictions over
the entire existence of the instance as a member of the class [27, 22].

Temporal conceptual data models can be encoded in various temporal de-
scription logics (TDLs), which have been designed and investigated since the
seminal paper [24] with the aim of understanding the computational price of
introducing a temporal dimension in DLs; see [21] for a recent survey. A general
conclusion one can draw from the obtained results is that—as far as there is
nontrivial interaction between the temporal and DL components—TDLs based
on full-fledged DLs like ALC turn out to be too complex for effective reasoning
(see the end of the introduction for details).

The aim of this paper is to tailor ‘minimal’ TDLs that are capable of repre-
senting various aspects of TCMs and investigate their computational behaviour.
First of all, as the DL component we choose the ‘light-weight’ DL-Lite logic

Proc. 23rd Int. Workshop on Description Logics (DL2010), CEUR-WS 573, Waterloo, Canada, 2010.

9



DL-LiteNbool, which was shown to be adequate for capturing conceptual models
without relationship inheritance1 [4], and its fragment DL-LiteNcore with most
primitive concept inclusions, which are nevertheless enough to represent almost
all types of constraints (apart from covering). To discuss our choice of the tem-
poral constructs, consider a toy TCM describing a company.

For the timestamping constraint ‘employee is a snapshot class’ (by the stan-
dard TCM terminology, such a class never changes in time) one can use the
axiom Employee v 2∗ Employee with the temporal operator 2∗ ‘always.’ Likewise,
the constraint ‘manager is a temporary class’ in the sense that each of its in-
stances must leave the class, the axiom Manager v 3∗ ¬Manager is required, where
3∗ means ‘some time.’ Both of these axioms are regarded as global, i.e., applicable
to all time points. Note that to express 3∗ using more standard temporal con-
structs, we need both ‘some time in the past’ 3P and ‘some time in the future’
3F : e.g., 3∗ = 3P3F . To encode a snapshot n-ary relationship, one can reify it
into a snapshot class with n auxiliary rigid—i.e., time-independent—roles; for a
temporary relationship, the reifying class is temporary and the roles are local [9,
7]. The qualitative evolution constraints ‘each manager was once an employee’
and ‘a manager will always remain a manager’ can be expressed by the axioms
Manager v 3PEmployee and Manager v 2FManager, while ‘an approved project
keeps its status until a later date when it actually starts’ can be expressed using
the ‘until’ operator: ApprovedProject v ApprovedProjectU Project. The quantita-
tive evolution constraint ‘each project must be finished in 3 years’ requires the
next-time operator ©F : Project v ©F©F©FFinishedProject. The snapshot cardi-
nality constraint ‘an employee can work on at most 2 projects at each moment of
time’ can be expressed as Employee v ≤ 2 worksOn, while the lifespan constraint
‘over the whole career, an employee can work on at most 5 projects’ requires tem-
poral operators on roles: Employee v ≤ 5 3∗ worksOn. Note that ‘temporalised’
roles of the form 3∗ R and 2∗ R are always rigid. To represent a temporal database
instance of a TCM, we use assertions like ©PManager(bob) for ‘Bob was a man-
ager last year’ and ©Fmanages(bob, cronos) for ‘Bob will manage project Cronos
next year.’ As usual, n-ary tables are represented via reification.

These considerations lead us to TDLs based on DL-LiteNbool and DL-LiteNcore
and interpreted over the flow of time (Z, <), in which (1) the future and past
temporal operators can be applied to concepts; (2) roles can be declared local
or rigid; (3) the ‘undirected’ temporal operators ‘always’ and ‘some time’ can
be applied to roles; (4) the concept inclusions (TBox axioms) are global and the
database (ABox) assertions are specified to hold at particular moments of time.

To our surprise, the most expressive TDL based on DL-LiteNbool and featuring
all of (1)–(4) turns out to be undecidable. As follows from the proof of Theorem 5
below, it is a subtle interaction of functionality constraints on temporalised roles
with the next-time operator and full Booleans on concepts that causes undecid-
ability. This ‘negative’ result motivates consideration of various fragments of our
full TDL by restricting not only the DL but also the temporal component. The
table below illustrates the expressive power of the resulting fragments in the con-
text of TCMs. We also note that both DL-LiteNbool and DL-LiteNcore with global

1 DL-LiteNbool with relationship inclusions regains the full expressive power of ALC.

10 Temporal Conceptual Modelling with DL-Lite



axioms can capture snapshot cardinality constraints, while lifespan cardinality
constraints require temporalised roles of the form 3∗ R and 2∗ R.

concept
temporal
operators

timestamping
evolution

qualitative quantitative
U/S + + +
2F/P ,©F/P + + +
2F/P + + −
2∗ ,©F/P + − +
2∗ + − −

The next table summarises the complexity results obtained in this paper for
satisfiability of temporal knowledge bases formulated in our TDLs.

concept
temporal
operators

local & rigid roles only temporalised
roles

DL-LiteNbool DL-LiteNcore DL-LiteNbool
U/S PSpace Thm. 1 PSpace [8] undec. Thm. 5

2F/P ,©F/P PSpace Thm. 2 (ii) NP Thm. 3 undec. Thm. 5

2F/P NP Thm. 2 (i) NP [8] ?
2∗ ,©F/P PSpace Thm. 2 (ii) NP Thm. 3 undec. Thm. 5

2∗ NP Thm. 2 (i) NLogSpace Thm. 4 NP Thm. 6

Apart from the undecidability result of Theorem 5, quite surprising is NP-
completeness of the temporal extension of DL-LiteNcore with the operators 2F
and ©F (and their past counterparts) on concepts provided by Theorem 3. In-
deed, if full Booleans are available, even the propositional temporal logic with
these operators is PSpace-complete. Moreover, if the ‘until’ operator U is avail-
able in the temporal component, disjunction is expressible even with DL-LiteNcore
as the underlying DL, and the logic becomes PSpace-complete [8]. In all other
cases, the complexity of TDL reasoning coincides with the maximal complex-
ity of reasoning in the component logics (despite nontrivial interaction between
them, as none of our TDLs is a fusion of its components). It is also of interest
to observe the dramatic increase of complexity caused by the addition of ©F to
the logic in the lower right corner of the table (from NP to undecidability).

To put this paper in the more general context of temporal description logics,
we note first that our TDLs extend those in [8] with the past-time operators S,
2P , 3P , ©P over Z (which are essential for capturing timestamping constraints),
universal modalities 2∗ and 3∗ , and temporalised roles. Temporal operators on
DL-Lite axioms and concepts in the presence of rigid roles were investigated
in [7], where it was shown that the resulting temporalisations of DL-LiteNbool
and DL-LiteNhorn are ExpSpace-complete. Temporal extensions of the standard
DL ALC feature the following computational behaviour: ALC with temporal
operators on axioms, rigid concepts and roles is 2ExpTime-complete [10]. It is
ExpSpace-complete if temporal operators on concepts and axioms are allowed
but no rigid or temporalised roles are available [17], and ExpTime-complete if
the language allows only temporalised concepts and global axioms [24, 2]. Finally,
the ‘undirected’ temporal operators 2∗ and 3∗ on concepts and roles together with
global axioms result in a 2ExpTime-complete extension of ALC [9].

Alessandro Artale et al. 11



2 Temporal DLs based on DL-LiteN
bool

The TDL TUSDL-LiteNbool is based on DL-LiteNbool [1, 5], which, in turn, extends
DL-Liteu,F [12] with full Booleans over concepts and cardinality restrictions over
roles. The language of TUSDL-LiteNbool contains object names a0, a1, . . . , concept
names A0, A1, . . . , local role names P0, P1, . . . and rigid role names G0, G1, . . . .
Roles R, basic concepts B and concepts C are defined as follows:

S ::= Pi | Gi, R ::= S | S−,
B ::= ⊥ | Ai | ≥ q R,
C ::= B | ¬C | C1 u C2 | C1 U C2 | C1 S C2,

where q ≥ 1 is a natural number (the results obtained below do not depend
on whether q is given in unary or binary). A TUSDL-LiteNbool interpretation is a
function I on the integers Z (the intended flow of time):

I(n) =
(
∆I , aI0 , . . . , A

I(n)
0 , . . . , P

I(n)
0 , . . . , G

I(n)
0 , . . .

)
,

where ∆I is a nonempty set, the (constant) domain of I, aIi ∈ ∆I , AI(n)
i ⊆ ∆I

and P
I(n)
i , G

I(n)
i ⊆ ∆I × ∆I with G

I(n)
i = G

I(m)
i , for i ∈ N and n,m ∈ Z.

We adopt the unique name assumption according to which aIi 6= aIj , for i 6= j,
although our complexity results would not change if we dropped it, apart from
the NLogSpace bound of Theorem 4, which would increase to NP [5]. The role
and concept constructs are interpreted in I as follows:

(S−)I(n) = {(y, x) | (x, y) ∈ SI(n)}, ⊥I(n) = ∅, (¬C)I(n) = ∆I \ CI(n),

(C1 u C2)I(n) = C
I(n)
1 ∩ CI(n)

2 , (≥ q R)I(n) =
{
x | ]{y | (x, y) ∈ RI(n)} ≥ q},

(C1 U C2)I(n) =
⋃
k>n

(
C
I(k)
2 ∩⋂n<m<k CI(m)

1

)
,

(C1 S C2)I(n) =
⋃
k<n

(
C
I(k)
2 ∩⋂n>m>k CI(m)

1

)
.

Note that our until and since operators are ‘strict’ (i.e., do not include the
current moment). We also use the temporal operators 3F (‘some time in the
future’), 3P (‘some time in the past’), 3∗ (‘some time’), their duals 2F , 2P and 2∗ ,
©F (‘next time’) and ©P (‘previous time’), which are all expressible by means of
U and S, e.g., 3FC = ¬⊥UC, 2FC = ¬3F¬C,©FC = ⊥UC, 3∗ C = 3F3PC and
2∗ C = 2F2PC. (Other standard abbreviations we use include C1 t C2, ∃R and
> = ¬⊥.) Apart from full TUSDL-LiteNbool, we consider a few of its sublanguages
allowing only some of the (definable) temporal operators mentioned above:

– TFPDL-LiteNbool, which allows only 3FC, 3PC and their duals (but no ©FC
or C1 U C2), and its extension TFPXDL-LiteNbool with ©FC and ©PC;

– TUDL-LiteNbool, allowing only 3∗ C and 2∗ C, and its extension TUXDL-LiteNbool
with ©FC and ©PC.

A TBox, T , in any of our languages L is a finite set of concept inclusions
(CIs) of the form C1 v C2, where the Ci are L-concepts. An ABox, A, consists

12 Temporal Conceptual Modelling with DL-Lite



of assertions of the form ©nB(a) and ©nS(a, b), where B is a basic concept, S
a (local or rigid) role name, a,b object names and ©n, for n ∈ Z, is a sequence
of n operators ©F if n ≥ 0 and |n| operators ©P if n < 0. Taken together, the
TBox T and ABox A form the knowledge base (KB) K = (T ,A) in L.

The truth-relation is defined as usual: I |= C1 v C2 iff C
I(n)
1 ⊆ C

I(n)
2 , for

all n ∈ Z, that is, we interpret concept inclusions globally, I |= ©nB(a) iff
aI ∈ BI(n), and I |= ©nS(a, b) iff (aI , bI) ∈ SI(n). We call I a model of a KB
K and write I |= K if I |= α for all α in K. If K has a model then it is said to be
satisfiable. A concept C (role R) is satisfiable w.r.t. K if there are a model I of
K and n ∈ Z such that CI(n) 6= ∅ (respectively, RI(n) 6= ∅). Clearly, the concept
and role satisfiability problems are equivalent to KB satisfiability.

Our first result states that the satisfiability problem for TUSDL-LiteNbool KBs
is as complex as satisfiability in propositional temporal logic LTL.

Theorem 1. Satisfiability of TUSDL-LiteNbool KBs is PSpace-complete.

The proof is by a two-step (non-deterministic polynomial) reduction to LTL.
First, we reduce satisfiability of a TUSDL-LiteNbool KB K = (T ,A) to satisfiability
in the one-variable first-order temporal logic in a way similar to [8]. For each
basic concept B ( 6= ⊥), we take a fresh unary predicate B∗(x) and encode T as

T † =
∧

C1vC2∈T
2∗ ∀x (C∗1 (x)→ C∗2 (x)

)
,

where the C∗i are the results of replacing each B with B∗(x) (u with ∧, etc.).
We assume that T contains CIs of the form ≥ q R v ≥ q′R, for ≥ q R, ≥ q′R in
T such that q > q′ and there is no q′′ with q > q′′ > q′ and ≥ q′′R in T . We also
assume that T contains ≥ q R ≡ 2∗ ≥ q R if ≥ q R occurs in T , for a rigid role R
(i.e., for Gi or G−i ). To take account of the fact that roles are binary relations,
we add to T † the following formula, for each role name S:

εS = 2∗
(∃x (∃S)∗(x)↔ ∃x (∃S−)∗(x)

)
(which says that at each moment of time the domain of S is nonempty iff its
range is nonempty). The ABox A is encoded by a conjunction A† of ground
atoms of the form ©mB∗(a) and ©n(≥ q R)∗(a) in the same way as in [8]. Thus,
K is satisfiable iff the formula

K† = T † ∧
∧
S

εS ∧ A†

is satisfiable. The second step of our reduction is based on the observation that
if K† is satisfiable then it can be satisfied in a model such that

(R) if (∃S)∗(x) is true at some moment (on some domain element) then it is
true at all moments of time (perhaps on different domain elements).

Indeed, if K† is satisfied in I then it is satisfied in the disjoint union I∗ of all In,
n ∈ Z, obtained from I by shifting its time line n moments forward. It follows
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from (R) that K† is satisfiable iff there is a set Σ of role names such that

K†Σ = T † ∧
∧
S∈Σ

(
(∃S)∗(dS) ∧ (∃S−)∗(dS−)

) ∧∧
S/∈Σ

2∗ ∀x¬((∃S)∗(x) ∨ (∃S−)∗(x)
) ∧ A†

is satisfiable, where the dS are fresh constants (informally, the roles in Σ are
nonempty at some moment, whereas all other roles are always empty). Finally,
as K†Σ contains no existential quantifiers, it can be regarded as an LTL-formula
because all the universal quantifiers can be instantiated by all the constants in
the formula, which results only in a polynomial blow-up of K†Σ .

This reduction can also be used to obtain complexity results for the fragments
of TUSDL-LiteNbool mentioned above. Using the well-known facts that satisfiabil-
ity in the fragments of LTL with 3F /3P and with 3∗ is NP-complete, and that
the extension of any of these fragments with ©F /©P becomes PSpace-complete
again, we obtain:

Theorem 2. (i) Satisfiability of TFPDL-LiteNbool and TUDL-LiteNbool KBs is NP-
complete. (ii) For TFPXDL-LiteNbool and TUXDL-LiteNbool KBs, satisfiability is
PSpace-complete.

3 Temporal DLs based on DL-LiteN
core

So far, to decrease complexity we have restricted the expressive power of the
temporal component of TUSDL-LiteNbool. But the underlying DL DL-LiteNbool also
has some natural fragments of lower complexity [5]. In this section, we consider
the simplest of them known as DL-LiteNcore and containing only CIs of the form
B1 v B2 and B1 u B2 v ⊥, where the Bi are basic concepts. Satisfiability of
DL-LiteNcore KBs is NLogSpace-complete.

Let TUSDL-LiteNcore be the fragment of TUSDL-LiteNbool with CIs of the form
D1 v D2 and D1 uD2 v ⊥, where the Di are defined by the rule:

D ::= B | B1 U B2 | B1 S B2.

By restricting D1 and D2 to concepts of the form

D ::= B | 3FB | 3PB | 2FB | 2PB

we obtain TFPDL-LiteNcore. These restrictions do not improve the complexity of
reasoning: satisfiability of TUSDL-LiteNcore KBs is PSpace-complete, while for
TFPDL-LiteNcore it is NP-complete [8].

What is really surprising and nontrivial is that extending TFPDL-LiteNcore
with the next- and previous-time operators does not increase the complexity;
cf. Theorem 2 (ii). More formally, define TFPXDL-LiteNcore by restricting D1 and
D2 to concepts of the form:

D ::= B | 3FB | 3PB | 2FB | 2PB | ©FB | ©PB,
and let TUXDL-LiteNcore be the logic with the Di of the form:

D ::= B | 3∗ B | 2∗ B | ©FB | ©PB.
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Theorem 3. Satisfiability of TFPXDL-LiteNcore and TUXDL-LiteNcore KBs is NP-
complete.

We present only a sketch of the proof here; the full proof can be found at
http://www.dcs.bbk.ac.uk/~roman/papers/dl10-full.pdf.

In a way similar to the proof of Theorem 1, one can (non-deterministically
and polynomially) reduce satisfiability of a TFPXDL-LiteNcore KB to satisfiability
of an LTL-formula ϕ =

∧
i 2∗ (Ei ∨E′i) ∧ ψ, where the Ei and E′i are of the form

p, 3F p, 3P p, 2F p, 2P p, ©F p, ©P p or a negation thereof, and ψ is a conjunction
of formulas of the form ©np, p a propositional variable. Let Γ be the set of all
subformulas of ϕ of the form 3F p, 3P p, 2F p or 2P p. It should be clear that
if ϕ is satisfied in an interpretation then the flow of time can be partitioned
into |Γ | + 1 intervals I0, . . . , I|Γ | such that, for each γ ∈ Γ and each Ii, γ is
true at some point in Ii iff γ is true at every point in Ii. The existence of such
intervals can be expressed by certain syntactic conditions on their ‘states,’ the
most crucial of which is satisfiability of a formula of the form

χ = Ψ ∧2≤mΦ ∧©m(Ψ ′ ∧©Ψ ′′),
for Φ =

∧
i(Di∨D′i), with each of the Di and D′i being a literal L (a propositional

variable or its negation) or ©L, conjunctions Ψ , Ψ ′ and Ψ ′′ of literals, and m ≥ 0,
where ©nΨ is the result of attaching n operators © to each literal in Ψ and
2≤mΦ =

∧
0≤i≤m©

iΦ. Intuitively, m is the number of distinct states in an
interval Ii, Ψ and Ψ ′ are the first and the last states in Ii, Ψ ′′ is the first state
of the next interval Ii+1, and Φ a set of binary clauses that describe possible
transitions between the states. Let consmΦ (Ψ) be the set of all literals L that are
true at the moment m ≥ 0 in every model of Ψ∧2≤mΦ. As the formula Ψ∧2≤mΦ
is essentially a 2CNF, one can compute consmΦ (Ψ) inductively as follows:

cons0
Φ(Ψ) = {L | Φ ∪ Ψ |= L},

consmΦ (Ψ) = {L | Φ |= L′ → ©L,L′ ∈ consm−1
Φ (Ψ)} ∪ {L | Φ |= L}.

For each L, construct a non-deterministic finite automaton AL = (Q,Q0, σ, FL)
over the alphabet {0} that accepts 0m iff L ∈ consmΦ (Ψ). Define the states in Q
to be all the literals from χ, the set of initial states Q0 = cons0

Φ(Ψ), the accepting
states FL = {L}, and the transition relation

σ = {(L′′, L′) | Φ |= L′′ → ©L′} ∪ {(L′, L′) | Φ |= L′}.
Then a state L is reachable in m σ-steps from a state in Q0 iff L ∈ consmΦ (Ψ),
and so AL is as required. Every such AL can be converted into an equivalent
automaton in the Chrobak normal form [14] using Martinez’s algorithm [29],
which gives rise to ML-many arithmetic progressions aL1 +bL1 N, . . . , aLML

+bLML
N,

where a+ bN = {a+ bn | n ∈ N}, such that

(A1) ML, a
L
i , b

L
i ≤ |Φ ∪ Ψ |2, for 1 ≤ i ≤ML, and

(A2) L ∈ consmΦ (Ψ) iff m ∈ ⋃ML

i=1(aLi + bLi N).

Satisfiability of χ can now be established by a polynomial-time algorithm which
checks whether the following three conditions hold:
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1. p,¬p ∈ consnΦ(Ψ), for no variable p and no 0 ≤ n ≤ m+ 1;
2. ¬L /∈ consmΦ (Ψ), for all literals L ∈ Ψ ′;
3. ¬L /∈ consm+1

Φ (Ψ), for all literals L ∈ Ψ ′′.
To verify 1, we check, for each variable p, whether the linear Diophantine equa-
tions api + bpi x = a¬pj + b¬pj y, for 1 ≤ i ≤ Mp and 1 ≤ j ≤ M¬p, have a solution
(x0, y0) such that 0 ≤ api + bpi x0 ≤ m+ 1. Set a = bpi , b = −b¬pj and c = a¬pj − api ,
which gives us the equation ax + by = c. If a 6= 0 and b 6= 0 then, by Bézout’s
lemma, it has a solution iff c is a multiple of the greatest common divisor d of a
and b, which can be checked in polynomial time using the Euclidean algorithm
(provided that the numbers are encoded in unary, which can be assumed in view
of (A1)). Moreover, if the equation has a solution, then the Euclidean algorithm
also gives us a pair (u0, v0) such that d = au0 + bv0, in which case all the solu-
tions of the above equation form the set

{(
(cu0 + bk)/d, (cv0 − ak)/d

) | k ∈ Z
}
.

Thus, it remains to check whether a number between 0 and m+ 1 is contained
in api +bpi (a

¬p
j −api )u0/d+bpi b

¬p
j /dN. The case a = 0 or b = 0 is left to the reader.

To verify condition 2, we check, for each L ∈ Ψ ′, whether m belongs to one of
a¬Li +b¬Li N, for 1 ≤ i ≤ML, which can be done in polynomial time. Condition 3
is analogous. This gives us the NP upper bound for the logics mentioned in
Theorem 3. The lower bound can be proved by reduction of the 3-colourability
problem to satisfiability of TUXDL-LiteNcore KBs.

Theorem 3 shows that TFPXDL-LiteNcore can be regarded as a good candi-
date for representing temporal conceptual data models. Although not able to
express covering constraints, TFPXDL-LiteNcore still appears to be a reasonable
compromise compared to the full PSpace-complete logic TFPXDL-LiteNbool.

By restricting the temporal constructs to the undirected universal modalities
2∗ and 3∗ , we obtain an even simpler logic:

Theorem 4. Satisfiability of TUDL-LiteNcore KBs is NLogSpace-complete.

The proof of the upper bound is by embedding into the universal Krom
fragment of first-order logic.

4 Temporal DLs with Temporalised Roles

As we have seen before, in order to express lifespan cardinalities, temporal op-
erators on roles are required. Modalised roles are known to be ‘dangerous’ and
very difficult to deal with when temporalising expressive DLs such as ALC [17,
Section 14.2]. To our surprise, even in the case of DL-Lite, temporal operators on
roles may cause undecidability (while rigid roles are ‘mostly harmless’). Denote
by TRXDL-LiteNbool the fragment of TUSDL-LiteNbool with ©F as the only temporal
operator over concepts and with roles R of the form

R ::= S | S− | 3∗ R | 2∗ R.

The extensions of 3∗ R and 2∗ R in an interpretation I are defined as follows:

(3∗ R)I(n) =
⋃

k∈Z
RI(k) and (2∗ R)I(n) =

⋂
k∈Z

RI(k).
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Theorem 5. Satisfiability of TRXDL-LiteNbool KBs is undecidable.

The proof is by reduction of the N × N-tiling problem: given a finite set T
of tile types t = (up(t), down(t), left(t), right(t)), decide whether T can tile the
N× N-grid. We assume that the tiles use k colours numbered from 1 to k.

We construct a TRXDL-LiteNbool KB KT such that KT is satisfiable iff T tiles
N× N. The temporal dimension clearly provides us with one of the two axes of
the grid. The other axis is constructed from the domain elements: let R be a
role such that ≥ 2 3∗ R v ⊥ and ≥ 2 3∗ R− v ⊥. In other words, if xRy at some
moment of time then there is no y′ 6= y with xRy′ at any moment of time (and
the same for R−). We can generate an infinite sequence of the domain elements
by saying that ∃R− u ©F∃R− is nonempty and ∃R− u ©F∃R− v ∃R u ©F∃R.
(The reason for generating the R-arrows at two consecutive moments of time will
become apparent below.) It should be also noted that the produced sequence may
in fact be either a finite loop or an infinite sequence of distinct elements.

Now, let t be a fresh concept name, for each t ∈ T , and let tile types be
disjoint, i.e., t u t′ v ⊥ for t 6= t′. After the double R-arrows we place the first
column of tiles, and every k + 1 moments afterwards we place a column of tiles
that matches the colours of the previous column:

∃R− u©F∃R− v
⊔
t∈T ©F©F t, t v ⊔right(t)=left(t′)©

k+1
F t′, for each t ∈ T.

It remains to ensure that the tiles are arranged in a proper grid and have match-
ing top-bottom colours. It is for this purpose that we have (i) used the dou-
ble R-arrows to generate the sequence of domain elements, and (ii) placed the
columns of tiles every k+ 1 moments of time (not every moment). Consider the
following CIs, for t ∈ T and 1 ≤ i ≤ k:

t v ¬∃R−, t v ¬©iF∃R− (if i 6= down(t)) and t v ©up(t)
F ∃R.

The first two CIs ensure that between any two tiles k + 1 moments apart there
may be only one incoming R-arrow. This, in particular, means that after the
double R-arrows no other two consecutive R-arrows are possible, and thus the
proper N × N-grid is ensured. Moreover, the exact position of the incoming R-
arrow is uniquely determined by the down-colour of the tile, which in conjunction
with the last CI guarantees that this colour matches the tile below. The following
picture illustrates the construction:

| | | |

... ... ... ...

... ... ... ...

...

t′

t

R

0 1 2 k + 3

time

up(t)

up(t′) = down(t)
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Note that the next-time operator ©F is heavily used in the encoding above.
If we replace it with 3∗ and 2∗ on concepts, then reasoning in the resulting logic
TRUDL-LiteNbool becomes much simpler:

Theorem 6. Satisfiability of TRUDL-LiteNbool KBs is NP-complete.

This result is proved using a modification of the quasimodel construction
from [7, 8]: we show that a KB is satisfiable iff there exists a quasimodel of
polynomial size. In the types of our quasimodels, concepts ≥ q R, ≥ q3∗ R and
≥ q2∗ R reflect the number of R-successors of the element required, respectively,
in the current moment of time, ‘sometime’ (3∗ R-successors) and ‘always’ (2∗ R-
successors). In order to deal with temporalised roles, we have to introduce the
following conditions on quasimodels: (i) the numbers of 3∗ R-successors and 2∗ R-
successors in types do not change along a run (in other words, temporalised roles
are rigid roles); (ii) the number of R-successors in every type is sandwiched
between the number of 2∗ R- and the number of 3∗ R-successors; (iii) if there is
a run with more 3∗ R-successors than 2∗ R-successors, then there is a run with
more 3∗ R−-successors than 2∗ R−-successors; (iv) in each run with more 3∗ R-
successors than 2∗ R-successors, not all R-successors are 2∗ R-successors, and not
all 3∗ R-successors are R-successors at all moments of time. Special conditions
are also required for the runs on the objects in the ABox. Full details can be
found at http://www.dcs.bbk.ac.uk/~roman/papers/dl10-full.pdf.

5 Conclusion

From the complexity-theoretic point of view, the best candidates for reasoning
about TCMs appear to be TFPXDL-LiteNcore and TFPXDL-LiteNbool: the former
is NP-complete and the latter PSpace-complete. Moreover, we believe that the
reduction of TFPXDL-LiteNcore to LTL in the proof of Theorem 3 can be done
deterministically, in which case one can use standard LTL provers for TCM
reasoning. We also believe that TFPXDL-LiteNcore extended with temporalised
roles can be decidable, which remains one of the most challenging open problems.
But it seems to be next to impossible to reason in an effective way about all
TCM constraints without any restrictions.
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Abstract. We report on an experimentation of Ontology-based Data Access
(OBDA) carried out in a joint project with SAPIENZA University of Rome,
Free University of Bolzano, and Monte dei Paschi di Siena (MPS), where we
used MASTRO for accessing, by means of an ontology, a set of data sources of
the actual MPS data repository. By both looking at these sources, and by in-
terviews with domain experts, we designed both the ontology representing the
conceptual model of the domain, and the mappings between the ontology and the
sources. The project confirmed the importance of several distinguished features
of DL-LiteA,Id to express the ontology and has shown very good performance of
the MASTRO system in all the reasoning tasks, including query answering, which
is the most important service required in the application.

1 Introduction
While the amount of data stored in current information systems continuously grows,
turning these data into information is still one of the most challenging tasks for Infor-
mation Technology. The task is complicated by the proliferation of data sources both in
single organizations, and in open environments. Specifically, the information systems
of medium and large organizations are typically constituted by several, independent,
and distributed data sources, and this poses great difficulties with respect to the goal of
accessing data in a unified and coherent way. Such a unified access is crucial for getting
useful information out of the system, as well as for taking decision based on them. This
explains why organizations spend a great deal of time and money for the understanding,
the governance, the curation, and the integration of data stored in different sources [7].

The following are some of the reasons why a unified access to data sources is prob-
lematic.

– Despite the fact that the initial design of a collection of data sources (e.g., a
database) is adequate, corrective maintenance actions tend to re-shape the data
sources into a form that often diverges from the original conceptual structure.

– It is common practice to change a data repository so as to adapt it both to spe-
cific application-dependent needs, and to new requirements. The result is that data
sources often become data structures coupled to a specific application (or, a class
of applications), rather than application-independent databases.
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– The data stored in different sources tend to be redundant, and mutually inconsistent,
mainly because of the lack of central, coherent and unified data management tasks.

In principle, there are two alternative solutions to the above problems. One solution
is the re-engineering of the information system, i.e., the design of a new, coherent, and
unified data repository serving all the applications of the organization [8], and replac-
ing the original data sources. This approach is unfeasible in many situations, due to cost
and organization problems. The other solution is to create a new stratum of the infor-
mation system, co-existing with the data sources, according to the “data integration”
paradigm [1]. Such new stratum is constituted by (i) a global (also called “mediated”)
schema, representing the unified structure presented to the clients, and (ii) the mapping
relating the source data with the elements in global schema. There are two methods for
realizing such stratum, called materialized and virtual. In the materialized approach,
called data warehousing, the global schema is populated with concrete data deriving
from the sources. In the virtual approach, data are not moved, and queries posed to the
system are answered by suitably accessing the sources [9]. The latter approach, which
is the one referred to in this work, is preferable in a dynamic scenario, where sources
may be updated frequently, and clients want to use up-to-date information.

In current data integration tools the global schema is expressed in terms of a logical
database model, e.g. the relational data model [1]. It is well-known that the abstractions
and the constructs provided by this kind of data models are influenced by implementa-
tion issues. It follows that the global schema represents a sort of unified data structure
accommodating the various data at the sources, and the client, although freed from
physical aspects of the source data (where they are, and how they can be accessed), is
still exposed to issues concerning how data are packed into specific structures.

To overcome these problems, we recently proposed the notion of ontology-based
data integration, also called ontology-based data access (OBDA) [14,12]1, whose ba-
sic idea is to express the global schema as an ontology, i.e., a conceptual specification of
the application domain. With this idea, the integrated view that the system provides to
information consumers is not merely a data structure accommodating the various data
at the sources, but a semantically rich description of the relevant concepts and relation-
ships in the domain of interest, with the mapping acting as the reconciling mechanism
between the conceptual level and the data sources. Besides this characteristic, OBDA
also exploits reasoning on the ontology in computing the answers to queries, thus (at
least partially) overcoming possible incompleteness that may be present in the data.

In this paper we report on an experimentation of OBDA carried out in a joint project
by Banca Monte dei Paschi di Siena (MPS)2, Free University of Bozen-Bolzano, and
SAPIENZA Università di Roma, where we used MASTRO [13] for accessing, by means
of an ontology, a set of data sources from the actual MPS data repository. MASTRO is an
OBDA system extending the QUONTO3 reasoner, which is based on, DL-LiteA,Id [2],

1 The two terms have very similar meaning. We tend to use the term “ontology-based data inte-
gration” in scenarios where the data sources are heterogenous (i.e., managed by different data
management systems), and distributed, which is not the case in the project described here.

2 MPS is one of the main banks, and the head company of the third banking group in Italy (see
http://english.mps.it/).

3 http://www.dis.uniroma1.it/quonto
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one of the logics of the DL-Lite family [4]. The OBDA scenario refers to a set of 12
relational data sources, collectively containing about 15 million tuples. By both looking
at these sources, and by interviews with domain experts, we designed both the ontol-
ogy representing the conceptual model of the domain, and the mapping between the
ontology and the sources. The ontology comprises 79 concepts and 33 roles, and is ex-
pressed in terms of approximately 600 DL-LiteA,Id axioms. The relationships between
the ontology and the sources are expressed in terms of about 200 mapping assertions.
The results of the experimentation can be summarized as follows.

1) In the context of the MPS scenario, OBDA has indeed addressed many of the
data access issues mentioned before. The system provides the users with the possibility
of querying the data sources by means of the conceptual model of the domain, and this
opens up the possibility for a variety of users of extracting information from a set of
data sources that previously were accessed through specific applications.

2) The project confirmed the importance of several distinguished features of
DL-LiteA,Id, namely, identification constraints, and epistemic queries. Both features
are missing in the standard ontology language OWL 2. In particular, we believe that
the absence of identification constraints in OWL 2 may hamper the usefulness of such
language in ontology-based data access.

3) MASTRO has shown very good performance in all the reasoning tasks, including
query answering, which is the most important service required in the application. This
has been achieved by specific optimizations designed within this project of the MASTRO
query answering algorithm, in particular concerning the phase of unfolding the query
against the mapping.

4) The experience in this project has shown that OBDA can be used for checking
the quality of data sources. There are basically two kinds of data quality problems that
our system is able to detect, one related to unexpected incompletenesses in the data
sources, and the other one related to inconsistencies present in the data. The OBDA
system designed for the MPS scenario has been able to provide useful information in
order to improve both aspects of data quality.

5) Our work has pointed out the importance of the ontology itself, as a precious
documentation tool for the organization. Indeed, the ontology developed in our project
is adopted in MPS as a specification of the relevant concepts in the organization.

6) The OBDA system serves also as an inspiration for devising new data gover-
nance tasks. Relying on OBDA services, queries such as “how is a certain concept
(e.g., customer) represented in a specific data source (e.g., table GZ0005)?” can now
be answered, simply by exploiting both the ontology and the mappings designed in the
project, and the query reformulation capability of MASTRO.

The paper is organized as follows. Section 2 presents a brief description of MAS-
TRO. Sections 3 illustrates the scenario of our experimentation. Section 4 presents the
ontology and the mapping. Section 5 illustrates the use of MASTRO in the scenario.
Section 6 concludes the paper.

2 The MASTRO system
MASTRO is an OBDA system jointly developed at the SAPIENZA University of
Rome and Free University of Bozen-Bolzano. MASTRO allows for the definition of
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DL-LiteA,Id [2] ontologies connected through semantic mappings to external indepen-
dent relational databases storing data to be accessed. Thus, differently from other ap-
proaches to ontology definition and reasoning [10,6,11], the extensional level of the
ontology, namely, the instances of concepts and roles, are not explicitly asserted and
possibly managed by a DBMS, but are specified by mapping assertions describing how
they can be retrieved from the data at the sources. In the following we briefly sketch
the architecture of the system, distinguishing between “Ontology Definition Module”,
“Mapping Manager”, “Data Source Manager”, and “Reasoner”.

The Ontology Definition Module provides mechanisms for the specification of the
ontology as a DL-LiteA,Id TBox. DL-LiteA,Id is a Description Logic (DL) belonging
to the DL-Lite family, which adopts the Unique Name Assumption, and provides all
the constructs of OWL 2 QL4, a tractable profile of OWL 2, plus functionality and
identification assertions, with the limitation that these kind of assertions cannot involve
sub-roles. These last features, while enhancing the expressive power of the logics, do
not endanger the efficiency of both intensional reasoning, and query answering. In other
words, the computational complexity of these tasks is the same as in OWL 2 QL, namely
PTIME with respect to the size of the TBox, and LOGSPACE in the size of the data at
the sources.

The Mapping Manager supports the definition of mapping assertions relating the
data at the sources to the concepts in the ontology. The mapping assertions supported
by MASTRO are a particular form of GAV mappings [9]. More specifically, a mapping
assertion is an expression of the form ψ ; ϕ where ψ is an arbitrary SQL query over
the database, and ϕ is a DL-LiteA,Id conjunctive query without existential variables. As
described in [12], data extracted by means of query ψ are used, together with suitable
Skolem functions, to build the logic terms representing the object identifiers, thus solv-
ing the impedance mismatch problem between data at the sources and instances of the
ontology. The Mapping Manager interacts with the Data Source Manager, which is in
charge of the communication with the underlying relational sources, providing trans-
parent access to a wide range of both commercial and freeware relational DBMSs5.

Finally, the Reasoner exploits both the TBox and the mapping assertions in order to
(i) check the satisfiability of the whole knowledge base, and (ii) compute the answer
to the queries posed by the users. Such module is based on QUONTO, a reasoner for the
DL-Lite family that uses query rewriting as a main processing technique. The two main
run-time services provided by the reasoner are query answering, and consistency check.
The MASTRO process to answer conjunctive queries (CQs) is inspired by the one imple-
mented in the QUONTO system. First, the query posed by the user over the ontology is
reformulated in terms of the inclusion assertions expressed among concepts and roles;
second, such rewriting is unfolded according to the mapping assertions in order to gen-
erate an SQL query which can be directly issued over the relational data source. It can be
shown that the answers to such an SQL query are exactly the answers logically implied
by the whole knowledge base [2]. As a further powerful feature, MASTRO is able to an-
swer EQL (Epistemic Query Language) queries [3], i.e., first-order logic queries over
the ontology interpreted under an epistemic semantics. Finally, MASTRO provides the

4 http://www.w3.org/TR/owl2-profiles/
5 No relational sources can be accesses by means of suitable wrapping tools
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consistency check capability. By virtue of the characteristics of DL-LiteA,Id, MASTRO
reduces consistency checking to verifying whether queries generated for disjointness
assertions, functionality assertions, identification constraints and EQL constraints re-
turn an empty result. To this aim, a boolean query is automatically generated for every
such construct and then rewritten, unfolded, and evaluated over the database.

3 Case study: The domain of experimentation
The data of interest in our case study are those exploited by MPS personnel for risk es-
timation in the process of granting credit to bank customers. A customer may be a per-
son, an ordinary company, or an holding company. Customers are ranked with respect
to their credit worthiness, which is established considering various circumstances and
credit/debit positions of customers. In addition to customer information, data of inter-
est regard company groups to which customers belong, and business relations between
bank customers (in particular, fifteen different kinds of such relations are relevant).

Source name Source Decription Source size
GZ0001 Data on customers 3.463.083
GZ0002 Data on juridical connections between customers 157.280
GZ0003 Data on guarantee connection between customers 1.270.333
GZ0004 Data on economical connections between customers 104.033
GZ0005 Data on corporation connections between customers 1.021.779
GZ0006 Data on patrimonial connections between customers 809.321
GZ0007 Data on company groups 55.362
GZ0012 Customers loan information 5.966.948
GZ0015 Data on monitoring and reporting procedures 1.243
GZ0101 Data on membership of customers into CCCs 2.225.466
GZ0102 Information on CCCs 663.656
GZ0104 Data on bank credit coordinators for juridical CCCs 38.457

Fig. 1. Data sources

Hereinafter, such groups of customers
will be called Clusters of Connected
Customers (CCCs). A 15 million tuple
database, stored in 12 relational tables
managed by the IBM DB2 RDBMS, has
been used as data source collection in
the experimentation. Figure 1 shows a
summary of the data sources. Such data
sources are managed by a specific appli-
cation. The application is in charge of
guaranteeing data integrity (in fact, the
underlying database does not force constraints on data). Not only this application per-
forms various updates, but an automatic procedure is executed on a daily basis to exam-
ine the data collected in the database so as to identify connections between customers
that are relevant for the credit rating calculus. Based on these connections, customers
are grouped together to form CCCs. For each cluster, several data are collected that
characterize the kinds of connections holding among cluster members (i.e., specifying
juridical, economic, or financial aspects of connections).

Data source schemas have undergone many changes in the years, trying to adapt
to the changes in the application. The result is a stratification of the data source which
causes an extended use of control fields, validity flags, and no longer used attributes
in the source schemas. Consequently, an increasing effort for the management of the
data sources is required, which has to be completely entrusted to the management ap-
plications rather than the domain experts. The aim of the experimentation has been to
prove the validity of the OBDA approach in all cases in which companies need to access
efficiently their information assets.

4 Case study: ontology, mapping, and methodology
The process that led us to realize the OBDA system for the MPS case study has been
carried out essentially in two main phases: in the first one, we have developed the on-
tology, whereas in the second one we have specified the mapping between the ontology
and the data sources.
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To be as much independent as possible from the actual source database, in the first
phase we carried out an in-depth analysis of the business domain following a top-down
approach. Therefore, after identifying the central concepts and the main relations be-
tween them, we iteratively refined the ontology, being supported in each development
cycle by the experts from MPS. The top-down approach turned out to be fundamental
for the success of the entire project, since in this way we were able to avoid that the
data model provided by the schema of the data sources could affect the definition of
the ontology, thus achieving complete separation between the conceptual layer and the
logical/physical layer of the system. In fact, further information on the model coming
from the analysis of the sources has been exploited only towards the end of the design
process, in order to refine the realized ontology.

The final ontology comprises 79 concepts, 33 roles, 37 concept attributes, and is
expressed in terms of about 600 DL-LiteA,Id axioms, including 30 identification con-
straints (IDCs), plus 20 EQL constraints (EQLCs). Basically, the ontology is con-
structed around the concepts Customer, CompanyGroup, CCC, and various kinds of
relations existing between customers (cf. Section 3).

In the following, we report on a series of modeling issues we dealt with during
the ontology definition phase. First, we observe that in the domain we have analyzed,
several properties of individuals depend on time. It has been therefore necessary in the
ontology to take trace of the changes of such properties, maintaining the information on
the validity periods associated with each such change. Even though from a very abstract
point of view, such properties might be considered roles or attributes, to properly model
the temporal dimension, each such role or attribute needs to be in fact reified in the
ontology. A timestamp attribute has been associated to each concept introduced by the
reification process, together with a suitable identification constraint ensuring that no
two instances of each such concept refer to the same period of time.

Example 1. The membership of a customer in a cluster of connected customers is a
time-dependent notion which is associated with a validity period. A crucial requirement
is that a customer is not member of two clusters at the same time. In the ontology, this
is modeled by the following assertions.

1. ∃inGrouping v Customer
2. ∃inGrouping− v Grouping
3. ∃relativeTo v Grouping
4. ∃relativeTo− v CCC
5. Grouping v ∃inGrouping−

6. Grouping v ∃relativeTo
7. (funct relativeTo)
8. (funct inGrouping−)
9. Grouping v δ(timestamp)

10. (id Grouping inGrouping−, timestamp)
The concept Grouping can be seen as the reification of the notion of membership of a
customer in a CCC. Assertions (1) – (8) realize reification. Assertion (9) imposes that
a timestamp is associated to each instance of Grouping. Finally, assertion (10) is the
IDC imposing that no two distinct instances of Grouping exist that are connected to
the same pair constituted by a value for the attribute timestamp and an object filler
for inGrouping−, thus specifying that a customer is never grouped at the same time in
two CCCs.

Identification constraints turned out to be an essential modeling construct, not only
for correctly modeling the temporal dimension through reification, but also for express-
ing important integrity constraints over the ontology that could not be captured other-
wise, as shown next in Example 2.
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Example 2. Two types of clusters of connected customers are of interest represented by
the concepts JuridicalCCC and EconomicCCC, respectively. Consider then the follow-
ing identification constraint on JuridicalCCC.

(id JuridicalCCC timestamp, relativeTo− ◦ ?actualGrupping ◦ inGrouping− ◦
inMembership ◦ ?Holding ◦ hasMembership−)

Such constraint specifies that no two distinct instances of JuridicalCCC exist
that are connected to the same pair constituted by a value for timestamp and
an object filler for the path relativeTo−◦?actualGrupping ◦ inGrouping− ◦
inMembership◦?Holding ◦ hasMembership−. Intuitively, the path navigates
through the roles of the ontology, using the construct ?C to test that the path passes
through instances of C. Since the role hasMembership is typed in the ontology by
the concept CompanyGroup, the identification constraint actually says that for a certain
timestamp no two juridical CCCs exists that are connected via the above path to the
same company group.

Globally, we have specified more than 30 IDCs in the ontology. None of these
presently correspond to integrity constraints at the data sources. This is because, as it
is usual in practice, very few integrity constraints are explicitly asserted at the sources.
Thus, our ontology plays an important role in representing business rules not explicitly
reflected in the data repository of the organization.

EQLCs turned out to be another important means for correct domain model-
ing. Such constraints indeed permit to overcome some expressiveness limitations of
DL-LiteA,Id, without causing any computational blow up. Indeed, EQLCs are inter-
preted according to a suitable semantic approximation (cf. Section 2). In this experi-
mentation we have heavily used EQLCs to express, e.g., hierarchy completeness and
other important business constraints, otherwise not expressible in our ontology.

Example 3. An important constraint we want to force on the ontology is that for ev-
ery customer which has a guarantor for a loan we have to know the amount of bank
credit provided to the customer. This is specified through the following EQLC, which is
expressed in SparSQL, a query language presented in [5] based on SPARQL and SQL:

EQLC( verify not exists (
SELECT withGuarantor.cus, withGuarantor.t
FROM sparqltable( SELECT ?cus ?t

WHERE{ ?cus :isLinked ?link.
?link rdf:type ’GuaranteeRelations’.
?link :timestamp ?t}) withGuarantor

WHERE (withGuarantor.cus, withGuarantor.t) NOT IN (
SELECT withCredit.cus, withCredit.t
FROM sparqltable( SELECT ?cus ?amnt ?t

WHERE{ ?cus :hasLoan ?loan.
?loan :creditAmount ?amnt.
?loan :timestamp ?t }) withCredit )))

The above constraint says that no customer cus exists, such that cus is connected
to an instance of the concept GuaranteeRelations at the time t, and cus has not a
“known” creditAmount at the same time t. It is worth noticing that OWL 2, despite
its expressiveness, does not allow for expressing the above constraint.
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Let us now turn our attention to mapping specification. The mapping specifica-
tion phase has required a complete understanding and an in-depth analysis of the data
sources, which highlighted some modeling weaknesses present in the source database
schema: various modifications stratified in the years over the original data schema have
partially transformed the data sources, which now reveal some problems related to re-
dundancy, inconsistency, and incompleteness in the data. Localizing the right data to
be mapped to ontology constructs has thus required the definition of fairly complex
mapping assertions, as shown in Example 4.

Example 4. Consider the following mapping assertion specifying how to construct in-
stances of JuridicalCCC using data returned by an SQL query accessing both the table
GZ0102, which contains information about CCCs, and the table GZ0007, which con-
tains information about the company groups.

SELECT id cluster, timestamp val FROM GZ0102, GZ0007
WHERE GZ0102.validity code = ‘T’ AND GZ0102.id cluster <> 0

AND GZ0007.validity code = ‘T’ AND GZ0007.id group <> 0
AND GZ0102.id cluster = GZ0007.id group

 JuridicalCCC(ccc(id cluster, timestamp val))

From the data source analysis it turned out that each CCC that has an iden-
tifier (GZ0102.id cluster) coinciding with the identifier of a company group
(GZ0007.id group) is a juridical CCC. Such a property is specified in the SQL query in
the mapping through the join between GZ0102 and GZ0007 (GZ0102.id cluster =
GZ0007.id group). Notice that invalid tuples (those with validity code different from
‘T ′) and meaningless tuples (those with id cluster or id group equal zero) are ex-
cluded from the selection. The query returns pairs of id cluster and timestamp val,
which are used as arguments of the function ccc() to build logic terms representing
objects that are instances of JuridicalCCC, according to the method described in [12].

The mapping specification phase has produced around 200 mapping assertions,
many of which are quite involved. Their design has been possible by a deep under-
standing of the tables involved, their attributes, and the values they store. We initially
tried to automate this process with the help of current tools for automatic mapping gen-
eration, but, due to the complexity of extracting the right semantics of the source tables,
we failed. This is in line with our past experience on mapping design: the bulk of the
work in mapping specification has to be essentially carried out manually.

5 The system at work
In this section we discuss the actual use of MASTRO in the MPS scenario. As a general
comment, we remark that the OBDA system we designed for this scenario allowed to
overcome many of the data access problems we have discussed in the previous sec-
tions. In particular, querying the data sources through the conceptual view provided
by the ontology enabled various kinds of users, not necessarily experts of the appli-
cation managing data at the sources, to profitably access such data. In what follows,
we concentrate on two crucial aspects of our experience: the use we made of MASTRO
to check the quality of the data sources, and the impact that certain characteristics of
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the MPS scenario have had on the evolution of the system in terms of its tuning and
optimizations.

As mentioned in the introduction, we faced two main issues concerning the quality
of the data sources, namely incompleteness and inconsistency in the data at the sources.
Detecting data incompleteness has been possible by exploiting the MASTRO query an-
swering services, and more precisely, by inspecting the rewriting and the unfolding that
MASTRO produces in the query answering process. Let us see this on an example. To re-
trieve from the data sources the identification codes of all company groups, MPS opera-
tors simply use a single SQL query projecting out the id code from the table GZ0007,
which contains information about company groups. Surprisingly, using the ontology to
obtain all company codes, we actually get a larger answer set, by posing over the ontol-
ogy the obvious corresponding query q(y)← CompanyGroup(x), id code(x, y). The
reason for such a difference in the answers resides in the fact that the query that MAS-
TRO asks to the source database, and that is automatically produced by the rewriting and
unfolding procedures of MASTRO, is much more complex than the query used by the
MPS operators. By reasoning over the ontology, and exploiting the mapping assertions,
MASTRO accesses all the source tables that store codes of company groups, and this
set of tables does not in fact contain only the codes of company groups that occur in
table GZ0007. Such a result showed that some foreign key dependencies constraining
the identification codes stored in the table GZ0007 were in fact missing in the source
database, and that such a table should not been considered complete with respect to
such information.

We turn now to data inconsistency issues. In DL-LiteA,Id, inconsistencies are caused
by data that violate the assertions of the ontology, specifically disjointness assertions,
functionality constraints, identification constraints, and EQL constraints. Also, causes
of inconsistencies can be easily localized by retrieving the minimal set of data that
produce each single violation. We actually modified the classical consistency check of
MASTRO in order to identify the offending data, in particular exploiting the feature of
answering EQL queries (cf. Section 2) and their ability to express negation. Consider
for example the relation linkedTo, which is declared to be inverse functional (i.e.,
(funct linkedTo−)). In order to detect the violation of such constraint and the guilty
data, we use the following EQL query:

SELECT testview.l, testview.c1, testview.c2
FROM sparqltable (SELECT ?l ?c1 ?c2

WHERE{?c1:linkedTo?l. ?c2:linkedTo?l}) testview
WHERE testview.c1 <> testview.c2

Switching our attention to the performance of the system, there are two sources of
complexity to be considered in the query answering and consistency checking services
provided in MASTRO, the query reformulation and query unfolding procedures. Refor-
mulation introduces complexity since it may produce an exponential number of queries
to be answered. Nevertheless, in the case of the MPS ontology, this potential drawback
did not occur. Indeed, in most cases, the number of queries produced by this step was
small (between 1 and 25). In contrast, the query unfolding step presented challenges
that led to several important improvements in MASTRO, briefly discussed below.

In complex scenarios, such as the one we considered in our experimentation, we
found that the most critical aspect for performance is what we call query structure, i.e.,
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the form of the SQL queries issued to the source database. Query structure is character-
ized by the specific technique used to produce SQL queries out of queries formulated
over TBox predicates (T -predicates).

In MASTRO, query unfolding is based on the use of SQL views over the source
database. More specifically, the mapping is first pre-processed so as to have only as-
sertions in which the query over the ontology contains just one predicate (splitting).
Then, all assertions referring to the same T -predicate are combined together in order to
have one SQL view, which we call T -view, for each predicate. Essentially, the view is
obtained taking the union of the SQL queries occurring in the left-hand side of the as-
sertions, and pushing the construction of logic terms representing instances of concepts
and roles in the view itself. Unfolding a query specified over T -predicates amounts
therefore to simply unfold each query atom with the corresponding T -view. For exam-
ple, if the split mapping assertions for the role linkedTo are

m1: SELECT .... WHERE cd tp = 503 ; linkedTo(cus(idcus), link(linkid))
m2: SELECT .... WHERE cd tp = 501 ; linkedTo(cus(idcus), link(linkid))

then, the following view, linkedto Tview, is associated to the linkedTo predicate:

SELECT ‘cus(’||idcus||‘)’ as term1, ‘link(’||linkid||‘)’ as term2
FROM (SELECT .... WHERE cd tp = 503) view m1
UNION
SELECT ‘cus’(||idcus||‘)’ as term1, ‘link(’||linkid||‘)’ as term2
FROM (SELECT .... WHERE cd tp = 501) view m2

Notice that in the SELECT clause we build logical terms by means of simple SQL string
concatenation operations, indicated with the || operator. Then, the query q(X) ←
linkedTo(X,Y ) is unfolded into SELECT term1 FROM linkedto Tview.

Despite its simplicity, we found out that, in scenarios characterized by a high vol-
ume of data and complex and numerous mapping assertions, this approach fail, due to
low performance of the generated queries. For example, in our test cases, queries with
a single atom that involve database relations with high volume of data often required
several minutes to be answered. More complex queries, with more than 2 atoms and
involving also big relations, would often require hours or would even not terminate.
The reason for this bad performance is in the limitations of DBMS query planners in
handling subqueries in the FROM clause, and joins between terms representing objects,
rather than directly on database values. What we observed is that, in order to deal with
subqueries, query planners rely on a process called query flattening, in which the query
planner attempts to rephrase a query with subqueries into a new query with no sub-
queries. If the query planner is not successful in this attempt, e.g., due to the complex-
ity of the subqueries, it will resort to subquery materialization, an extremely expensive
operation when the volume of data is high.

In order to avoid materialization and joins between object terms, and in general, to
increase the chances of the query planner to produce a good plan, we devised a strategy
that led us to produce queries that are as simple as possible with respect to subqueries.
This led us to adopt what we call anM-view approach to unfolding. In this approach,
we build simpler views, one for each SQL query in the split mapping assertions, and
we associate all of them to the corresponding T -predicate. For example, in the previous
case we would define the two views below
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view m1 = SELECT .... WHERE cd tp = 503
view m2 = SELECT .... WHERE cd tp = 501

and the unfolding of the query q(X)← linkedTo(X,Y ) would be as follows

SELECT ‘cus(’||idcus||‘)’ FROM view m1
UNION
SELECT ‘cus(’||idcus||‘)’ FROM view m2

Notice that in this case, the construction of the object term ‘cus(’||idcus||‘)’
is in the external SELECT clause and is not pushed into the views in the FROM clause.

What is important to note here is the exchange of simplicity of the unfolding pro-
cedure for simplicity of the structure of the queries being generated (i.e., less nesting
in the subqueries) and a new exponential growth in the amount of queries sent to the
database, e.g., now for every linkedTo atom in a query, we will produce an SQL query
taking the union of at least two queries, one where we only use view m1 and one with
view m2. Although this growth could seem problematic, we have found that the in-
crease in the performance of executing each individual query pays off the increase in
the number of queries to be executed. Moreover, since these queries are independent,
we can use parallelism in query execution to improve performance even more.

Fig. 2.M-views vs. T -views using an execution timeout of 1hr.

To give an idea of the effectiveness of the described optimizations, we present in Figure
2 the data about the execution of a collection of 8 representative queries (the units of the
vertical axis are seconds). These queries are all of interest to MPS, and challenging in
terms of number of atoms, complexity of the unfolding and the volume of data accessed.

6 Conclusions
From the point of view of MPS, the project has provided very useful results in various
areas of interest:
− Data integration, providing the capability of accessing application data in a uni-

fied way, by means of queries written at a logical/conceptual level by end-users not
necessarily acquainted with the characteristics of the application;
− Database quality improvement, providing tools for monitoring the actual quality

of the database, both at an intensional and an extensional level;
− Knowledge sharing, providing, with the ontology-based representation of the ap-

plication domain, an efficient means of communicating and sharing knowledge and
information throughout the company.

The plan is to continue the experience by extending the work to other MPS appli-
cations, with the idea that the ontology-based approach could result in a basic step for
the future IT architecture evolution, oriented towards Service-oriented architectures and
Business Process Management.
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Justification Masking in OWL

Matthew Horridge1, Bijan Parsia1, Ulrike Sattler1
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Abstract. This paper presents a discussion on the phenomena of mask-
ing in the context of justifications for entailments. Various types of mask-
ing are introduced and a definition for each type is given.

1 Introduction

Many open source and commercial ontology development tools such as Protégé-
4, Swoop, The NeOn Toolkit and Top Braid Composer use justifications [5] as
a kind of explanation for entailments in ontologies. A justification for an entail-
ment, also known as a MinA [1, 2], or a MUPS [11] if specific to explaining why
a class name is unsatisfiable, is a minimal subset of an ontology that is sufficient
for the given entailment to hold. More precisely, a justification is taken to be a
subset minimal set of axioms that supports an entailment. Justifications are a
popular in the OWL world and, as the widespread tooling support shows, have
been used in preference to full blown proofs for explaining why an entailment
follows from a set of axioms.

However, despite the popularity of justifications, they suffer from several
problems. Some of these problems, namely issues arising from the potential su-
perfluity of axioms in justifications, were highlighted in [3]. Specifically, while all
of the axioms in a justification are needed to support the entailment in question,
there may be parts of these axioms that are not required for the entailment to
hold. For example, consider J = {A v ∃R.B,Domain(R,C), C v DuE} which
entails A v D. While J is a justification for A v D, and all axioms are required
to support this entailment, there are parts of these axioms that are superfluous
as far as the entailment is concerned: In the first axiom the filler of the existential
restriction is superfluous, in the third axiom the conjunct E is superfluous for
the entailment.

An important phenomenon related to superfluity has become known as justi-
fication masking. Recalling that there may be several justifications for an entail-
ment, which may but do not have to overlap, masking refers to the case where the
number of justifications for an entailment does not reflect the number of reasons
for that entailment. For example, consider J = {A v ∃R.C u∀R.C,D ≡ ∃R.C}
which entails A v D. Clearly, J is a justification for A v D. It is also noticeable
that there are superfluous parts in this justification. Moreover, there are two dis-
tinct reasons why J |= A v D, the first being {A v ∃R.C,∃R.C v D} and the
second being {A v ∃R.>u ∀R.C,∃R.C v D}. The work presented in the paper
describes how masking can occur within a justification, over a set of justifica-
tions, and over a set of justifications and axioms outside justifications. The main
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problems identified with masking are (i) it can hamper understanding—not all
reasons for an entailment may be salient to a person trying to understand the
entailment, and (ii) it can hamper the design or choice of a repair plan—not all
reasons for an entailment may be obvious, and if the plan consists of weakening
and removing parts of axioms it may not actually result in a successful repair of
the ontology in question.

In [3] laconic and precise justifications were presented as a tool for deal-
ing with the problems of superfluity and masking. However, while the basic
intuitions of masking were presented in [3], and it was shown that laconic jus-
tifications could be used as a tool for working with masking, only two types of
masking where discussed. This paper presents a comprehensive analysis of the
different types of masking, provides a characterisation of masking, and lays down
definitions and an analysis for the various types of masking.

2 Preliminaries

The work presented in this paper focuses on OWL 2. OWL 2 [8] is the latest
standard in ontology languages from the World Wide Web Consortium. An OWL
2 ontology roughly corresponds to a SROIQ(D) [4] knowledge base. For the
purposes of this paper, an ontology is regarded as a finite set of SROIQ axioms
{α0, . . . , αn}. An axiom is of the form of C v D or C ≡ D, where C and D are
(possibly complex) concept descriptions, or S v R or S ≡ R where S and R are
(possibly inverse or complex) roles.

It should be noted that OWL contains a significant amount of syntactic sugar,
such as DisjointClasses(C,D), FunctionalObjectProperty(R) or Domain(R,C).
However, these axioms can be represented using sub-class and sub-property ax-
ioms.

Justifications are a popular form of explanation in the OWL world. A jus-
tification for an entailment η in an ontology O, such that O |= η is a minimal
subset of that entails η.

Definition 1 (Justification). J is a justification for O |= η if J ⊆ O, J |= η
and for all J ′ ( J J ′ 6|= η.

By a slight abuse of notation, the nomenclature used in this paper also refers
to a minimally entailing set of axioms (that is not necessarily a subset of an
ontology) as a justification.

Much of the work presented in the remainder of the paper uses the “well
known” structural transformation — δ. This transformation takes a set of axioms
and flattens out each axiom by introducing names for sub-concepts, transforming
the axioms into an equi-satisfiable set of axioms. The structural transformation
was first described in Plaisted and Greenbaum [10], with a version of the rewrite
rules for description logics given in [9].

In what follows, A is the ABox of an ontology, R is the RoleBox, and T
is the TBox. A is an atomic concept in the signature of O, AD and A′D are
fresh concept names that are not in the signature of O. Ci and D are arbitrary
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concepts, excluding >, ⊥ and literals of the form X or ¬X where X is not in the
signature of O, C is a possibly empty disjunction of arbitrary concepts. C ≡ D
is syntactic sugar for C v D and D v C, as is =nR.D for ≥nR.D u ≤nR.D.
Domain and range axioms are GCIs so that Domain(R,C) means ∃R.> v C,
and Range(R,C) means > v ∀R.C. The negation normal form of D is nnf(D).
The structural transformation δ is defined as follows:

δ(O) :=
⋃
α∈R∪A δ(α) ∪⋃C1vC2∈T δ(> v nnf(¬C1 t C2))

δ(D(a)) := δ(> v ¬{a} t nnf(D))

δ(> v C tD) := δ(> v A′D tC) ∪⋃i=ni=1 δ(A
′
D v Di) for D =

di=n
i=1Di

δ(> v C t ∃R.D) := δ(> v AD tC) ∪ {AD v ∃R.A′D} ∪ δ(A′D v D)
δ(> v C t ∀R.D) := δ(> v AD tC) ∪ {AD v ∀R.A′D} ∪ δ(A′D v D)

δ(> v C t ≥nR.D) := δ(> v AD tC) ∪ {AD v ≥nR.A′D} ∪ δ(A′D v D)
δ(> v C t ≤nR.D) := δ(> v AD tC) ∪ {AD v ≤nR.A′D} ∪ δ(A′D v D)

δ(A′D v D) := A′D v D (If D is of the form A or ¬A)
δ(A′D v D) := δ(> v ¬A′D tD) (If D is not of the form A or ¬A)

δ(β) := β for any other axiom

The transformation ensures that concept names that are in the signature of
O only appear in axioms of the form X v A or X v ¬A, where X is some
concept name not occurring in the signature of O. Note that the structural
transformation does not use structure sharing. For example, given > v Ct∃R.C,
two new names are introduced, one for each use of C, to give {> v X0tX1, X0 v
C,X1 v ∃R.X2, X2 v C}. The preclusion of structure sharing ensures that the
different positions of C are captured.

The definition of laconic justifications uses the notion of the length of an
axiom. Length is defined as follows: For X, Y a pair of concepts or roles, A a
concept name, and R a role, the length of an axiom is defined as follows:

|X v Y | := |X|+ |Y |, |X ≡ Y | := 2(|X|+ |Y |),
where

|>| = |⊥| := 0,
|A| = |{i}| = |R| = |R−| := 1,

|¬C| := |C|
|C uD| = |C tD| := |C|+ |D|

|∃R.C| = |∀R.C| = | ≥ nR.C| = | ≤ nR.C| := |R|+ |C|
It should be noted that this definition is slightly different from the usual

definition, but it allows cardinality axioms such as A v ≤ 2R.C to be weakened
to A v ≤ 3R.C without increasing the length of the axiom.

In what follows the standard definition of deductive closure is used, and O?
is used to denote the deductive closure of O.

Definition 2. J is a laconic justification for η over O if:
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1. J is a justification in O?.
2. δ(J ) is a justification in (δ(O))?

3. For each α ∈ δ(J ) there is no α′ such that
(a) α′ is weaker than α (α |= α′ but α′ 6|= α)
(b) |α′| ≤ |α|
(c) (δ(J ) \ {α}) ∪ δ(α′) is a justification for η

Intuitively, a laconic justification is a justification whose axioms do not contain
any superfluous parts and all of whose parts are are weak as possible.

3 Intuitions about Masking

The basic notion of masking is that when taken on their own, the weakest parts
of axioms in a justification may combine together with other parts of axioms
within the justification or external to the justification to reveal further reasons
that are not directly represented by the set of regular justifications, and do not
directly have a one-to-one “correspondence” with the set of regular justifications.

We define four important types of masking: Internal Masking, Cross Mask-
ing, External Masking and Shared Cores. The intuitions behind these types of
masking are explained below.

Internal Masking Internal masking refers to the phenomena where there are
multiple reasons within a single justification as to why the entailment in question
holds. An example of internal masking is shown below.

O = {A v B u ¬B u C u ¬C} |= A v ⊥

There is a single regular justification for O |= A v ⊥, namely O itself. However,
within this justification there are, intuitively, two reasons as to why O |= A v ⊥,
the first being {A v B u ¬B} and the second being {A v C u ¬C}.

Cross Masking Intuitively, cross masking is present within a set of justifica-
tions for an entailment when parts of axioms from one justification combine with
parts of axioms from another justification in the set to produce new reasons for
the given entailment. For example, consider the following ontology.

O = {A v B u ¬B u C
A v D u ¬D u ¬C} |= A v ⊥

There are two justifications for O |= A v ⊥, namely J1 = {A v B u ¬B u C}
and J2 = {A v Du¬Du¬C}. However, part of the axiom in J1, namely A v C
may combine with part of the axiom in J2, namely A v ¬C to produce a further
reason: J3 = {A v C,A v ¬C}.
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External Masking While internal masking and cross masking take place over a
set of “regular” justifications for an entailment, external masking involves parts
of axioms from a regular justification combining with parts of axioms from an
ontology (intuitively the axioms outside of the set of regular justifications) to
produce further reasons for the entailment in question. Consider the example
below,

O = {A v B u ¬B u C
A v ¬C} |= A v ⊥

There is just one justification for O |= A v ⊥, however, although A v ¬C
intuitively plays a part in the unsatisfiability of A it will never appear in a
justification for O |= A v ⊥. When O is taken into consideration, there are two
salient reasons for A v ⊥, the first being {A v B u ¬B} and the second being
{A v C,A v ¬C}

Shared Core Masking Finally, two justifications share a core if after stripping
away the superfluous parts of axioms in each justification the justifications are
essentially structurally equal. Consider the example below,

O = {A v B u ¬B u C
A v B u ¬B} |= A v ⊥

There are two justifications for O |= η, J1 = {A v B u¬B uC} and J2 = {A v
Bu¬B}. However, J1 can be reduced to the laconic justification {A v Bu¬B}
(since C is irrelevant for the entailment), which is structurally equal to J2. With
regular justifications, it appears that there are more reasons for the entailment,
when in fact each justification boils down to the same reason.

3.1 Masking Due to Weakening

The above intuitions have been illustrated using simple propositional examples.
However, it is important to realise that masking is not just concerned with
boolean parts of axioms. Weakest parts of axioms must also be taken into con-
sideration. For example, consider

O = {A v ≥ 2R.C
A v ≥ 1R.D
C v ¬D} |= A v ≥ 2R

There is one regular justification for O |= A v ≥ 2R namely, J1 = {A v
≥ 2R.C}. However, there are intuitively two reasons for this entailment. The
first is described by the justification obtained as a weakening of J1, and is
J2 = {A v ≥ 2.R}. The second is obtained by weakening the first axiom inO and
combining it with the second and third axioms in O to give {A v ≥ 1R.C,A v
≥ 1R.D,C v ¬D}.

Of course, masking due to weakening can occur in internal masking, cross
masking, external masking and shared cores.
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3.2 Summary on Intuitions

As can be seen from the above examples, the basic idea is that when the weakest
parts of axioms in a justification, set of justifications or an ontology are taken into
consideration, there can be multiple reasons for an entailment that are otherwise
not exposed with regular justifications. These reasons take the form of laconic
justifications—justifications whose axioms do not contain any superfluous parts
and whose parts are as weak as possible. With internal masking, cross masking
and external masking, there are more laconic justifications (by some measure)
than there are regular justifications. With shared cores there are fewer laconic
justifications (by some measure) than there are regular justifications.

3.3 Detecting Masking

Given the above link between masking, weakest parts of axioms and laconic
justifications, it may seem fruitful to use laconic justifications as a mechanism
for detecting masking. Specifically, it may seem like a good idea to count laconic
justifications for the entailment in question. However, this is a flawed intuition
and several problems prevent laconic justification counting being used directly
as a masking detection mechanism. We begin by noting that there may be an
infinite number of laconic justifications for an entailment.

Lemma 1 (Number of Laconic Justifications). Let S be a set of SROIQ
axioms such that S |= η. In general, there may be an infinite number of laconic
justifications over S for S |= η.

Proof: Consider an ontology O such that O |= A v ⊥. Since laconic justifications
may be drawn from the deductive closure of an ontology it is possible to construct
an infinite set of justifications for the unsatisfiability of A of the form {A v
≥ nR.>, A v ≤ (n− 1)R.>.

The Promiscuity of the Deductive Closure The first problem is that, in
general, there can be an infinite number of laconic justifications for a given en-
tailment (Lemma 1). The notion of counting the number of laconic justifications
over a set of axioms and comparing this to the number of regular justifications
over the same set of axioms is therefore useless when it comes to detecting and
defining masking. Even if the logic used did not result in an infinite number of la-
conic justifications, the effects of splitting and syntactic equivalence could result
in miscounting. For example, consider J1 = {A v BuC,BuC v D}, where J1 is
in itself laconic, however another justification J2 = {A v B,A v C,BuC v D}
can be obtained, which is also laconic. Clearly, masking is not present in J1, but
there are more laconic justifications than there are regular justifications.

Preferred Laconic Justifications Another approach might be to count the
number of preferred laconic justifications, which are laconic justifications that
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are made up of axioms which come from a filter on the deductive closure of
a set of axioms. The notion of preferred laconic justifications was introduced
in [3], where a filter called O+ is used to compute justifications that bear a
syntactic resemblance to the axioms from which they are derived. Unfortunately,
this idea is sensitive to the definition of the filter. Different filters, for different
applications, may give different answers and false positives. While a particular
filter could be verified to behave correctly and perhaps be used as an optimisation
for detecting masking in an implementation, this mechanism is not appropriate
for defining masking.

Preservation of Positional Information Another problem is that struc-
tural information can be lost with laconic justifications. Consider the {A v
B u (C u B)} as a justification for A v B. Masking is clearly present within
this justification. If B@1 denotes the first occurrence of B, and B@2 denotes
the second occurrence of B then A is a subclass of B because of two reasons:
A v B@1 and A v B@2. However, this positional information is lost in all laconic
justifications for A v B. In essence, syntax is crucial when it comes to masking.

Splitting is Not Enough While syntax is very important when considering
masking, it does not suffice to consider syntax alone. The example of masking
due to weakening shows that simply splitting a set of axioms S into their con-
stituent parts, using the structural transformation δ(S), and then examining the
justifications for the entailment with respect δ(S) is not enough to capture this
notion of masking. Weakenings of the split axioms must be considered in any
mechanism that is used to detect masking.

4 Masking Defined

With the above intuitions and desiderata in mind the notion of masking can be
made more concrete. The basic idea is to pull apart the axioms in a justification,
set of justifications and an ontology, compute constrained weakenings of these
parts (inline with the definition of laconic justifications), and then to check
for the presence and number of laconic justifications within the set of regular
justifications for an entailment with respect to these parts and their weakenings.

4.1 Parts and Their Weakenings

We first define a function δ+(S), which maps a set of axioms S to a set of axioms
composed from the union of δ(S) with the constrained weakenings of axioms in
δ(S). The weakenings of axioms is constrained in that for an axiom α ∈ δ(S), a
weakening α′ of α is contained in δ+(S) only if α′ is no longer than α—i.e. the
weakening does not introduce any extra parts.

Definition 3 (δ+). For a set of SROIQ axioms, S,

δ+(S) := δ(S) ∪ {α′ | ∃α ∈ δ(S) s.t. α |= α′ and α′ 6|= α and |δ(α′)| = 1)}
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Lemma 2 (δ+justificatory finiteness). For a finite set of axioms S, the set
of justifications for an entailment in δ+(S) is finite.

Proof: δ+(S) is composed of the set of axioms in δ(S), which is finite, plus a
possibly infinite set of axioms taken from the deductive closure of each axiom in
δ(S). For a SROIQ axiom α, every axiom α′ in δ(α) must either be one of the
following forms:

> v Xi tXj

Xi v A
Xi v ¬A
Xi v ∃R.Xj

Xi v ∀R.Xj

Xi v {o}
Xi v ∃R.Self

Xi v ≥ nR.Xj

in which case the set of axioms in δ+(α) is finite since the set of weakenings (in
accordance with the definition of δ+) of α′ is finite. Or, α′ is of the form:

Xi v ≤ nR.Xj

in which case there is an infinite number of weakenings of α′ in δ+(α) since
A v≤ (n+ 1)R.C is weaker than A v≤ nR.C for any n ≥ 0. If justifications are
made up solely of the axioms of the form corresponding to the first set then the
set of justifications is clearly finite. If justifications contain axioms of the second
form Xi v ≤nR.Xj then there is a finite upper bound m for n, where there are
no justifications containing an axiom of the from Xi v ≤ kR.Xj for some k > m.
This is because, for values of k, where k is equal to the maximum number in ≤
restrictions in the closure of S, or more, Xi v ≤ kR.Xj is too weak to participate
in a justification, and this follows as a straight forward consequence of SROIQ’s
model theory [4]. ut

Next, a function which filters out laconic justifications for an entailment from
a set of justifications for the entailment is defined:

Definition 4 (Laconic Filtering). For a set of axioms S |= η, laconic(S, η)
is the set of justifications for S |= η that are laconic over S.

Notice that because of Lemma 2, the set of justifications laconic(S, η) is finite.

4.2 Masking Definitions

With the definition of δ+ and the definition of laconic filtering in hand, the
various types of masking can now be defined.
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Definition 5 (Internal Masking). For a justification J for O |= η, internal
masking is present within J if∣∣laconic(δ+(J ), η)

∣∣ > 1

Lemma 3. Internal masking is not present within a laconic justification.

Proof: Assume that J is a laconic justification for η and that internal masking
is present within J . This means that there either must be (i) at least two laconic
justifications for δ+(J ) |= η, i.e. there exists some J1,J2 ( δ+(J ) where J1 6=
J2 and are both laconic. However, since J itself is laconic this violates condition
2 of Definition 2, or (ii) there is a non-length increasing weakening of one or
more axioms in δ(J ) that yields δ(J )′. However since J is laconic this violates
conditions 3a and 3b of Definition 2. ut

Let O |= η and J1, . . . ,Jn be the set of all justifications for O |= η. Cross
masking and External masking are then defined as follows:

Definition 6 (Cross Masking). For two justifications Ji and Jj, cross mask-
ing is present within Ji and Jj if∣∣laconic

(
δ+(Ji ∪ Jj), η

)∣∣ > (∣∣laconic
(
δ+(Ji), η

)∣∣+
∣∣laconic

(
δ+(Jj), η

)∣∣)
Definition 7 (External Masking). External masking is present if

∣∣laconic(δ+(O), η)
∣∣ > ∣∣laconic(δ+(

i=n⋃
i=1

Ji), η)
∣∣

Definition 8 (Shared Cores). Two justifications Ji and Jj for O |= η, share
a core if there is a justification J ′i ∈ laconic(δ+(Ji), η) and a justification J ′j ∈
laconic(δ+(Jj), η) and a renaming ρ of terms not in O such that ρ(J ′i ) = J ′j .

5 Examples

The issue of masking is indeed a real world problem with realistic ontologies. For
example, external masking is present in the DOLCE ontology. The entailment
quale v region has a single justification:

{quale ≡ region u ∃ atomicPartOf.region}
However, there are further justifications that are externally masked by this reg-
ular justification. There are three laconic justifications, the first being

{quale v region}
which is directly obtained as a weaker form of the regular justification. More
interestingly, there are two additional laconic justifications:

{quale v ∃atomicPartOf.region

atomicPartOf v partOf

partOf v part−

region v ∀part.region}
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and also

{quale v atomicPartOf.region

atomicPartOf v atomicPart−

atomicPart v part

region v ∀part.region}

Both of these justifications represent reasons for the entailment which are never
seen with regular justifications due to the presence of external masking.

A real ontology about pathway interactions1 contains an unsatisfiable class
called “Phosphate Acceptor”. There are 32 regular justifications for this class
being unsatisfiable. However, upon examination, these 32 justifications share a
single core. When trying to understand the reason for the unsatisfiable class, the
succinctness of the core provides a dramatic improvement in terms of usability.

6 Implementation Issues

The main focus of this paper has been to pin down the notions and types of
masking. At this stage no attention has been paid to the practicalities of detec-
tion masking. However, the definitions for the various types of masking make
use of the well known structural transformation δ—δ+ must be computed from
δ. Naturally, this raises the question of performance and scalability, since many
reasoners rely on the structure of axioms in real world ontologies for several
key optimisations. Normalising the axioms in an ontology using the structural
transformation, i.e. converting axioms to clausal form, raises the possibility of
negating these optimisations. While more investigation work needs to be done,
some preliminary experiments indicate that it is feasible to detect internal mask-
ing and cross masking. It is expected that an algorithm that transforms an on-
tology in an incremental manner, using techniques similar to those presented in
[3] for computing laconic justifications, could provide a practical mechanism for
detecting external masking.

7 Related Work

Various groups [6, 7, 11] have concentrated their efforts on what can be thought
of as fine-grained justifications. In particular, Kalyanpur et al. [6, 5] presented
work on fine-grained justifications, where axioms were split into smaller axioms
in order to obtain a more “precise” justification. This work discusses the reasons
for fine-grained justifications, one of which corresponds to the notion of external
masking presented here. However, no precise definitions of masking were given
in this work.
1

http://owl.cs.manchester.ac.uk/repository/download?ontology=http://purl.org/NET/biopax-
obo/examples/reaction.owl (courtesy Alan Ruttenberg)
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8 Conclusions

This paper has presented a discussion on the phenomenon of justification mask-
ing. The notion and types of masking have been discussed and defined. These
definitions basically identify the parts of axioms in a justification, over a set of
justifications and an ontology, weaken the parts and then look for the number of
laconic justifications that are present in the set of justifications over the axioms
that represent these weakened parts.
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1 Introduction

The well-known description logic (DL) ALC is usually regarded as the basic DL that
comprises all Boolean concept constructors and from which all expressive DLs are de-
rived by admitting additional concept constructors. The fundamental role of ALC is
largely due to the fact that it is very well-behaved regarding its logical, model-theoretic,
and computational properties. This good behavior can, in turn, be explained nicely by
the fact that ALC-concepts can be characterized exactly as the bisimulation invariant
fragment of first-order logic (FO) in the sense that an FO formula is invariant under
bisimulation if, and only if, it is equivalent to an ALC-concept [22, 13, 16]. In particu-
lar, invariance under bisimulation explains the tree-model property of ALC as well as
its favorable computational properties [24]. In the mentioned characterization, the con-
dition thatALC is a fragment of FO is much less important than its bisimulation invari-
ance. In fact, ALCµ, the extension of ALC with fixpoint operators, is not a fragment
of FO, but inherits almost all important properties of ALC [8, 12]. Similar to ALC,
ALCµ’s fundamental role (in particular in its formulation as the modal mu-calculus)
can be explained by the fact that ALCµ-concepts can be characterized exactly as the
bisimulation invariant fragment of monadic second-order logic (MSO) [14, 8]. Indeed,
from a purely theoretical viewpoint it is hard to explain why ALC rather than ALCµ
forms the logical underpinning of current ontology language standards; the facts that
mu-calculus concepts can be hard to grasp and that, despite the same theoretical com-
plexity, efficient reasoning in ALCµ is more challenging than in ALC are probably the
only reasons for the limited interest in ALCµ compared to ALC.

In recent years, the development of very large ontologies and the use of ontologies to
access instance data has led to a revival of interest in tractable DLs. The main examples
are EL [5] and DL-Lite [9], the logical underpinnings of the OWL profiles OWL2
EL and OWL2 QL, respectively. In contrast to ALC, a satisfactory characterization
of the expressivity of such DLs is still missing, and a first aim of this paper is to fill
this gap for EL. To this end, we characterize EL as a maximal fragment of FO that
is preserved under simulations and has finite minimal models. Note that preservation
under simulations alone would characterize EL with disjunctions, and the existence of
minimal models reflects the “Horn-aspect” of EL.

The second and main aim of this paper, however, is to introduce and investigate
two equi-expressive extensions of EL with greatest fixpoints, ELν and ELν+, and to
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prove that they stand in a similar relationship to EL as ALCµ to ALC. To this end,
we prove that ELν (and therefore also ELν+, which admits mutual fixpoints and is
exponentially more succinct than ELν) can be characterized as a maximal fragment
of MSO that is preserved under simulations and has finite minimal models. Similar to
ALCµ, ELν and ELν+ inherit many good properties of EL, the most interesting being
that reasoning with general concept inclusions (GCIs) is still tractable and that the same
type of algorithm can be used. Thus, in contrast toALCµ, the development of practical
decision procedures is no obstacle to using ELν .

Moreover, ELν+ has a number of very useful properties that EL and most of its
extensions are lacking. To begin with, we show that in ELν+ least common subsumers
(LCS) w.r.t. general TBoxes always exist and can be computed in polynomial time (for
a bounded number of concepts). This result can be regarded as an extension of similar
results for least common subsumers w.r.t. classical TBoxes in EL with greatest fixpoint
semantics in [1]. Similarly, in ELν+ most specific concepts always exist and can be
computed in linear time; a result which also generalizes [1]. Secondly, we show that
ELν+ has the Beth definability property with explicit definitions being computable in
polytime and of polynomial size. It has been convincingly argued in [21, 20] that this
property is of great interest for structuring TBoxes and for ontology based data access.
Another application of ELν+ is demonstrated in [15], where the succinct representa-
tions of definitions in ELν+ are used to develop polytime algorithms for decomposing
certain general EL-TBoxes.

To prove these result and provide a better understanding of the modeling capabil-
ities of ELν+ we show that it has the same expressive power as extensions of EL by
means of simulation quantifiers, a variant of second-order quantifiers that quantifies
”modulo a simulation of the model”; in fact, the relationship between simulation quan-
tifiers and ELν+ is somewhat similar to the relationship between ALCµ and bisim-
ulation quantifiers [11]. Proofs are omitted for brevity and the reader is referred to
www.csc.liv.ac.uk/∼frank/publ/publ.html.

2 Preliminaries

Let NC and NR be countably infinite and mutually disjoint sets of concept and role
names. EL-concepts are built according to the rule

C := A | > | ⊥ | C uD | ∃r.C,
where A ∈ NC, r ∈ NR, and C,D range over EL-concepts3. An EL-concept inclusion
takes the form C v D, where C,D are EL-concepts. A general EL-TBox T is a finite
set of EL-concept inclusions. An ABox assertion is an expression of the form A(a) or
r(a, b), where a, b are from a countably infinite set of individual names NI, A ∈ NC,
and r ∈ NR. An ABox is a finite set of ABox assertions. By Ind(A) we denote the set
of individual names inA. An EL-knowledge base (KB) is a pair (T ,A) that consists of
an EL-TBox T and an ABox A.

3 In the literature, EL is typically defined without ⊥. The sole purpose of including ⊥ here is to
simplify the formulation of some results.
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The semantics of EL is based on interpretations I = (∆I , ·I), where the domain
∆I is a non-empty set, and ·I is a function mapping each concept name A to a subset
AI of ∆I , each role name r to a binary relation rI ⊆ ∆I ×∆I , and each individual
name a to an element aI of ∆I . The interpretation CI ⊆ ∆I of EL-concepts C in an
interpretation I is defined in the standard way [6]. We will often make use of the fact
that EL-concepts can be regarded as formulas in FO (and, therefore, MSO) with unary
predicates from NC, binary predicates from NR, and exactly one free variable [6]. We
will often not distinguish between EL-concepts and their translations into FO/MSO.

We now introduce ELν , the extension of EL with greatest fixpoints and the main
language studied in this paper. ELν-concepts are defined like EL-concepts, but addi-
tionally allow the greatest fixpoint constructor νX.C, where X is from a countably
infinite set of (concept) variables NV and C an ELν-concept. A variable is free in a
concept C if it occurs in C at least once outside the scope of any ν-constructor that
binds it. An ELν-concept is closed if it does not contain any free variables. An ELν-
concept inclusion takes the form C v D, where C,D are are closed ELν-concepts. The
semantics of the greatest fixpoint constructor is as follows, where V is an assignment
that maps variables to subsets of ∆I and V[X 7→ W ] denotes V modified by setting
V(X) = W :

(νX.C)I,V =
⋃
{W ⊆ ∆I |W ⊆ CI,V[X 7→W ]}

We will also consider an extended version of the ν-constructor that allows to capture
mutual recursion. It has been considered e.g. in [10, 23] and used in a DL context in
[19]; it can be seen as a variation of the fixpoint equations considered in [8]. The con-
structor has the form νiX1 · · ·Xn.C1, . . . , Cn where 1 ≤ i ≤ n. The semantics is
defined by setting (νiX1 · · ·Xn.C1, . . . , Cn)I,V to⋃{Wi | ∃W1, . . . ,Wi−1,Wi+1, . . . ,Wn s.t. for 1 ≤ j ≤ n:

Wj ⊆ CI,V[X1 7→W1,...,Xn 7→Wn]
j }

We use ELν+ to denote EL extended with this mutual greatest fixpoint constructor.
Clearly, νX.C ≡ ν1X.C, thus every ELν-concept is equivalent to an ELν+-concept.
Conversely, we have the following result, where the first part follows from [8]. The
length of a concept C is defined as the number of occurrences of symbols in it.

Proposition 1. For every ELν+-concept, one can construct an equivalent ELν-concept
of at most exponential size. Moreover, there is a sequence of ELν+-conceptsC0, C1, . . .
such that Ci is of length p(i), p a polynomial, whereas the shortest ELν-concept equiv-
alent to Ci is of length at least 2i.

By extending the translation of EL-concepts into FO in the obvious way, one can trans-
late closed ELν+-concepts into an MSO formula with one free first-order variable. We
will often not distinguish between ELν+-concepts and their translation into MSO.

3 Characterizing EL using simulations

The purpose of this section is to provide a model-theoretic characterization of EL as
a fragment of FO that is similar in spirit to the well-known characterization of ALC
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as the bisimulation-invariant fragment of FO. To this end, we first characterize ELt,
the extension of EL with the disjunction constructor t, as the fragment of FO that
is preserved under simulation. Then we characterize the fragment EL of ELt using,
in addition, the existence of minimal models. A pointed interpretation is a pair (I, d)
consisting of an interpretation I and d ∈ ∆I . A signatureΣ is a set of concept and role
names.

Definition 1 (Simulations). Let (I1, d1) and (I2, d2) be pointed interpretations and Σ
a signature. A relation S ⊆ ∆I1×∆I2 is aΣ-simulation between (I1, d1) and (I2, d2),
in symbols S : (I1, d1) ≤Σ (I2, d2), if (d1, d2) ∈ S and the following conditions hold:

1. for all concept names A ∈ Σ and all (e1, e2) ∈ S, if e1 ∈ AI1 then e2 ∈ AI2 ;
2. for all role names r ∈ Σ, all (e1, e2) ∈ S, and all e′1 ∈ ∆I1 with (e1, e′1) ∈ rI1 ,

there exists e′2 ∈ ∆I2 such that (e2, e′2) ∈ rI2 and (e′1, e
′
2) ∈ S.

If such an S exists, then we also say that (I2, d2) Σ-simulates (I1, d1) and write
(I1, d1) ≤Σ (I2, d2).

If Σ = NC ∪ NR, then we omit Σ and use the term simulation to denote Σ-simulations
and (I1, d1) ≤ (I2, d2) stands for (I1, d1) ≤Σ (I2, d2). It is well-known that the de-
scription logic EL is intimately related to the notion of a simulation, see for example
[4, 17]. In particular, EL-concepts are preserved under simulations in the sense that if
d ∈ CI for an EL-concept C and (I1, d1) ≤Σ (I2, d2), then d2 ∈ CI2 . This obser-
vation, which clearly generalizes to ELt, illustrates the (limitations of the) modeling
capabilities of EL/ELt. We now strengthen it to an exact characterization of the ex-
pressive power of these logics relative to FO.

Let ϕ(x) be an FO-formula (or, later, MSO-formula) with one free variable x. We
say that ϕ(x) is preserved under simulations if, and only if, for all (I1, d1) and (I2, d2),
I1 |= ϕ[d1] and (I1, d1) ≤ (I2, d2) implies I2 |= ϕ[d2].

Theorem 1. An FO-formula ϕ(x) is preserved under simulations if, and only if, it is
equivalent to an ELt-concept.

To characterize EL, we add a central property of Horn-logics on top of preservation
under simulations. Let L be a set of FO (or, later, MSO) formulas, each with one free
variable. We say that L has (finite) minimal models if, and only if, for every ϕ(x) ∈ L
there exists a (finite) pointed interpretation (I, d) such that for all ψ(x) ∈ L, we have
I |= ψ[d] if, and only if, ∀x.(ϕ(x)→ ψ(x)) is a tautology.

Theorem 2. The set of EL-concepts is a maximal set of FO-formulas that is preserved
under simulations and has minimal models (equivalently: has finite minimal models): if
L is a set of FO-formulas that properly contains all EL-concepts, then either it contains
a formula not preserved under simulations or it does not have (finite) minimal models.

We note that de Rijke and Kurtonina have given similar characterizations of various
non-Boolean fragments of ALC. In particular, Theorem 1 is rather closely related to
results proved in [16] and would certainly have been included in the extensive list of
characterizations given there had EL already been as popular as it is today. In contrast,
the novelty of Theorem 2 is that it makes the Horn character of EL explicit through
minimal models while the characterizations of disjunction-free languages in [16] are
based on simulations that take sets (rather than domain-elements) as arguments.
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4 Simulation quantifiers and ELν

To understand and characterize the expressive power and modeling capabilities of ELν ,
we introduce three distinct types of simulation quantifiers and show that, in each case,
the resulting language has the same expressive power as ELν .
Simulating interpretations. The first language ELsi extends EL by the concept con-
structor ∃sim(I, d), where (I, d) is a finite pointed interpretation in which only finitely
many σ ∈ NC ∪ NR have a non-empty interpretation σI ⊆ ∆I . The semantics of
∃sim(I, d) is defined by setting for all interpretations J and e ∈ ∆J ,

e ∈ (∃sim(I, d))J iff (I, d) ≤ (J , e).
Example 1. Let I consist of one point d such that (d, d) ∈ rI . Then e ∈ (∃sim(I, d))J
iff there is an infinite r-chain starting at e in I, i.e., there exist e0, e1, e2, . . . such that
e = e0 and (ei, ei+1) ∈ rJ for all i ≥ 0.

To attain a better understanding of the constructor ∃sim, it is interesting to observe that
every ELsi-concept is equivalent to a concept of the form ∃sim(I, d).
Lemma 1. For every ELsi-concept C one can construct, in linear time, an equivalent
concept of the form ∃sim(I, d).
Proof. By induction on the construction of C. If C = A for a concept name A, then let
I = ({d}, ·I), whereAI = {d} and σI = ∅ for all symbols distinct fromA. Clearly,A
and ∃sim(I, d) are equivalent. For C1 = ∃sim(I1, d1) and C2 = ∃sim(I2, d2) assume
that ∆I1 ∩∆I2 = {d1} = {d2}. Then ∃sim(I1 ∪ I2, d1) is equivalent to C1 uC2. For
C = ∃r.∃sim(I, d) construct a new interpretation I ′ by adding a new node e to∆I and
setting (e, d) ∈ rI′ . Then ∃sim(I ′, e) and C are equivalent. ut
We will show that there are polynomial translations between ELsi and ELν+. When us-
ing ELν in applications and to provide a translation from ELν+ to ELsi, it is convenient
to have available a “syntactic” simulation operator.
Simulating models of TBoxes. The second language ELst extends EL by the concept
constructor ∃simΣ.(T , C), where Σ is a finite signature, T a general TBox, and C a
concept. To admit nestings of ∃sim, the concepts of ELst are defined by simultaneous
induction; namely, ELst-concepts, concept inclusions, and general TBoxes are defined
as follows:

– every EL-concept, concept inclusion, and general TBox is an ELst-concept, con-
cept inclusion, and general TBox, respectively;

– if T is a general ELst-TBox, C an ELst-concept, and Σ a finite signature, then
∃simΣ.(T , C) is an ELst-concept;

– if C,D are ELst-concepts, then C v D is a ELst-concept inclusion;
– a general ELst-TBox is a finite set of ELst-concept inclusions.

The semantics of ∃simΣ.(T , C) is as follows:

d ∈ (∃simΣ.(T , C))I iff there exists (J , e) such that J is a model of T , e ∈ CJ
and (J , e) ≤Γ (I, d), where Γ = (NC ∪ NR) \Σ.
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Example 2. Let T = {A v ∃r.A} and Σ = {A}. Then ∃simΣ.(T , A) is equivalent to
the concept ∃sim(I, d) defined in Example 1.

We will later exploit the fact that ∃simΣ.(T , C) is equivalent to ∃simΣ ∪{A}.(T ′, A),
where A is a fresh concept name and T ′ = T ∪ {A v C}. Another interesting (but
subsequently unexploited) observation is that we can w.l.o.g. restrictΣ to singleton sets
since

∃sim({σ} ∪Σ).(T , C) ≡ ∃sim{σ}.(∅,∃simΣ.(T , C))
∃sim∅.(T , C) ≡ ∃sim{B}.(T , C)

where B is a concept name that does not occur in T and C.
Simulating models of KBs. The third language ELsa extends EL by the concept con-
structor ∃simΣ.(T ,A, a), where a is an individual name in the ABox A, T is a TBox,
and Σ a finite signature. More precisely, we define ELsa-concepts, concept inclusions,
general TBoxes, and KBs, by simultaneous induction as follows:

– every EL-concept, concept inclusion, general TBox, and KB is an ELsa-concept,
concept inclusion, general TBox, and KB, respectively;

– if (T ,A) is a general ELsa-KB, a an individual name inA, andΣ a finite signature,
then ∃simΣ.(T ,A, a) is an ELsa-concept;

– if C,D are ELsa-concepts, then C v D is an ELsa-concept inclusion;
– a general ELsa-TBox is a finite set of ELsa-concept inclusions;
– an ELsa-KB is a pair (T ,A) consisting of a general ELsa-TBox and an ABox.

The semantics of ∃simΣ.(T ,A, a) is as follows:

d ∈ (∃simΣ.(T ,A, a))I iff there exists a modelJ of (T ,A) such that (J , aJ ) ≤Γ
(I, d), where Γ = (NC ∪ NR) \Σ.

Example 3. Let T = ∅, A = {r(a, a)}, and Σ = ∅. Then ∃simΣ.(T ,A, a) is equiva-
lent to the concept ∃sim(I, d) defined in Example 1.

Let L1,L2 be sets of concepts. We say that L2 is polynomially at least as expressive as
L1, in symbols L1 ≤p L2, if for every C1 ∈ L1 one can construct in polynomial time
a C2 ∈ L2 such that C1 and C2 are equivalent. We say that L1,L2 are polynomially
equivalent, in symbols L1 ≡p L2, if L1 ≤p L2 and L2 ≤p L1.

Theorem 3. The languages ELν+, ELsi, ELst, and ELsa are polynomially equivalent.

We provide sketches of proofs of ELsi ≤p ELν+, ELν+ ≤p ELst, ELst ≤p ELsa, and
ELsa ≤p ELsi.
ELsi ≤p ELν+. By Lemma 1, considering ELsi-concepts of the form ∃sim(I, d) is suf-
ficient. Each such concept is equivalent to the ELν+-concept ν`d1 · · · dn.C1, . . . , Cn,
where ∆I = {d1, . . . , dn} is regarded as a set of concept variables, d = d`, and

Ci =
l
{A | di ∈ AI} u

l
{∃r.dj | (di, dj) ∈ rI}.

ELν+ ≤p ELst. Let C be a closed ELν+-concept. An equivalent ELst-concept is con-
structed by replacing each subconcept of C of the form ν`X1, . . . , Xn.C1, . . . , Cn with
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an ELst-concept, proceeding from the inside out. We assume that for every variable X
that occurs in the original ELν+-concept C, there is a concept name AX that does not
occur in C. Now ν`X1, . . . , Xn.C1, . . . , Cn (which potentially contains free variables)
is replaced with the ELst-concept

∃sim{AX1 , . . . , AXn}.({AXi v C↓i | 1 ≤ i ≤ n}, AX`
)

whereC↓i is obtained fromCi by replacing every variableX with the concept nameAX .

ELst ≤p ELsa. Let C be an ELst-concept. As already observed, we may assume
that D is a concept name in all subconcepts ∃simΣ.(T , D) of C. Now replace each
∃simΣ.(T , A) in C, proceeding from the inside out, by ∃simΣ.(T ,A, a), where A =
{A(a)}. The resulting concept is equivalent to C.

ELsa ≤p ELsi. To prove this inclusion, we make use of canonical models for ELsa-
KBs, similar to those used for EL in [5]. In particular, canonical models for ELsa can
be constructed by an extension of the algorithm given in [5], see the full version for
details.

Theorem 4 (Canonical model). For every satisfiable ELsa-KB (T ,A), one can con-
struct in polynomial time a model IT ,A of (T ,A) with |∆IT ,A | bounded by twice the
size of (T ,A) and such that for every model J of (T ,A), we have (IT ,A, aIT ,A) ≤
(J , aJ ) for all a ∈ Ind(A).

To prove ELsa ≤p ELsi, it suffices to show that any outermost occurrence of a concept
of the form ∃simΣ.(T ,A, a) in an ELsa-concept C can be replaced with the equivalent
ELsi-concept ∃sim(IΣT ,A, a), where IΣT ,A denotes IT ,A except that all σ ∈ Σ are
interpreted as empty sets. First let d ∈ (∃simΣ.(T ,A, a))J . Then there is a model I ′
of (T ,A) such that (I ′, aI′) ≤Σ (J , d). By Theorem 4, (IT ,A, aIT ,A) ≤ (I ′, aI′).
Thus, by closure of simulations under composition, (IΣT ,A, a) ≤Σ (J , d) as required.
The converse direction follows from the condition that IT ,A is a model of (T ,A). This
finishes our proof sketch for Theorem 3.

It is interesting to note that, as a consequence of the proofs of Theorem 3, for every
ELν+-concept there is an equivalent ELν+-concept of polynomial size in which the
greatest fixpoint constructor is not nested, and similarly for ELst, ELsa. An important
consequence of the existence of canonical models, as granted by Theorem 4, is that
reasoning in our family of extensions of EL is tractable.

Theorem 5 (Tractable reasoning). Let L be any of the languages ELν , ELν+, ELsi,
ELst, or ELsa. Then KB consistency, subsumption w.r.t. TBoxes, and the instance prob-
lem can be decided in PTIME.

Proof. By Theorem 3, it suffices to concentrate on L = ELsa. Consistency can be
decided in PTIME by the algorithm that constructs the canonical model. Subsumption
can be polynomially reduced in the standard way to the instance problem. Finally, by
Theorem 4, we can decide the instance problem as follows: to decide whether (T ,A) |=
C(a), where we can w.l.o.g. assume that C = A for a concept name A, we check
whether (T ,A) is inconsistent or aIT ,A ∈ AIT ,A . Both can be done in PTIME. ut
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5 Characterizing ELν using simulations

When characterizing EL as a fragment of first-order logic in Theorem 2, our starting
point was the observation that EL-concepts are preserved under simulations and that EL
is a Horn logic, thus having finite minimal models. The same is true for ELν : first,
ELν-concepts are preserved under simulations, as ELsi is obviously preserved under
simulations and, by Theorem 3, every ELν-concept is equivalent to an ELsi-concept.
And second, a finite minimal model of an ELν-concept C can be constructed by taking
the canonical model IT ,A from Theorem 4 for T = {A v C} and A = {A(a)}. As
required, we then have |= C v D iff (T ,A) |= D(a) iff a ∈ DIT ,A , for all ELν-
concepts D. However, ELν is clearly not a fragment of FO. Instead, it relates to MSO
in exactly the way that EL related to FO.

Theorem 6. The set of ELν-concepts is a maximal set of MSO-formulas that is pre-
served under simulations and has finite minimal models: if L is a set of MSO-formulas
that properly contains all ELν-concepts, then either it contains a formula not preserved
under simulations or it does not have finite minimal models.

Proof. Assume that L ⊇ ELν is preserved under simulations and has finite mini-
mal models. Let ϕ(x) ∈ L. We have to show that ϕ(x) is equivalent to an ELν-
concept. To this end, take a finite minimal model of ϕ, i.e., an interpretation I and
a d ∈ ∆I such that for all ψ(x) ∈ L we have that ∀x.(ϕ(x) → ψ(x)) is valid iff
I |= ψ[d]. We will show that ϕ is equivalent to (the MSO translation of) ∃sim(I, d).
We may assume that ∃sim(I, d) ∈ L. Since d ∈ (∃sim(I, d))I , we thus have that
∀x.(ϕ(x) → ∃sim(I, d)(x)) is valid. Conversely, assume that d′ ∈ (∃sim(I, d))J for
some interpretation J . Then (I, d) ≤ (J , d′). We have (I, d) |= ϕ[d]. Thus, by preser-
vation of ϕ(x) under simulations, J |= ϕ[d′]. Thus ∀x.(∃sim(I, d)(x)→ ϕ(x)) is also
valid. ut
A number of closely related characterizations remain open. For example, we conjecture
that an extension of Theorem 1 holds for ELν,t and MSO (instead of EL and FO).
Also, it is open whether Theorem 6 still holds if finite minimal models are replaced by
arbitrary minimal models.

6 Applications and Logical Properties

The µ-calculus is considered to be extremely well-behaved regarding its expressive
power and logical properties. The aim of this section is to take a brief look at the ex-
pressive power of its EL-analogues ELν and ELν+. In particular, we show that ELν+
is more well-behaved than EL in a number of respects. Throughout this section, we will
not distinguish between the languages previously proved polynomially equivalent.

To begin with, we construct the least common subsumer (LCS) of two concepts
w.r.t. a general ELν+-TBox (the generalization to more than two concepts is straight-
forward). Given a general ELν+-TBox T and concepts C1, C2, a concept C is called
the LCS of C1, C2 w.r.t. T in ELν+ if

– T |= Ci v C for i = 1, 2;
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– if T |= Ci v D for i = 1, 2 and D a ELν+-concept, then T |= C v D.

It is known that, in EL, the LCS does not always exist [1].

Example 4. In EL, the LCS of A,B w.r.t.

T = {A v ∃has parent.A,B v ∃has parent.B}
does not exist. In ELν , however, the LCS ofA,B w.r.t. T is given by νX.∃has parent.X .

To construct the LCS in ELν+, we adopt the product construction used in [1] for the
case of classical TBoxes with a fixpoint semantics. For interpretations I1 and I2, the
product I1 × I2 is defined by setting ∆I1×I2 = ∆I1 × ∆I2 , (d1, d2) ∈ AI1×I2 iff
di ∈ AIi for i = 1, 2, and ((d1, d2), (d′1, d

′
2)) ∈ rI1×I2 iff (di, d′i) ∈ rIi for i = 1, 2.

Theorem 7. Let T be a general ELν+-TBox and C1 and C2 be ELν+-concepts. Then
∃sim(IT ,C1 × IT ,C2 , (dC1 , dC2)) is the LCS of C1, C2 w.r.t. T in ELν .

The same product construction has been used in [1] for the case of classical TBoxes
with a fixpoint semantics, which, however, additionally require a notion of conservative
extension (see Section 7).

Our second result concerns the most specific concept, which plays an important
role in the bottom-up construction of knowledge bases and has received quite a bit of
attention in the context of EL [1, 7]. Formally, a concept C is the most specific concept
(MSC) for an individual a in a knowledge base (T ,A) in ELν+ if

– (T ,A) |= C(a) and
– for every ELν+-concept D with (T ,A) |= D(a), we have T |= C v D.

In EL, the MSC need not exist, as is witnessed by the KB (∅, {has parent(a, a)}),
where the MSC for a is non-existent.

Theorem 8. In ELν+, the MSC always exists for any a in any KB (T ,A) and is given
as ∃sim∅.(T ,A, a).
In [1], the MSC in EL-KBs based on classical TBoxes with a fixpoint semantics is
defined. The relationship between ELν+ and fixpoint TBoxes is discussed in more detail
in Section 7.

We now turn our attention to issues of definability and interpolation. From now
on, we use sig(C) to denote the set of concept and role names used in the concept C.
A concept C is a Σ-concept if sig(C) ⊆ Σ. Let T be a general ELν+-TBox, C an
ELν+-concept and Γ a finite signature.

We start with considering the fundamental notion of a Γ -definition. The question
addressed here is whether a given concept can be expressed in an equivalent way by
referring only to the symbols in a given signature Γ [21, 20]. Formally, a Γ -concept D
is an explicit Γ -definition of a concept C w.r.t. a TBox T if, and only if, T |= C ≡ D
(i.e.,C andD are equivalent w.r.t. T ). Clearly, explicit Γ -definitions do not always exist
in any of the logics studied in this paper: for example, there is no explicit {A}-definition
of B w.r.t. the TBox {A v B}. However, it is not hard to show the following using the
fact that ∃simΣ.(T , C) is the most specific Γ -concept that subsumes C w.r.t. T .
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Proposition 2. Let C be an ELν+-concept, T a general ELν+-TBox and Γ a sig-
nature. There exists an explicit Γ -definition of C w.r.t. T iff ∃simΣ.(T , C) is such a
definition (for Σ = sig(T , C) \ Γ ).

It is interesting to note that if T happens to be a general EL-TBox andC an EL-concept
and there exists an explicit Γ -definition of C w.r.t. T , then the concept ∃simΣ.(T , C)
from Proposition 2 is equivalent w.r.t. T to an EL-concept over Γ . This follows from
the fact that EL has the Beth definability property (see below for a definition) which
follows immediately from interpolation results proved for EL in [15].

The advantage of giving explicit Γ -definitions in ELν+ even when T and C are for-
mulated in EL is that Γ -definitions in ELν+ are of polynomial size while the following
example shows that they may be exponentially large in EL.

Example 5. Let T consist of Ai ≡ ∃ri.Ai+1 u ∃siAi+1 for 0 ≤ i < n, and An ≡ >.
Let Γ = {r0, . . . , rn−1, s0, . . . , sn−1}. Then A0 has an explicit Γ -definition w.r.t. T in
EL, namely C0, where Ci = ∃ri.Ci+1 u ∃si.Ci+1 and Cn = >. This definition is of
exponential size and it is easy to see that there is no shorter Γ -definition of A0 w.r.t. T
in EL.

Say that a concept C is implicitly Γ -defined w.r.t. T iff T ∪ TΓ |= C ≡ CΓ , where TΓ
and CΓ are obtained from T and C, respectively, by replacing each σ 6∈ Γ by a fresh
symbol σ′. The Beth definability property, which was studied in a DL context in [21,
20], ensures that explicit Γ -definitions always exist when they possibly can.

Theorem 9. ELν+ has the polynomial Beth definability property: for every general
ELν+-TBox T , concept C, and signature Γ such that C is implicitly Γ -defined w.r.t. T ,
there is an explicit Γ -definition w.r.t. T , namely ∃sim(sig(T , C) \ Γ ).(T , C).

The proof of Theorem 9 relies on ELν having a certain interpolation property. Say
that two general TBoxes T1 and T2 are ∆-inseparable w.r.t. ELν if T1 |= C v D iff
T2 |= C v D for all ELν-inclusions C v D.

Theorem 10. Let T1 ∪ T2 |= C v D and assume that T1 and T2 are ∆-inseparable
w.r.t. ELν for ∆ = sig(T1, C) ∩ sig(T2, D). Then the ∆-concept F = ∃simΣ.(T1, C),
Σ = sig(T1, C) \ ∆, is an interpolant of C,D w.r.t. T1, T2; i.e. T1 |= C v F and
T2 |= F v D.

We show how Theorem 9 follows from Theorem 10. Assume that T ∪ TΓ |= C ≡ CΓ ,
where T , TΓ , C, CΓ satisfy the conditions of Theorem 9. Then T and TΓ are Γ -insepa-
rable and Γ ⊇ sig(T , C)∩sig(TΓ , CΓ ). Thus, by Theorem 10, T |= ∃simΣ.(TΓ , CΓ ) v
C forΣ = sig(TΓ , CΓ )\Γ . Now Theorem 9 follows from the fact that ∃simΣ.(TΓ , CΓ )
is equivalent to ∃simΣ′.(T , C) for Σ′ = sig(T , C) \ Γ .

In [15], it is shown that EL also has this interpolation property. However, the ad-
vantage of using ELν+ is that interpolants are of polynomial size. The decomposition
algorithm for EL given in [15] crucially depends on this property of ELν+.
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7 Relation to TBoxes with Fixpoint Semantics

There is a tradition of considering DLs that introduce fixpoints at the TBox level instead
of at the concept level [18, 19, 2]. In [4], Baader proposes and analyzes such a DL based
on EL and greatest fixpoints. This DL, which we call ELgfp from now on, differs from
our ELν in that (i) TBoxes are classical TBoxes rather than sets of GCIs (but cycles are
allowed) and (ii) the ν-concept constructor is not present; instead, a greatest fixpoint
semantics is adopted for the defined concept names.

On the concept level, ELν is clearly strictly more expressive than ELgfp: since fix-
points are introduced at the TBox level, concepts of ELgfp coincide with EL-concepts,
and thus there is no ELgfp-concept equivalent to the ELν-concept νX.∃r.X . In the
following, we show that ELν is also more expressive than ELgfp also on the TBox
level, even if we restrict ELν-TBoxes as in ELgfp. We use the standard notion of logi-
cal equivalence, i.e., two TBoxes T and T ′ are equivalent iff T and T ′ have precisely
the same models. As observed by Schild in the context of ALC [19], every ELgfp-
TBox T = {A1 ≡ C1, . . . , An ≡ Cn} is equivalent in this sense to the ELν+-TBox
{Ai ≡ νiX1, . . . , Xn.C

′
1, . . . , C

′
n | 1 ≤ i ≤ n}, where each C ′i is obtained from Ci

by replacing each Aj with Xj , 1 ≤ j ≤ n. Note that since we are using mutual fix-
points the size of the resulting TBox is polynomial in the size of the original one. In the
converse direction, there is no equivalence-preserving translation.

Lemma 2. For each ELgfp-TBox, there is an equivalent ELν+-TBox of polynomial size,
but no ELgfp-TBox is equivalent to the ELν-TBox {A ≡ P u νX.∃r.X}.
Proof. (sketch) It is not hard to prove that for every ELgfp-TBox T , defined concept
name A in T , and role name r, one of the following holds:

– there is an m ≥ 0 such that A v ∃rn.> implies n ≤ m or
– A v ∃rn.B for some n > 0 and defined concept name B.

However, no such TBox can be equivalent to A v ∃rn.B since T |= ∃rn.> for all
n > 0, but there is no n > 0 and defined concept name B with A v ∃rn.B. ut
ELgfp and ELν become equi-expressive if the strict notion of equivalence used above is
replaced with one based on conservative extensions, thus allowing the introduction of
new concept names that are suppressed from logical equivalence. However, we believe
that not having to deal with conservative extensions is an advantage of ELν over ELgfp,
as conservative extensions tend to make simple definitions somewhat awkward, c.f. the
least common subsumers and most specific concepts for ELgfp in [3, 4].
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Abstract. UML class diagrams (UCDs) are the de-facto standard for-
malism for the analysis and design of information systems. By adopting
formal language techniques to capture constraints expressed by UCDs
one can exploit automated reasoning tools to detect relevant properties,
such as schema and class satisfiability and subsumption between classes.
Among the reasoning tasks of interest, the basic one is detecting full sat-
isfiability of a diagram, i.e., whether there exists an instantiation of the
diagram where all classes and associations of the diagram are non-empty
and all the constraints of the diagram are respected. In this paper we es-
tablish tight complexity results for full satisfiability for various fragments
of UML class diagrams. This investigation shows that the full satisfiabil-
ity problem is ExpTime-complete in the full scenario, NP-complete if we
drop isa between relationships, and NLogSpace-complete if we further
drop covering over classes.

1 Introduction

UML (Unified Modeling Language)1 is the de-facto standard formalism for the
analysis and design of information systems. One of the most important compo-
nents of UML are class diagrams (UCDs), which model the domain of interest in
terms of objects organized in classes and associations between them (represent-
ing relations between class instances). The semantics of UCDs is by now well
established, and several works propose to represent it using various kinds of for-
mal languages, e.g., [5,8,7,9,10,4,1,2]. Thus, one can in principle reason on UCDs.
The reasoning tasks that one is interested in are, e.g., subsumption between two
classes, and satisfiability of a specific class or association in the diagram. Here,
we consider full satisfiability of a diagram [12], i.e., the fact that there is at
least one model of the diagram where each class and association is non-empty.
This property is of importance since the presence of some unsatisfiable class or
association actually means either that the diagram contains unnecessary infor-
mation that should be removed, or that there is some modelling error that lead
to the loss of satisfiability. In fact, it can be considered as the most fundamental
property that should be satisfied by UCDs.
? This work has been partially supported by the EU project Ontorule (ICT-231875).
1 http://www.omg.org/spec/UML/

Proc. 23rd Int. Workshop on Description Logics (DL2010), CEUR-WS 573, Waterloo, Canada, 2010.
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The only work that addressed explicitly the complexity of full satisfiability
of UCDs is [12], which includes a classification of UCDs based on inconsistency
triggers. Each inconsistency trigger is a pattern for recognizing possible incon-
sistencies of the diagram, based on the interaction between different modelling
constraints. [12] introduces various algorithms for checking full satisfiability of
UCDs with diverse expressive power, together with an analysis of their compu-
tational complexity. Full satisfiability of UCDs is computed in ExpTime in the
most general case; in NP if association generalization and multiple and over-
writing inheritance of attributes is dropped; and in P if the diagrams are further
restricted by forbidding covering constraints. According to the results reported
in [12], the complexity of checking full satisfiability of UCDs can be reduced if
the value types of the attributes associated to sub-classes are sub-types of the
value types for the respective attributes associated to the super-classes. The algo-
rithms handling these restricted UCDs are claimed to compute full satisfiability
respectively in PSpace (instead of ExpTime) and P (instead of NP).

However, our results show that even when attributes are not considered at
all in the UCDs, the complexity of the problem does not change. Indeed this
paper shows that the full satisfiability problem is ExpTime-complete in the full
scenario, NP-complete if we drop isa between relationships, and NLogSpace-
complete if we further drop covering over classes. Thus, the complexity of full
satisfiability coincides in all cases with that of class satisfiability [1]. Our results
build on the formalization of UCDs in terms of DLs given in [4,1]. In fact,
our upper bounds are an almost direct consequence of the corresponding upper
bounds of the corresponding DL formalization. On the other hand, the obtained
lower bounds are more involved, and in some cases require a careful analysis of
the corresponding proof for class satisfiability. The results presented here hold
also for the Entity-Relationship model and other conceptual models.

The rest of the paper is organized as follows. In Section 2, we briefly introduce
the DL ALC, on which we base our results, and show that full satisfiability in
ALC is ExpTime-complete. In Sections 3 and 4, we provide our results on full
satisfiability of various variants of UCDs.

2 Full Satisfiability in the Description Logic ALC
We start by studying full satisfiability for the DL ALC, one of the basic variants
of DLs [3]. We first define the notion of full satisfiability of a TBox and then we
show that it has the same complexity as classical satisfiability for ALC.
Definition 1 (TBox Full Satisfiability). An ALC TBox T is said to be fully
satisfiable if there exists a model I of T such that AI 6= ∅, for every atomic
concept A in T . We say that I is a full model of T .

Lemma 2. Concept satisfiability w.r.t. ALC TBoxes can be linearly reduced to
full satisfiability of ALC TBoxes.

Proof. Let T be an ALC TBox and C an ALC concept. As pointed out in [6],
C is satisfiable w.r.t. T if and only if C u AT is satisfiable w.r.t. the TBox T1
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consisting of the single assertion AT v
d
C1vC2∈T (¬C1 tC2)ud

1≤i≤n ∀Pi. AT ,
where AT is a fresh atomic concept and P1, . . . , Pn are all the atomic roles in
T and C. In order to reduce the problem to full satisfiability, we extend T1 to
T2 = T1 ∪ {AC v C uAT }, with AC a fresh atomic concept, and prove that

C uAT is satisfiable w.r.t. T1 iff T2 is fully satisfiable.

(⇒) Let I be a model of T1 such that (C uAT )I 6= ∅. We construct an interpre-
tation of T2, J = (∆I ∪ {dtop}, ·J ), with dtop 6∈ ∆I , such that:

AJT = AIT , AJC = (C uAT )I ,
AJ = AI ∪ {dtop} for each atomic concept A in T and C,

PJ = P I for each atomic role P in T and C.

Obviously, the extension of every atomic concept is non-empty in J . Next,
we show that J is a model of T2, by relying on the fact (easily proved by
structural induction) that DI ⊆ DJ , for each subconcept D of concepts in
T1. Then, it is easy to show that J satisfies the two assertion in T2:

AJT = AIT ⊆ (
l

C1vC2∈T
(¬C1 t C2) u

l
1≤i≤n

∀Pi.AT )I

⊆ (
l

C1vC2∈T
(¬C1 t C2) u

l
1≤i≤n

∀Pi. AT )J

AJC = (C uAT )I ⊆ (C uAT )J

(⇐) Conversely, every full model J of T2 is also a model of T1 with (CuAT )J 6= ∅,
as AJC ⊆ (C uAT )J . ut

Theorem 3. Full satisfiability of ALC TBoxes is ExpTime-complete.

Proof. The ExpTime membership is straightforward, as deciding full satisfia-
bility of an ALC TBox T can be reduced to deciding satisfiability of the TBox
T ∪⋃1≤i≤n{> v ∃P ′.Ai}, where A1, . . . , An are all the atomic concepts in T ,
and P ′ is a fresh atomic role. The ExpTime-hardness follows from Lemma 2. ut

We now modify the reduction of Lemma 2 so that it applies also to prim-
itive ALC− TBoxes, i.e., TBoxes that contain only assertions of the form:
A v B, A v ¬B, A v B t B′, A v ∀P.B, A v ∃P.B, where A, B,
B′ are atomic concepts, and P is an atomic role.

Theorem 4. Full satisfiability of primitive ALC− TBoxes is ExpTime-
complete.

Proof. The ExpTime membership follows from Theorem 3. For proving the
ExpTime-hardness, we use a result in [4] showing that concept satisfiability
in ALC can be reduced to atomic concept satisfiability w.r.t. primitive ALC−
TBoxes. Let T − = {Aj v Dj | 1 ≤ j ≤ m} be a primitive ALC− TBox, and A0
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an atomic concept. By Lemma 2, we have that A0 is satisfiable w.r.t. T − if and
only if the TBox T ′2 containing the assertions

AT − v
l

AjvDj∈T −
(¬Aj tDj) u

l
1≤i≤n

∀Pi. AT − , A′0 v A0 uAT − ,

is fully satisfiable, with AT − , A′0 fresh atomic concepts. T ′2 is not a primitive
ALC− TBox, but it is equivalent to the TBox containing the assertions:

A′0 v AT −

A′0 v A0

AT − v ¬A1 tD1

...
AT − v ¬Am tDm

AT − v ∀P1. AT −
...

AT − v ∀Pn. AT − ,

Finally, to get a primitive ALC− TBox, T −2 , we replace each assertion of the
form AT − v ¬Aj tDj by AT − v B1

j t B2
j , B1

j v ¬Aj , and B2
j v Dj , with B1

j

and B2
j fresh atomic concepts, for j ∈ {1, . . . ,m}.

We show now that T ′2 is fully satisfiable iff T −2 is fully satisfiable:

(⇒) Let I = (∆I , ·I) be a full model of T ′2 . We extend I to an interpretation J
of T −2 . Let ∆J = ∆I ∪ {d+, d−}, with {d+, d−} ∩∆I = ∅, and define ·J as
follows:

AJT − = AIT − , A′0
J = A′0

I
,

AJ = AI ∪ {d+}, for every other atomic concept A in T ′2 ,
B1
j
J

= (¬Aj)J and B2
j
J

= DJj , for each AT − v B1
j tB2

j ∈ T −2 ,

PJ = P I ∪ {(d+, d+)}, for each atomic role P in T −2 .

It is easy to see that J is a full model of T −2 .
(⇐) Trivial, since every model of T −2 is a model of T ′2 . ut

3 Full Satisfiability of UML Class Diagrams

Three notions of UCD satisfiability have been proposed in the litera-
ture [13,4,12,11]. First, diagram satisfiability refers to the existence of a model,
i.e., an interpretation that satisfies all constraints expressed by the diagram and
where at least one class has a nonempty extension. Second, class satisfiability
refers to the existence of a model of the diagram where the given class has a
nonempty extension. Third, we can check whether there is a model of an UML
diagram that satisfies all classes and all relationships in a diagram. This last
notion of satisfiability, referred here as full satisfiability and introduced in [12] is
thus stronger than diagram satisfiability, since a model of a diagram that satisfies
all classes is, by definition, also a model of that diagram.

We adopt the formalization of UCDs in terms of DLs as given in [4,1]. For
lack of space we give here only a brief overview of such formalization. Classes are
formalized by atomic concepts; and relations by roles. Generalization between
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classes (e.g., C1ISAC2) are formalized by concept inclusions (C1 v C2); disjoint-
ness constrains between two classes C1 and C2 by means of axioms of the form
C1 v ¬C2; and covering constraints by axioms of the form C v C1tC2. Finally,
multiplicity constraints are formalized using qualified number restrictions.

Definition 5 (UML Full Satisfiability). A UCD, D, is fully satisfiable if
there is an interpretation, I, that satisfies all the constraints expressed in D and
such that CI 6= ∅ for every class C in D, and RI 6= ∅ for every association R in
D. We say that I is a full model of D.

We now address the complexity of full satisfiability for UCDs. For the lower
bounds, we use the results presented in Section 2 and reduce full satisfiability of
primitive ALC− TBoxes to full satisfiability of UCDs. This reduction is based
on the ones used in [4,1] for determining the lower complexity bound of schema
satisfiability in the extended Entity-Relationship model.

Given a primitive ALC− TBox T , construct an UCD Σ(T ) as follows: for
each atomic concept A in T , introduce a class A in Σ(T ). Additionally, introduce
a class O that generalizes (possibly indirectly) all the classes in Σ(T ) that encode
an atomic concept in T . For each atomic role P , introduce a class CP , which
reifies the binary relation P . Further, introduce two functional associations P1,
and P2 that represent, respectively, the first and second component of P . The
assertions in T are encoded as follows:

– The correspondence of UCDs and DLs gives a straightforward encoding for
assertions of the form A v B, A v ¬B, and A v B1 t B2 (see Fig. 1 and
Fig. 2).
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– For each assertion of the form A v ∀P.B, add the auxiliary classes CPAB

and CPAB
, and the associations PAB1, PĀB1, and PAB2, and construct the

diagram shown in Fig. 3.
– For each assertion of the form A v ∃P.B, add the auxiliary class CPAB

and
the associations PAB1 and PAB2, and construct the diagram shown in Fig. 4.

Lemma 6. A primitive ALC− TBox T is fully satisfiable iff the UCD Σ(T ),
constructed as above, is fully satisfiable.

Proof. (⇐) Let J = (∆J , ·J ) be a full model of Σ(T ). We construct a full
model I = (∆I , ·I) of T by taking ∆I = ∆J . Further, for every concept name
A and for every atomic role P in T , we define respectively AI = AJ and2

P I = (P−1 )J ◦ PJ2 . Let us show that I satisfies every assertion in T .

(A v B, A v ¬B, and A v B1 tB2): The statement easily follows from the
construction of I.

(A v ∀P.B): Let o ∈ AI = AJ and o′ ∈ ∆I = ∆J , such that (o, o′) ∈ P I .
Since P I = (P−1 )J ◦ PJ2 , there is o′′ ∈ ∆J such that (o, o′′) ∈ (P−1 )J , and
(o′′, o′) ∈ PJ2 . Then, o′′ ∈ CJP = CJPAB

∪ CJPAB
. We claim that o′′ ∈ CJPAB

.
Suppose otherwise, then there is a unique o1 ∈ ∆J , such that (o′′, o1) ∈ PJ

ĀB1
and o1 ∈ ĀJPB

. It follows from PJ
ĀB1
⊆ PJ1 and by the multiplicity constraint

over CP , that o1 = o. This rises a contradiction, because o ∈ AJ ⊆ AJPB

and, AJPB
and ĀJPB

are disjoint. Then o′′ ∈ CJPAB
. Further, there is a unique

o2 ∈ ∆J with (o′′, o2) ∈ PJAB2 and o2 ∈ BJ . From PJAB2 ⊆ PJ2 and the mul-
tiplicity constraint on CP , it follows that o2 = o′. Thus, we have that
o′ ∈ BJ = BI , and therefore, o ∈ (∀P.B)I .

(A v ∃P.B): Let o ∈ AI = AJ . Then, there is o′ ∈ ∆J such
that (o′, o) ∈ PJAB1 and o′ ∈ CJPAB

. Then, there is o′′ ∈ ∆J with
(o′, o′′) ∈ PJAB2 and o′′ ∈ BJ = BI . Then, since PJAB2 ⊆ PJ2 , PJAB1 ⊆ PJ1
and P I = (P−1 )J ◦ PJ2 , we can conclude that (o, o′′) ∈ P I .

(⇒) Let I = (∆I , ·I) be a full model of T , and let role(T ) be the set of role names
in T . Extend I to a legal instantiation J = (∆J , ·J ) of Σ(T ), by assigning
suitable extensions to the auxiliary classes and associations in Σ(T ). Let ∆J =
∆I ∪ Γ ∪ Λ, where: Λ =

⊎
Av∀P.B∈T {aAPB

, aĀPB
}, such that ∆I ∩ Λ = ∅, and

Γ =
⊎
P∈role(T )∆P , with:

∆P = P I ∪
⋃

Av∀P.B∈T
{(aAPB

, b), (aĀPB
, ō)}

with b an arbitrary instance of B, and ō an arbitrary element of ∆I . We set
OJ = ∆I ∪ Λ, AJ = AI for each class A corresponding to an atomic concept
in T , and CJP = ∆P for each P ∈ role(T ). Additionally, the extensions of the
associations P1 and P2 are defined as follows:

PJ1 = {((o, o′), o) | (o, o′) ∈ CJP }, PJ2 = {((o, o′), o′) | (o, o′) ∈ CJP }.
We now show that J is a full model of Σ(T ).
2 We use r1 ◦ r2 to denote the composition of two binary relations r1 and r2.
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1. For the portions ofΣ(T ) due to TBox assertions of the form A v B, A v ¬B,
and A v B1 tB2, the statement follows from the construction of J .

2. For each TBox assertion in T of the form A v ∀P.B, let us define

AJPB
= AI ∪ {aAPB

}, ĀJPB
= OJ \AJPB

,

CJPAB
= {(o, o′) ∈ CJP | o ∈ AJPB

}, C
J
PAB

= {(o, o′) ∈ CJP | o ∈ ĀJPB
},

PJAB1 = {((o, o′), o) ∈ PJ1 | o ∈ AJPB
}, PJ

ĀB1
= {((o, o′), o) ∈ PJ1 | o ∈ ĀJPB

},
PJAB2 = {((o, o′), o′) ∈ PJ2 | o ∈ AJPB

} .
It is not difficult to see that J satisfies the fragment of Σ(T ) as shown in
Fig. 3. Further, it is clear that the extension of the classes that encode atomic
concepts in T are non-empty. For the classes APB

, ĀPB
, CPAB

, and CPAB
we

have that

aAPB
∈ AJPB

, aĀPB
∈ ĀJPB

, (aAPB
, b) ∈ CJPAB

, (aĀPB
, ō) ∈ CJPAB

.

For the associations P1, P2, PAB1, PAB2 and PĀB1 we have that

((aAPB
, b), aAPB

) ∈ PJAB1 ⊆ PJ1 , ((aĀPB
, ō), aĀPB

) ∈ PJ
ĀB1

,

((aAPB
, b), b) ∈ PJAB2 ⊆ PJ2 .

3. For each TBox assertion in T of the form A v ∃P.B, let us define the
extensions for the auxiliary classes and associations as follows:

CJPAB
= {(o, o′) ∈ CJP | o ∈ AI and o′ ∈ BI},

PJAB1 = {((o, o′), o) ∈ PJ1 | (o, o′) ∈ CJPAB
},

PJAB2 = {((o, o′), o′) ∈ PJ2 | (o, o′) ∈ CJPAB
} .

We have that CJPAB
6= ∅ as there exists a pair (a, b) ∈ ∆P with a ∈ AI , and

b ∈ BI . Since CJPAB
6= ∅, we have that PJAB1 6= ∅ and PJAB2 6= ∅. ut

Theorem 7. Full satisfiability of UCDs is ExpTime-complete.

Proof. We establish the upper bound by a reduction to class satisfiability in
UCDs, which is known to be ExpTime-complete [4]. Given a UCD D, with
classes C1, . . . , Cn, we construct the UCD D′ by adding to D a new class C>
and new associations Ri, for i ∈ {1, . . . , n}. Furthermore, to check that every
association is populated we use reification, i.e., we replace each association P in
the diagram D between the classes Ci and Cj (such that neither Ci nor Cj is
constrained to participate at least once to P ) with a class CP and two functional
associations P1 and P2 to represent each component of P . Finally, we add the
constraints shown in Fig. 5. Intuitively, we have that if there is a model I of the
extended diagram D′ in which CI> 6= ∅, then the multiplicity constraint 1..∗ on
the association RP forces the existence of at least one instance o of CP . By the
functionality of P1 and P2 there are at least to elements oi and oj , such that
oi ∈ CIi , oj ∈ CIj , (o, oi) ∈ P I1 and (o, oj) ∈ P I2 . Then, one instance of P can be
the pair (oi, oj). Conversely, if there is a full model J of D, it is easy to extend
it to a model I of D′ that satisfies C>.

The ExpTime-hardness follows from Lemma 6 and Theorem 4. ut
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      C> Ci1..*Ri

    

           Ci CP Cj

C>

1..1 1..1

1..*

P1 P2

Rp

Fig. 5. Reducing UML full satisfiability to class satisfiability

4 Full Satisfiability of Restricted UML Class Diagrams

In this section, we investigate the complexity of the full satisfiability problem
for two sub-languages: UMLbool, which disallows isa between associations and
UMLref, where also completeness between classes is forbidden. By building on
the techniques used for the satisfiability proofs in [1], we show that also in this
case checking for full satisfiability does not change the complexity of the problem.

We first show that deciding full satisfiability for UMLbool diagrams is NP-
complete. For the lower bound, we provide a polynomial reduction of the 3sat
problem (which is known to be NP-complete) to full satisfiability of UMLbool

CDs.
Let an instance of 3sat be given by a set φ = {c1, . . . , cm} of 3-clauses over

a finite set Π of propositional variables. Each clause is such that ci = `1i ∨`2i ∨`3i ,
for i ∈ {1, . . . ,m}, where each `kj is a literal, i.e., a variable or its negation. We
construct an UMLbool diagram Dφ as follows: Dφ contains the classes Cφ, C>,
one class Ci for each clause ci ∈ φ, and two classes Cp and C¬p for each variable
p ∈ Π. To describe the constraints imposed by Dφ, we provide the corresponding
DL inclusion assertions, since they are more compact to write than an UCD. For
every i ∈ {1, . . . ,m}, j ∈ {1, 2, 3}, and p ∈ Π, we have the assertions

Cφ v C>,
Cp v C>,
C¬p v C>,

Ci v C>,
Cφ v Ci,
C> v Cp t C¬p,

Clji
v Ci,

Ci v C`1i t C`2i t C`3i ,
C¬p v ¬Cp.

Clearly, the size of Dφ is polynomial in the size of φ.

Lemma 8. A set φ of 3-clauses is satisfiable if and only if the UMLbool class
diagram Dφ, constructed as above, is fully satisfiable.

Proof. (⇒) Let J |= φ. Define an interpretation I = ({0, 1}, ·I), with

CI> = {0, 1}

CI` =

{1}, if J |= `

{0}, otherwise

CIi = CI
`1i
∪ CI

`2i
∪ CI

`3i
, for ci = `1i ∨ `2i ∨ `3i

CIφ = CI1 ∩ · · · ∩ CIm.

Clearly, CI 6= ∅ for every class C representing a clause or a literal, and for
C = C>. Moreover, as at least one literal `ji in each clause is such that J |= `ji ,
then 1 ∈ CIi for every i ∈ {1, . . . ,m}, and therefore 1 ∈ CIφ . It is straightforward
to check that I satisfies T .
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(⇐) Let I = (∆I , ·I) be a full model of Dφ. We construct a model J of φ by
taking an element o ∈ CIφ , and setting, for every variable p ∈ Π, J |= p if and
only if o ∈ CIp . Let us show that J |= φ. Indeed, for each i ∈ {1, . . . ,m}, since
o ∈ CIφ and by the generalization Cφ v Ci, we have that o ∈ CIi , and by the
completeness constraint Ci v C`1i t C`2i t C`3i , there is some ji ∈ {1, 2, 3} such
that o ∈ C

`
ji
i

. If `jii is a variable, then J |= `jii by construction, and thus J |= ci.

Otherwise, if `jii = ¬p for some variable p, then, by the disjointness constraint
C¬p v ¬Cp, we have that o /∈ CIp . Thus, J |= ¬p, and therefore, J |= ci. ut

Theorem 9. Full satisfiability of UMLbool is NP-complete

Proof. The NP-hardness follows from Lemma 8. To prove the NP upper bound,
we reduce full satisfiability to class satisfiability, which, for the case of UMLbool,
is known to be in NP [1]. We use a similar encoding as the one used in the proof
of Theorem 7 (see Fig. 5). ut

We turn now to UMLref class diagrams and show that full satisfiability in
this case is NLogSpace-complete. We provide a reduction of the reachabil-
ity problem on (acyclic) directed graphs, which is known to be NLogSpace-
complete (see e.g., [14]) to the complement of full satisfiability of UMLref CDs.

Let G = (V,E, s, t) be an instance of reachability, where V is a set of
vertices, E ⊆ V × V is a set of directed edges, s is the start vertex, and t the
terminal vertex. We construct an UMLref diagram DG from G as follows:

– DG has two classes C1
v and C2

v , for each vertex v ∈ V \ {s}, and one class
Cs corresponding to the start vertex s.

– For each edge (u, v) ∈ E with u 6= s and v 6= s, DG contains the following
constraints (again expressed as DL inclusion assertions):

C1
u v C1

v , C2
u v C2

v .

– For each edge (s, v) ∈ E, DG contains the following constraints:

Cs v C1
v , Cs v C2

v .

– For each edge (u, s) ∈ E, DG contains the following constraints:

C1
u v Cs, C2

u v Cs.

– The classes C1
t and C2

t are constrained to be disjoint in D, expressed by:

C1
t v ¬C2

t .

The following lemma establishes the correctness of the reduction.

Lemma 10. t is reachable from s in G iff DG is not fully satisfiable.
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Proof. (⇒) Let π = v1, . . . , vn be a path in G with v1 = s and vn = t. We
claim that the class Cs in the constructed diagram DG is unsatisfiable. Suppose
otherwise, that there is a model I of DG with o ∈ CIs , for some o ∈ ∆I . From π,
the construction yields a number of generalization constraints in DG such that
the following holds:

CIs ⊆ · · · ⊆ C1
t
I

CIs ⊆ · · · ⊆ C2
t
I

From this we obtain that o ∈ (C1
t )I and o ∈ (C2

t )I , which violates the disjoint-
ness between the classes C1

t and C2
t , in contradiction to I being a model of DG.

Hence, Cs is unsatisfiable, and therefore DG is not fully satisfiable.
(⇐) Assume that t is not reachable from s in G. We construct a full model

I of DG. Let ∆I = {ds} ∪
⋃
v∈V \{s}{d1

v, d
2
v}. Define inductively a sequence of

interpretations as follows:

I0 :=
(
∆I , ·I0)

, such that:

CI
0

s := {ds}, Civ
I0

:= {div}, ∀i ∈ {1, 2}, v ∈ V \ {s}.

In+1 :=
(
∆I , ·In+1

)
, such that:

CI
n+1

s := CI
n

s ∪
⋃

(u,s)∈E

(
C1
u
In

∪ C2
u
In)

Civ
In+1

:= Civ
In

∪
⋃

(u,v)∈E, u 6=s
Ciu
In

∪
⋃

(s,v)∈E
CI

n

s

The definition induces a monotone operator over a complete lattice, and hence
it has a fixed point. Let I be defined by such a fixed point. It is easy to check
that I is such that for all i ∈ {1, 2}, and u, v ∈ V \ {s} the following holds:

1. For each class Civ, we have that div ∈ CivI .
2. ds ∈ CIs .
3. For all d ∈ ∆I , d ∈ CiuI implies d ∈ CivI iff v is reachable from u in G.
4. For all diu ∈ ∆I , diu ∈ CjvI for i 6= j iff s is reachable from u in G, and v is

reachable from s in G.
5. ds ∈ CivI iff v is reachable from s in G.

From (1) and (2) we have that all classes in DG are populated in I. It remains
to show that I satisfies DG. A generalization between the classes Ciu and Civ
corresponds to the edge (u, v) ∈ E. This means that v is reachable from u in
G, and therefore, by (3) we have that Ciu

I ⊆ CivI . A similar argument holds for
generalizations involving the class Cs. Furthermore, the classes C1

t and C2
t are

disjoint under I. To show this, suppose that there is an element d ∈ ∆I such
that d ∈ C1

t
I ∩C2

t
I . Then by (5), d 6= ds, as t is not reachable from s. Moreover,

d 6= div for all i ∈ {1, 2} and v ∈ V \ {s}. Indeed, suppose w.l.o.g. that i = 1.
Then, by (4), d1

v ∈ C2
t
I iff s is reachable from v, and t is reachable from s, which

leads to a contradiction. Hence, C1
t
I ∩ C2

t
I = ∅. ut
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Language
Classes Associations Complexity

isa disjoint complete isa multiplicity refinement

UML X X X X X X ExpTime

UMLbool X X X 7 X X NP

UMLref X X 7 7 X X NLogSpace

Table 1. Complexity results for full satisfiability in UML

Theorem 11. Full-satisfiability of UMLref class diagrams is NLogSpace-
complete.

Proof. The NLogSpace membership follows from the NLogSpace membership
of class satisfiability [1], and a reduction similar to the one used in Theorem 9.
Since NLogSpace = coNLogSpace (by the Immerman-Szelepcsényi theorem;
see, e.g., [14]), and as the above reduction is logspace bounded, it follows that
full consistency of UMLref class diagrams is NLogSpace-hard. ut

5 Conclusions

This paper investigates the problem of full satisfiability in the context of UML
class diagrams, i.e., whether there is at least one model of the diagram where
each class and association is non-empty. Our results (reported in Table 1) show
that the complexity of full satisfiability matches the complexity of the classical
class diagram satisfiability check. We show a similar result also for the problem
of checking the full satisfiability of a TBox expressed in the description logic
ALC.
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1 Introduction

Eight years ago, Tim Berners-Lee, James Hendler and Ora Lassila published their sem-
inal paper [6] describing the evolution of the current web from a human-processable
environment to a machine-processable one. The basic idea was to annotate web re-
sources and give them a machine-processable meaning; the Semantic Web was born.
Many efforts have been placed in the last years by the Semantic Web community in the
attempt to standardize both the language for representing the content of web resources
and the production of annotations/metadata. On the one hand, such efforts successfully
led to the affirmation of standard languages for machine-processable representation of
web pages content, like the recent W3C recommendation OWL2. On the other hand, it
produced the Linked Data initiative: a set of best practices for publishing and connect-
ing data on the Web. These two initiatives are tightly connected. In fact, data published
following the Linked Data best practices are interpreted thanks to the ontological layer
developed using OWL2. Despite a large effort in annotating and representing the se-
mantic content of a resource (in a semi-automatic way) we see the lack of reasoning
engines able to fully exploit such representation power. During the last years highly op-
timized reasoning engines have been developed for classical deductive reasoning tasks
such as subsumption/classification, consistency checking and instance retrieval. At the
same time, non-standard reasoning tasks have been proposed in the Description Logics
literature as an answer to new issues related to knowledge-based domains especially in
retrieval scenarios, ontology design and maintenance and automated negotiation. The
most relevant reasoning tasks we may cite are: explanation [18], interpolation [23],
concept abduction and concept contraction [10], concept unification [3], concept differ-
ence [25], concept similarity [8], concept rewriting [2], negotiation [22], least common
subsumer [5], most specific concept [1] and knowledge base completion [4].

For each of the above mentioned tasks a specific algorithmic approach has been
proposed and very often only for a particular (sometimes simple) Description Logic.
Although the need for such reasoning tasks has been widely recognized, there is not
yet a unified view—at least from an algorithmic perspective. Indeed, some of the above
mentioned tasks share some properties from a computational point of view and some-
times are very related to each other. Moreover, most of the problems in the cited reason-
ing tasks are of the form: “Find one or more concept(s) C such that {sentence involving
C }” and we are really interested in exhibiting such a concept, not just proving its ex-
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istence. In other words, many of the above mentioned reasoning tasks, known as non-
standard reasoning, deal with finding—or constructing—a concept. This is the main
reason why we refer to such reasoning as constructive reasoning. By contrast, “stan-
dard” reasoning is about checking some property (true or false) such as subsumption or
satisfiability (also query answering can be reduced to instance checking).

In this paper we propose a new second-order framework and a related calculus able
to express, in a uniform way, many of the abovementioned constructive reasoning tasks.

The remainder of the paper is structured as follows: in Section 2 we introduce the
framework and its formal semantics. Section 3 is devoted to the reformulation of some
relevant contructive reasoning tasks in terms of second order formulas. The general
calculus is presented in Section 4, before providing a section on “discussion and future
directions”.

2 Semantics

We denote by DL a generic Description Logic. Only in order to exemplify our frame-
work, consider the presentation of the DL SHIQ.

Let Nr be a set of role names. A general role R can be either a role name P ∈ Nr,
or its inverse, denoted by P−. We admit a set of role axioms, formed by: (1) a role
hierarchy H, which is a set of role inclusions of the form R1 v R2, and (2) a set of
transitivity axioms for roles, denoted by Trans(R). We denote by v∗ the transitive-
reflexive closure of H ∪ {R− v S− | S v R ∈ H}. A role S is simple if it is not
transitive, and for no R such that R v∗ S, R is transitive.

In the following syntax for concepts, let A be a generic concept name in a set Nc of
concept names.

C −→ > | ⊥ | A | >nS.C | 6nS.C | C1 u C2 | ¬C (1)

We consider the other well-known constructs as abbreviations: C1 t C2 = ¬(¬(C1) u
¬(C2)), ∃R.C = > 1R.C, ∀R.C = 6 0R.¬C. For computability reasons, only in
∃R.C,∀R.C the role R can be a general role (i.e., also a transitive role, or a super-role
of a transitive role), while in other number restrictions R must be a simple role.

Every DL is equipped with a model-theoretic semantics. Again, exemplifying our
discussion for SHIQ, an interpretation I is a pair 〈∆I , ·I〉 where ∆I is a set of indi-
viduals, and ·I is an interpretation function mapping> into ∆I ,⊥ into ∅, each concept
name A ∈ Nc into a subset of ∆I , and each role name P ∈ Nr into a subset of
∆I × ∆I , and extended to concept and role expressions as follows (let ]{. . .} denote
the cardinality of a set):

¬CI = ∆I −AI (2)
>nR.CI = {a ∈ ∆I | ]{b ∈ ∆I | 〈a, b〉 ∈ RI ∧ b ∈ CI} > n} (3)
6nR.CI = {a ∈ ∆I | ]{b ∈ ∆I | 〈a, b〉 ∈ RI ∧ b ∈ CI} 6 n} (4)

(C1 u C2)I = (C1)I ∩ (C2)I (5)
(P−)I = {〈b, a〉 ∈ ∆I ×∆I | 〈a, b〉 ∈ P I} (6)
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As usual, we denote by C v D the proposition “for every interpretation I (satisfying
role axioms), CI ⊆ DI”. We also denote non-subsumption by C 6v D, meaning the
proposition “there exists an interpretation I satisfying role axioms such that CI 6⊆
DI”. Observe that C v D, C 6v D are propositions (true or false), so they can be
combined by∧,∨ in a propositional formula Γ . We say that Γ is true iff the composition
of truth values of subsumptions and non-subsumptions yields true.

Second-order Concept Expressions. In order to write second-order formulas, we
need a set Nx = {X0, X1, X2, . . .} of concept variables, which we can quantify over.

A concept term is a concept formed according to the rules in (1) plus the rule C −→
X forX ∈ Nx. For example,AuX0u∀(P−).(X1u∃Q.X2) is a concept term. Although
also role variables could be conceived, we do not need them here. We stress the fact that
concept terms could be defined starting from the syntax of every Description LogicDL,
not just SHIQ. We denote by DLX the language of concept terms obtained from DL
by adding concept variables.

We use general semantics [15]—also acknowledged as Henkin structures [27]—for
interpreting concept variables. In such a semantics, variables denoting unary predicates
can be interpreted only by some subsets among all the ones in the powerset of the
domain 2∆

I
—instead, in standard semantics a concept variable could be interpreted as

any subset of ∆I . Note that Baader and Narendran [3] use standard semantics in their
paper on concept unification.

Adapting general semantics to our problem, the structure we consider is exactly the
sets interpreting concepts inDL. That is, the interpretation XI of a concept variable X
must coincide with the interpretation EI of some concept E ∈ DL. Moreover, since
we are interested in particular existential second-order formulas, we limit our definition
to such formulas.

Definition 1 (General Semantics). Let C1, . . . , Cm, D1, . . . , Dm ∈ DL be concept
terms containing concept variables X0, X1, . . . , Xn, and let Γ be a conjunction of
concept subsumptions and non-subsumptions, of the form

Γ = (C1 v D1) ∧ · · · ∧ (C` v D`) ∧ (C`+1 6v D`+1) ∧ · · · ∧ (Cm 6v Dm) (7)

for 1 ≤ ` ≤ m. We say that Γ is satisfiable inDL if and only if there exist n+1 concepts
E1, . . . , En ∈ DL such that, extending the semantics (2)–(6) for each interpretation I,
with: (Xi)I = (Ei)I for i = 0, . . . , n, it holds that

1. for every j = 1, . . . , `, and for every interpretation I, (Cj)I ⊆ (Dj)I and
2. for every j = `+ 1, . . . ,m, there exists an interpretation I s.t. (Cj)I 6⊆ (Dj)I .

Otherwise, Γ is said to be unsatisfiable in DL . Moreover, we say that the formula

∃X0 · · · ∃Xn.Γ (8)

is true in DL if Γ is satisfiable in DL, otherwise it is false.

Note that we are considering here only a particular form of closed second-order
formulas in Description Logics. This is because we are not interested here in Second-
order Description Logics by themselves, but only in their use to express and compute
the “constructive” reasoning services of the next section.
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3 Modeling Constructive Reasoning Tasks

Hereafter we show how to model some constructive reasoning tasks in trems of formula
(8). In this section we only show the constructive formulation of the task and we leave
discussion on optimality criteria at the end of the section. The computation of the Most
Specific Concept as well as a Knowledge Base Completion could be easily modeled if
we allowed in Γ formulas involving an ABox or a TBox.

We introduce the notion of signature of a concept that is used in Interpolation and
Concept Unification. Given a concept C we define:

sign(C)Nc
= {A | A ∈ Nc, A appears syntactically in C}

sign(C)Nr
= {P | P ∈ Nr, P appears syntactically in C}

sign(C) = sign(C)Nc
∪ sign(C)Nr

Least Common Subsumer. A concept D ∈ DL is a Common Subsumer of two
concepts C1, C2 ∈ DL if (C1 v D) ∧ (C2 v D). The Least Common Subsumer
(LCS) of C1, C2 is the least element w.r.t. v of the set of concepts which are Common
Subsumers of C1, C2 and is unique up to equivalence. A concept L is not the Least
Common Subsumer of C1, C2 iff the following formula (of the form (8)) is true in DL:

∃X.(C1 v X) ∧ (C2 v X) ∧ (X v L) ∧ (L 6v X)

that is, L is not the LCS if there exists a concept X which is a Common Subsumer, and
is strictly more specific than L. By finding a concept satisfying the above formula, and
iterating the process, an algorithm for computing the LCS in a sublanguage of SHIQ
has been proposed [12].

Interpolation. Interpolation have been proposed in Description Logics for different
purposes. In [23], the computation of an interpolant is used to explain subsumption, if it
exists, between two concepts C and D. Konev et al. [16] use the notion of interpolation
for a TBox T in order to forget part of the vocabulary adopted in T and reason on a
smaller ontology. Seylan et al. [24] need the computation of an interpolant between two
concepts to rewrite a query in terms of DBox predicates.

Definition 2 (Interpolation). Given two concepts C and D in DL such that C v D,
an interpolant of C and D is a concept I such that:

– sign(I) ⊆ sign(C) ∪ sign(D);
– both C v I and I v D.

Given two concepts C and D such that C v D, the corresponding interpolant satisfies
the formula (C v X) ∧ (X v D) of the form (7).

Abduction. Abduction in Description Logics has been recognized as an interesting
reasoning procedure for a set of heterogeneous tasks [10, 17, 24, 7, 21]. Here we mainly
concentrate on Concept Abduction as defined in [10] and Structural Abduction [11] but
the formalization can be easily extended to other abductive procedures [13]. Concept
Abduction is a straight adaptation of Propositional Abduction.
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Definition 3 (Concept Abduction). Let C, D, be two concepts in DL where both C
and D are satisfiable. A Concept Abduction Problem (CAP) is finding a concept H ∈
DL such that C uH 6v ⊥, and C uH v D.

Every solution H of a CAP satisfies the formula

(C uX 6v ⊥) ∧ (C uX v D)

Such solutions can be compared byv, preferring the subsumption-maximal ones, since
they are the solutions hypothesizing the least. Moreover, a formula of the form (8) can
characterize the complement of being subsumption-maximal. A concept H is not a
subsumption-maximal solution of a CAP iff the formula is true in DL:

∃X.(C uX 6v ⊥) ∧ (C uX v D) ∧ (H v X) ∧ (X 6v H)

In order to deal with Abduction for expressive Description Logics, a more fine
grained definition of Abduction was introduced in [11] with the name of Structural Ab-
duction. The notion of Structural Abduction relies on the notion of Adbucible Concept
and Hypotheses List we report here for the sake of completeness.

Definition 4 (Abducible Concept – Hypotheses List). Let C and D be two con-
cepts in DL. We define abducible concept Ch .= H0 u Rew(C), where the rewrit-
ing Rew(C) is defined recursively as Rew(A) = A; Rew(¬A) = ¬A; Rew(C1 u
C2) = Rew(C1)uRew(C2);Rew(C1 tC2) = Rew(C1)tRew(C2); Rew(∃R.C) =
∃R.(Hnew u Rew(C)); Rew(∀R.C) = ∀R.(Hnew u Rew(C)) where by Hnew we
mean a concept variable not yet appearing in the rewriting. We call hypotheses list of
Ch the listH = 〈H0, H1, H2, . . .〉.
Definition 5 (Structural Abduction). Let C,D ∈ DL, be two concepts where both C
and D are satisfiable C u D 6v ⊥. Let H = 〈H0, . . . ,H`〉 be the hypotheses list of
the abducible concept Ch and Ã = 〈A0, . . . ,A`〉 (for Assumptions) be a list of DL
concept sets. A Structural Abduction Problem (SAP) forDL is finding a list of concepts
H = 〈H0, . . . ,H`〉 such that

Hi ∈ Ai for every i = 0, . . . , ` (9)
T 6|= σ[H/H](Ch) v ⊥ (10)
T |= σ[H/H](Ch) v D (11)

We call a SAP General when Ai = DL, for every i = 0, . . . , `.

LetCx be asCh withXi in place ofHi for i = 0, . . . , `. Then,H0, . . . ,H` is a solution
of a SAP iff it satisfies the formula (Cx 6v ⊥) ∧ (Cx v D) by letting (Xi)I = (Hi)I

for every I and every i = 0, . . . , `.
Concept Contraction. Gärdenfors [14] distinguishes three main kinds of belief

changes: (i) expansion, (ii) revision, (iii) contraction. Given two concepts C and D
such that C uD v ⊥, Concept Contraction is the DL-based version of contraction.

Definition 6 (Concept Contraction). Let C, D both satisfiable. A Concept Contrac-
tion Problem (CCP) is finding a pair of concepts 〈G,K〉 (Give up, Keep) such that
C ≡ G uK, and K uD 6v ⊥. We call K a contraction of C according to D.
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Every solution 〈G,K〉 of a CCP satisfies the formula

(C ≡ X0 uX1) ∧ (X1 uD 6v ⊥)

Such solutions can be compared by v, preferring the ones whose G’s are subsumption-
maximal, since they are the solutions contracting the least. Moreover, a formula of
the form (8) can characterize the non-preferred contractions. A pair 〈G,K〉 is not a
preferred solution of a CCP iff the following formula is true in DL:

∃X0∃X1.(C ≡ X0 uX1) ∧ (X1 uD 6v ⊥) ∧ (G v X0) ∧ (X0 6v G)

Concept Unification. Concept Unification [3] between two concepts C and D
arises when one wants to rewrite some concept names occurring in C and D in order to
make the relation C ≡ D true.

Definition 7. Let C and D be two concepts in DL such that C 6≡ D. We define the
two sets XC = {ACi | i = 1, . . . , l} and XD = {ADj | j = 1, . . . ,m} such that
XC ⊆ sign(C)Nc

and XD ⊆ sign(D)Nc
. A Unification Problem is finding the set of

rewriting rulesM: AC1 → C1; . . . ;ACl → Cl, A
D
1 → D1; . . . ;ADm → Dm such that

sign(Ci) ⊆ sign(C) ∪ sign(D), with i = 1, . . . , l
sign(Dj) ⊆ sign(C) ∪ sign(D), with j = 1, . . . ,m

C ≡M D

The Unification problem is solvable iff the following formula (of the form (8)) is true
in DL:

∃AC1 , . . . , ACl , AD1 , . . . , ADm.(C v D) ∧ (D v C)

treating XC ,XD as concept variables interpreted in General Semantics.
Concept Difference. Following the algebraic approaches adopted in classical infor-

mation retrieval, Concept Difference [25] was introduced as a way to measure concept
similarity.

Definition 8. Let C and D be two concepts such that C v D. The Concept Difference
C −D is defined by maxv{B ∈ DL such that D uB ≡ C}.
We can use a formula of the form (8) to check whether a concept B is not a difference
between C and D, namely, B is not a Difference iff the formula below is true:

∃X.(C v D uX) ∧ (D uX v C) ∧ (X v B) ∧ (B 6v X)

Negotiation. The aim of a negotiation process is to find an agreement between
two competitive parties. Both agreement and requirements from the two parties can be
represented as (a conjunction of) concepts [22]. Usually, in a negotiation the parties
requirements are in conflict with each other. Hence, in order to reach an agreement they
have to give up some parts of their requirements. During a negotiation the two parties
have to agree on and follow a protocol (i.e., a set of rules that characterize the specific
process). Here we define a simple protocol where given the initial requirements W c

0

and W d
0 , if they are in conflict with each other, then the two parties c and d propose a
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relaxed version W
c

and W
d

of W c
0 and W d

0 . The final aim of the protocol is to satisfy
as much as possible both agents with the final agreement. At the first round they relax
their requirements keeping the minimal information they want to be satisfied by the
final agreement and propose W c

> and W d
> such that W c

0 v W c
> and W d

0 v W d
>. For

each following round i they propose least relaxed version of W c
0 and W d

0 which are
more specific of the proposals at round i − 1 1. The protocol stops either if the max
number MAX of rounds has been reached or when it does not exist a concept both
more specific than the one found at the previous round and less specific than the initial
requirements.

Input: concepts W c
0 , W d

0 such that W c
0 uW d

0 v ⊥
Output: the final outcome of the negotiation after n rounds. If c and d reach an agreement

the returned value is 〈W c
n,W

d
n〉, NULL otherwise.

begin1
W c = W c

>;2

W d = W d
>;3

i = 0; flag = continue;4
while (i < MAX) ∧ (flag == continue) do5

if ∃W c
,W

d.(W c uW d 6v ⊥) ∧ (W
c vW c) ∧ (W

d vW d) ∧ (W c
0 v6

W
c
) ∧ (W d

0 vW d
) then

W c = W
c

;7

W d = W
d

;8

else9
flag = stop;10

i = i+ 1;11

if flag == stop then12
return 〈W c,W d〉;13

else14
return NULL;15

end16
Algorithm 1: A simple negotiation protocol

Optimal Solutions. We may classify the above reasoning tasks into two main cat-
egories: tasks for which we just need to compute a concept (or a set of concepts) as
Concept Unification and Interpolation and those for which we need to find a concept
(or a set of concepts) according to some minimality/maximality criteria such as LCS,
Concept Difference, Concept Abduction, Concept Contraction and Negotiation. In the
first case, we have a set of solutions while in the second one we also have a set of
sub-optimal solutions to the main problem. As an example, for LCS we have the set of
sub-optimal solution represented by “common subsumers”. Based on this observation,
we may think of a procedure that computes a sub-optimal solution Xi at step i and then

1 The way W
c

and W
d

are computed at each step should take into account also agents’ prefer-
ences. For the sake of conciseness we omit such details.
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iteratively computes a better solution Xi+1 at the next step. The procedure stops (if de-
cidable) when no better solution can be found according to the minimality/maximality
criterion. In case the procedure is not decidable, we may decide to iterate for a maxi-
mum number of steps. In this case, the procedure returns a sub-optimal solution to the
problem. In other words, this means that we may apply a procedure similar to the nego-
tiation protocol described above to other constructive reasoning every time we need to
satisfy optimal criteria.

4 A Calculus

Definition 9 (Substitutions).

1. Let DL be a Description Logic, {i1, . . . , ik} ⊆ {0, 1, . . . , n} be a set of distinct
indexes, Xi1 , . . . , Xik be concept variables, and Di1 , . . . , Dik ∈ DLX be concept
terms. A substitution σ is a set of pairs {[Xi1/Di1 ], . . . , [Xik/Dik ]}. A substitution
is ground if every Dij contains no variables, i.e., Dij ∈ DL.

2. For a concept term C ∈ (SHIQ)X , we inductively define σ(C) as σ(Xi) = Di,
σ(¬Xi) = ¬(σ(Di)), σ(A) = A, σ(C1uC2) = σ(C1)uσ(C2), σ(./ nR.C) =./
nR.σ(C) for ./∈ {6,>}.

3. For concept terms C,D, we define also σ(C v D) = σ(C) v σ(D), σ(C 6v D) =
σ(C) 6v σ(D), and for a boolean conjunction Γ of the form (7), σ(Γ ) is the result
of applying σ to every subsumption and non-subsumption statement.

By using substitutions, a formula of the form (8) is true according to Def.1 if and only if
there exists a ground substitution making it valid, as formalized by the theorem below.

Theorem 1. A formula ∃X0 · · · ∃Xn.Γ is true in DL iff there exists a ground substitu-
tion σ = {[X0/E0], . . . , [Xn/En]} with E0, . . . , En ∈ DL, such that σ(Γ ) is true.

Observe that since σ is ground, and substitutes every variable in Γ , σ(Γ ) is just a
boolean combination of [non-]subsumptions in SHIQ. Observe also that if standard
semantics is adopted for concept variables [3] instead of Def.1—that is, if XI can be
any subset of ∆I—then the “only if” part of the above theorem no longer holds, since
there can be statements for which XI is not expressible in the target DL, yielding no
substitution. For example, formula ∃X.(A v X) ∧ (B v X) ∧ (> 6v X) is false in a
DL without t (disjunction), but it would be true in standard semantics: just let for every
I, XI = AI ∪BI .

We present now a simple calculus, obtained by combining Analytic Tableaux for
ordinary concept constructors, and substitutions for concept variables. Then we prove
its soundness and completeness. Again, we present the calculus for the DL SHIQ,
but only for sake of clarity; the same framework could be adopted for other DLs. We
borrow Tableaux rules (T-rules; see below) from well-known results of Tobies [26].
Since inverse roles are present in SHIQ, we use pairwise blocking for individuals [26,
p.125].

All rules are applicable only if x is not blocked. For each i = 1, ..., n, Li is a branch
in τi. Rules above the separating line have precedence over rules below it.
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u-rule : if C uD ∈ Li(x),
then add both C and D to Li(x)

t-rule : if C tD ∈ Li(x),
then add either C or D to Li(x)

∀-rule : if ∀R.C ∈ Li(x), and there exists an individual y such that y is an R-
successor of x,

then add C to Li(y)
6-rule : if 6nS.C ∈ Li(x) with n > 1, and

there are m > n S-neighbors (say) y1, . . . , ym of x with C ∈ Li(yj)
for j = 1, . . . ,m,
y, z ∈ {y1, . . . , ym} with y being an S-successor of x and not y 6= z

then (1) add Li(y) to Li(z),
(2) for every R ∈ Li(x, y) if z is a predecessor of x then add R−

to Li(z, x) else add R to Li(x, z),
(3) let Li(x, y) = ∅, and
(4) for all u with u 6= y, set u 6= z

∀+-rule : if ∀S.C ∈ Li(x), with Trans(R) and R v∗ S, there exists an individ-
ual y such that y is an R-successor of x, and ∀R.C 6∈ Li(y),

then add ∀R.C to Li(y)
choose-rule : if ./ nS.D ∈ Li(x), with ./∈ {>,6} and there is an S-neighbor y of x

then add either D or ¬D to Li(y)

∃-rule : if ∃R.C ∈ Li(x), and x has no R-successor y with C ∈ Li(y),
then pick up a new individual y, add R to L(x, y), and let Li(y) :=

{C}
>-rule : if >nS.C ∈ Li(x), and x has not n S-neighbors y1, . . . , yn with y` 6=

yj for 1 6 ` < j 6 n,
then create n new successors y1, . . . , yn of x with Li(x, y`) = {S},

Li(y) := {C}, and y` 6= yj , for 1 6 ` < j 6 n

A branch L is closed if, for some individual x, either ⊥ ∈ L(x), or {A,¬A} ⊆
L(x) for some concept name A, or 6nS.C ∈ L(x) and x has in L m S-neighbors
y1, . . . , ym with m > n, with C ∈ L(yj) and yi 6= yj for 1 6 i < j 6 m. We call such
a situation a clash. A tableau is closed if all its branches are closed. A branch is open if
it is not closed, and no T-rule can be applied to it. A tableau is open if it has at least one
open branch.

In order to prove a formula of the form (8), each [non-]subsumption in Γ is associ-
ated with a tableau. For a sentence Ci v Di, the calculus aims at closing the tableau τi
that starts with the single branch

Li(ai) = {Ci,¬Di} (12)

Simona Colucci, et al. 75



with ai being an individual. For a sentenceCi 6v Di, the calculus, starting with τi as be-
fore, aims at obtaining an open tableau. We call system the n+ 1-tuple 〈τ1, . . . , τm, σ〉,
made of the n tableaux and the substitution on the variables. The system always starts
with σ = ∅. Substitution rules (S-rules) are presented below. We denote the appli-
cation of the substitution θ to 〈τ1, . . . , τm, σ〉 by θ〈τ1, . . . , τm, σ〉 and its result is
〈θ(τ1), . . . , θ(τn), θ ∪ σ〉.

All rules are applicable only if L is open, and the substitution is not σ-blocked.
Rules above the separating line have precedence over rules below it.

σ>-rule : apply [X/>] to 〈τ1, . . . , τm, σ〉
σN-rule : apply [X/A] to 〈τ1, . . . , τm, σ〉

σ¬-rule : apply [X/¬Y ] to 〈τ1, . . . , τm, σ〉, where Y denotes a concept variable not
appearing in 〈τ1, . . . , τm, σ〉

σ>-rule : apply [X/>mR.Y ] to 〈τ1, . . . , τm, σ〉, where Y denotes a concept variable
not appearing in 〈τ1, . . . , τm, σ〉, and if m > 1 then R is a simple role

σ6-rule : apply [X/6nR.Y ] to 〈τ1, . . . , τm, σ〉, where Y denotes a concept variable
not appearing in 〈τ1, . . . , τm, σ〉, and if n > 0 then R is a simple role

σu-rule : apply [X/Y1uY2] to 〈τ1, . . . , τm, σ〉, where Y1, Y2 denote concept variables
not appearing in 〈τ1, . . . , τm, σ〉

Note that T-rules are applied separately to each branch of each tableau, while S-rules
are applied to all branches of all tableaux at the same time.

An S-rule r is σ-blocked forX ∈ Li(x) in 〈τ1, . . . , τm, σ〉 if 〈τ1, . . . , τm, σ〉 derives
from some 〈τ ′1, . . . , τ ′m, σ′〉, in which there is some individual x′ such that: (i) X ′ ∈
L′i(x′), (ii) Li(x) = L′i(x′), (iii) for every R-successor y of x in Li, there exists an
R-successor y′ of x′ in L′i such that Li(y) = L′i(y′), (iv) for every S, the number of
different S-neighbors of x in Li is the same as the number of different S-neighbors of
x′ in L′i, and (v) Rule r has been applied to L′i in 〈τ ′1, . . . , τ ′m, σ′〉.
Theorem 2 (Soundness). Let Γ be as in (7). If the calculus of T- and S-rules, starting
with τi as in (12) and σ = ∅, yields a system 〈τ1, . . . , τm, σ〉 in which τi is closed for
i = 1, . . . , `, and τj is open for j = ` + 1, . . . ,m, then there exists a substitution σ′

such that σ′(Γ ) is true.

Proof. Let σ′ be σ in which every remaining unsubstituted concept variable is substi-
tuted with a different concept name A never appearing in Γ . Since T-rules are sound,
each closed tableau τi for i = 1, . . . , ` is a proof that σ(Ci) v σ(Di), and the same
is also a proof for σ′(Ci) v σ′(Di). Moreover, since T-rules are complete, each open
tableau τj for j = `+1, . . . ,m is a proof that σ(Cj) 6v σ(Dj), and the same remains a
proof for σ′(Cj) 6v σ′(Dj), since remaining variables are substituted by unconstrained
concept names. 2
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Theorem 3 (Completeness). Let Γ be as in (7). If there exists a substitution σ such
that σ(Γ ) is true, then there is a way of applying T- and S-rules that yields a system
〈τ1, . . . , τm, σ〉 in which τi is closed for i = 1, . . . , `, and τj is open for j = ` +
1, . . . ,m.

Proof. Since S-rules mimic SHIQ syntax (1), every ground substitution σ can be re-
constructed by repeated applications of S-rules. If one decides to apply all these S-
rules at once, one gets a system 〈τ ′1, . . . , τ ′m, σ′〉 in which each τi has one branch
Li(ai) = {σ(Ci), σ(¬Di)}, and σ′ = σ. Now since T-rules are sound and complete,
their application yields closed tableaux τi for i = 1, . . . , `, and open tableaux τj for
j = `+ 1, . . . ,m. 2

Soundness and completeness of the above calculus, together with undecidability re-
sults for specific problems such as unification in SHI [28], imply that there are infinite
instances in which the calculus does not terminate. However, for specific classes of for-
mulas of the form (8), a termination proof can be devised on the basis of σ-blocking
[12], which prevents the application of S-rules.

5 Discussion and Future Work

Some related work [3, 12] has been already compared within the technical sections of
the paper. In addition, some researchers proposed and studied the use of Higher-order
DLs for meta-modeling purposes. More specifically, Pan& Horrocks [20] propose a
stratified Higher-order DL (OWL FA) to cope with meta-assertions about concepts and
roles; OWL FA is incomparable with any DLX , since on one side, higher-order asser-
tions can be made, but on the other side, concept variables are not admitted. Motik [19]
proves that satisfiability in Higer-orderALCO, which is a fragment of OWL Full, is un-
decidable; his proof could not be rephrased in (SHIQ)X , since it exploits the feature
O to construct concepts starting from individuals. Motik also proposes a Higher-order
DL with two possible semantics, but again, he does not consider concept variables. De
Giacomo et al. [9] augment a DL with variables that may be interpreted—in a Henkin
semantics—as individuals, concepts, and roles at the same time, obtaining a new logic
Hi(DL). Also this extension is incomparable with anyDLX , since on one side one can
express in Hi(DL) arbitrarily higher-order concepts that are not expressible in DLX ,
while in DLX one can form complex concept terms that are not allowed in Hi(DL),
such as ∃R.X .

The innovative potential of the paper mainly lays in the investigation on non-standard
reasoning services apparently far from each other under a unifying lens. Such a unifica-
tion effort paves the way to important generalization results both in the definition and in
the solution of problems expressible according to the proposed framework. In particu-
lar, on the one hand we exploit the property that many non-standard reasoning services
are devoted to the “construction of an objective concept” in order to model all of them
as Constructive Reasoning Tasks trough special Second-order sentences in DLs; on the
other hand we propose a unified calculus aimed at the design and implementation of a
unique system able to solve any non-standard reasoning tasks, whose investigation is
object of our current and future research work.
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1 Introduction and Motivation

Description logics (DLs) [1] provide a logical foundation for modern ontology
languages such as OWL1 and OWL 2 [2]. EL++ [3] is a lightweight DL for
which reasoning is tractable (i.e., can be performed in time that is polynomial
w.r.t. the size of the input), and that offers sufficient expressivity for a num-
ber of life-sciences ontologies, such as SNOMED CT [4] or the Gene Ontology
[5]. Among other constructors, EL++ supports limited usage of datatypes. In
DL, datatypes (also called concrete domains) can be used to define new con-
cepts by referring to particular values, such as strings or integers. For exam-
ple, the concept Human u ∃hasAge.(<, 18) u ∃hasName.(=,“Alice”) describes hu-
mans, named “Alice”, whose age is less than 18. Datatypes are described first
by the domain their values can come from and also by the relations that can be
used to constrain possible values. In our example, (<, 18) refers to the domain
of natural numbers and uses the relation “<” to constrain possible values to
those less than 18, while (=, “Alice”) refers to the domain of strings and uses the
relation “=” to constrain the value to “Alice”.

In order to ensure that reasoning remains polynomial, EL++ allows only for
datatypes which satisfy a condition called p-admissibility [3]. In an nutshell, this
condition ensures that the satisfiability of datatype constraints can be solved
in polynomial time, and that concept disjunction cannot be expressed using
datatype concepts. For example, if we were to allow both ≤ and ≥ for integers,
then we could express A v B t C by formulating the axioms A v ∃R.(≤, 5),
∃R.(≤, 2) v B and ∃R.(≥, 2) v C. Similarly, we can show that p-admissibility
does not allow for both < (or >) and =. For this reason, the EL Profile of OWL
2, which is based on EL++, admits only equality (=) in datatype expressions.

In this paper, we demonstrate how these restrictions can be significantly
relaxed without loosing tractability. As a motivating example, consider the fol-
lowing two axioms which might be used, e.g., in a pharmacy-related ontology:

Panadol v ∃contains.(Paracetamol u ∃mgPerTablet.(=, 500)) (1)

Patient u ∃hasAge.(<, 6) u
∃hasPrescription.∃contains.(Paracetamol u ∃mgPerTablet.(>, 250)) v ⊥ (2)

1 http://www.w3.org/2004/OWL
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Axiom (1) states that the drug Panadol contains 500 mg of paracetamol per
tablet, while axiom (2) states that a drug that contains more than 250 mg of
paracetamol per tablet must not be prescribed to a patient younger than 6
years old. The ontology could be used, for example, to support clinical staff who
want to check whether Panadol can be prescribed to a 3-year-old patient. This
can easily be achieved by checking whether concept (3) is satisfiable w.r.t. the
ontology:

Patient u ∃hasAge.(=, 3) u ∃hasPrescription.Panadol (3)

Unfortunately, this is not possible using EL++, because axioms (1) and (2)
involve both equality (=) and inequalities (<, >), and this violates the p-
admissibility restriction. In this paper we demonstrate that it is, however, pos-
sible to express axioms (1) and (2) and concept (3) in a tractable extension of
EL. A polynomial classification procedure can then be used to determine the
satisfiability of (3) w.r.t. the ontology by checking if adding an axiom

X v Patient u ∃hasAge.(=, 3) u ∃hasPrescription.Panadol

for some new concept name X would entail X v ⊥.
Our idea is based on the intuition that equality in (1) and (3) serves a different

purpose than inequalities do in (2). Equality in (1) and (3) is used to state a fact
(the content of a drug and the age of a patient) whereas inequalities in (2) are
used to trigger a rule (what happens if a certain quantity of drug is prescribed
to a patient of a certain age). In other words, equality is used positively and
inequalities are used negatively. It seems reasonable to assume that positive
usages of datatypes will typically involve equality since a fact can usually be
precisely stated. On the other hand, it seems reasonable to assume that negative
occurrences of datatypes will typically involve equality as well as inequalities
since a rule usually applies to a range of situations. In this paper, we make a
fine-grained study of datatypes in EL by considering restrictions not only on the
kinds of relations included in a datatype, but also on whether the relations can
be used positively or negatively. The main contributions of this paper can be
summarised as follows:

1. We introduce the notion of a Numerical Datatype with Restrictions (NDR)
that specifies the domain of the datatype, the datatype relations that can
be used positively and the datatype relations that can be used negatively.

2. We extend the EL reasoning algorithm [3] to provide a polynomial reasoning
procedure for an extension of EL with NDRs, where the procedure is sound
for any NDR.

3. We introduce the notion of a safe NDR, show that every extension of EL with
a safe NDR is tractable and prove that our reasoning procedure is complete
for any safe NDR.

4. Finally, we provide a complete classification of safe NDRs for the cases of
natural numbers, integers, rationals and reals. Notably, we demonstrate that
the numerical datatype restrictions can be significantly relaxed by allowing
arbitrary numerical relations to occur negatively—not only equality as cur-
rently specified in the OWL 2 EL Profile. As argued earlier, this combination
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Table 1. Concept descriptions in EL⊥(D)

Name Syntax Semantics

Concept name C CI

Top > ∆I

Bottom ⊥ ∅
Conjunction C uD CI ∩DI
Existential restriction ∃R.C {x ∈ ∆I | ∃y ∈ ∆I : (x, y) ∈ RI ∧ y ∈ CI}
Datatype restriction ∃F.r {x ∈ ∆I | ∃v ∈ D : (x, v) ∈ F I ∧ r(v)}

is of particular interest to ontology engineering, and is thus a strong candi-
date for the next extension of the EL Profile in OWL 2.

2 Preliminaries

In this section we introduce EL⊥(D), an extension of EL⊥ [3] with numerical
datatypes. In the DL literature datatypes are better known as concrete domains
[6]; we call them datatypes to be more consistent with OWL 2 [2]. The syntax
of EL⊥(D) uses a set of concept names NC , a set of role names NR and a set of
feature names NF . EL⊥(D) is parametrised with a numerical domain D ⊆ R (R
is the set of real numbers). NC , NR and NF are countably infinite sets and, addi-
tionally, pairwise disjoint. We call (s, y), where s ∈ {<,≤, >,≥,=} and y ∈ D, a
D-datatype restriction (or simply a datatype restriction if the domain D is clear
from the context). Given a D-datatype restriction r = (s, y) and an x ∈ D, we
say that x satisfies r and we write r(x) iff (x, y) ∈ s, where s ∈ {<,≤, >,≥,=}
and s is interpreted as the standard relation on real numbers. Table 1 recursively
defines concepts in EL⊥(D), where C and D are concepts, R ∈ NR, F ∈ NF

and r is a D-datatype restriction. An axiom α (in EL⊥(D)) is an expression of
the form C v D, where C and D are concepts. An (EL⊥(D)−)ontology O is a
set of axioms. A concept E is said to positively (negatively) occur in an axiom
C v D iff it occurs in D (C). An interpretation of EL⊥(D) is a pair I = (∆I , ·I),
where ∆I is a non-empty set, the domain of the interpretation, and ·I is the in-
terpretation function. The interpretation function maps each A ∈ NC to a set
AI ⊆ ∆I , each R ∈ NR to a relation RI ⊆ ∆I × ∆I and each F ∈ NF to a
relation F I ⊆ ∆I×D. Note that we do not require the interpretation of features
to be functional. In this respect, they correspond to the data properties in OWL
2 [2]. The constructors of EL⊥(D) are interpreted as indicated in Table 1. An
interpretation I satisfies an axiom α = C v D iff CI ⊆ DI (written I |= α). If
I |= α for every α ∈ O, then I is a model of O (written I |= O). If every model
I of O satisfies the axiom α then we say that O entails α and we write O |= α.
We define the signature of an ontology O as the set sig(O) of concept, role and
feature names that occur in O. We say that an axiom in EL⊥(D) is in normal
form if it has one of the forms: A v B′ (NF1), A1 u A2 v B (NF2), A v ∃R.B
(NF3), ∃R.B v A (NF4), A v ∃F.r (NF5) or ∃F.r v A (NF6), where A, A1, A2,
B ∈ N>C , B′ ∈ N>,⊥

C , R ∈ NR, F ∈ NF and r is a D-datatype restriction. The
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normalization procedure is the same as for the EL++ [3]; more details can be
found in the technical report [7]. (N>C = NC ∪ {>}, N>,⊥

C = NC ∪ {>,⊥}).

3 Numerical Datatypes with Restrictions

In this section we introduce the notion of a Numerical Datatype with Restric-
tions (NDR) which specifies which datatype relations can be used positively and
negatively. We then present a sound polynomial consequence-based classification
procedure for EL⊥ extended with NDRs. Finally we prove that the procedure is
complete if the NDR satisfies special safety requirements.

Definition 1 (Numerical Datatype with Restrictions). A numerical data-
type with restrictions (NDR) is a triple (D, O+, O−), where D ⊆ R is a numeri-
cal domain and O+, O− ⊆ {<,≤, >,≥,=} is the set of positive and, respectively,
negative relations. An axiom in EL⊥(D) is an axiom in EL⊥(D, O+, O−) if for
every positive (negative) occurrence of a concept ∃F.(s, y) in the axiom, s ∈ O+

(s ∈ O−). An EL⊥(D, O+, O−)-ontology is a set of axioms in EL⊥(D, O+, O−).

We are going to describe a classification procedure for EL⊥(D, O+, O−),
which is closely related to the procedure for EL++ [3]. In order to formulate
inference rules for datatypes we need to introduce notation for satisfiability of
a datatype restriction and implication between datatype restrictions. For two
D-datatype restrictions r+ and r−, we write r+ →D r− iff r+(x) implies r−(x),
∀x ∈ D. We write r+ →D ⊥ iff there is no x ∈ D such that r+(x) holds. In
the opposite cases, we write r+ 9D r− and r+ 9D ⊥. We assume that deciding
whether r+ →D r− and r+ →D ⊥ can be done in polynomial time. It is easy to
see that this is the case when D is the set of natural numbers, integers, reals or
rationals for the set of relations {<,≤, >,≥,=}.

The classification procedure for EL⊥(D) takes as an input an ontology O
whose axioms are in EL⊥(D) and in normal form and applies the inference rules
in Table 2 to derive new axioms of the form NF1, NF3 and NF5. The rules are
applied to already derived axioms and use existence of axioms in O, r+ →D ⊥
or r+ →D r− as side-conditions. The procedure terminates when no new axiom
can be derived. It is easily checked that the procedure runs in polynomial time
(there are only polynomially many possible axioms of the form NF1, NF3 and
NF5 over sig(O)) and that the rules in Table 2 are sound (the conclusions of the
rules are logical consequences of their premises).

The completeness proof is based on the canonical model construction simi-
larly as for EL++ [3]. In order to deal with datatypes in the canonical model we
introduce a notion of a datatype constraint. Intuitively, a constraint specifies
which datatype restrictions should hold in a given element of the model and
which should not.

Definition 2 (Constraint). A constraint over (D, O+, O−) is defined as a
pair of sets (S+, S−), such that S+ = {(s1+, y1), . . . , (sn

+, yn)} with si
+ ∈ O+,

S− = {(s1−, z1), . . . , (sm
− , zm)} with sj

− ∈ O−, yi, zj ∈ D, (si
+, yi) 9D (sj

−, zj)
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Table 2. Reasoning rules in EL⊥(D) (A,B,C,E ∈ N>C , C′ ∈ N>,⊥
C , R ∈ NR, F ∈ NF )

IR1
A v A IR2

A v > CR1
A v B
A v C′ B v C′ ∈ O

CR2
A v B A v C

A v D B u C v D ∈ O CR3
A v B

A v ∃R.C B v ∃R.C ∈ O

CR4
A v ∃R.B B v C

A v D ∃R.C v D ∈ O CR5
A v ∃R.B B v ⊥

A v ⊥

ID1
A v ⊥ A v ∃F.r+ ∈ O , r+ →D ⊥ CD1

A v B
A v ∃F.r+ B v ∃F.r+ ∈ O

CD2
A v ∃F.r+
A v B ∃F.r− v B ∈ O , r+ →D r−

and (si
+, yi) 9D ⊥ for 1 ≤ i ≤ n, 1 ≤ j ≤ m and m, n ≥ 0. A constraint

(S+, S−) over (D, O+, O−) is satisfiable iff there exists a solution of (S+, S−)
that is a set V ⊆ D such that every r+ ∈ S+ is satisfied by at least one v ∈ V
but no r− ∈ S− is satisfied by any v ∈ V .

Our model construction procedure works only for the cases where we can ensure
that every constraint over a numerical domain is satisfiable. This leads us to a
notion of safety for an NDR.

Definition 3 (NDR Safety). Let (D, O+, O−) be an NDR. (D, O+, O−) is
safe iff every constraint over (D, O+, O−) is satisfiable.

Definition 4 (Strong and Weak Convexity). The NDR (D, O+, O−) is
strongly convex when for every ri

+ = (si
+, yi) and rj

− = (sj
−, zj), with si

+ ∈ O+,
sj
− ∈ O− and yi, zj ∈ D (1 ≤ i ≤ n, 1 ≤ j ≤ m), if

∧n
i=1 r

i
+ →D

∨m
j=1 rj

−, then
there exists an rj

− (1 ≤ j ≤ m) such that
∧n

i=1 r
i
+ →D rj

−. (D, O+, O−) is weakly
convex when the implication holds for n = 1.

For example the NDR (Z, {<,>}, {=}) is weakly convex but not strongly
convex. It is weakly convex since the implications ((<, y) →Z

∨m
j=1(=, zj))

and ((>, y) →Z
∨m

j=1(=, zj)) never hold. However, it is not strongly convex:
it is (>, 2) ∧ (<, 5)→Z (=, 3) ∨ (=, 4), but also (>, 2) ∧ (<, 5) 9Z (=, 3) and
(>, 2) ∧ (<, 5) 9Z (=, 4).

Lemma 1. (D, O+, O−) is safe iff it is weakly convex.

Proof. We assume that (D, O+, O−) is not weakly convex and we prove that it
is non-safe. Since it is not weakly convex we have that for some r+ →D

∨m
j=1 rj

−
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there exists no rj
− such that r+ →D rj

−. We define (S+, S−), with S+ = {r+}
and S− = {rj

−}mj=1 and we prove that (S+, S−) is not satisfiable. (S+, S−) is
indeed a constraint because r+ 9D ⊥ (otherwise r+ →D rj

− is true for every
rj
−) and for every rj

−, r+ 9D rj
− (otherwise r+ →D rj

− is true for at least one
rj
−). Additionally, it is not satisfiable, because from r+ →D

∨m
j=1 rj

− there can
be found no x such that r+(x) and

∧m
j=1 ¬rj

−(x).
We prove that if (D, O+, O−) is not safe, then it is not weakly convex.

Since it is not safe then there exists a non-satisfiable constraint (S+, S−), where
S+ = {ri

+}ni=1 and S− = {rj
−}mj=1. We have S+, S− 6= ∅ because otherwise a

solution for (S+, S−) exists. Since (S+, S−) is not satisfiable there exists no
x for 1 ≤ i ≤ n such that ri

+(x) and
∧m

j=1 ¬rj
−(x), or otherwise written,

ri
+ →D

∨m
j=1 rj

−. From this and ri
+ 9D rj

− (from the constraint definition),
(D, O+, O−) is not weakly convex. ut
Theorem 1 (Completeness). Let (D, O+, O−) be a safe NDR, let O be an
EL⊥(D, O+, O−)-ontology containing axioms in normal form and let O′ be the
saturation of O under the rules of Table 2. For every A, B ∈ (N>C ∩ sig(O)), if
O |= A v B, then A v B ∈ O′ or A v ⊥ ∈ O′.
Proof. The proof is analogous to the completeness proof for the EL++ language
[3]; we build a canonical model I for O using O′ and show that if A 6v B ∈ O′
and A 6v ⊥ ∈ O′ then I 2 A v B.
For every A ∈ NC , F ∈ NF , define S+(A,F ) and S−(A,F ), as follows:

S+(A,F ) = {r+ | A v ∃F.r+ ∈ O′, A v ⊥ /∈ O′} (3)
S−(A,F ) = {r− | ∃F.r− v B ∈ O, A v B /∈ O′} (4)

We now show that (S+(A,F ), S−(A,F )) is a constraint over (D, O+, O−). First
we prove that r+ 9D ⊥, ∀r+ ∈ S+(A,F ), which is true because otherwise
due to rule ID1 it would be A v ⊥ ∈ O′, in contradiction to the definition
of S+(A,F ). Additionally, there is no r+ ∈ S+(A,F ) and r− ∈ S−(A,F ) such
that r+ →D r−, otherwise from A v ∃F.r+ ∈ O′, ∃F.r− v B ∈ O and CD2

it would be A v B ∈ O′ which contradicts the definition of S−(A,F ). Since
(S+(A,F ), S−(A,F )) is a constraint over (D, O+, O−) and (D, O+, O−) is safe,
there exists a solution V (A,F ) ⊆ D of (S+(A,F ), S−(A,F )). We now construct
the canonical model I:

∆I = {xA | A ∈ (N>C ∩ sig(O)), A v ⊥ /∈ O′} (5)
BI = {xA | xA ∈ ∆I , A v B ∈ O′} (6)
RI = {(xA, xB) | A v ∃R.B ∈ O′, xA, xB ∈ ∆I} (7)
F I = {(xA, v) | v ∈ V (A,F )} (8)

We prove that I |= O by showing that I |= α, when α takes one of the NF1-NF6.
NF1 A v B: We need to prove AI ⊆ BI . Take an x ∈ AI . By (6), x = xC

such that C v A ∈ O′. From A v B ∈ O and since O′ is closed under CR1, we
have C v B ∈ O′. Hence x = xC ∈ BI by (6).
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If B = ⊥, then we need to show that AI = ∅. If there exists x ∈ AI ,
then by (6) x = xC such that C v A ∈ O′. Since O′ is closed under CR1 and
A v ⊥ ∈ O′, we have C v ⊥ ∈ O′. Thus, x = xC /∈ ∆I by (5), which contradicts
our assumption that x ∈ AI .

We examine separately the case when A = >. We have that xA ∈ ∆I and
we need to show that xA ∈ BI . From rule IR2, we have that A v > ∈ O′. From
rule CR1, A v B ∈ O′; since xA ∈ ∆I and A v B ∈ O′ we get xA ∈ BI by (6).

NF2 A1 uA2 v B: We prove (A1 uA2)I ⊆ BI . Take an x ∈ (A1 u A2)I ;
then, x ∈ AI1 , x ∈ AI2 and by (6) x = xA for some concept name A such that
A v A1 ∈ O′ and A v A2 ∈ O′. Since A v A1 ∈ O′, A v A2 ∈ O′ and
A1 uA2 v B ∈ O, closure under rule CR2 gives A v B ∈ O′ or x ∈ BI , by (6).

NF3 A v ∃R.B: We show AI ⊆ (∃R.B)I ; take an x ∈ AI . By (6), x = xC

where C v A ∈ O′. Since A v ∃R.B ∈ O and O′ is closed under CR3, we have
C v ∃R.B ∈ O′. Since xC ∈ ∆I , we have C v ⊥ /∈ O′ and, hence, B v ⊥ /∈ O′
by CR5. Thus, xB ∈ ∆I and (xC , xB) ∈ RI by (7). Since B v B ∈ O′ by IR1, we
have xB ∈ BI by (6). Thus, x = xC ∈ (∃R.B)I .

NF4 ∃R.B v A: We prove (∃R.B)I ⊆ AI ; take an x ∈ (∃R.B)I . Then, there
exists y ∈ ∆I such that (x, y) ∈ RI and y ∈ BI . By (7) and (6) x = xC

and y = xD such that C v ∃R.D ∈ O′ and D v B ∈ O′ respectively. Since
∃R.B v A ∈ O and O′ is closed under CR4, C v A ∈ O′. By (6), x = xC ∈ AI .

NF5 A v ∃F.r+: We show that AI ⊆ (∃F.r+)I ; take an x ∈ AI . By (6),
there exists a concept name C such that x = xC and C v A ∈ O′. Since
A v ∃F.r+ ∈ O and O′ is closed under CD1, we have C v ∃F.r+ ∈ O′. We use
(3) and (4) to build (S+(C,F ), S−(C,F )); we have r+ ∈ S+(C,F ). By (8) we
have (xC , v) ∈ F I for every v ∈ V (C,F ). Since r+ ∈ S+(C,F ), there exists
v ∈ V (C,F ) such that v satisfies r+ and, hence, x = xC ∈ (∃F.r+)I .

NF6 ∃F.r− v B: We prove that (∃F.r−)I ⊆ BI ; take an x ∈ (∃F.r−)I . By
(5), there exists C ∈ (N>C ∩sig(O)) such that x = xC . By (3) and (4) we construct
(S+(C,F ), S−(C,F )). Since xC ∈ (∃F.r−)I , by (8), there exists v ∈ V (C,F ),
such that r−(v) and V (C,F ) is a solution for (S+(C,F ), S−(C,F )). Hence,
r− /∈ S−(C,F ), and so, C v B ∈ O′ by (4). By C v B ∈ O′ and (6), xC ∈ BI .

We now show that if A v B /∈ O′ and A v ⊥ /∈ O′, then O 2 A v B by
proving I 2 A v B (since I |= O). AI * BI holds, because xA ∈ ∆I (from
A v ⊥ /∈ O′ and (5)), xA ∈ AI (from A v A ∈ O′ using rule IR1 and by (6)) and
xA /∈ BI (from A v B /∈ O′ and (6)). ut

4 Maximal Safe NDRs for N, Z, R and Q

In this section we present a full classification of safe NDRs for natural numbers
(0 ∈ N), integers, reals and rationals. Table 3 lists all maximal safe NDRs for N,
Z, R and Q. Due to space constraints we present proofs only for the maximal
NDRs of natural numbers, that is NDR1, NDR2, NDR9 and NDR10. For these we
show that: (i) they are safe (ii) extending any of them leads to non-safety and (iii)
every safe NDR w.r.t. N is contained in one of the NDR1, NDR2, NDR9 or NDR10.
Table 4 presents some basic transformations between (satisfiable) constraints.
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Table 3. Maximal safe NDRs for N, Z, R and Q where D is the domain and O+ ,O−
is the set of positive and, respectively, negative relations

NDR D O+ O−
NDR1 N, Z, R, Q {=} {<,≤, >,≥,=}
NDR2 N, Z {>,≥,=} {<,≤,=}
NDR3 Z {<,≤,=} {>,≥,=}
NDR4 R, Q {<,>,≥,=} {<,≤,=}
NDR5 R, Q {<,≤, >,=} {>,≥,=}
NDR6 Z {<,≤, >,≥,=} {=}
NDR7 R, Q {<,≤, >,≥,=} {≤,=}
NDR8 R, Q {<,≤, >,≥,=} {≥,=}
NDR9 N, Z, R, Q {<,≤, >,≥,=} {<,≤}
NDR10 N, Z, R, Q {<,≤, >,≥,=} {>,≥}

Table 4. Transformations C1 ⇒ C2 preserving constraints and their satisfiability for
N, where S−, S+ and S are sets of datatype restrictions and y1 ≤ y2, z1 ≤ z2

C1 = (S ∪ S1
+, S−), C2 = (S ∪ S2

+, S−) C1 = (S+, S ∪ S1
−), C2 = (S+, S ∪ S2

−)

S1
+ S2

+ S1
− S2

−
{(<, y)} {(≤, y − 1)} {(<, z)} {(≤, z − 1)}
{(>, y)} {(≥, y + 1)} {(>, z)} {(≥, z + 1)}

{(≤, y1), (≤, y2)} {(≤, y1)} {(≤, z1), (≤, z2)} {(≤, z2)}
{(≥, y1), (≥, y2)} {(≥, y2)} {(≥, z1), (≥, z2)} {(≥, z1)}
{(=, y1), (≤, y2)} {(=, y1)} {(=, z1), (≤, z2)} {(≤, z2)}
{(≥, y1), (=, y2)} {(=, y2)} {(≥, z1), (=, z2)} {(≥, z1)}

{(<, 0)} ∅

Lemma 2. Let C1 and C2 be as defined in Table 4 and (N, O+, O−) be an
NDR. Then (i) C1 is a constraint over (N, O+, O−) iff C2 is a constraint over
(N, O+, O−) and (ii) if C1 and C2 are both constraints over (N, O+, O−), then
C1 is satisfiable iff C2 is satisfiable.

Corollary 1. For N, let NDRi with i = 1, 2, 9, 10. For every C1 = (S1
+, S

1
−)

over NDRi there exists a constraint C2 = (S2
+, S

2
−) over NDRi, y1, . . . , yn ∈ N

and z1, . . . , zm ∈ N with m, n ≥ 0 such that:

S2
+ ⊆ {(≤, y1), (=, y2), . . . , (=, yn−1), (≥, yn)}
S2
− ⊆ {(≤, z1), (=, z2), . . . , (=, zm−1), (≥, zm)}

where z1 < y1 < . . . < yn < zm, z1 < . . . < zm, yi 6= zj (2 ≤ i ≤ n − 1,
2 ≤ j ≤ m− 1) and C1 over NDRi is satisfiable iff C2 over NDRi is satisfiable.

Lemma 3. NDR1, NDR2, NDR9 and NDR10 (all for N) are safe.

Proof. We prove safety by building a solution V for every (S+, S−) over the
NDRs; by Corollary 1 we can assume w.l.o.g. the following restrictions:

86 Tractable Extensions of EL with Numerical Datatypes



NDR1: For S+ we have that S+ ⊆ {(=, y1), . . . , (=, yn)} and for S− that
S− ⊆ {(≤, z1), (=, z2), . . . , (=, zm−1), (≥, zm)} with z1 < y1 < . . . < yn < zm,
z1 < . . . < zm and yi 6= zj (1 ≤ i ≤ n, 2 ≤ j ≤ m− 1). V = {y1, . . . , yn}.

NDR2: For S+ we have that S+ ⊆ {(=, y1), . . . , (=, yn−1), (≥, yn)} and for S−
that S− ⊆ {(≤, z1), (=, z2), . . . , (=, zm)} with z1 < y1 < . . . < yn, z1 < . . . < zm

and yi 6= zj (1 ≤ i ≤ n − 1, 2 ≤ j ≤ m). V = {y1, . . . , yn−1, y
′
n}, where

y′n = max(yn, zm) + 1.
NDR9: For S+ we have that S+ ⊆ {(≤, y1), (=, y2), . . . , (=, yn−1), (≥, yn)}

and for S− that S− ⊆ {(≤, z1)} with z1 < y1 < . . . < yn. V = {y1, . . . , yn}.
NDR10: For S+ we have that S+ ⊆ {(≤, y1), (=, y2), . . . , (=, yn−1), (≥, yn)}

and for S− that S− ⊆ {(≥, z1)} with y1 < . . . < yn < z1. V = {y1, . . . , yn}. ut
Lemma 4. Let NDR = (N, O+, O−). If (a), (b) or (c), then NDR is non-safe.

(a) O+ ∩ {<,≤, >,≥} 6= ∅, O− ∩ {<,≤} 6= ∅ and O− ∩ {>,≥} 6= ∅.
(b) O+ ∩ {>,≥} 6= ∅, O− ∩ {>,≥} 6= ∅ and {=} ⊆ O−.
(c) O+ ∩ {<,≤} 6= ∅ and {=} ⊆ O−.

Proof. For every of the cases (a)-(c) we provide a counterexample that violates
the weak convexity condition and, thus by Lemma 1, safety:
(a): (<, 3)→N (<, 1) ∨ (≥, 1) but (<, 3) 9N (<, 1) and (<, 3) 9N (≥, 1). The
same counterexample applies when O+ ∩ {<,≤} 6= ∅, {≤, >} ⊆ O− and when
O+ ∩ {<,≤} 6= ∅, {≤,≥} ⊆ O−. For O+ ∩ {<,≤} 6= ∅, {<,>} ⊆ O− it is
(<, 3)→N (<, 2) ∨ (>, 1) but (<, 3) 9N (<, 2) and (<, 3) 9N (>, 1). A similar
example can be given for the the cases when O+ ∩ {>,≥} 6= ∅.
(b): (>, 1)→N (=, 2) ∨ (≥, 3) but (>, 1) 9N (=, 2) and (>, 1) 9N (≥, 3)

(>, 1)→N (=, 2) ∨ (>, 2) but (>, 1) 9N (=, 2) and (>, 1) 9N (>, 2)
(≥, 1)→N (=, 1) ∨ (≥, 2) but (≥, 1) 9N (=, 1) and (≥, 1) 9N (≥, 2)
(≥, 1)→N (=, 1) ∨ (>, 1) but (≥, 1) 9N (=, 1) and (≥, 1) 9N (>, 1)

(c): (<, 3)→N (=, 1) ∨ (=, 2) but (<, 3) 9N (=, 1) and (<, 3) 9N (= 2)
(≤, 2)→N (=, 1) ∨ (=, 2) but (≤, 2) 9N (=, 1) and (≤, 2) 9N (= 2) ut

Lemma 5. NDR1, NDR2, NDR9 and NDR10 (all for N) are maximal safe, that
is if any relation is added to O+ or O− they become non-safe.

Proof. We examine all cases of adding a new relation:
NDR1: If any of the <, ≤, >, ≥ is added to O+, then NDR1 becomes non-safe

due to Lemma 4(a).
NDR2: If > or ≥ is added to O−, then non-safety is due to Lemma 4(b). For

adding < or ≤ to O+, non-safety is due to Lemma 4(c).
NDR9: If > or ≥ is added to O−, then non-safety is due to Lemma 4(a). When

= is added to O− then NDR9 becomes non-safe due to Lemma 4(c).
NDR10: If < or ≤ is added to O−, then non-safety is due to Lemma 4(a). When

= is added to O− then NDR10 becomes non-safe due to Lemma 4(c). ut
It remains to demonstrate that every safe NDR for N is contained in one of the
NDR1, NDR2, NDR9 or NDR10. In the following, we assume that Oi

+ and Oi
− are

defined such that NDRi = (N, Oi
+, O

i
−) with i = 1, 2, 9, 10.
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Lemma 6. If (N, O+, O−) is a safe NDR, then O+ ⊆ Oi
+ and O− ⊆ Oi

− for
i = 1, 2, 9 or 10.

Proof. The proof is by case analysis of possible relations in O+ and O−.
Case 1: O+ ∩ {<,≤, >,≥} = ∅. In this case, O+ ⊆ O1

+ and O− ⊆ O1
−.

Case 2: O+ ∩ {<,≤, >,≥} 6= ∅. If O− ∩ {<,≤} 6= ∅ and O− ∩ {>,≥} 6= ∅ at the
same time, then from Lemma 4(a), the NDR is non-safe. Therefore, we examine
two cases: either O− ⊆ {>,≥,=} or O− ⊆ {<,≤,=}.
Case 2.1: O− ⊆ {>,≥,=}. We distinguish either O− ⊆ {>,≥} or {=} ⊆ O−.
Case 2.1.1: O− ⊆ {>,≥} = O10

− and O+ ⊆ O10
+ .

Case 2.1.2: {=} ⊆ O−. By Lemma 4(c) it should be O+ ⊆ {>,≥,=} = O2
+

otherwise the NDR is non-safe. If O− ∩ {>,≥} 6= ∅ then the NDR is non-safe by
Lemma 4(b); otherwise O− = {=} ⊆ O2

−.
Case 2.2: O− ⊆ {<,≤,=} = O2

−. If O+ ⊆ {>,≥,=}, then O+ ⊆ O2
+. Otherwise,

O+ ∩ {<,≤} 6= ∅ and we distinguish whether O− ⊆ {<,≤} or {=} ∈ O−.
Case 2.2.1: O− ⊆ {<,≤} = O9

− and O+ ⊆ O9
+.

Case 2.2.2: {=} ∈ O−. In this case, the NDR is non-safe by Lemma 4(c). ut
For the cases of integers, reals and rationals the proofs are analogous to the

case of natural numbers. The interested reader can find details in the technical
report [7]. In the following, we provide a brief explanation for the results. We
notice two new maximal safe NDRs w.r.t. Z, namely NDR3 and NDR6. The reason
is that integers do not have a minimal element such as 0 in the case of naturals.
In particular positive occurrences of < (or ≤) and negative occurrence of = are
no longer dangerous (e.g. (≤, 1) 9Z (=, 1) ∨ (=, 0) does not hold anymore).
Reals and rationals are examples of dense domains: between every two different
numbers there always exists a third one. This property is responsible for new
safe NDRs. Specifically, O+ of NDR2 and NDR3 can be extended with < and >
respectively because the weak convexity property which did not apply for Z now
applies for R (e.g. (<, 5) 9R (=, 4) ∨ (≤, 3)). For the same reason, either ≤ or
≥ can be added to O− of NDR6 (e.g. (≤, 5) 9R (=, 5) ∨ (≤, 4)).

5 Related Work and Conclusions

Datatypes have been extensively studied in the context of DLs [3, 6, 8]. Exten-
sions of expressive DLs with datatypes have been examined in depth [6] with
the main focus on decidability. Baader, Brandt and Lutz [3] formulated tractable
extensions of EL with datatypes using a p-admissibility restriction for datatypes.
A datatype D is p-admissible if (i) satisfiability and implication of conjunctions
of datatype restrictions can be decided in polynomial time, and (ii) D is convex:
if a conjunction of datatype restrictions implies a disjunction of datatype restric-
tions then it also implies one of its disjuncts [3]. In our case instead of condition
(i) we require that implication and satisfiability of just datatype restrictions (not
conjunctions) is decidable in polynomial time since we do not consider functional
features. Condition (ii) is relaxed to the requirement of safety for NDRs since
we take into account not only the domain of the datatypes and the types of
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restrictions but also the polarity of their occurrences. The relaxed restrictions
allow for more expressive usage of datatypes in tractable languages, as demon-
strated by the example given in the introduction. Furthermore, Baader, Brandt
and Lutz did not provide a classification of datatypes that are p-admissible; in
our case we provide such a classification for natural numbers, integers, rationals
and reals. The EL Profile of OWL 2 [2] is inspired by EL++ and restricts all
OWL 2 datatypes to satisfy p-admissibility in such a way that only equality can
be used. Our result can allow for a significant extension of datatypes in the OWL
2 EL Profile, where in addition inequalities can be used negatively.

Our work is not the only one where the convexity property is relaxed without
losing tractability. It has been shown [8] that the convexity requirement is not
necessary provided that (i) the ontology contains only concept definitions of the
form A ≡ C, where A is a concept name, and (ii) every concept name occurs
at most once in the left-hand side of the definition. In some applications this
requirement can be too restrictive since it disallows the usage of general concept
inclusion axioms (GCIs), such as the axiom (2) given in the introduction, which
do not cause any problem in our case.

In this work we made a fine-grained analysis of extensions of EL with nu-
merical datatypes, focusing not only on the types of relations but also on the
polarities of their occurrences in axioms. We made a full classification of cases
where these restrictions result in a tractable extension for natural numbers, in-
tegers, rationals and reals. One practically relevant case for these datatypes is
when positive occurrences of datatype expressions can only use equality and
negative occurrences can use any of the numerical relations considered. This
case was motivated by an example of a pharmacy-related ontology and can be
proposed as a candidate for a future extension of the OWL 2 EL Profile. For
the cases where the extension is tractable, we provided a polynomial sound and
complete consequence-based reasoning procedure, which can be seen as an ex-
tension of the completion-based procedure for EL. We think that the procedure
can be straightforwardly extended to accommodate other constructors in EL++

such as (complex) role inclusions, nominals, domain and range restrictions and
assertions since these constructors do not interact with datatypes [9]. We hope
to investigate these extensions in future works.

In future work we also plan to consider other OWL datatypes, such as strings,
binary data or date and time, functional features, and to try to extend the
consequence-based procedure for Horn SHIQ [10] with our rules for datatypes.
For example, to extend the procedure with functional features, we probably need
a notion of “functional safety” for an NDR that corresponds to the strong con-
vexity property (see Definition 4). In order to achieve even higher expressivity for
datatypes we shall study how to combine different restrictions on the datatypes
occurring in an ontology so that tractability is preserved. For example, using
two safe NDRs in a single ontology may result in intractability, as is the case for
NDR1 and NDR6 for integers (see Table 3). One possible solution to this problem
is to specify explicitly which features can be used with which NDRs in order to
separate their usage in ontologies.
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Supporting the Development of Data Wrapping
Ontologies (Extended Abstract)?

Lina Lubyte and Sergio Tessaris

KRDB Research Centre, Free University of Bozen-Bolzano

1 Introduction

The use of a conceptual model or an ontology to wrap and describe relational
data sources has been shown to be very effective in several frameworks involving
management and access of data, such as information integration through medi-
ated schemata [1], and the Semantic Web [2]. Ontologies provide a conceptual
view of the application domain, which is closer to the user perspective, and au-
tomated reasoning can be leveraged to support exploration and querying of the
underlying data sources.

In this paper we focus on the problem of designing ontologies which describe
relational data sources, and whose purpose is to provide a semantically enriched
access to the underlying data. We use the term data wrapping ontologies to
distinguish these ontologies from domain ontologies; whose purpose is to model
a domain.

In order to maximise the benefits of using data wrapping ontologies, these
should be rich enough to ease their integration with the domain ontology and, at
the same time, precisely characterise the data they wrap. Ontologies extracted
automatically from data sources (e.g. by analysing the constraints in the logical
schema) are faithful representations of the data sources; however, they are usu-
ally shallow and with a limited vocabulary. For this reason, they can be used as
bootstrap ontologies, and the task of enriching the extracted ontology is crucial
in order to build a truly effective ontology-based information access system. The
process of enriching an ontology involves at least the introduction of new axioms
and/or new terms. While, from a purely ontological viewpoint, an ontology can
be arbitrarily modified, we need to bear in mind that the ultimate purpose of
the data wrapper is to access the information available from the data sources.
This means that newly introduced terms (concepts or roles) should be “backed”
by data in the sources; i.e. queries over these terms should be rewritable w.r.t.
data sources.

It is easy to provide examples where newly introduced terms will always
return empty answers, regardless the actual data contained in the sources (see
Section 3). This not necessarily because they are unsatisfiable in the usual model

? This paper is an excerpt from the ASWC 2009 paper “Supporting the Development
of Data Wrapping Ontologies” by the same authors. The work presented in this
paper has been partially funded by the European project ONTORULE.

Proc. 23rd Int. Workshop on Description Logics (DL2010), CEUR-WS 573, Waterloo, Canada, 2010.
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theoretic meaning, but because there is no way of mapping them into the data
sources.

In order to ensure that queries over ontologies wrapping data sources provide
sensible answers, these ontologies must be carefully handcrafted by taking into
account the query answering algorithm. To the best of our knowledge, little or
no research has been devoted to the support of the ontology engineer in such a
complex and error prone task. Our research is directed to techniques and tools
to support this modelling process.

In [3] we introduced the problem and presented some preliminary results. The
contribution of this paper is a generalisation of the these results, by providing
algorithms to verify term emptiness for a more expressive class of ontology lan-
guages (see [4]). In particular, a crucial gain in terms of expressive power of the
language adopted in this work is the ability to express inclusions among roles.
Moreover we provide a technique to support the user in the “repair” of the empty
terms and we present empirical study showing the benefits of our approach.

2 Preliminaries

To formalize ontologies, we use the DL ELHI [4]. For P an atomic role, an
ELHI basic role has the form P or P−. For A an atomic concept, an ELHI
basic concept has the form A,∃R,∃R.A or B1 uB2, where R is a basic role. An
ELHI ontology is formalized in terms of a TBox, which is a set of inclusion
assertions of the form B1 v B2 or R1 v R2, with B1, B2 basic concepts and
R1, R2 basic roles. The actual data instances are instead stored in an ABox, that
consists of a set of membership assertions of the form A(a) or R(a, b), with A an
atomic concept, P an atomic role, and a, b constants1. An ELHI knowledge base
(KB) K is a tuple 〈T ,A〉, where T is a TBox and A is an ABox. We assume the
“standard” DL semantics, with the unique name assumption.

A datalog rule is an expression of the form α(x)← body(x,y), where α(x) is
the head atom and body(x,y) is a set of body atoms. A datalog program Π is a set
of datalog rules. The extensional database (EDB) predicates of Π are those that
do not occur in the head atom of any rule in Π; all other predicates are called
intentional database (IDB) predicates. A datalog query Q over an ELHI KB K
is a tuple 〈QΠ , Π〉, where QΠ is a query predicate and Π is a datalog program
whose predicates (except QΠ) are concept and role names occurring in K. Q is
a conjunctive query (CQ) if Π contains exactly one rule with QΠ as its head
predicate not occurring in the body. A tuple of constants a is a certain answer
to a datalog query Q over K iff K ∪Π |= QΠ(a), where Π is considered to be
a set of universally quantified implications with the usual first-order semantics.
We use cert(Q,K) to denote the set of all certain answers to Q over K.

1 As a matter of fact, an ABox is considered only virtually, while the actual data is
stored in a relational DBMS and wrapped by means of an ontology; see [5].
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3 Emptiness of Ontology Terms

The foundation of our technique is the problem of verifying the emptiness of
a given term w.r.t. a set of data source terms (i.e. terms “connected” to data
sources). Given a Description Logic (DL) theory composed by TBox and ABox
over a given vocabulary, we define a subset of the concepts and roles as data
source terms. Given a TBox, a concept or role term is empty iff the certain answer
of the query defined by the term is empty for all possible ABoxes whose assertions
are restricted to data source terms. The idea is that data (by means of ABox
assertions) can only be associated to data source terms. Clearly the problem is
different from classical (un)satisfiability, because we impose a restriction on the
kind of allowed ABox assertions. Note that the two problems coincide when all
the DL terms are considered as data sources.

To provide an intuition of the reasoning task let us consider a simple exam-
ple depicted in Figure 1, where the bottom part represents the logical schema,
the middle part the data source terms (connected with the relational sources by
means of mappings, depicted with dashed arrows) and the top part the enriched
fragment of the ontology. It is obvious that any query on Actor would always
return empty answer, whatever the data sources may contain; while the concept
represented by the same term would be satisfiable. The situation would be dif-
ferent if Actor was also restricted to elements whose range w.r.t. person_role was
bound to ActingRole2. In this case, there could be instances of the database for
which the same query on Actor would return a nonempty answer.
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Fig. 1. Example of a simple data wrapper

Let ΣDB denote the subset of terms occurring in T as “coming” from the
data sources, i.e. data source terms. Given such ΣDB, a ΣDB-ABox is an ABox
defined over ΣDB only. Given a term η in T , we call a query for η a CQ of the
form Q(x)← η(x) (resp., Q(x, y)← η(x, y)), for η an atomic concept (resp., an
atomic role) in T . Our goal is to test whether η is empty w.r.t. the data at the

2 In DL terms this corresponds to an inclusion assertion ∃person_role.ActingRole v
Actor.
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sources, i.e., w.r.t. ΣDB. Clearly, such a test should involve the query answering
process. That is, to verify emptiness of η, we have to check whether a query for
η is empty given a TBox and a ΣDB-ABox.

Definition 1. Let T be an ELHI TBox and η a term in T with query Q for η.
Then, η is empty w.r.t. ΣDB iff cert(Q, 〈T ,A〉) = ∅ for every ΣDB-ABox A.

This defines the problem studied in this paper: given a term η in T with a CQ
Q for η, test whether cert(Q, 〈T ,A〉) = ∅ for every A whose assertions are over
ΣDB only. Note however that this does not imply that we will be necessarily
computing cert(Q, 〈T ,A〉).

It is well known that the problem of computing certain answers in the pres-
ence of an incomplete database is often solved via query rewriting under con-
straints. Specifically, from [6] we have that given a conjunctive query Q over an
ELHI KB K = 〈T ,A〉, we can compute another query Q′, a rewriting of Q,
such that the certain answers of Q over K and the answers of Q′ over A only
coincide, i.e., cert(Q, 〈T ,A〉) = cert(Q′,A). Thus, we have the following:

Lemma 1. Let T be an ELHI TBox and η a term in T with query Q for η.
Let Q′ be a rewriting of Q. Then, η is empty w.r.t. ΣDB iff cert(Q′,A) = ∅ for
every ΣDB-ABox A.

The above lemma shows that the problem of testing emptiness of a given term
amounts to verifying whether the rewriting of its query returns empty answer
for every possible ΣDB-ABox. We will see later that for this purpose we will
not need to compute the actual evaluation, however, we will employ the above
relationship as described in the sequel.

4 Testing Emptiness

The rewriting of a CQ over ELHI KB is a datalog query [6]. Therefore, according
to Lemma 1, our problem now comes down to testing emptiness of a query
predicate in the rewritten datalog program. The problem of verifying emptiness
of datalog predicates has been addressed by Vardi [7], showing that deciding
emptiness of IDB predicates can be done in polynomial time. The key idea
underlying this result is the observation that a datalog program can be viewed
as an infinite union of CQs that, in turn, can be described by means of expansion
trees. Importantly, [7] shows that we can get rid of variables when building
expansion trees, obtaining skeletons of expansion trees. Then, an IDB predicate
is empty in a datalog program, iff there is no skeleton tree for that predicate
having as leaves EDB predicates only. We build our approach on the results
of [7], and in particular on the possibility of building finitely labelled trees for
IDB predicates.

For a term η with a CQ Q for η in an ELHI TBox T , we devise our emptiness
testing algorithm in four steps: (i) rewrite Q using procedure of [6], obtaining
a datalog query Q′ = 〈QΠ , Π〉, (ii) add to Π auxiliary rules for making IDB
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and EDB predicates explicit, (iii) for the resulting Datalog program with a
query predicate QΠ , build an AND-OR skeleton tree for QΠ , and (iv) traverse
the obtained tree by marking its nodes as empty/nonempty corresponding to
empty/nonempty predicates, and, in turn, to empty/nonempty concepts and
roles in T . In the following we will elaborate on steps (ii)-(iv); for details on the
rewriting algorithm we refer to [6].

Given a datalog program Π with a query predicate QΠ resulting from rewrit-
ing a CQ for a given term over T , let Π∗ denote a datalog program obtained by
adding to Π rules of the form:

– A(x) ← A(x), P (x, y) ← P (x, y), for every predicate symbol A,P ∈ Π
corresponding to an atomic concept and role in T , respectively, such that
A,P /∈ ΣDB and A,P do not occur among the head atoms of any rule in Π;

– A(x) ← Adb(x), P (x, y) ← Pdb(x, y) for every predicate symbol A,P ∈ Π
such that A,P ∈ ΣDB.

Note that an auxiliary rule A(x) ← A(x) is equivalent to a tautology A(x) ∨
¬A(x); thus, from a logical point of view, we do not change the semantics of Π.

The following definition describes the AND-OR skeleton tree that is associ-
ated to a datalog program (we assume all rules in Π∗ are named).

Definition 2. Given a datalog program Π∗ and an IDB predicate QΠ in Π∗,
the associated AND-OR skeleton tree for QΠ in Π∗, denoted tree(QΠ , Π∗), is a
labelled tree consisting of alternating levels of and-nodes and or-nodes such that

– the root of tree(QΠ , Π∗) is a (and-)node labelled by QΠ ,
– for every and-node labelled by a predicate R in tree(QΠ , Π∗) and for every

rule r of Π∗ having R as its head predicate, there exists a child or-node of
R labelled by r,

– for every or-node labelled by a rule r in Π∗, tree(QΠ , Π∗) has an and-node
child for every atom g in the body of r, and the label of each such and-node
is the predicate symbol of g.

An and-node labelled by R in tree(QΠ , Π∗) is a leaf, if either (i) it is labelled
with an EDB predicate, (ii) there are no rules in Π∗ having R predicate in the
head, or (iii) there is some other and-node in tree(QΠ , Π∗) labelled by R that
has already been expanded; we refer to such node as the expanded equivalent of
R, denoted eq(R).

An or-subtree τ in tree(QΠ , Π∗) is a subtree of tree(QΠ , Π∗) such that (i) for
an and-node R ∈ τ , τ contains one of the child or-nodes of R in tree(QΠ , Π∗),
(ii) for an or-node r ∈ τ , τ contains all children of r in tree(QΠ , Π∗).

Example 1. Consider the data wrapping ontology from Figure 1. We list below
the relevant axioms:

Movie v TVListing ∃actsIn.Actor v Movie Actor v Person

Lina Lubyte and Sergio Tessaris. 95



q

r1

TVListing

r2

Movie

r3

actsIn

r10

actsIn

Actor

r11

Actor

r8

Moviedb

r7

actsIn Actor

r5

Movie

r6

actsIn Actor

Fig. 2. Skeleton tree corresponding to the Datalog program of Example 1.

As can be seen from the figure, Movie and Person are linked to the data sources,
i.e. they are data source terms. Suppose we want to test emptiness of TVListing
term in the above ontology. The (partial) datalog program resulting from rewrit-
ing the query q(x)← TVListing(x) is given below, together with auxiliary rules
r8 through r11 to make actsIn and Actor IDB predicates, and Person and Movie
EDB predicates.
r1 : q(x)← TVListing(x) r7 : TVLising(x)← actsIn(y, x),Actor(y)
r2 : TVListing(x)← Movie(x) r8 : Movie(x)← Moviedb(x)
r3 : Movie(x)← actsIn(y, x),Actor(y) r9 : Person(x)← Persondb(x)
r4 : Person(x)← Actor(x) r10 : actsIn(x, y)← actsIn(x, y)
r5 : q(x)← Movie(x) r11 : Actor(x)← Actor(x)
r6 : q(x)← actsIn(y, x),Actor(y)

The AND-OR skeleton tree for this datalog program is shown in Figure 2. Note
that the children and-nodes of r10, r11, r7, r5 and r6 are not further expanded,
since they have isomorphic nodes that have already been expanded. The tree has
5 distinct or-subtrees, one of them e.g. formed from the path of or-nodes r1, r2
and r8.

It is easy to show that each or-subtree of a given AND-OR skeleton tree
corresponds to a skeleton of expansion tree defined in [7]. Therefore, a query
predicate QΠ is empty, iff all or-subtrees of tree(QΠ , Π∗) are empty.

Definition 3. Given an AND-OR skeleton tree tree(QΠ , Π∗) for QΠ in Π∗, an
and-node R is empty in tree(QΠ , Π∗) if either (i) there is the expanded equiva-
lent of R, eq(R), that is empty in tree(QΠ , Π∗); (ii) R is a leaf in tree(QΠ , Π∗),
it is not an EDB predicate, and there is no eq(R) in tree(QΠ , Π∗); (iii) all chil-
dren or-nodes of R are empty. An or-node r is empty in tree(QΠ , Π∗) if at least
one child and-node of r is empty.

The above definition provides the basis for a procedure for traversing a given
AND-OR skeleton tree. While emptiness of QΠ node can be decided by inspect-
ing leaf nodes only, our algorithm traverses all the tree; this information will
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be the main input for suggesting the “repairs” of empty terms, as described in
Section 5. We illustrate this process with the following example.

Example 2 (Example 1 continued). We start with actsIn leaf, child of r10, and
mark it as empty (it is not an EDB predicate). This makes also its parent r10 and,
in turn, actsIn and r3 empty. To decide for Movie, we have to know emptiness of
r8. Moviedb is an EDB predicate, so it is nonempty. Consequently, we mark r8 and
Movie as nonempty, which determines non-emptiness for r2 and then TVListing,
r1 and finally q. Actor leaf, child of r11, is empty as well. Consequently, children
of r7 and r6 are empty. In contrary, Movie, child of r5 is marked as nonempty,
because its expanded equivalent, child of r2, is nonempty.

Indeed, we can construct a CQ q(x)← Moviedb(x) from the AND-OR skele-
ton tree that witnesses non-emptiness for TVListing.

According to [6] and due to the fact that the input query for a given term has
always single atom in its body, we have that the number of rules generated by
the rewriting algorithm is exponential w.r.t. T . Given n distinct IDB predicates
in Π∗, the size of the AND-OR tree generated from Π∗ is at most nm, where
m is the maximum number of atoms in the body of a rule in Π∗. Thus, we have
the following.

Theorem 1. Let K = 〈T ,A〉 be a ELHI KB, η a term in T and ΣDB set of
data source terms. Emptiness of η w.r.t. ΣDB can be decided in time exponential
in the size of T .

Note that the above result is optimal w.r.t. the complexity bounds from [8]:
deciding emptiness of a term in ELI there is shown to be ExpTime-complete.

Finally, we stress the fact that, due to the rewriting algorithm [6], the tech-
nique presented in this section is applicable to ontology languages in the full
spectrum of DLs from ELHI to DL-Litecore [9].

5 Repairing Empty Terms

So far, we have devised a procedure for verifying whether a given term in a
data wrapping ontology is empty w.r.t. the database terms at the sources. We
now present a method for supporting the repair of empty concepts and roles,
consisting of a set of repairing axioms that can be seen as guidelines for ontology
engineers.

To suggest a repair for an empty term, we naturally resort to the datalog
program Π∗ and the skeleton tree generated from Π∗ by our emptiness testing
algorithm. Indeed, the skeleton tree for a term η, by virtue of its construction,
contains as nodes all and only relevant terms for η: those that contribute or
could contribute to its non-emptiness. So an intuitive way to fix an empty term
is to focus on the relevant nodes of its corresponding skeleton tree and to pos-
sibly expand those nodes by rendering them nonempty. The expansion should
obviously be in correspondence with an addition or refinement of a term or/and
assertion in the actual ontology.
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Given an or-subtree τ in an AND-OR skeleton tree tree(QΠ , Π∗) with all
nodes marked, let Ω = [ω1, . . . , ωn] denote the sequence of distinct sets of and-
nodes3 in τ , such that, intuitively, each ωi contains a set of and-nodes that are
empty in tree(QΠ , Π∗) and are grouped in a bottom-up fashion by their depth.
The next example illustrates this notion.

Example 3. Suppose rule r8 was not present in the tree of Figure 4. Hence,
TVListing is no longer nonempty. Ω defined above for the or-subtree following
r2, r3 ancestors of TVListing is the following sequence: [{actsIn,Actor}, {Movie},
{TVListing}]. The intuition here is that, in order for TVLisintg to become nonempty,
besides rendering TVListing itself nonempty, also Movie or both, actsIn and Ac-
tor, if rendered nonempty, would make TVListing nonempty as well. Instead the
reason for a depth based ordering is that if both, actsIn and Actor were made
nonempty, then the remaining terms in the sequence Movie and TVListing would
become nonempty as well.

Thus, for each and-node R in ω, we consider R as a leaf in the tree and examine
its possible expansions. In turn, to expand a leaf we need a new rule with its
corresponding atom in the head. Given such a rule, we can track down the needed
terms and assertions in the ontology and provide those repairs as guidelines to
the user. We exploit axioms in the ontology, rather than rules in the program,
because, by virtue of [6], not all axioms are in one-to-one correspondence with
rules in the computed rewriting.

For a node R corresponding to an atomic concept, say A, our repair service
provides the following guidelines. First, it suggests to add an inclusion asser-
tion with A on the right-hand side (line 6). This, from the modeling point of
view, results in either defining role typing constraints (or domain and range)
for a relationship defined by role P , if such is detected by means of manda-
tory participation constraints (and similarly if range restriction is given for P ).
Second, if A v B is present in T and B is nonempty, the user is warned with
misplaced is-a relationship, i.e., possibly B v A should have been added instead
of A v B. Third, given A v B in T such that B has participation constraints
to a nonempty role P , the algorithm suggests to assert participation constraints
for A to P as well (and similarly if range restriction is known for P ). Moreover,
given a range concept, say C for P , if C is specialized by some concept D in
the ontology, then the suggested axiom for A can also be specialized to D. Fi-
nally, the service suggests to assert A as a superclass of some concept B, and as
a participating class to some role P , provided both A and P are known to be
nonempty in T . When T is small, such axioms could be included in the set of
repairing axioms for every nonempty concept and role in T . Otherwise, the task
of selecting appropriate concepts and roles is left to the user.

If a given node R corresponds to a role, say P , the service generates axioms in
a similar fashion. First, as before, it warns for misplaced role inclusions, provided
such an axiom is present in T . Then, if a root node being considered for repair

3 Two and-nodes are considered distinct if their labels are distinct.

98 Supporting the Development of Data Wrapping Ontologies



is a concept and not a role4, then for every nonempty atomic concept A in T
acting as a domain or range of P , the service suggests to add an axiom stating
mandatory participation for A to the relationship defined by P (and the same for
more specific concepts, as above). Finally, it hints to add an inclusion assertion
between roles with P on the right-hand side, i.e. to make P more general than
some role S that is nonempty in T .

Note that the set of repairing axioms may also be empty, if there are no
nonempty nodes in the tree that can be used for repair. In this case, we suggest
to explicitly map to the sources either the actual empty term or any of its relevant
terms.

Example 4 (Example 3 continued). Consider a data wrapping ontology from Fig-
ure 1 and suppose Movie is not mapped to the sources. To repair actsIn the user
will be suggested to assert it as more general than person_role. This is obviously
not meaningful, so there is no repair for actsIn. As for Actor, our repair service
suggests the following axioms:

Person v Actor ∃person_role.Role v Actor
∃person_role v Actor ∃person_role.ActingRole v Actor

6 Evaluation

We have implemented services discussed in Sections 4 and 5 as a plug-in for
Protégé 3.35 (we are in the process of porting them to Protégé 4) and evaluated
their effectiveness with a usability study involving ten external users (see [5] for
details).

We used showbiz domain for the study. In particular, for the sources, we used
IMDB movie database, retrieved using IMDbPY6. The wrapping ontology, that
we call showbiz, was obtained by first automatically extracting the bootstrap
ontology from IMDB database together with mappings [10] (21 in total), and
then by manually enriching it with terms and assertions to (partly) describe TV
programmes. The obtained ontology contained 24 classes and 14 properties.

The subjects were randomly divided into two groups: five subjects without
the support for testing emptiness of ontology terms and repairing them (group
1), and five subjects with the support of the above described plug-in (group
2). Then, each subject was given four simple queries over showbiz ontology but
having empty answers: e.g. asking for all movies that have a genre, all TV list-
ings and their kinds, etc. Given that, the subjects were asked to add to the
ontology new assertions so that the given queries were no longer empty. This
involved identifying atoms responsible for query emptiness and repairing the
corresponding terms. The subjects in group 2 were additionally asked to fill in a
questionnaire concerning their experience using the tool. The goal of this study
4 While our procedure computes repairs for a contributive node, with a root node here
we mean the node that one actually aims to repair, as e.g. TVListing in Example 3.

5 http://protege.stanford.edu
6 http://imdbpy.sourceforge.net/
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was to compare the time taken and effort needed to complete the task between
the two groups, and to evaluate user experience in using the plug-in.

The results of the study are promising. While the assertions added to an
ontology in order to arrive to a solution were mostly correct and alike in both
groups, the time taken to do it in group 2 was between 2-3 times less than in
group 1. Specifically, the average time taken for group 1 was 39 minutes, and 20
minutes for group 2. The average number of changes made to the ontology in
order to repair given queries, which we consider to be as key sub-task, for group
1 was 11, and 6 for group 2. The total number of changes needed for all queries
was 5. This means that, in average, each subject in group 1 made 5 erroneous
changes to repair the given queries, while in group 2 – 1 erroneous change.

As mentioned, we have also collected user reactions to the tool. The ques-
tionnaire used for this purpose was composed of 10 short statements (e.g., “I
found repair guidelines to be adequate”), each accompanied by a 5-point scale of
“strongly disagree” (1 point) to “strongly agree” (5 points). Thus, given 5 subjects
in group 2, each statement scores to maximum of 25 points. The key aspects,
from the usability point of view, are that subjects in group 2 felt that they could
effectively identify the reason for query emptiness using the tool (rated a total
score of 19) and effectively repair empty terms using the tool (21 points), and
strongly agreed that they could identify empty classes/properties and fix them
using the tool faster than without it (25 points). Finally, the overall satisfaction
of using the plug-in scores to 25.

7 Conclusions

This paper presents a technique for supporting ontology engineers in the de-
velopment of ontologies for accessing relational data sources. We introduced the
notion of emptiness of a given term w.r.t. a DL theory where data can be accessed
only through a subset of the concepts and roles (analogously to the EDB/IDB
predicates distinction in datalog programs). We have presented an optimal prac-
tical algorithm for deciding emptiness of terms in ELHI ontologies. Moreover,
we have shown how the information generated by this algorithm can be exploited
in order to support the engineer in “repairing” the ontology. The algorithm pre-
sented can be applied in other scenarios, e.g. for optimizing the rewriting by
removing rules with empty predicates, or for guiding module extraction based
on nonempty terms only (see [8]).

Recently there has appeared a contribution [8], carried out independently,
that tackles a very similar problem but comes up in a different context. The
authors study the computational complexity for the problem of predicate (and
query) emptiness for a wide range of DLs. For the DLs EL and DL-Lite, they
provide algorithms for verifying emptiness, taking a different approach from
ours. While our algorithm is via translation to emptiness of IDB predicates
in datalog, [8] instead uses reduction to standard ABox reasoning. Using their
simple technique, emptiness of a term in EL can be decided in PTime. For ELI,
testing emptiness is shown to be already ExpTime-complete, by reduction to
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subsumption/instance checking, but no algorithm is provided for this problem.
As we mentioned, our practical algorithm is optimal w.r.t. the complexity bounds
established there.

Levy [12] defined, in the context of datalog optimization, so-called irrelevance
claims stating that a formula is irrelevant to a query w.r.t. a knowledge base
and proposed algorithms for deciding irrelevance. However, this notion is rather
different in nature from the emptiness problem we studied in this paper. In
particular, it is a premise of a proof which may or may not be relevant to the
deduction of a given formula. Therefore, those techniques cannot be directly
applied.

Finally, we refer to the work in [13] as related, where, for queries having
answers solely determined by the database predicates (the so-called DBox pred-
icates with closed semantics, as apposed to the ABox), the authors show how
to find a rewriting over such predicates. The restriction to determinacy may
be however in some cases too strong, as for instance TVListing in Figure 1 is
not determined by the database predicates but can be (in the classical setting)
rewritten to a database term.
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Abstract. We study the problem of updates for TBoxes represented in Descrip-
tion Logics of the DL-Lite family. DL-Lite is at the basis of OWL 2 QL, one of
the tractable fragments of OWL 2, the recently proposed revision of the Web On-
tology Language. In this paper, we address for the first time the problem of updat-
ing TBoxes. We propose some principles that TBox updates should respect. We
review known model- and formula-based approaches for updates of logical theo-
ries, and exhibit limitations of model-based approaches to handle TBox updates.
We propose a novel formula-based approach, and present a polynomial time al-
gorithm to compute TBox updates for DL-LiteFR. We also study the relationship
between propositional logic satisfiability for Horn clauses and computation of
TBox updates for DL-Lite.

1 Introduction

Ontology languages, and hence Description Logics (DLs), provide excellent mecha-
nisms for representing structured knowledge, and as such they have traditionally been
used for modeling at the conceptual level the static and structural aspects of applica-
tion domains [1]. A family of DLs that has received great attention recently, due to its
tight connection with conceptual data models, such as the Entity-Relationship model
and UML class diagrams, is the DL-Lite family [2]. Such a family of DLs exhibits nice
computational properties, in particular when complexity is measured wrt the size of the
data stored in the ABox of a DL ontology [2, 3]. It is also at the basis of the tractable
profiles of OWL 2, the forthcoming edition of the W3C standard Web Ontology Lan-
guage.

The reasoning services that have been investigated for the currently used DLs and
implemented in state-of-the-art DL reasoners [4], traditionally focus on so-called stan-
dard reasoning, both at the TBox level (e.g., TBox satisfiability, concept satisfiability
and subsumption wrt a TBox), and at the ABox level (e.g., knowledge base satisfiabil-
ity, instance checking and retrieval, and more recently query answering) [5, 6]. Recently,
however, the scope of ontologies has broadened, and they are now considered to be not
only at the basis of the design and development of information systems, but also for
providing support in the maintenance and evolution phase of such systems. Moreover,
ontologies are considered to be the premium mechanism through which services oper-
ating in a Web context can be accessed, both by human users and by other services.

? The author is co-affiliated with INRIA Saclay, Île-de-France.

Proc. 23rd Int. Workshop on Description Logics (DL2010), CEUR-WS 573, Waterloo, Canada, 2010.
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Supporting all these activities, makes it necessary to equip DL systems with additional
kinds of inference tasks that go beyond the traditional ones, most notably that of ontol-
ogy evolution [7], where new knowledge is incorporated into an existing KB. Two main
types of ontology evolution have been considered, namely revision and update [8].

In revision, we assume that the new knowledge is certainly true in the real world.
Therefore, every model of a revised KB should satisfy this knowledge and should have
minimal distance to the old KB, where the notion of distance depends on the appli-
cation. An important feature of revision is that the distance is defined “globally” and
depends on all the models of the old KB. In [9, 10] revision of DL knowledge bases was
considered. In update, we assume that the new knowledge reflects a change in the real
world, and we update every model of the old KB with this new knowledge. Note that
update operators, in contrast to revsion operators, work “locally”. In our work we focus
on ontology update.

A request for an ontology update (or simply update request) represents the need
of changing an ontology so as to take into account changes that occur in the domain
of interest described by the ontology. In general, such a request is represented by a set
of formulas denoting those properties that should be true after the change. In the case
where the update request causes an undesirable interaction with the knowledge encoded
in the ontology, e.g., by causing the ontology or relevant parts of it to become unsat-
isfiable, the update request cannot simply be added to the ontology. Instead, suitable
changes need to be made in the ontology so as to avoid the undesirable interaction, e.g.,
by deleting parts of the ontology that conflict with the update request. Different choices
are possible in general, corresponding to different update semantics, which in turn give
rise to different update results [11]. Moreover, it is necessary to understand whether the
desired update result can be represented at all as a KB in the DL at hand.

Previous work on updates in the context of DL ontologies has addressed ABox
(or instance level) update [12, 13], where the update request consists of a set of ABox
assertions. In [12] the problem is studied for DLs of the DL-Lite family, while [13]
considers the case of expressive DLs. Both works show that it might be necessary to
extend the ontology language with additional features/constructs in order to guarantee
that the updated ontology can be represented.

Instead, the problem of TBox level update has not been considered before. In this
paper we take first steps at filling this gap. Specifically, for the case of DLs of the DL-
Lite family, we study the problem of updating a TBox with a set of TBox assertions.
We address first the issue of which semantics to adopt for TBox updates, and specify
some general principles that updates should respect. This leads us to argue that none
of the previously proposed semantics [14–17], neither model-based nor formula-based
is totally appropriate: either too many formulas need to be thrown out in the result of
the update, or such a result is not representable as a DL-Lite TBox. Hence, we propose
an alternative formula-based semantics, called Bold Semantics , and provide polyno-
mial time algorithms to compute it for various members of the DL-Lite family (we
restrict the attention to those DLs of the DL-Lite family that exhibit polynomial time
TBox reasoning, specifically we consider only the case where the interaction between
functionality assertions and role inclusions is restricted). The task at the core of our
algorithm is the problem of checking full satisfiability of a DL-Lite TBox, i.e., whether
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DL-LiteFR

DL-LiteR DL-LiteF

DL-Litecore

Fig. 1. DL-Lite hierarchy.

all atomic concepts and roles are (simultaneously) satisfiable. We provide a novel algo-
rithm for this problem that is based on a reduction to reasoning in propositional binary
Horn theories. This gives us also an alternative proof technique that is not based on the
Chase for tractability of TBox reasoning in DL-Lite.

2 Preliminaries

Description Logics (DLs) [18] are knowledge representation formalisms, tailored for
representing the domain of interest in terms of concepts and roles. In DLs, complex
concept and role expressions (or simply, concepts and roles) are obtained starting from
atomic concepts and roles (which are simply names) by applying suitable constructs.
Concepts and roles are then used in a DL knowledge base (KB) to model the domain
of interest. Specifically, a DL KB K = 〈T ,A〉 is formed by two distinct parts, a TBox
T and an ABox A. The TBox T represents the intensional-level of the KB, that is, the
general knowledge. The ABox provides information on the instance-level of the KB. In
this paper we focus on a family of DLs called DL-Lite [2], that corresponds to one of
the tractable fragments of OWL 2, the recently proposed revision of the Web Ontology
Language.

The basic logic of the DL-Lite family is DL-Litecore , which includes constructs that
are used in all others logics of the family. These constructs are the following:

B ::= A | ∃R, C ::= B | ¬B, R ::= P | P−,

where A denotes an atomic concept, B a basic concept, and C a general concept. The
symbol P denotes an atomic role, and R a basic role.

A DL-Litecore TBox is a set of concept inclusion assertions of the form: B v C,
and an ABox is a set of membership assertions of the form: A(a), P (a, b).

The two logics DL-LiteF and DL-LiteR both extend DL-Litecore . They have ABoxes
of the same form as DL-Litecore , but their TBoxes are different. A DL-LiteF TBox may
include functionality assertions for roles of the form (funct R). DL-LiteR has role in-
clusion assertions of the form R1 v R2 (instead of functionality assertions). There
are proposals that consider DL-LiteR also with role disjointness assertions of the form
R1 v ¬R2, but we do not take them into account in our paper. Both DL-LiteF and
DL-LiteR have nice computational properties, for example, knowledge base satisfia-
bility has polynomial-time complexity in the size of the TBox and logarithmic-space
complexity in the size of the ABox, so-called data complexity.
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DL-LiteFR is a hybrid of DL-LiteF and DL-LiteR. It allows for both functional
assertions and role inclusion assertions in its TBox. The use of functionality and role
inclusion assertions together may lead to an increase in the complexity of reasoning. A
way to avoid this is to introduce the following syntactic restriction: if R1 v R2 appears
in a TBox, then (funct R2) is not in the TBox. Hence, when talking about DL-LiteFR
knowledge bases in this paper, we assume they satisfy the syntactic restriction above.

In Figure 1 we list the four logics of the DL-Lite family and show the relationships
between them in terms of expressiveness. If there is an arrow from a logic X to a logic
Y in the figure, it means that the logic Y is more expressive than X .

The semantics of a DL is given in terms of first order interpretations. Let ∆ be
a fixed countably infinite set. All interpretations that we consider are over the same
domain ∆.

An interpretation I is a function ·I that assigns to each concept C a subset CI

of ∆, and to each role R a binary relation RI over ∆ in such a way that AI ⊆ ∆,
P I ⊆ ∆×∆, (¬B)I = ∆ \BI , and

(∃R)I =
{
a | ∃a′. (a, a′) ∈ RI} , (R−)I =

{
(a2, a1) | (a1, a2) ∈ RI

}
.

An interpretation I is a model of an inclusion assertion D1 v D2 if DI1 ⊆ DI2 . An
interpretation I is a model of a functionality assertion (functR) ifR is a partial function
over ∆, that is, I |= ∀x, y1, y2.

(
RI(x, y1) ∧RI(x, y2)

)→ y1 = y2.
Given an assertion F and an interpretation I, we denote by I |= F the fact that I is

a model of F . A model I is a model of a knowledge base (KB) K = 〈T ,A〉 (denoted
as I |= K) if I is a model of each of the assertions of T ∪ A. A KB is satisfiable if it
has at least one model. A KB K logically implies an assertion F , written K |= F , if all
models ofK are also models of F . Similarly, a TBox T logically implies an assertion F ,
written T |= F , if all models of T are also models of F .

Let T be a set of TBox assertions. The deductive closure of T , denoted cl(T ), is
the set of all assertions that are entailed by T . Clearly, the closure cl(T ) is quadratic in
the number of atoms of T and can be computed in time polynomial wrt the size of T .

3 Understanding TBox Updates

Let K = (T ,A) be a KB and U be a set of (TBox or/and ABox) assertions, called an
update request. What we want to study is how to “incorporate” the assertions U into K,
that is, to perform an update of K. In this paper we consider only updates on the TBox
level (TBox updates), that is, when U consists of TBox assertions only.

When dealing with updates, both in the knowledge management and the AI com-
munity, it is generally accepted that the updated KB K′, or the update for short, should
comply with the principle of Minimality of Change [11, 17], which states that the knowl-
edge base should change as little as possible if new information is incorporated. There
are different approaches to updates, suitable for particular applications, and the current
belief is there is no general notion of minimality that will “do the right thing” under all
circumstances [17]. A number of candidate semantics for updates have appeared in the
literature [14–17]. All these approaches can be classified into two groups: model-based
and formula-based.

Dmitriy Zheleznyakov, et al. 105



Let us first understand what are the requirements for updates of knowledge bases
and then review known model- and formula-based approaches.

3.1 Principles of TBox Updates

Let T be a TBox, B a basic concept, and R a basic role occurring in T . We say that B
(resp. R) is satisfiable in T if there is a model I |= T of T such that BI 6= ∅ (resp.
RI 6= ∅). If all the atomic concepts and roles occurring in T are satisfiable, then we say
that T is fully satisfiable. Intuitively, a concept “makes sense” if one can instantiate it
and we assume that we update TBoxes that make sense, that is, that are fully-satisfiable.

Satisfiability Preservation. A TBox update is a modification of a KB on the schema
level. Such updates make sense, for example, when a company decides to restructure,
say, the sales department, and the update U consists of new requirements for the de-
partment. Our first concern is that updates should not make parts of the schema, or
TBox constructs, useless, that is, unsatisfiable. For example, for a basic concept of an
enterprise ontology, say the concept Manager, we want to reject updates that eliminate
managers from the enterprise, that is, that force Manager to be unsatisfiable.

Protection. Our next expectation is that the schema update of the sales department
should not affect the schema of, say, the production department. At the same time we
do not mind if it affects the schemas of other departments, like for instance accounting.
That is, we would like some fragment of T , denoted Tp, to be protected from any
changes, that is, we would like Tp to be kept in the KB after the update. Therefore, we
accept an update request U only if Tp ∪ U is fully satisfiable, otherwise we reject U .

To sum up these desiderata, we list our update principles.

Satisfiability Preservation. Updates should preserve satisfiability of basic concepts
and roles.

Protection. Updates should preserve the protected fragment of the KB.

3.2 Model-Based Approach to Semantics

Poggi et al. [19, 12] proposed to use Winslett’s semantics to update ABoxes. Let us try
to understand whether this approach is suitable for TBox updates.

Under the model-based paradigm, the objects of change are individual models I
of T . For a model I of T , an update with U results in a set of models of U . In order to
update the entire TBox T with U , one has to

(i) update every model I |= T with U , and then
(ii) take the union of the resulting models.

To define the update formally we recall the following definitions. We say that an
interpretation I is contained in I ′, written I ⊆ I ′, if for every atomic concept or role
symbol S it holds that SI ⊆ SI′ . We write I ( I ′ if I ⊆ I ′ and not I ′ ⊆ I. We denote
with 	 the symmetric difference between sets according to the standard definition.
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Fig. 2. Updates of ontologies. U = {TopManager v Manager}.

Let Tp ⊆ T be the protected fragment of T and U an update request accepted for
Tp. The update of an interpretation I with U wrt Tp, denoted w-updTp

(I,U), where ’w’
indicates Winslett’s semantics, is the set of interpretations defined as follows:

{I ′ | I ′ ∈ Mod(Tp ∪ U), there is no I ′′ ∈ Mod(Tp ∪ U) s.t. I 	 I ′′ ( I 	 I ′}.
Then the update of a TBox T with U wrt Tp is the following set of interpretations:

w-updTp
(T ,U) =

⋃
I∈Mod(T )

w-updTp
(I,U).

Returning to a user the result of an update as a set of models is not desirable. What
we want is to return a KB that describes exactly this set of models. We say that a TBox
T ′ represents the update w-updTp

(T ,U) if Mod(T ′) = w-updTp
(T ,U).

Example 1. Consider the TBox T of an enterprise on the left diagram of Figure 2. In
DL-Litecore the diagram can be written as follows:

Manager v PermStaff , AreaManager v Manager ,

where PermStaff stand for Permanent Staff. The TBox says that every Manager belongs
to PermStaff and every AreaManager is a Manager . Suppose the TBox is under
construction and it was decided to extend it by introducing the inclusion assertion that
every TopManager is a Manager , that is,

U = {TopManager v Manager}.
Since there are no disjointness assertions in both T and U , the update request will be
accepted for T , regardless of which fragment is protected, and the desired result of the
update is the one in the right diagram of Figure 2. Unfortunately, Winslett’s semantics
gives an undesirable result.

First, consider the following model I of T :

TopManagerI = {john}, ManagerI = {frank}, PermStaff I = {frank}.
Assume that the protected fragment of T is empty. Then, according to Winslett’s se-
mantics, the update of the model I contains the following interpretation I ′ is in the
update of I, which is a model of U that differs minimally from I:

TopManagerI
′
= {john}, ManagerI

′
= {john, frank}, PermStaff I

′
= {frank}.
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As one can see, in I ′ there is a Manager , john , who does not belong to PermStaff .
Therefore, the update w-upd(T ,U) does not satisfy the assertion Manager v PermStaff .

Second, every DL-Lite representation T ′ of w-upd(T ,U) should satisfy the follow-
ing assertions, which we denote as T0, that is, T0 ⊆ T ′:

TopManager v Manager ,AreaManager v Manager ,AreaManager v PermStaff .

Is it the case that T ′ = T0? It turns out that not. Consider the following model. Let I ′′
be an interpretation, where all concepts are empty, except for Manager , which contains
one individual, say fred . It is easy to see that I ′′ |= T0 and I ′′ |= U , but it cannot be
obtained by minimally changing a model of T . Intuitively, there is no reason for fred to
have become a Manager .

Therefore, there should be some other inclusion assertions in T ′, besides the ones
of T0, that forbid the model I ′′. One can see that these assertions should be entailed by
T ∪ U . Otherwise there are models of T whose update is not expressed by T ′. Hence,
the only candidate to be included in T ′ is Manager v PermStaff , but it cannot be in
T ′, due to the first observation above. Therefore, the update is not expressible in DL-
Lite. ut

We conclude that:
(i) Winslett’s semantics cannot be expressed by DL-Lite TBoxes.

(ii) The principle of minimal change at the level of interpretations forces one to give
up important assertions at the TBox level (in Example 1, we gave up the assertion
Manager v PermStaff ).

We consider this situation as unsatisfactory. Hence, we next examine the formula-based
approach to updates and their notion of minimality.

3.3 Formula-Based Approach to Semantics

The key notion in this approach is the one of a maximal non-contradicting set of for-
mulas, which we introduce now.

Let T be a TBox and U be an update request that is accepted for Tp. We define a
maximal non-contradicting set of formulas for T and U , denoted by Tm, as a set of
TBox assertions that satisfies the conditions:

(i) T |= Tm,
(ii) Tm ∪ U is fully satisfiable,

(iii) the set Tm is maximal (wrt set inclusion) among the sets that satisfy (i) and (ii),
that is, there is no T̂ satisfying (i) and (ii) such that Tm ⊂ T̂ .

Intuitively, Tm keeps as many TBox assertions as possible that are entailed by T and
do not conflict with U .

Obviously, the set Tm is not unique. We denote the set of all such Tm for T and
U as M(T ,U). There are two main approaches to construct updates T ′ of T with U
based on Tm [11, 17].
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WIDTIO. The first approach is called When In Doubt Throw It Out, or WIDTIO for
short. It suggests to add to U the intersection of all Tm-s, as on the left of Equation 1:

T ′ = U ∪
⋂

Tm∈M(T ,U)

Tm, T ′ = U ∪ {
∨

Tm∈M(T ,U)

(
∧
φ∈Tm

φ)}. (1)

Cross-Product. According to this approach, one adds to U the disjunction of all Tm-s,
viewing each Tm as the conjunction of its assertions, as on the right of Equation 1.

Example 2. Consider the DL-Lite ontology from Example 1 (Figure 2) and the update
request U = {AreaManager v ¬PermStaff }. It is easy to see that U ∪ T is not
fully satisfiable and in order to resolve the conflict one can drop either Manager v
PermStaff or AreaManager v Manager . Thus, M(T ,U) = {T (1)

m , T (2)
m }, where

T (1)
m = {Manager v PermStaff }, and T (2)

m = {AreaManager v Manager}. Let us
now consider WIDTIO and Cross-Product semantics. According to the left formula of
Equation 1, the TBox under WIDTIO semantics is equal to

U ∪
(
T (1)
m ∩ T (2)

m

)
= U ∪ ∅ = U = {AreaManager v ¬PermStaff }.

The TBox under Cross-Product semantics is

U ∪ {(Manager v PermStaff ) ∨ (AreaManager v Manager)},

where we have combined DL notation with First Order Logic notation. ut

As one can see from the example above, a disadvantage of the WITDIO approach is
that it may lose a lot of assertions entailed by T that do not conflict with U . On the other
extreme is the Cross-Product approach that suggests to keep all possible entailed and not
conflicting assertions. A drawback of the approach is that the result of the update cannot
be represented in DL-Lite anymore since it requires disjunction. Another drawback is
that the resulting set of formulas may be exponentially large wrt the original TBox.

Therefore, any practical solution should be one where one chooses some T (0)
m among

the Tm, where the result of the update is:

T ′ = U ∪ T (0)
m .

We call this semantics Bold Semantics. The question is which Tm to choose. There are
basically three options. Choose (i) an arbitrary one, (ii) one that has maximal cardinality,
(iii) one that fulfills some preferences. For all options, the solution is expressible in DL-
Lite. Note that we rely for this on the fact that in DL-Lite the set of assertions entailed
by a TBox is finite.

The first option has the advantage that T ′ is expressible in DL-Lite and can be com-
puted in polynomial time. Figure 3 presents a nondeterministc algorithm that, given a
TBox T and an update request U , returns a set Tm ⊆ cl(T ) that is a maximal non-
contradicting set of assertions for T and U . The algorithm loops at most as many times
as there are assertions in cl(T ). The number of such assertions is at most quadratic in
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INPUT: sets T , U of TBox assertions, Tp ⊆ T fully satisfiable with U
OUTPUT: a set Tm ⊆ cl (T ) of TBox assertions
[1] Tm := U ∪ Tp; S := cl(T )
[2] repeat
[3] choose some φ ∈ S; S := S \ {φ}
[4] if {φ} ∪ Tm is fully satisfiable then Tm := Tm ∪ {φ}
[5] until S = ∅

Fig. 3. Algorithm NDMax(T , Tp,U) for nondeterministic computation of Tm

the number of atomic concepts and roles. The crucial step is a check for full satisfia-
bility, which is performed once per loop. If the latter test is polynomial in the size of
the input, like in DL-LiteFR (see Section 4), then the entire runtime of the algorithm
is polynomial. For the second option we showed Tm computation is NP-hard, but we
cannot present the proof due to lack of space. The third option is good as far as one has
reasonable preferences either on the concepts or assertions of the TBox, that gives us
polynomial time computation.

Example 3. Consider the KB and the update request from Example 2. As it has been
mentioned,M(T ,U) = {T (1)

m , T (2)
m }. According to the Bold Semantics computed by

the algorithm NDMax, the result of the update is a TBox T = U∪T (0)
m for some T (0)

m ∈
M(T ,U). Thus, the result of the update is either U ∪{AreaManager v Manager} or
U ∪ {Manager v PermStaff }. In the former case, the ontology makes sense if man-
ageres could be temporary staff, in the latter one, if area managers are not necessarily
managers. Selecting one or the other of these two options could be done by the use of
preferences. But we do not consider this here. ut

Theorem 4 (Correctness of Semantics). Bold Semantics satisfies the principles of
Satisfiability Preservation and Protection.

4 Checking Full Satisfiability

Testing full satisfiability is the key operation in computing updates under Bold Seman-
tics. We show that for DL-LiteFR the problem of checking full satisfiability of a TBox
can be translated into a problem of propositional Horn logic. The translation can be used
as the starting point for the design of efficient algorithms and it provides additional in-
sight as to why full satisfiabilty can be solved in polynomial time for DL-LiteFR.

As a first step, we define a translation function ν that translates TBoxes T into
propositional theories ν(T ). For every basic concept B resulting from the signature
of T we introduce a fresh propositional variable vB and for every basic role R we
introduce the two variables v∃R and v∃R− and denote the set of all such variables as
VT . Then ν(T ) consists of all propositional formulas that can be obtained from T
using the translation in Table 1.

Let V be a set of propositional variables and F a set of formulas over V . Then we
say that F is fully satisfiable (over V) if F ∪ {v} is satisfiable for every v ∈ V .
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TBox assertion φ PL formulas ν(φ)
B1 v B2 vB1 → vB2

B1 v ¬B2 vB1 → ¬vB2

R1 v R2 v∃R1 → v∃R2 , v∃R−1
→ v∃R−2

Table 1. Translation of DL-LiteFR TBoxes to propositional theories

Theorem 5. Let T be a DL-LiteR TBox. Then T is fully satisfiable if and only if ν(T )
is fully satisfiable over VT .

Proof. The “only if” direction being clear, we only show the “if” direction.
Suppose that ν(T ) is fully satisfiable over VT . Then for every basic conceptB there

is a truth assignment αB for the variables in VT such that ν(T ) ∪ {vB} is satisfiable.
Intuitively, this can be seen as putting a test individual into B and letting αB propagate
this individual into additional concepts B′ so that the inclusions in T are satisfied.

Now we choose, for every B, a distinct element dB ∈ ∆. Moreover, we define a
mapping J that maps every basic concept B′ to a subset of ∆ by defining J(B′) =
{dB | αB(vB′) = true}. Intuitively, J(B′) consists of all the test individuals dB that
ended up in B′ by way of their αB . Note that due to the construction we have that
J(B′) ⊆ J(B′′) whenever B′ v B′′ ∈ T .

We now define an interpretation I ′ by setting AI
′

= J(A) for every atomic con-
cept A and P I

′
= J(∃P ) × J(∃P−) for every atomic role P . That is, P I

′
is the

Cartesian product of the sets to which J maps the expressions for the domain and range
of P . Clearly, in this way we have that (∃P )I

′
= J(∃P ) and (∃P−)I

′
= J(∃P−).

This shows that I ′ is a model of T such that AI
′ 6= ∅ and P I

′ 6= ∅ for all atomic A
and P . ut

Note that the proof above shows as a byproduct that a fully satisfiable TBox can be
fully satisfied by a finite model.

If T is a DL-LiteFR-TBox, we say that an atomic role P is functional if T contains
(funct P ) or (funct P−). We say that P has a subrole if P or P− occurs on the right-
hand side of some role inclusion.

Lemma 6. Let T be a DL-LiteR-TBox and F a set of functionality assertions. Suppose
that no functional role in T ∪ F has a subrole. Then T ∪ F is fully satisfiable if T is
fully satisfiable.

Proof. Let I ′ be an intepretation that fully satisfies T . LetD be the set of elements of∆
that are in the interpretation of some atomic concept or role. Without loss of generality
we can assume that D is at most countable and that ∆ \D has at least countably many
elements. Then there exist countably many sets D1, D2, . . . ⊆ ∆ such that (i) every set
Di, i ∈ N, has the same cardinality as D and (ii) the Di are mutually disjoint.

For every i ∈ N, let mi : D → Di be a bijection. We use the mi to extend the
interpretations of atomic concepts fromD to the union of theDi. Technically, we define
a new interpretation I by letting AI =

⋃
i∈N mi(AI

′
) for every atomic concept A. The

definition of the role interpretations needs some preparation. For every atomic role P ,
let δ′P = (∃P )I

′
be the domain of P with respect to I ′ and ρ′P = (∃P−)I

′
be the
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range. We define δP =
⋃
i∈N mi(δ′P ) and, similarly, ρP =

⋃
i∈N mi(ρ′P ). Note that

due to our construction both δP and ρP are countably infinite.
Now, if P is functional, then let P I be the graph of an arbitrary bijective function

from δP to ρP . Otherwise, let P I = δP × ρP . Clearly, by construction we have that
(∃P )I = δP and (∃P−)I = ρP . Hence, I satisfies all concept inclusions of T and all
functionality assertions.

Moreover, if R v R′ is a role inclusion in T , we have that δ′R ⊆ δ′R′ and ρ′R ⊆ ρ′R′ ,
which implies that δR ⊆ δR′ and ρR ⊆ ρR′ . Hence, RI ⊆ R′I , since R′ is not
functional and therefore R′I is the Cartesian product of δR′ and ρR′ . This shows that I
is a model of T ∪ F . ut

Recall that in a DL-LiteFR TBox, there can be no role inclusions with a functional
role on the right hand side. In addition, we assume that TBoxes do not contain disjoint-
ness axioms for roles. Thus, the preceding lemma is applicable.

Theorem 7. Let T be a DL-LiteFR TBox. Then T is fully satisfiable if and only if ν(T )
is fully satisfiable over VT .

Since satisfiability of a set of propositional Horn clauses can be checked in linear
time, checking full satisfiablity can be done in time quadratic in the size of the clause
set. In [2], polynomiality of concept satisfiablity in DL-LiteFR has been proved using
the Chase technique. The techniques used for showing Theorem 7 above provide an
alternative proof.

5 Conclusion

To the best of our knowledge, our paper presents the first work on updates for DL
TBoxes. We tried to understand what are the natural requirements for such updates
and proposed two principles: Satisfiability Preservation and Protection. On the basis
of these principles, we examined the well-known semantics for updates poposed by
Winslett, which has already been applied by Poggi et al. [19] to ABox updates. The
approach turned out to be unintuitive and moreover, the TBox languages of the DL-Lite
family are not closed under such updates. As an alternative, we examined two formula-
based approaches to update semantics: WIDTIO and the Product Approach. The former
one leads to an inappropriate loss of knowledge, while for the latter update results are
not expressible in DL-Lite. As a consequence, we proposed a new semantics for TBox
updates, Bold Semantics, that satisfies both our principles. We showed that TBoxes
resulting from updates under our semantics can be computed in polynomial time for
DL-LiteFR. Moreover, we exhibited a tight connection between update computation
and reasoning with propositional Horn formulas. This connection can be used as the
starting point for the design of efficient update algorithms and it provides additional
insight as to why TBox reasoning can be solved in polynomial time for DL-LiteFR.
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Abstract. We describe Orel, a reasoning system for an ontology language which
subsumes both the EL and the RL profile of the recently standardised web on-
tology language OWL 2. Orel performs consequence-driven reasoning on the
database level which is always sound. It is guaranteed to be complete if the ontol-
ogy is contained in one of the two profiles. We present the underlying calculus,
the core algorithm, and initial evaluation results.

1 Introduction

With the standardisation of the Web Ontology Language OWL 2 in 2009 [1], the de-
velopment of theoretically well-studied and practically deployable expressive ontology
languages for the Semantic Web has reached a new level of maturity. Among various
other improvements, the new version of OWL is the first that adequately addresses the
trade-off between logical expressivity and scalability that is inherent to formal knowl-
edge representation by specifying additional light-weight language profiles. The three
OWL 2 profiles EL, RL, and QL constitute sublanguages which – while still sufficiently
expressive for many applications – exhibit a polynomial time complexity for standard
reasoning tasks, and are therefore particularly suitable for working with large ontologi-
cal descriptions [2].

The Orel software that is introduced in this system description provides storage and
reasoning services for both OWL EL and RL. The specific features that set it apart from
existing implementations are twofold. First, its implementation is tailored toward ma-
terialisation of entailments in a persistent storage backend such as a relational database
management system (DBMS). Second, it realises a rule-basedapproach for implement-
ing both OWL RL and OWL EL inferencing in a single polytime algorithm.

Orel’s approach to reasoning is to express inference tasks for OWL 2 in terms of
inference tasks for the simple rule language datalog [3]. The basis of this method is
an entailment-preserving translation of description logics to datalog that has been intro-
duced in [4]. The latter approach has been presented for a hybrid ontology-rule language
that includes features which cannot be expressed in OWL 2. This provides an interest-
ing path for extending Orel to also cover some of the expressivity of rule languages like
SWRL [5] or RIF-BLD [6], but the present paper focusses on the supported OWL 2
features only.

In Section2, we discuss Orel’s inferencing calculus, and present some optimisa-
tions for data-centric processing. Thereafter, in Section3, we briefly highlight our basic
approach for extending this inferencing mechanism to efficient schema inferencing, and
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PhD ⊑ AcademicDegree PostDoc ⊑ ∃has.PhD Graduate ≡ ∃has.AcademicDegree

PhD(x) → AcademicDegree(x)
PostDoc(x) → has(x, d∃has.PhD)
PostDoc(x) → PhD(d∃has.PhD)

Graduate(x) → has(x, d∃has.AD)
Graduate(x) → AcademicDegree(d∃has.AD)

has(x, y) ∧ AcademicDegree(y) → Graduate(x)

Fig. 1.Example translation to datalog

in Section4, we recall the general techniques for adapting a rule-basedcalculus for ex-
ecution in a relational DBMS. Section5 provides further details on the implementation
and initial evaluation results. We discuss related work in Section6 and give an outlook
to the future development of Orel in Section7. Orel is free software that can be obtained
athttp://code.google.com/p/orel/.

2 A Data-Driven Approach for Translating OWL into Datalog

The algorithms in [4] extend to a first-order knowledge representation languagedubbed
ELP that combines features of the description logicEL++ [7], Description Logic Rules
[8], and DL-safe Rules [9]. Yet, the expressivity ofELP has been restricted sufficiently
to allow for polynomial-time reasoning. Instead of repeating the formal details that can
readily be found in [4], we summarise the underlying approach by means of a brief
example, and provide more detailed descriptions of the algorithms that are actually im-
plemented in Orel. Throughout this work, we use descriptionlogic syntax for concisely
expressing the semantics of OWL 2 axioms.

As an example, consider the set of OWL 2 axioms in Fig.1 (top). Following a
strategy as in [4], this knowledge base would be translated into the rule set in Fig. 1
(bottom). These rules are intended to be read as first-order implications based on a
standard predicate logic semantics.1 Note that the translation is faithful regarding the
signature: OWL classes are translated into unary predicates, and OWL properties into
binary predicates. Thus it is not hard to see how axioms from the original ontology
relate to implications in the translated datalog program.

While this translation is straightforward in many cases, a special approach is needed
to cover existential expressions as inObjectSomeValuesFrom. Since datalog does not
allow existential entailments, auxiliary constants are introduced to represent additional
“anonymous” individuals the existence of which is requiredby the ontology. Please
note that only a single constant is introduced for affected class expressions during the
translations. This limits the amount of additional individuals that need to be considered,
and it is vital to retain polytime complexity.

While the above translation is rather intuitive for the mostpart, the presented en-
coding has several practical drawbacks that come to the forewhen attempting an actual
implementation. In particular, the created rule set may become rather large; it grows
linearly with the size of the knowledge base. However, typical LP engines exhibit far

1 Since we are only interested in positive entailments, assuming a non-monotonic semantics for
datalog would not lead to different inference results. See [3] for details.

Markus Krotzsch, Anees Mehdi and Sebastian Rudolph. 115



A(n) 7→ inst(n, Â) A ⊑ C 7→ subClass(Â, Ĉ)
R(n,m) 7→ triple(n,R,m) A ⊓ B ⊑ C 7→ subIntersect(Â, B̂, Ĉ)

∃R.Self(n) 7→ self(n,R)
∃R.A ⊑ C 7→ subSomeValues(R, Â, Ĉ) ∃R.Self ⊑ C 7→ selfImplies(R, Ĉ)
A ⊑ ∃R.B 7→ someValues(Â,R, B̂, d∃R.B) A ⊑ ∃R.Self 7→ impliesSelf(Â,R)
A ⊑ ∀R.B 7→ allValuesFrom(Â,R, B̂) A ⊑ 61R.B 7→ atMostOne(Â,R, B̂)

R ⊑ T 7→ subProperty(R,T ) Disj(R, S ) 7→ disjoint(R, S )
R ◦ S ⊑ T 7→ subPropertyChain(R, S ,T ) R− ⊑ S 7→ subInverseOf(R, S )
For each individual namen in the ontology, add the factnom(n) to the transformation.
For each class name or nominalA in the ontology, add the factsubClass(A,⊤).

Fig. 2.Creating an initial fact base from DL axioms in Orel; for a classC defineĈ ≔ n
if C = {n} is a nominal class, and̂C ≔ C if C is a class name,⊤, or⊥

better performance when more facts and less rules are given.Similarly, DBMS can han-
dle large amounts of data while implications in the above formulation work on this data
and would thus correspond to database operations. The next section therefore introduces
a modified approach that is taken in Orel. This observation calls for a different encod-
ing strategy, where ontological information (such as subclass relationships) is stored as
facts, while logical ramifications are governed by “meta-rules” that resemble the rules
of a deduction calculus. Thereby, classes and properties have to be treated as datalog
individuals. The above example might then be encoded by the following facts:

subClass(PhD,AcademicDegree)
someValues(PostDoc,Has,PhD, d∃has.PhD)
someValues(Graduate,Has,AcademicDegree, d∃has.AD)

subSomeValues(Has,AcademicDegree,Graduate)

The predicate names used here hint at the intended interpretation but are not formally re-
lated to the OWL 2 vocabulary. Note that the auxiliary constantsd∃has.PhD andd∃has.AD

are already included in the above facts. Since we are interested in a rule set without
function symbols (datalog), all required constant symbolsmust be explicitly created
beforehand. We now can encode the intended semantics in derivation rules such as the
following:

subClass(a, b) ∧ inst(x, a) → inst(x, b)
someValues(a, r, b, d) ∧ inst(x, a) → triple(x, r, d)
someValues(a, r, b, d) ∧ inst(x, a) → inst(d, b)

subSomeValues(r, a, b) ∧ triple(x, r, y) ∧ inst(y, a) → inst(x, b),

Here we encode assertions about instances in the obvious waywith the additional meta-
predicatesinst for class instances, andtriple for role assertions. All terms in the
above rules are variables, but here and below we use different letters for capturing the
underlying intuition:a, b, c for class names,r, s, t for role names,x, y, z for individual
names, andd for auxiliary constants.

As in the above example, most features of OWL EL and RL can be supported by
suitable meta-rules based on the datalog translation in [4]. For the most prominent fea-
tures of the two profiles, the translation of axioms to meta-facts is specified in Fig.2,
and the according materialisation rules are presented in Fig. 3. The translation assumes
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(1) nom(x) → inst(x, x)
(2) nom(x) ∧ triple(x, r, x) → self(x, r)
(3) subClass(a, b) ∧ inst(x, a) → inst(x, b)
(4) subIntersect(a, b, c) ∧ inst(x, a) ∧ inst(x, b) → inst(x, c)
(5) subSomeValues(r, a, c) ∧ triple(x, r, y) ∧ inst(y, a) → inst(x, c)
(6) someValues(a, p, b, d) ∧ inst(x, a) → triple(x, p, d)
(7) someValues(a, p, b, d) ∧ inst(x, a) → inst(d, b)
(8) selfImplies(r, c) ∧ self(x, r) → inst(x, c)
(9) impliesSelf(a, r) ∧ inst(x, a) → self(x, r)
(10) impliesSelf(a, r) ∧ inst(x, a) → triple(x, r, x)
(11) subProperty(r, t) ∧ triple(x, r, y) → triple(x, t, y)
(12) subProperty(r, t) ∧ self(x, r) → self(x, t)
(13) subPropertyChain(r, s, t) ∧ triple(x, r, y) ∧ triple(y, s, z) → triple(x, t, z)
(14) disjoint(r, s) ∧ triple(x, r, y) ∧ triple(x, s, y) → inst(x,⊥)
(15) inst(x, y) ∧ nom(y) → inst(y, x)
(16) inst(x, y) ∧ nom(y) → nom(x)
(17) triple(x1, r, y) ∧ inst(x2, y) ∧ nom(y) → triple(x1, r, x2)
(18) allValuesFrom(a, r, b) ∧ nom(x) ∧ nom(y) ∧

triple(x, r, y) ∧ inst(x, a) → inst(y, b)
(19) atMostOne(a, r, b) ∧ nom(x) ∧ nom(y1) ∧ nom(y2) ∧ inst(x, a) ∧

triple(x, r, y1) ∧ inst(y1, b) ∧ triple(x, r, y2) ∧ inst(y2, b) → inst(y1, y2)
(20) subInverseOf(r, s) ∧ nom(x) ∧ nom(y) ∧ triple(x, r, y) → triple(y, s, x)

Fig. 3. Inference rules for deriving entailments in Orel

that all axioms have first been decomposed into a simplified normal form that does not
use more than one concept operator per concept expression. To simplify the presenta-
tion, we use the names of classes, roles, and individuals, aswell as⊤ and⊥ as constant
symbols in the database instead of assigning numerical identifiers to such names as
done in the actual implementation.

Regarding the rules of Fig.3, we can observe that the rules only derive new facts
for the predicatesinst, triple, andself that correspond to assertional axioms, as
well as for the auxiliary predicatenom. To see the purpose of the latter, first note that
a special simplification of the rule set is achieved by using the same identifiers for
individual names and for nominal classes containing only this individual. Constants
that can be considered as nominal classes are marked withnom, so that the rule (1) of
Fig. 3 generates tautological assertions of the form{n}(n). It is not hard to see that all
equality statements that can be derived in OWL EL must involve at least one individual
name, and can thus be expressed by a class assertion axiom fora nominal class. These
observations allow us to simplify the equality theory of [4] to rules (15)–(17) of Fig.3.

All rules that relate to features that are specific to OWL RL are restricted to individ-
uals innom. This corresponds to the restriction of DL-safety that has been also used in
[4]. As noted there, the relevant entailments of an OWL RL ontology can be obtained
when restricting reasoning tonamed individuals.Anonymous individuals, in contrast,
cannot be inferred to exist in OWL RL and are only relevant forthe EL part of a knowl-
edge base. As discussed in [4], the DL-safe combination of EL and RL features not
only captures all entailments that would be expected from either language in isolation,
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but also allows some semantic interactions between the two languages. In this case,
however, the above inferencing algorithm is not guaranteedto produce all entailments
– indeed, a polynomial time algorithm cannot achieve this goal.

Features that are missing in Fig.2 and 3 are only OWL EL’s restricted form of
property ranges, the universal role, and concrete domains (data ranges). Orel interprets
all property ranges as OWL RL axioms of the form⊤ ⊑ ∀R.C, and does not currently
support the universal role. Concrete domains, however, aresupported and the according
rules are omitted here for reasons of space. Various other features, such as assymmetry
of roles, that have been omitted above can readily be expressed in terms of the given
features.

Finally, it should be observed that the given inference rules do not materialise facts
that can be concluded if the knowledge base is inconsistent.However, it is ensured that
inconsistencies lead to derivations of the forminst(n,⊥) for some constantn. Orel
checks for this condition for being able to return correct answers without explicitly
materialising all possible inferences in the database.

3 Schema Reasoning with Orel

The calculus that has been introduced above is able to deriveassertional axioms such
as the instances of an atomic concept. For complex concept expressions, it might be
required to first extend the knowledge base with auxiliary axioms and to (re)complete
the materialisation process thereafter. Such auxiliary axioms, however, are hardly af-
fecting the semantics of the knowledge base since they conservatively extend it, and
hence many such checks can safely be performed without resetting the database.

The matter is different when checking for the entailment of schema axioms such
as concept subsumption. Indeed, there are practically important ontologies such as
SNOMED CT which do not contain any individual names, and for which concept sub-
sumption is the chief inferencing problem. It is well known that this problem can be
reduced to instance retrieval: for checking if an axiomA ⊑ B is entailed, a new “test”
individual c is introduced into the knowledge base together with the assertion A(c). If
this impliesB(c) then the subsumption is concluded.

Unfortunately, this approach to testing does not preserve the semantics of the knowl-
edge base. Indeed, assertingA(c) may even lead to a global inconsistency (in which case
B(c) and thusA ⊑ B is also entailed). Thus, test assertions disallow the naiveparallel
execution of many queries that could be considered typical for a database system, and
they require possibly expensive deletion operations afterthe test is finished. While it
is of course possible to execute each test on a separate copy of the database – possibly
realised by marking facts in the database as belonging to a particular test instead of sep-
arating databases on the DBMS layer – this approach multiplies the data that has to be
stored at each time, and reduces the performance gains due tothe re-use of persistently
stored previous computations.

The problem is less severe when restricting to smaller languages than OWL EL.
For example, the algorithm described in [10] computes all concept subsumptions of an
ELH knowledge base in parallel without executing separate tests for each. WhileELH
allows for this mode of reasoning, it is not clear how to establish such an algorithm for
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EL++. In particular, the original algorithm as proposed in [7] is incomplete. The glitch
can be fixed, but only at the price of specifying the subsumption axiom the entailment
of which is to be tested before running the algorithm, thus requiring many runs instead
of one. We conjecture that this is unavoidable.

Due to these difficulties, Orel uses a mixed approach for finding concept subsump-
tions. The calculus uses the simple rules that have been introduced above when this is
guaranteed to yield correct results, but it creates additional copies of axioms when the
computation results in derivations that cannot be handled in this manner. The goal of
our approach is to avoid the significant overhead that is required in the general case
whenever possible, but tuning the calculus for this purposeis subject of ongoing work.
Currently, Orel’s schema inferencing is most efficient when ontologies do not contain
nominal classes (in certain problematic contexts), and it decreases in performance when
combinations of nominals, existential quantifiers, and OWLRL features occur.

4 Applying Derivation Rules on RDBMS

Relational database management systems (RDBMS) are tailored toward the process-
ing of large amounts of data, and the efficient manipulation of such data. As such they
appear to be well-suited for implementing materialisationon a persistent storage sys-
tem. However, inferencing operations are often still rather atypical for RDBMS since
they involve large inner joins over all entries in a table. Moreover, RDBMS provide
elaborate functions such as transaction management that are not required by typical
inferencing scenarios but that can significantly slow down operations. For this reason,
various optimisations are needed for using RDBMS as a basis for implementing the
outlined inferencing procedure.

It is well-known that datalog rules are closely related to operations in relational
algebra [3]. The correspondence is achieved by storing the extension of each datalog
predicate in a database table, the columns of which correspond to the arguments taken
by the predicate. Rule (3) of Fig.3 could therefore be realised by the following SQL
operation:

INSERT INTO inst (x,y) SELECT t1.x AS x, t2.y AS y

FROM subClass AS t1 INNER JOIN inst AS t2 ON t1.x=t2.y

Executing this SQL statement extends theinst table with all facts that can be de-
rived in one application of rule (3) of Fig.3. We provide this statement for illustrating
the mapping to SQL commands – using it iteratively in an implementation would lead to
prohibitively large amounts of unnecessary computations.Indeed, the operation derives
the same conclusions in each iteration, just like the original rule does when processed
operationally.

Various optimisations have been proposed and thoroughly investigated to overcome
this problem [3]. One way to increase efficiency is to keep track of the iteration step
in which a fact was derived, and to make sure that rule applications require new facts
to be involved in the derivation. This leads to the so-calledsemi-naive bottom-up eval-
uation which is largely used in Orel. Writinginsti for the predicate that corresponds
to the extension ofinst as derived in stepi, this strategy boils down to evaluating the
following rule:
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subClass(x, y) ∧ insti(y, z)→ insti+1(x, z)

Unfortunately, semi-naive evaluation can still derive large numbers of redundant
facts during inferencing. More efficient general purpose optimisations likemagic sets
are available when only certain entailments are of interest(typically at query time) but
are not useful for full materialisation. But more efficient forward chaining algorithms
do exist as well, and have been studied in the area of databases, and in particular in
relation with transitive closure computations [11]. Since these approaches often assume
very simple rule sets, they can not be directly adopted to theinference rules of Orel, and
part of the ongoing development effort around the tool is to suitably adapt techniques
from this area.

5 Implementation and Initial Results

Orel is implemented in Java, using the OWL API [12] for accessing OWL documents.
The current default RDBMS that is used in Orel is MySQL although only minor adjust-
ments would be needed to move to another RDBMS. Orel is free software and can be
obtained (including its source code) fromhttp://code.google.com/p/orel/.

The current implementation of Orel is still not fully optimised in various respects.
On the one hand, we are exploring heuristics for improving the inferencing control
flow. On the other hand, optimising database queries for a particular RDBMS is a te-
dious process with many dependencies on the technical infrastructure used in testing.
We have found that different server setups and machine configurations can lead to a
50% reduction in ontology loading times while incurring a slow-down of several orders
of magnitude for materialisation. Thus, while we cannot give reproducible evaluation
figures, we can provide some first insights into general runtime behaviour.

The OWL 2 test cases2 have been used to test the correctness of the implementation.
For performance testing, we specifically focussed on the well-known SNOMED CT on-
tology, a medical terminology of about 425,000 axioms with astrong focus on subclass
subsumptions. We considered loading and inference materialisation for this ontology.
Load times have shown to be rather similar across very systems of diverse performance,
typically ranging between 9min and 20min. These times reflect the slow inserting be-
haviour of relational databases – the given times are already based on an optimised
loading phase that controls transaction management and indexing, and that exploits
client-side caching and rewritten bulk updates. Yet, the writing speed is a strong limit-
ing factor (computing the data for writing takes but a few seconds). Application areas
for DBMS-based systems of course assume axioms to change at aslow rate, thus re-
ducing the relevance of initial loading times.

Loading does not involve reasoning, i.e. materialisation.At the current stage of im-
plementation, Orel is able to successfully classify SNOMEDCT but it cannot compete
with highly optimised in-memory systems like Condor [13]: almost 2 hours are needed
on a fast database server. This reflects some of the limitations of using an off-the-shelf
RDBMS, and we expect significant potential for speed-up by using alternative back-
ends. Similar results have been reported for the SAOR inference engine for OWL Horst

2 http://owl.semanticweb.org/
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[14], and we are not aware of any system that uses MySQL as a reasoning backend.
In spite of the comparatively low performance of the currentimplementation, we were
still able accomplish major speed improvements for the classification by improving con-
trol structure and inference rules. Most of these optimisations are directly applicable to
other backends as well.

6 Related Work

The objective or Orel is to provide a stable framework for OWLontology manage-
ment and inferencing based on persistent storage. Approaches of rule-based bottom-up
materialisation of consequences have a long history, and Orel therefore can build on a
significant amount of prior work, both practical and theoretical in nature.

On the theoretical side, there is a large body of well-established research to be found
in the area of (relational) databases, especially related to the optimisation of recursive
queries [3] and the construction of materialised views [15]. We have discussed herein
only briefly the basic use of a semi-naive evaluation strategy, but other approaches are
applicable in a similar fashion when optimising for furtheruse cases. Typical exam-
ples for such techniques are magic sets (used for optimisingcomplex bottom-up com-
putations needed at query time) and incremental materialisation (used for efficiently
recreating inferences when new data is added).

More recently, much work has been conducted on “no-SQL” approaches to per-
sistent storage, leading to a number of database-like systems that are tailored toward
improved efficiency for non-relational data schemes such as sets of RDF triples, JSON
documents, or simple key value pairs. These developments can be beneficial for se-
lecting more suitable storage backends for Orel in the future, but they are not directly
related to the work on the current system. Indeed, Orel’s architecture abstracts all stor-
age operations so that inference and control structures do not refer to SQL or any other
concrete DBMS feature in any way.

On the more practical side, there are a number of past and current systems that
support rule-based inferencing on relational databases. We are not aware of any tool
that supports more than a single OWL 2 profile based on such an approach, making
Orel’s multi-profile integration novel. Also, the overall architectures of systems differ
significantly, even if rule-based inferences are used at thecore. The main relationship
to Orel therefore is in the actual reasoning module that saturates a knowledge base
for a given set of rules, whereas functions such as checking ontology entailment are
often highly specific to a given tool. In fact, we do not know ofany freely available
database-driven reasoner that can check ontology entailment for any OWL profile, the
implementation of which was not a minor part of the current Orel system.

The system whose inferencing is most closely related to Orelis the DB reasoner
for ELH [10]. This system supports only a small fragment of the OWL EL profile, but
the rules applied for this part are closely related to those used in Orel for the respective
features. The only inference problem that DB supports is classification, but it shows
some very good performance characteristics for this task, especially regarding memory
usage.
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The only other database-driven inference engine forEL that we are aware of is a
prototype system that was presented in [16]. In this case, the focus is on conjunctive
query answering, with the main contribution being to show that such queries can be
answered rather directly on databases with a certain state of materialisation. Loading
performance and memory consumption have not been optimisedin this work, and are
not as good as for the DB reasoner, but outstanding query performance could be ob-
tained. The existence of prototype systems like the above add to our motivation for
developing a stable, free platform that can be used to integrate and refine the underlying
approaches and algorithms.

Most other database systems that support OWL reasoning focus on OWL RL or on
a subset thereof. The most current such implementation thatwas reported is the OWL
reasoner of Oracle 11g.3 Many systems focus on DLP [17] or pD∗ [18], thus provid-
ing only incomplete coverage of OWL RL inferencing. Prominent examples include
OWLIM [ 19], DLDB2 [20], and Minerva [21].

Further systems provide yet more restricted amounts of OWL or RDFS inferences
mostly for augmenting RDF-based instance data. An interesting example is SAOR for
which a non-standard storage implementation has lead to significant performance in-
creases as compared to MySQL [14]. Even though SAOR does not support many OWL
features yet, this hints at the potential that non-SQL databases may have for improving
the efficiency of systems like Orel.

Finally, rule-based inferencing on top of RDF data has been supported by some
tools, the most prominent among which is probably Jena whichfeatures a proprietary
inference rule implementation.4 In this case, rules are rather understood in the sense of
production rule systems where they form a configurable part of an application that is
used to perform relevant computations.

A rather different class of database-driven ontology reasoners are systems that al-
low for OWL QL querying, such as the QuOnto system.5 The nature of the problems
involved here are somewhat different, and query rewriting often plays a central role.
However, recent works in this field have also suggested the use of partial materialisa-
tion for improved query performance [22].

7 Conclusion and Future Work

We have presented the new ontology inference and managementengine Orel, and its
underlying approach based on rule-based bottom-up materialisation of consequences
in a database. Similar materialisation approaches have been explored for (sometimes
incomplete) OWL Full/RDF(S) inferencing, most notably in SAOR [14] and OWLIM
[19]. Conversely, there are also a number of fast in-memory implementations available
for handling (parts of) OWL EL. Orel is different from both classes of systems as it
provides RDBMS based inferencing for OWL EL, and is using a new algorithmic basis
that allows for a unified treatment of OWL EL and RL.

3 http://www.oracle.com/technology/tech/semantic_technologies/
4 http://jena.sourceforge.net/inference/
5 http://www.dis.uniroma1.it/~quonto/
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The ongoing work on Orel pursues a number of independent goals. Of course, per-
formance is considered as a core challenge, and both the deduction calculus and the
storage backend can be improved to address it. For improvingthe calculus, we develop
rule sets that avoid redundant conclusions, and experimentwith optimisation methods
for efficiently computing closures of datalog programs. Regardingthe storage backend,
we consider other database paradigms related to recent no-SQL approaches. Another
vital feature for a database-driven system are efficient update methods for adding and
deleting axioms without recomputing all derivations. Methods for maintenance of ma-
terialised views are well known [15], but strongly depend on the details of the imple-
mented calculus.

Besides these obvious goals, there are a number of interesting directions to fur-
ther develop the core system. Relevant additional featuresinclude (conjunctive) query
answering, explanation, and extensions with non-standardexpressive features such as
nonmonotonic inferencing. Other important fields of research concern distribution and
parallelisation. At the same time, we seek concrete application scenarios that can be
used to explore the practical utility of a robust and scalable OWL inferencing system.
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Abstract. In this paper, we revisit the problem of definitorial completeness, i.e.,
whether a given general TBox T in a description logic (DL) L can be rewritten
to an acyclic TBox T ′ in L . This is an important problem because crucial opti-
misations in DL reasoners rely on acyclic parts in TBoxes. It is known that such
rewritings are possible for definitorial TBoxes in ALC and in logics ALCX for
X ⊆ {S,H, I}. Here we establish optimal bounds on the sizes of the result-
ing acyclic TBoxes. In particular, we reduce the known triple exponential upper
bound on ALC-TBoxes to single exponential. Additionally, we prove the same
upper bound for those extensions withX ⊆ {S,H, I} for which there was no es-
tablished result before. This means, together with the already known exponential
lower bound for ALC, that our bounds are tight.

1 Introduction

Description logic (DL) TBoxes enable one to introduce names for complex concepts
using concept definitions. For example, the definition Parent ≡ Mother t Father
classifies all individuals that are either mothers or fathers as parents. Here, Parent is
called a defined concept, and Mother and Father are primitive concepts. In some sense,
instances of primitive concepts come directly from the application domain whereas
defined concepts help us to define views or constraints. Baader and Nutt [1] call a finite
set of concept definitions a terminology if no concept name is defined more than once.

Terminologies can be cyclic, i.e., a defined concept may refer to itself directly in
its definition or indirectly through some other defined concept. Cyclicity is a syntactic
condition and for certain cyclic terminologies there may be equivalent acyclic ones. For
example, the definition

Parent ≡ (Parent t ¬Parent) u (Mother t Father)

contains the tautological expression (Parent t¬Parent). By removing this expression
we obtain an equivalent acyclic definition.

Acyclic TBoxes are of particular interest because reasoning with them is “eas-
ier” than with general TBoxes. For example, satisfiability of an acyclic ALC-TBox
is a PSPACE-complete problem whereas the variant of the problem for general ALC-
TBoxes is EXPTIME-complete [2]. On the practical side of things, absorption is an
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indispensable optimisation technique in DL reasoners which makes use of the acyclic
part of a TBox [3]. Therefore a natural question arises: from which cyclic terminologies
can we obtain equivalent acyclic ones? Baader and Nutt answer this question by iden-
tifying a semantic condition on terminologies called definitoriality [1]. Intuitively, if a
terminology is definitorial and the instances of primitive concepts are known then the
instances of defined concepts are completely determined. In particular, Baader and Nutt
show that ALC is definitorially complete, i.e., for every definitorial ALC-terminology
there is an equivalent acyclic ALC-terminology. As also noted by the authors, definito-
rial completeness is a form of Beth Definability [4] – a property of first-order logic –
for DLs.

Another relevant question which is of practical interest is how an equivalent acyclic
terminology can be obtained from a definitional one. Ten Cate et al. [5] give a con-
structive method for calculating an acyclic ALC-terminology from a definitorial one
and prove definitorial completeness for some extensions of ALC. To be more precise,
Ten Cate et al. consider the same problem for general TBoxes instead of terminologies.
In general TBoxes, it is not clear from the syntactic shape of the TBox anymore which
predicate is primitive and which is defined. In this setting, primitive predicates are as-
sumed as given. Moreover, Ten Cate et al. establish a single exponential lower and a
triple exponential upper bound on the size of the generated TBoxes in ALC. However,
the exact characterisation of the succinctness of general TBoxes over acyclic ones was
left as an open problem.

In this paper, we reduce the upper bound on the size of the equivalent acyclic termi-
nologies obtained from definitorial ALC-TBoxes to single exponential, which is tight.
We then extend this result to all logicsALCX forX ⊆ {S,H, I}, for which there were
no earlier established results. In previous work [6], we used Beth Definability (adapted
to DLs) to rewrite a given concept into an equivalent one for efficient instance retrieval
using databases. Our results in this paper extend to that scenario as well. More precisely,
here we give an optimal version of the algorithm that computes rewritings.

We start by giving a brief introduction to standard notions we will use from DLs
in Section 2. In Section 3 we give our main result for ALC after introducing relevant
terminology. These results are based on the algorithm we present in Section 4. Our
results for extensions of ALC are presented in Section 5, after which we conclude.

2 Preliminaries

Let NC and NR be countably infinite and disjoint sets of concept and role names,
respectively. With NP we denote the set of predicates NC ∪NR.

The set of SHI-roles is defined as NR ∪ {R− | R ∈ NR}. A role inclusion axiom
is of the form R v S, with R and S SHI-roles. A transitivity axiom is of the form
Trans(R), for R a SHI-role. A role hierarchy H is a finite set of role inclusion and
transitivity axioms.

For a role hierarchy H, we define the function Inv over roles as Inv(R) := R− if
R ∈ NR and Inv(R) := S if R = S−, for some S ∈ NR. Further we define vH as the
smallest transitive reflexive relation on SHI-roles in H such that R v S ∈ H implies
R vH S and Inv(R) vH Inv(S).
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The set of SHI-concepts and their semantics are defined in the standard way [7].
A SHI-TBox T is a finite set of concept inclusion axioms C v D and/or concept
definitions A ≡ C, where A is a concept name, and C and D are SHI-concepts.
A SHI knowledge base (KB) K is a pair (T ,H), where T is a SHI-TBox and H
is a role hierarchy. For a SHI-concept C and a SHI-KB K = (T ,H), rol(C,K)
and sig(C,K) denote, respectively, the sets of role and predicate (i.e., concept or role)
names occurring in C or K. We are interested in special acyclic TBoxes.

Definition 1 ([5]). Let T be a TBox. A concept name A directly uses a concept name
B in T if there is some A ≡ C ∈ T and B ∈ sig(C); uses is the transitive closure of
the relation directly uses.

Let Σ ⊆ sig(T ). T is Σ-acyclic if it satisfies the following two properties:

1. T consists of exactly one concept definition A ≡ C for each concept name A ∈
(sig(T ) \Σ), plus a number of concept inclusion axioms C v D, where sig(C) ⊆
Σ and sig(D) ⊆ Σ.

2. There is no concept name A that uses itself in T .

The notion of an interpretation satisfying a role hierarchy or TBox is defined in the
usual way (cf. [7]). An interpretation I satisfiesK = (T ,H) if and only if I satisfies T
andH. In this case, we say that I is a model ofK.K is satisfiable ifK has a model. Two
KBs are equivalent if they have the same models. A concept C is satisfiable w.r.t. K if
and only if there is some model I of K such that CI 6= ∅. The concept subsumption
and equivalence problems, i.e., checking whether K |= C v D (respectively, (K |=
C ≡ D), are defined in the usual way.

A concept C is in negation normal form (NNF) if and only if the negation sign
appears only in front of concept names in C. A concept can be transformed into an
equivalent one in NNF in linear time and thus, we assume all concepts to be in NNF.
For a concept C, we denote its negation in NNF by ¬̇C. Moreover, we will sometimes
consider only concept inclusions of the form > v C to which every concept inclusion
and definition can be rewritten again in linear time.

The concept closure cl(C0,K) of C0 andK is the smallest set of concepts satisfying
the following conditions:

– C0 ∈ cl(C0,K);
– if > v C ∈ T then C ∈ cl(C0,K);
– if C ∈ cl(C0,K) and D is a subconcept of C then D ∈ cl(C0,K);
– if ∀R.C ∈ cl(C0,K), S vH R, and Trans(S) ∈ H then ∀S.C ∈ cl(C0,K).

We define the notions of closure f(e), for f ∈ {sig, cl, rol} and e ∈ {C, T ,H,K},
analogously. The size of a concept C (written |C|) is the number of elements in cl(C).
For a TBox T , |T | := ∑

>vC∈T |C|.

3 Beth Definability

We introduce in this Section implicit and explicit definability for concepts. We used
these notions in [6] to reduce the instance retrieval problem in DLs with DBoxes to

Inanc Seylan, Enrico Franconi and Jos de Bruijn. 127



SQL query answering. In this section, we will use them again to rewrite definitorial
TBoxes into acyclic ones in a more direct way than Ten Cate et al. did in [5]. We start
by giving a semantic characterisation of implicit definability.

Definition 2 (Reduct). Let I = 〈∆I , ·I〉 be an interpretation and let Σ ⊆ NP . An
interpretation J = 〈∆J , ·J 〉 is the reduct of I to Σ (denoted by I|Σ) if and only
∆I = ∆J and ·J is defined only on the symbols in Σ.

Definition 3 (Implicit definability). Let C be a concept, K a KB, and Σ ⊆ sig(C,K).
C is implicitly definable from Σ under K if and only if for any two models I and J of
K, ∆I = ∆J and I|Σ = J |Σ implies CI = CJ .

In other words, given a TBox, a concept C is implicitly definable if the set of all its
instances depends only on the extension of the predicates in Σ.

Example 1. Consider the KB K = (T , ∅), where T is equal to:

Project v Activity
Meeting v Activity
Activity v Project tMeeting
Project v ¬Meeting

and let Σ = {Meeting ,Activity}. Project is implicitly definable from Σ under K
since its extension depends only on the (fixed) extension of Meeting and Activity .

The following proposition provides an alternative, syntactic definition of implicit defin-
ability. In particular, it reduces checking implicit definability to the entailment problem
in the same logic. Let a concept C̃ (resp., KB K̃) be like C (resp., K) except that every
occurrence of each predicate P ∈ (Σ \ sig(C)) (resp. P ∈ (Σ \ sig(K))) is replaced
with a new predicate P̃ .

Proposition 1. A concept C is implicitly definable from Σ under K if and only if K ∪
K̃ |= C ≡ C̃.

If a concept is implicitly definable fromΣ, then it may be possible to find an expression
using only predicates in Σ whose instances are the same as in the original concept: this
would be its explicit definition.

Definition 4 (Explicit definability). Let C be a concept, K a KB, and Σ ⊆ sig(C,K).
C is explicitly definable from Σ under K if and only if there is some concept D such
that K |= C ≡ D and sig(D) ⊆ Σ. Such a D is called an explicit definition of C from
Σ under K.

In Example 1, the explicit definition of Project is Activity u ¬Meeting . It is not hard
to see that explicit definability implies implicit definability. Beth [4] shows that the
converse holds for the case of first-order logic: if C is implicitly definable from Σ in
K, then it is explicitly definable. This property for ALC with general TBoxes is proved
in [6] by exploiting interpolation. Here we state a stronger version of the theorem in [6]
by putting an exponential bound on the size of the explicit definition and give the proof
again to show how interpolation is used.
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Definition 5. Let K = (T ,H) be a KB. A labelling of K is an ordered pair 〈Kl,Kr〉 of
KBs where Kl = (Tl,Hl), Kr = (Tr,Hr), T = Tl ∪ Tr, andH = Hl ∪Hr; 〈Tl, Tr〉 is
a labelling of the TBox T .

Definition 6 (Interpolant). Let C, D be concepts and let K be a KB such that K |=
C v D. A concept I is called an interpolant of C and D under a labelling 〈Kl,Kr〉 of
K if sig(I) ⊆ sig(C,Kl) ∩ sig(D,Kr), K |= C v I , and K |= I v D.

Section 4 is devoted to a constructive proof for the following lemma by using an optimal
tableau calculus for ALC.

Lemma 1. Let C and D be ALC-concepts and let K = T be an ALC-KB such that
K |= C v D. If 〈Kl,Kr〉 is a labelling of K then there exists an interpolant of C and
D under 〈Kl,Kr〉 whose size is at most exponential in |T |+ |C|+ |D|.
Theorem 1 (Beth Definability). Let C be an ALC-concept, let K = T be an ALC-
KB, and let Σ ⊆ sig(C,K). If C is implicitly definable from Σ under K then C is
explicitly definable from Σ under K, and the size of the explicit definition is at most
exponential in |T |+ |C|.

Proof. We have that K ∪ K̃ |= C ≡ C̃ by implicit definability of C. Moreover, 〈K, K̃〉
is a labelling of K ∪ K̃. Now, by Lemma 1 and |C| = |C̃|, there is an interpolant I of
C and C̃ under 〈K, K̃〉 and the size of I is at most exponential in |T | + |C|. Since it
is an interpolant, sig(I) ⊆ sig(C,K) ∩ sig(C̃, K̃) = Σ, and both (a) K ∪ K̃ |= C v I

and (b) K ∪ K̃ |= I v C̃. By (b) and K ∪ K̃ |= C̃ v C, we have K ∪ K̃ |= I v C,
from which K ∪ K̃ |= C ≡ I follows by (a). From the structure of K̃ and the fact that
sig(C), sig(I) ⊆ sig(K) straightforwardly follows that K |= C ≡ I . ut
This proof of Beth definability for ALC with general TBoxes is constructive, provided
we have a constructive method of finding interpolants as defined in Definition 6. As we
will see in Section 4, this constructive method is based on tableau. To be more precise,
the tableau algorithm will allow us to check whether a concept is implicitly definable
and if this is the case, we will use the same tableau proof to construct an explicit def-
inition. Note that Theorem 1 also establishes a single exponential upper bound on the
size of explicit definitions we calculate. Together with the following theorem which es-
tablishes the lower bound, we can conclude that our procedure for calculating explicit
definitions is worst-case optimal.

Theorem 2 ([5]). There are anALC-concept C,ALC-KBK = T , andΣ ⊆ sig(C,K)
such that C is implicitly definable from Σ under K and the smallest explicit definition
of C is exponential in |C|+ |K|.
We now formally define the notions we discussed in the introduction. However, unlike
Baader and Nutt [1], we consider general TBoxes instead of terminologies. In general
TBoxes, it is not clear from the syntactic shape of the TBox which predicate is prim-
itive and which is defined. Therefore, we assume that primitive predicates, i.e., Σ, are
specified beforehand. This is similar to the approach by Ten Cate et al. [5].
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Definition 7. Let T be a TBox and let Σ ⊆ sig(T ). T is Σ-definitorial if and only if
for every interpretation I that interprets only the predicates in Σ there is at most one
interpretation J such that ∆I = ∆J , P I = PJ for every predicate P ∈ Σ, and J is
a model of T .

It is not hard to see the connection between definitoriality and implicit definability.

Theorem 3. Let T be a TBox and let Σ ⊆ sig(T ). T is Σ-definitorial if and only if
every concept name A ∈ sig(T ) \Σ is implicitly definable from Σ under T .

We are interested in rewriting general TBoxes toΣ-acyclic ones. It is clear from the def-
inition ofΣ-acyclic TBoxes that they may contain general concept inclusions involving
only predicates from Σ. This restriction is needed because unlike in [1] we may be
given a TBox that is not a terminology. A Σ-acyclic TBox is also Σ-definitorial, but
the converse may not always be true. DLs possessing this property are called definito-
rially complete.

Definition 8. A description logic L is called definitorially complete if each Σ-defini-
torial L -TBox T is equivalent to a Σ-acyclic L -TBox T ′.

Baader and Nutt show that ALC is definitorially complete [1]. Ten Cate et al. give
a concrete algorithm for computing acyclic TBoxes from definitorial ones in ALC [5].
The algorithm is based on a special normal form for concepts and uniform interpolation.
This involves at most a triple exponential blowup. Here we take a more direct approach
using interpolation and improve this upper bound to a single exponential one, which is
the main result of this section.

Theorem 4. Let T be an ALC-TBox and let Σ ⊆ sig(T ). If T is Σ-definitorial, then
there exists an equivalent Σ-acyclicALC-TBox T ∗, which is at most exponential in the
size of T .

Proof. Let T be a Σ-definitorial ALC-TBox. By Theorem 3 and Theorem 1, for every
A ∈ (sig(T ) \ Σ), there is some concept CA such that T |= A ≡ CA, sig(CA) ⊆ Σ,
and |CA| is at most exponential in |A| + |T |. However, since A ∈ sig(T ), we can
conclude that |CA| is at most exponential only in |T |.

Let T ∗ be the TBox obtained from T by systematically replacing each occurrence
of all A by CA, and adding the relevant concept definitions A ≡ CA. Then T ∗ is
Σ-acyclic and equivalent to T . Finally, the length of T ∗ is easily seen to be at most
exponential in the length of T . ut

4 Optimally Constructing Interpolants

In this section, we give a constructive proof of Lemma 1. In other words, we present
a method for constructing an interpolant using a tableau proof. We have presented a
constructive method in [6]. However, the algorithm there is based on standard ALC
tableau techniques, which do not guarantee termination in EXPTIME, and are not worst-
case optimal, since checking satisfiability in ALC is known to be in EXPTIME. Here
we aim at obtaining exponential size interpolants by using a worst-case optimal tableau
algorithm in the style of Goré and Nyugen [8].
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The R⊥ rule
Condition: {Cλ, (¬̇C)κ} ⊆ g.content.
Action: g.status := unsat.
The Ru rule
Condition: (C1 u C2)

λ ∈ g.content, {Cλ1 , Cλ2 } 6⊆ g.content.
Action: g′.content := g.content ∪ {Cλ1 , Cλ2 };
The Rt rule
Condition: (C1 t C2)

λ ∈ g.content, {Cλ1 , Cλ2 } ∩ g.content = ∅.
Action: g′.content := g.content ∪ {Cλ1 };

g′′.content := g.content ∪ {Cλ2 };
The R∃ rule
Condition: {(∃R1.C1)

λ1 , . . . , (∃Rn.Cn)λn} ⊆ g.content;
(∃R.C)λ ∈ g.content implies ∃i ∈ {1, . . . , n} s.t. (∃R.C)λ = (∃Ri.Ci)λi .

Action: gi.content := {Cλi
i } ∪ {Dλ | (∀R.D)λ ∈ g.content and Ri = R},

gi.content := gi.content ∪ {El | > v E ∈ Tl} ∪ {Er | > v E ∈ Tr}
for 1 ≤ i ≤ n.

Fig. 1. Tableau expansion rules for ALC.

4.1 An Optimal Tableau Algorithm for Satisfiability

We start by presenting a tableau algorithm for deciding concept subsumption. To this
aim, we fix two ALC-concepts C and D, and an ALC-TBox T with the labelling
〈Tl, Tr〉. A biased tableau (tableau for short) for 〈C,D, Tl, Tr〉 is a directed graph
〈V, E〉, where V is the set of nodes and E ⊆ V × V is the set of edges.

In the following, we will be using biased concepts which are expressions of the
form Cλ, where C is an ALC-concept and λ ∈ {l, r} is a bias. Let cll := {El | E ∈
cl(C, Tl)} and clr := {Er | E ∈ cl(¬̇D, Tr)}. We associate four different labels to
nodes in V: content : V → 2cll∪clr, type : V → {and-node,or-node}, status :
V → {sat,unsat}, and availability : V → {expanded,unexpanded}. The
function of these labels are explained when they are used.

The tableau expansion rules given in Figure 1 expand a tableau by making use of the
semantics of concepts, and thus make implicit information explicit. We assume that a
rule can be applied to a node g if g.availability = unexpanded and if a rule is applied
to g then g.availability := expanded without writing it explicitly in rule definitions.
In order to guarantee a finite expansion, we use proxies in the following way. Whenever
a rule creates a new node g′ from g, before attaching the edge 〈g, g′〉 to E , the tableau
is searched for a node g′′ ∈ V such that g′.content = g′′.content. If such a g′′ is found
then the edge 〈g, g′′〉 is added to E and g′ is discarded.

We are interested in deciding T |= C v D. The tableau algorithm starts with the
initial tableau T = 〈{g0}, ∅〉 for 〈C,D, Tl, Tr〉, where g0.content = {Cl, (¬̇D)r} ∪
{El | > v E ∈ Tl} ∪ {Er | > v E ∈ Tr} and g0.availability = unexpanded.
T is then expanded by repeatedly applying the tableau expansion rules in such a way
that if more than one rule is applicable at the same time then the first applicable rule in
the list [R⊥,Ru,Rt,R∃] is chosen. The expansion continues until none of the rules is
applicable to T. Such a tableau is called complete.
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Let T be a complete tableau for 〈C,D, Tl, Tr〉. The type of a node g is determined
as follows: g.type = or-node if Rt has been applied to g, and g.type = and-node
otherwise. Until it is no more possible to assign a status to a node in V , we run the
following algorithm.

– Pick a node g ∈ V .
– If g is a sink node1 with g.status 6= unsat then g.status := sat.
– If g.type = and-node and
• all g’s direct successors have status sat then g.status := sat;
• one of g’s direct successors has status unsat then g.status := unsat.

– If g.type = or-node and
• all g’s direct successors have status unsat then g.status := unsat;
• one of g’s direct successors has status sat then g.status := sat.

If g0.status is still undefined then for every g ∈ V with g.status 6= unsat, set
g.status := sat.

A complete tableau for 〈C,D, Tl, Tr〉 is closed if g0 has status unsat and it is
open, otherwise. If the tableau algorithm constructs an open tableau for 〈C,D, Tl, Tr〉
then it returns “T 6|= C v D”, and “T |= C v D” otherwise.

Termination is a consequence of using proxies and cll∪ clr being finite. In the worst
case, there are 2O(](cll∪clr)) nodes in a complete tableau T. Checking for proxies and
determining the status of g0 both take polynomial number of steps in the size of T. As it
is apparent, we use a refutation proof for T |= C v D, i.e., we check the unsatisfiability
of C u ¬̇D w.r.t. T . For soundness, given a model I of T such that (C u ¬̇D)I 6= ∅,
we can guide the tableau algorithm to construct an open tableau for 〈C,D, Tl, Tr〉 by
making use of the information in I. As for completeness, we can construct a model I
of T such that (C u ¬̇D)I 6= ∅ from an open tableau for 〈C,D, Tl, Tr〉. Combining all
these, we get the following theorem.

Theorem 5 ([8]). Let C, D be ALC-concepts and T be an ALC-TBox. The tableau
algorithm decides T |= C v D in time exponential in |C|+ |D|+ |T |.

4.2 An Algorithm for Calculating Interpolants

As is clear from the definition of the tableau expansion rules, we use some additional
bookkeeping (compared with the algorithm of [8]) for calculating interpolants. In par-
ticular, it is necessary to identify from which TBox (Tl or Tr) or concept (C or D) a
concept in the content of a node is derived. After we have that information, we can
extract an interpolant from a closed tableau.

The interpolant calculation rules are presented in Figure 2. Given a closed tableau T
for 〈C,D, Tl, Tr〉, the interpolant calculation algorithm starts by calculating a concept
int(g) for every sink node g in T with g.status = unsat2 using C⊥. While g0 is not
assigned a concept int(g0), it repeatedly applies the following steps.

1. Pick a node g such that int(g) is undefined and g.status = unsat.

1 a node with no outgoing edges
2 Note that a node g in T with g.status = unsat is a sink if and only if R⊥ is applied to g.
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The C⊥ rule The Ct rule
int(g) := ⊥, if λ = κ = l; int(g) := int(g′) t int(g′′), if λ = l;
int(g) := C, if λ = l and κ = r; int(g) := int(g′) u int(g′′), if λ = r.
int(g) := >, if λ = κ = r;
int(g) := ¬̇C, if λ = r and κ = l.
The Cu rule The C∃ rule
int(g) := int(g′). int(g) := ∃Ri.int(gi), if λi = l;

int(g) := ∀Ri.int(gi), if λi = r for some i ∈ {1, . . . , n}.

Fig. 2. Interpolant calculation rules for ALC.

2. If g.type = and-node, and g has a direct successor g′ (gi for some i ∈ {1, . . . , n})
with int(g′) (resp. int(gi)) defined then apply Cu (resp. C∃) .

3. If g.type = or-node, and for all direct successors g′, g′′ of g we have that int(g′)
and int(g′′) defined then apply Ct.

This algorithm terminates in time polynomial in the size of T because all sink nodes
with status unsat are reachable from g0, and it is guaranteed to have nodes satisfy-
ing conditions 2 and 3 by the virtue of g0.status = unsat. The correctness of the
algorithm is shown in two steps: first we show that our interpolant calculation rules
are sound, i.e., they compute interpolants; second we show completeness, i.e., that we
always find an interpolant. The proofs of these theorems are very similar to the corre-
sponding ones we presented in [6]. Lemma 1 now follows straightforwardly from the
termination and correctness of the interpolant calculation algorithm, and Theorem 5.

5 Beth Definability in Extensions of ALC
In this section, we present a polynomial reduction from SHI KB satisfiability to ALC
KB satisfiability. This reduction allows us to prove Beth definability and definitorial
completeness properties for any extension of ALC with constructors from {S,H, I}.
Ten Cate et al. [5] showed that these logics are definitorially complete but because of
their model theoretic argument, they provide no information on the size of the resulting
TBoxes. In this section, we establish a tight upper bound for explicit definitions in these
logics.

We will proceed in three steps: first reduce SHI-concept satisfiability w.r.t. a KB
to the same problem in ALCHI, then ALCHI to ALCI, and finally ALCI to ALC.
All these reductions use the axiom schema instantiation technique [9] which is based on
the idea of removing the constructor at hand by instantiating its corresponding (modal)
axiom schema [10] for each concept in cl or a relevant concept closure, and adding
these instances to the TBox to obtain an equi-satisfiable KB. The first and third of these
reductions are given in [11] and [12], respectively. To the best of our knowledge, the
second one has not beed used before.

Definition 9. Let C0 be a SHI-concept and K = (T ,H) be an SHI-KB. Then
τS(C0,K) is defined as the ALCHI KB (T ∪ T ′,H′), where
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– T ′ = {∀R.C v ∀S.∀S.C | ∀R.C ∈ cl(C0,K), S vH R and Trans(R) ∈ H}.
– H′ is obtained fromH by removing all transitivity axioms.

Theorem 6 ([11]). A SHI-concept C0 is satisfiable w.r.t. a SHI-KB K = (T ,H) if
and only if C0 is satisfiable w.r.t. the ALCHI-KB τS(C0,K).

Definition 10. Let C0 be anALCHI-concept and letK = (T ,H) be anALCHI-KB.
Then τH(C0,K) is defined as theALCI-KB (T ∪T ′, ∅), where T ′ = {∀S.C v ∀R.C |
∀S.C ∈ cl(C0,K), R vH S, and R 6= S}.
Theorem 7. An ALCHI-concept C0 is satisfiable w.r.t. an ALCHI-KB K = (T ,H)
if and only if C0 is satisfiable w.r.t. the ALCI KB τH(C0,K).

Dealing with inverse roles is a bit more intricate because the signature of the original KB
needs to be changed. Let the ALC-concept ζ(C) be like the ALCI-concept C except
that every occurrence of each inverse role R− in C is replaced with a new role name
Rc; the renaming transformation ζ(·) extends to TBoxes in the natural way. Moreover,
let ι(·) be the inverse of ζ(·), i.e., ι(ζ(C)) = C.

Definition 11. LetC0 be anALCI-concept and let T be anALCI-TBox. Then τI(C0, T )
is defined as the ALC-TBox T1 ∪ T2, where:

1. T1 = ζ(T ).
2. T2 is the set of all concept inclusion axioms of the formsC v (∀R.∃Rc.C) andC v

(∀Rc.∃R.C) such that C is in cl(ζ(C0), T1) and R is a role name in rol(C0, T ).

Theorem 8 ([12]). An ALCI-concept C0 is satisfiable w.r.t. an ALCI-TBox T if and
only if the ALC-concept ζ(C0) is satisfiable w.r.t. the ALC-TBox τI(C0, T ).

The following theorem follows directly from Theorems 6, 7, and 8.

Theorem 9. A SHI-conceptC0 is satisfiable w.r.t. a SHI-KBK = (T ,H) if and only
if theALC-concept ζ(C0) is satisfiable w.r.t. theALC-KB τI(C0, τH(C0, τS(C0, (T ,H)))).

Except for the last one, all the reductions presented in this section preserve the signature
of the given KB. Therefore, an explicit definition in the less expressive logic is also an
explicit definition in the more expressive one. As for the last reduction, it is possible
to reconstruct an explicit definition in ALCI from the one in ALC by replacing role
names corresponding to inverse roles, as demonstrated by the following theorem.

Theorem 10. LetX ⊆ {S,H, I} and letK = (T ,H) be anALCX-KB. If anALCX-
concept C is implicitly definable from Σ ⊆ sig(C,K) under K then C is explicitly
definable from Σ under K, and the size of the explicit definition of C from Σ under K
is at most exponential in |T |+ |H|+ |C| .
Proof. Let K be a SHI-KB and let C and D be SHI-concepts. Furthermore, let
K? = (τI(E, τH(E, τS(E, (T ,H))))), where E = (C u ¬D) t (D u ¬C). We have
the following chain of equivalences: (†) K |= C ≡ D ⇔ E is unsatisfiable w.r.t. K
⇔ [Theorem 9] ζ(E) is unsatisfiable w.r.t. K? ⇔K? |= ζ(C) ≡ ζ(D).
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Let K = (T ,H) be an ALCX-KB and let C be an ALCX-concept such that C is
implicitly definable from Σ under K. Then K ∪ K̃ |= C ≡ C̃. Every ALCX-concept
and every ALCX-KB is trivially a SHI-concept and a SHI-KB, respectively, and
therefore, by (†), we have thatK?∪K̂? |= ζ(C) ≡ ζ̂(C), where ·̂ is exactly like ·̃ except
thatΣ is substituted byΣ? = Σ∪{Rc | Rc ∈ rol(ζ(C),K?) and R ∈ Σ}. ζ(C) andK?
are anALC-concept andALC-KB, respectively. By Theorem 1 we have that there is an
explicit definitionD of ζ(C) fromΣ? underK? the size of which is at most exponential
in |τI(C, τH(C, τS(C, (T ,H))))| + |ζ(C)|. In other words, K? |= ζ(C) ≡ D and the
size ofD is at most exponential in |T |+ |H|+ |C|. By (†),K |= C ≡ ι(D), where ι(D)
is an ALCX-concept. But by Definition 4, ι(D) is an explicit definition of C from Σ
under K. ut

6 Conclusion

In this paper, we revisited the problem of definitorial completeness, i.e., whether a given
general TBox T in a DL L can be rewritten to an acyclic TBox T ′ in L . ALC and
everyALCX for X ⊆ {S,H, I} were already known to be definitorially complete [5].
Our main contribution in this paper was to establish a tight exponential bound on the
size of the resulting acyclic TBoxes.

Our results show that concept definitions can be written exponentially more suc-
cinctly in general TBoxes than in acyclic TBoxes for the logics we considered. There-
fore, general concept inclusions may help increase the readability of a TBox/ontology.
However, general concept inclusions introduce a lot of non-determinism to reasoning
algorithms. If a general TBox is used for concept definitions and our DL is definitori-
ally complete then this is not much of a restriction since an equivalent acyclic TBox
can be obtained. This suggests the use of the general TBox for user friendliness and a
precomputed acyclic counterpart for reasoning.

Definitorial completeness is a fragile property and not every DL enjoys it. For ex-
ample, ALCO does not have this property and requires the @-operator from hybrid
logics to become definitorially complete [5]. It is worthwhile to note that the algorithm
for computing acyclic TBoxes is based on tableau, and thus it is suitable for optimised
implementations. We leave as an open problem whether a tight upper bound for SHIQ
can be obtained in a similar way.
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1 Introduction

The Web Ontology Language (OWL) [1] is an expressive ontology language
based on Description Logics (DL)1. The semantics of OWL addresses distributed
knowledge representation scenarios where complete knowledge about the domain
cannot be assumed. Further, the semantics has the following characteristics:

– Open World Assumption (OWA): i.e., a statement cannot be inferred to be
false on the basis of failures to prove it.

– Absence of the Unique Name Assumption (UNA): i.e., two different names
may refer to the same object.

However, these characteristics can make it difficult to use OWL for data val-
idation purposes in real-world applications where complete knowledge can be
assumed for some or all parts of the domain.

Example 1 Suppose we have the following inventory KB K. One might add the
following axiom α to express the constraint “a product is produced by a producer”.
K = {Product(p)}, α : Product v ∃hasProducer.Producer

In this example, due to the OWA, not having a known producer for p does not
cause a logical inconsistency. Therefore, we cannot use α to detect (or prevent)
that a product is added to the KB without the producer information.

Example 2 Suppose we have the following inventory KB K. One might add the
following axiom α to express the constraint “a product has at most one producer”.
K = {Product(p), hasProducer(p,m1), hasProducer(p,m2)},
α : Product v ≤ 1hasProducer.>

Since m1 and m2 are not explicitly defined to be different from each other, they
will be inferred to be same due to the cardinality restriction. However, in many
cases, the reason to use functional properties is not to draw this inference, but to
detect an inconsistency. When the information about instances are coming from
multiple sources we cannot always assume explicit inequalities will be present.

In these scenarios, there is a strong need to use OWL as an Integrity Con-
straint (IC) language with closed world semantics. That is, we would like to adopt
the OWA without the UNA for parts of the domain where we have incomplete
1 Throughout the paper we use the terms OWL and DL interchangeably.
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knowledge, and the Closed World Assumption (CWA)2 with UNA otherwise.
This calls for the ability to combine the open world reasoning of OWL with
closed world constraint validation.

In this paper, we describe an alternative IC semantics for OWL, which en-
ables developers to augment OWL ontologies with IC axioms. Standard OWL
axioms in the ontologies are used to compute inferences with open world seman-
tics and ICs are used to validate instance data using closed world semantics.
Our goal is to enable OWL as an IC language, especially in settings where OWL
KBs are integrated with relational databases and ICs are needed to enforce the
named individuals to have some known values. We show that IC validation can
be reduced to query answering when the KB expressivity is SRI or the con-
straint expressivity is SROI. The queries generated from ICs can be expressed
in the SPARQL query language allowing existing OWL reasoners to be used for
IC validation easily.

2 IC Use Cases

There are several common use cases for closed world constraint checking that
have been identified in the relational and deductive databases literature [2, Chap.
11]. We prepared a user survey to gather use cases and requirements for ICs from
the OWL community. These use cases are similar to what we consider to be the
canonical IC use cases and can be summarized as follows:

Typing constraints Typing constraints require that individuals that par-
ticipate in a relation should be instances of certain types. For example, closed
world interpretation of domain and range axioms in OWL would fit into this
category. Given the following ICs
∃hasProducer.> v Product, > v ∀hasProducer.Producer

The following role assertion
hasProducer(product1, producer1)

would violate these ICs since product1 and producer1 are not explicitly known
to be instances of Product and Producer respectively. The data would be valid
with the addition of the following assertions:

Product(product1), Producer(producer1).
Domain and range axioms can be seen as global typing constraints; that is they
affect instances of every class that participates in a property assertion. OWL
also allows finer-grained typing constraints using universal restrictions.

Participation constraints Participation constraints require that instances
of the constrained class should have a role assertion. Given an IC semantics, the
existential restrictions in OWL can be used for this purpose. For instance, in
Example 1, α is a participation constraint. With IC semantics, we expect K to
be invalid w.r.t. this constraint since the producer of p is not known. K would
be valid only when additional axioms in the following form are added:

hasProducer(p, producer), Producer(producer).
2 With CWA, a statement is inferred to be false if it is not known to be true, which

is the opposite of OWA.
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Uniqueness constraints Uniqueness constraints require that an individual
cannot participate in multiple role assertions with the same role. The keys in re-
lational databases enforce such constraints. A similar restriction can be expressed
in OWL with a FunctionalProperty declaration. For instance, in Example 2, α
is an uniqueness constraint. With IC semantics, K is invalid w.r.t. this constraint
since p has two producers m1 and m2 which are not known to be same. K would
be valid after adding the assertion m1 = m2.

3 Related Work

The research on integrating ICs with OWL has been conducted in multiple
directions. One approach to achieve this combination is to couple OWL with
rule-based formalisms and express ICs as rules without heads as in [3, 4]. For
example, according to the proposal in [3], the constraint axiom α in Example 1
is expressed with rules as follows:
⊥ ← DL[Product](x),notP (x, y)
P (x, y)← DL[hasProducer](x, y), DL[Producer](y)

where atoms with prefix DL are DL atoms which are evaluated as queries to the
OWL KB, not is the Negation As Failure (NAF) operator 3, and ⊥ is a special
predicate representing the empty rule head. The addition of constraints (rules)
to a DL KB constitutes a hybird KB, and the detection of a constraint violation
is reduced to checking if the special predicate ⊥ is entailed by the hybrid KB.
With this approach, ontology developers have to deal with one more additional
formalism, i.e., rules, besides the ontology language OWL to model the domain.

ICs can also be expressed with the epistemic query language EQL-Lite [5]
where EQL-Lite allows one to pose epistemic FOL queries that contain the
K operator used against standard FOL KBs. Since every OWL axiom can be
represented as an FOL formula we can translate the constraint axiom in Example
1 to the following EQL-Lite query:
KProduct(x)→ ∃y.(KhasProducer(x, y) ∧ KProducer(y))

where the answers of this query return the individuals in the KB that satisfy the
constraint, and the answers of the negated query will return the individuals that
violate the IC. Although the data complexity of answering domain independent
EQL-Lite queries in DL-Lite is LOGSPACE, it would require substantially more
effort to support EQL-Lite in DL KBs with full expressivity and the complexity
results are still unknown.

Another line of approach is based on the epistemic extension of DLs [6, 7]
where modal operators K and A can be used in concept and role expressions of
the given DL KB. Intuitively, KC represents the set of individuals that are known
to be instances of C and KR represents the pair of individuals that are known to
be related with the role R. Operator A is interpreted in terms of autoepistemic
assumptions. Then the ICs are represented as epistemic DL axioms, and the
satisfaction of ICs is defined as the entailment of the epistemic IC axioms by the
3 NAF is widely used in logic programming systems. With NAF, axioms that cannot

be proven to be true are assumed to be false
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standard DL KB. For example, the constraint α in Example 1 can be translated
into the following epistemic DL axiom:
KProduct v ∃KhasProducer.KProducer.
One important feature of [6, 7] is that all interpretation domains are same,

and an individual name always refers to the same object in every interpretation.
Due to this feature, strict UNA is enforced. That is, two different names always
denote different resources. However, this is not compatible with OWL since it
is possible that standard OWL axioms infer that two different names identify
the same individual. While existing research has focused on epistemic extensions
for relatively inexpressive ALC there has not been much research for combining
epistemic logics with more expressive DLs.

Besides the above work, there are some other proposals concerning on in-
tegration of ICs with OWL. In this paper, we focus on approaches that reuse
OWL as an IC language. Our closest related work is a proposal by Motik et al.
[8] based on a minimal Herbrand model semantics of OWL: here, a constraint
axiom is satisfied if all minimal Herbrand models satisfy it. This approach may
result in counterintuitive results or a significant modeling burden in the following
cases.

First, unnamed individuals can satisfy constraints, which is not desirable for
closed world data validation.

Example 3 Consider the KB K that contains a product instance and its un-
known producer, and the constraint α that every product has a known producer:
K = {Product(p),∃hasProducer.Producer(p)}
α : Product v ∃hasProducer.Producer
Since p has a producer in every minimal Herbrand model of K, α is satisfied,

even though the producer is unknown.
Second, if a constraint needs to be satisfied only by named individuals, then

a special concept O has to be added into the original IC axiom, and every named
individual should be asserted as an instance of O. This adds a significant main-
tenance burden on ontology developers, but still doesn’t capture the intuition
behind the constraint;

Example 4 Suppose we have a KB K where there are two possible producers
for a product and a constraint α:

K = {Product(p), (∃hasProducer.{m1,m2})(p), O(p),
Producer(m1), Producer(m2), O(m1), O(m2)}

α : Product v ∃hasProducer.(Producer uO)

The intuition behind constraint α is that the producer of every product
should be known. Even though we do not know the producer of p is m1 or m2

for sure, α is still satisfied by the semantics of [8] because in every minimal
Herbrand model p has a producer that is also an instance of Producer and O.

Third, the disjunctions and ICs may also interact in unexpected ways.

Example 5 Consider the following KB K where there are two categories for
products and a constraint α defined on one of the categories:
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K = {Product v Category1 t Category2, Product(p)}
α : Category1 v ∃categoryType.>
Since we do not know for sure that p belongs to Category1, it is reasonable

to assume that the constraint α will not apply to p and α will not be violated.
However, with [8] semantics, α is violated because there is a minimal model
where p belongs to Category1 but it does not have a categoryType value.

In this paper, we present a new IC semantics for OWL that overcomes the
above issues and enables efficient IC validation for OWL.

4 Preliminaries

4.1 Description Logics SROIQ
In this section, we give a brief description about the syntax and semantics of the
Description Logic SROIQ [9], which is the logical underpinning of OWL 2 [10].
More details can be found in [9].

Let NC , NR, NI be non-empty and pair-wise disjoint sets of atomic con-
cepts, atomic roles and named individuals respectively. The SROIQ role R
is an atomic role or its inverse R−. Concepts are defined inductively as follows:

C ← A | ¬C | C1 u C2 | ≥ nR.C | ∃R.Self | {a}
where A ∈ NC , a ∈ NI , C(i) a concept, R a role.

We use the following standard abbreviations for concept descriptions: ⊥ =
C u ¬C, > = ¬⊥, C tD = ¬(¬C u ¬D), ≤ nR.C = ¬(≥ n + 1R.C), ∃R.C =
(≥ 1R.C), ∀R.C = ¬(∃R.¬C), {a1, . . . , an} = {a1} t · · · t {an}.

A SROIQ-interpretation I = (∆, ·I), where ∆ is the domain, and .I is the
interpretation function which maps A ∈ NC to a subset of ∆, R ∈ NR to a
subset of ∆×∆, a ∈ NI to an element of ∆. The interpretation can be extended
to inverse roles and complex concepts as follows:

(R−)I = {〈y, x〉 | 〈x, y〉 ∈ RI}, (¬C)I = ∆ \ CI , (C uD)I = CI ∩DI ,
(≥ nR.C)I = {x | #{y.〈x, y〉 ∈ RI and y ∈ CI} ≥ n}
(∃R.Self)I = {x | 〈x, x〉 ∈ RI}, {a}I = {aI}.

where # denotes the cardinality of a set.
A SROIQ knowledge base K is a collection of SROIQ axioms, including

TBox, RBox, and ABox axioms. A SROIQ-interpretation I satisfies an axiom
α, denoted I |= α, if CI ⊆ DI (RI1 ⊆ RI2 , RI1 ◦ . . . ◦RIn ⊆ RI , ∀x ∈ ∆ : 〈x, x〉 ∈
RI , ∀x ∈ ∆ : 〈x, x〉 6∈ RI , RI1 ∩RI2 = ∅ resp.) holds when α=C v D (R1 v R2,
R1 . . . Rn v R, Ref(R), Irr(R), Dis(R1, R2) resp.). Note that, there are also
four kinds of ABox axioms (C(a), R(a, b), a = b, a 6= b). Their semantics is
given by encoding them as TBox axioms ({a} v C, {a} v ∃R.{b}, {a} v {b},
{a} v ¬{b}, resp.). I is a model of K if it satisfies all the axioms in K. We
define Mod(K) to be the set of all interpretations that are models of K. We say
K entails α, written as K |= α, if I |= α for all models I ∈Mod(K).
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4.2 Distinguished Conjunctive Queries (DCQs)

We now describe the syntax and semantics of distinguished conjunctive queries
(DCQs). Let NV be a non-empty set of variable names disjoint from NI , NC ,
and NR. A query atom is an ABox axiom where variables can be used in place
of individuals. Formally, it is defined as follows:

q ← C(x) | R(x, y) | ¬R(x, y) | x = y | x 6= y

where x, y ∈ NI ∪NV , C is a concept, and R is a role. A conjunctive query (CQ)
is the conjunction of query atoms:

Q← q | Q1 ∧Q2

A DCQ is a CQ containing only distinguished variables.4

The semantics of DCQs are given in terms of interpretations defined in Sec-
tion 4.1. We define an assignment σ : NV → NI to be a mapping from the
variables used in the query to named individuals in the KB. We define σ(Q) to
denote the application of an assignment σ to a query Q such that the variables
in the query are replaced with individuals according to the mapping. We say a
KB K entails a DCQ Q with an assignment σ, written as K |=σ Q, if:

K |=σ q iff K |= σ(q)
K |=σ Q1 ∧Q2 iff K |=σ Q1 and K |=σ Q2

We define the answers to a query, A(Q,K), to be the set of all assignments
for which the KB entails the query. That is, A(Q,K) = {σ | K |=σ Q}. We say
that a query is true w.r.t. a KB, denoted K |= Q, if there is at least one answer
for the query, and false otherwise.

5 IC Semantics for OWL

There has been a significant amount of research to define the semantics of ICs
for relational databases, deductive databases, and knowledge representation sys-
tems in general. There are several proposals based on KB consistency or KB
entailment. Against both of these approaches, Reiter argued that ICs are epis-
temic in nature and are about “what the knowledge base knows” in [11]. He
proposed that ICs should be epistemic first-order queries that will be asked to
a standard KB that does not contain epistemic axioms.

We agree with Reiter about the epistemic nature of ICs and believe this is
the most appropriate semantics for ICs. In the following section, we describe an
alternative IC semantics for OWL axioms, which is similar to how the semantics
of epistemic DL ALCK [6] and MKNF DL ALCKNF [7] are defined. Then, in
Section 5.2, we discuss how the IC semantics addresses the issues explained in
Section 1 and Section 3, and enables OWL to be an IC language.
4 A distinguished variable can be mapped to only known individuals, i.e., an element

from NI
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5.1 Formalization

We define IC-interpretation as a pair I,U where I is a SROIQ interpretation
defined over the domain ∆I and U is a set of SROIQ interpretations. The IC-
interpretation function .I,U maps concepts to a subset of ∆, roles to a subset of
∆×∆ and individuals to an element of ∆ as follows:

CI,U = {xI | x ∈ NI s.t. ∀J ∈ U , xJ ∈ CJ }
RI,U = {〈xI , yI〉 | x, y ∈ NI s.t. ∀J ∈ U , 〈xJ , yJ 〉 ∈ RJ }

where C is an atomic concept and R is a role. According to this definition,
CI,U is the interpretation of named individuals that are instances of C in every
(conventional) interpretation from U . RI,U can be understood similarly.

IC-interpretation is extended to inverse roles and complex concepts as follows:

(R−)I,U = {〈xI , yI〉 | 〈yI , xI〉 ∈ RI,U},
(C uD)I,U = CI,U ∩DI,U , (¬C)I,U = NI \ CI,U ,
(≥ nR.C)I,U = {xI | x ∈ NI s.t. #{yI | 〈xI , yI〉 ∈ RI,U , yI ∈ CI,U} ≥ n},
(∃R.Self)I,U = {xI | x ∈ NI s.t. 〈xI , xI〉 ∈ RI,U}, {a}I,U = {aI}.
We can see that the IC-interpretation I,U is using the closed-world assump-

tion. For example, the elements of CI,U are the interpretation of named indi-
viduals that should be in the interpretation set of CI for all I ∈ U . Any named
individual that can not be proven to be an instance of C is assumed to be an
instance of ¬C since (¬C)I,U is the complement of CI,U w.r.t. NI .

Note that, although the IC interpretations have some similarities to the epis-
temic interpretations of ALCK and ALCKNF [6, 7], there are some important
differences. First, the IC interpretation in our approach is applicable to any
SROIQ DL KB while the expressivity of DLs in [6, 7] is limited to ALC. Sec-
ond, in ALCK and ALCKNF [6, 7], strict UNA is used by the interpretations
which is not the case in IC interpretations.

In our IC semantics, we want to adopt a weak form of UNA; that is, two
named individuals with different identifiers are assumed to be different by default
unless their equality is required to satisfy the axioms in the KB. This idea
is similar to minimal model semantics where equality relation is treated as a
congruence relation and minimized.

We formalize this notion of weak UNA by defining Minimal Equality (ME)
models. We start by defining the ≺= relation. Given two models I and J , we
say J ≺= I if all of the following conditions hold:

– For every concept C, J |= C(a) implies I |= C(a);
– For every role R, J |= R(a, b) implies I |= R(a, b);
– EJ ⊂ EI

where EI is the set of equality relations between named individuals (equality
relations, for short) satisfied by I:

EI = {〈a, b〉 | a, b ∈ NI s.t. I |= a = b}

Jiao Tao, Evren Sirin, Jie Bao and Deborah McGuinness. 143



ModME(K) is the models of K with minimal equality (ME) between named
individuals. Formally, we define

ModME(K) = {I ∈Mod(K) | @J ,J ∈Mod(K),J ≺= I}

It is easy to see that for every ME model I in ModME(K), there is no model
J of K where EJ ⊂ EI . Two different named individuals are interpreted as
equivalent in I ∈ModME(K) only if this equality is necessary to make I being
a model of K. For example, suppose we have the axiom a = {b}t{c} in K. Then,
∀I ∈ Mod(K), one of the following three conditions hold: (1) aI = bI , aI 6= cI ;
(2) aI = cI , aI 6= bI ; (3) aI = bI = cI . If (1) or (2) holds, then I ∈ModME(K)
because a has to be interpreted to be equivalent to at least one of b and c to
make I being a model of K. Whereas for case (3), I /∈ ModME(K) since the
equality relations in I are not minimal.

An IC-interpretation I,U satisfies an axiom α, denoted as I,U |= α, if
CI,U ⊆ DI,U (RI,U1 ⊆ RI,U2 , R1 v R2, RI,U1 ⊆ RI,U2 , ∀x ∈ NI : 〈xI,U , xI,U 〉 ∈
RI,U , ∀x ∈ NI : 〈xI,U , xI,U 〉 6∈ RI,U , RI,U1 ∩ RI,U2 = ∅ resp.) holds when
α=C v D (R1 v R2, R1 . . . Rn v R, Ref(R), Irr(R), Dis(R1, R2) resp.).

Given a SROIQ KB K and a SROIQ constraint α, the IC-satisfaction of
α by K, i.e., K |=IC α, is defined as:

K |=IC α iff ∀I ∈ U , I,U |= α,where U = ModME(K)

We define an extended KB as a pair 〈K, C〉 where K is a SROIQ KB as
before and C is a set of SROIQ axioms interpreted with IC semantics. We say
that 〈K, C〉 is valid if ∀α ∈ C,K |=IC α, otherwise there is an IC violation.

5.2 Discussion

It is easy to verify that the IC semantics provides expected results for the exam-
ples presented in Section 1 and Section 3. For instance, we get an IC violation
in Example 1 since the IC interpretation of Product contains p but the IC in-
terpretation of (∃hasProducer.Producer) is empty.

The following example shows how weak UNA allows the individuals that are
not asserted to be equal to be treated different for constraint validation purposes.

Example 6 Consider the KB K and the constraint α:

K = {C(c), R(c, d1), R(c, d2), D(d1), D(d2)}, α : C v≥ 2R.D

With the weak UNA, d1 and d2 are interpreted to be different in every ME model.
Therefore, the IC-interpretation of (≥ 2R.D) includes c, and α is satisfied by K.

Now we illustrate another point regarding disjunctions in constraints.

Example 7 Suppose we have the KB K and constraint α:

K = {C(a), (C1 t C2)(a)}, α : C v C1 t C2
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Constraint α should be read as “every instance of C should be either a known
instance of C1 or a known instance of C2”. Since we do not know for sure
whether a belongs to C1 or C2, α is expected to be violated by K. Indeed,
according to our semantics we get CI,U = {aI} and (C1 t C2)I,U = ∅. Therefore
CI,U 6⊆ (C1 t C2)I,U and we conclude there is an IC violation.

If we want to represent the alternative constraint: “every instance of C should
be an instance of C1 or C2”, we can define a new name C ′ in the KB to substitute
C1 t C2, thus having the new KB K′ and constraint α′ as follows:

K′ = {C(a), (C1 t C2)(a), C ′ ≡ C1 t C2}, α′ : C v C ′

There is no IC violation in this version because now the disjunction is interpreted
as standard OWL axioms. As these examples show, we can model the constraints
to express different disjunctions in a flexible way.

6 IC Validation

We have defined in Section 5.1 that, the extended KB 〈K, C〉 is valid if every
IC axiom in C is IC-satisfied by K. In this section, we describe how to do IC
validation, i.e., check IC-satisfaction by translating constraint axioms to queries
with the NAF operator not . We start by giving the formal semantics for not
in DCQs, then describe the translation rules from IC axioms to DCQnot and
finally provide a theorem showing that IC validation can be reduced to answering
DCQnot under certain conditions.

6.1 DCQnot

In Section 4.2 , we introduced standard DCQs. However, the expressivity of
standard DCQs is not enough to capture the closed world nature of IC semantics.
For this reason, we add the not operator to DCQs to get DCQnot queries. The
syntax of DCQnot is defined as follows:

Q← q | Q1 ∧Q2 | notQ

The semantics of not is defined as:

K |=σ notQ iff @σ′ s.t. K |=σ′
σ(Q)

And we use the abbreviation Q1 ∨Q2 for not (notQ1 ∧ notQ2). We can see

K |=σ Q1 ∨Q2 iff K |=σ Q1 or K |=σ Q2

6.2 Translation Rules: from ICs to DCQnot

We now present the translation rules from IC axioms to DCQnot queries. The
translation rules are similar in the spirit to the Lloyd-Topor transformation [12]
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but instead of rules we generate DCQnot queries. The idea behind the translation
is to translate a constraint axiom into a query such that when the constraint is
violated the KB entails the query. In other words, whenever the answer to the
query is not empty, we can conclude that the constraint is violated.

The translation contains two operators: Tc for translating concepts and T
for translating axioms. Tc is a function that takes a concept expression and a
variable as input and returns a DCQnot query as the result:

Tc(Ca, x) := Ca(x)
Tc(¬C, x) := not Tc(C, x)
Tc(C1 u C2, x) := Tc(C1, x) ∧ Tc(C2, x)

Tc(≥ nR.C, x) :=
∧

1≤i≤n
(R(x, yi) ∧ Tc(C, yi))

∧
1≤i<j≤n

not (yi = yj)

Tc(∃R.Self, x) := R(x, x)
Tc({a}, x) := (x = a)

where Ca is an atomic concept, C(i) is a concept, R is a role, a is an individual,
x is an input variable, and y(i) is a fresh variable.
T is a function that maps a SROIQ axiom to a DCQnot query as follows:

T (C1 v C2) := Tc(C1, x) ∧ not Tc(C2, x)
T (R1 v R2) := R1(x, y) ∧ notR2(x, y)
T (R1 . . . Rn v R) := R1(x, y1) ∧ . . . Rn(yn−1, yn) ∧ notR(x, yn)
T (Ref(R)) := notR(x, x)
T (Irr(R)) := R(x, x)
T (Dis(R1, R2)) := R1(x, y) ∧R2(x, y)

where C(i) is a concept, R(i) is a role, x and y(i) is variable.

6.3 Reducing IC Validation to Answering DCQnot

In Theorem 1, we show that IC validation via query answering is sound and
complete when the expressivity of the extended KB is either 〈SRI,SROIQ〉
or 〈SROIQ,SROI〉. Note that, when the expressivity is 〈SROIQ,SROIQ〉,
we can not reduce IC validation to query answering in a straightforward way
due to the interaction between the disjunctive (in)equality axioms in K and the
cardinality constraints in C. We limit this interaction by either excluding nomi-
nals and cardinality restrictions in K thus prohibiting disjunctive (in)equality to
appear in K, or by prohibiting cardinality restrictions in C. Due to space limita-
tions we only present the main theorem here. The complete proofs are presented
in the technical report [13].

Theorem 1 Given an extended KB 〈K, C〉 with expressivity 〈SRI,SROIQ〉
(〈SROIQ,SROI〉 resp.), we have that K |=IC α iff K 6|= T (α) where α ∈ C.
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7 Implementation

The emerging best practice query language for OWL ontologies is SPARQL
[14] which is known to have the same expressive power as nonrecursive Datalog
programs [15] and can express DCQnot queries. Therefore, based on the results
from Section 6.3, we can reduce IC validation to SPARQL query answering if
the KB is SRI or the ICs do not contain cardinality restrictions.

We have built a prototype IC validator5 by extending the OWL 2 DL reasoner
Pellet6. The prototype reads ICs expressed as OWL axioms and translates each
IC first to a DCQnot query and then to a SPARQL query. The resulting query
is executed by the SPARQL engine in Pellet where a non-empty result indicates
a constraint violation. Since the translation algorithm is reasoner independent
this prototype can be used in conjunction with any OWL reasoner that supports
SPARQL query answering.

We have used this proof-of-concept prototype to validate ICs with several
large ontologies such as the LUBM dataset.7 For testing, we removed several
axioms from the LUBM ontology and declared them as ICs instead. The dataset
is logically consistent but turning axioms into ICs caused some violations to
be detected. Since each constraint is turned into a separate query there is no
dependence between the validation time of different constraints. We have not
performed extensive performance analysis for IC validation but as a simple com-
parison we looked at logical consistency checking time vs. IC validation time. For
LUBM(5), which has 100K individuals and 800K ABox axioms, logical consis-
tency checking was in average 10s whereas validating a single IC took in average
2s. The naive approach in our prototype to execute each query separately would
not scale well as the number of ICs increase. However, there are many improve-
ment possibilities ranging from combining similar queries into a single query to
running multiple queries in parallel.

8 Conclusions and Future Work

In this paper, we described how to provide an IC semantics for OWL axioms
that can be used for data validation purposes. Our IC semantics provide intuitive
results for various different use cases we examined. We presented translation
rules from IC axioms to DCQnot queries, showing that IC validation can be
reduced to query answering when the KB expressivity is SRI or constraint
expressivity is SROI. Our preliminary results with a prototype IC validator
implementation show that existing OWL reasoners can be used for IC validation
efficiently with little effort. Using SPARQL queries for IC validation makes our
approach applicable to a wide range of reasoners. In the future, we will be looking
at the performance of IC validation in realistic datasets and will be exploring
the IC validation algorithms for the full expressivity of SROIQ.
5 http://clarkparsia.com/pellet/oicv-0.1.2.zip
6 http://clarkparsia.com/pellet
7 http://swat.cse.lehigh.edu/projects/lubm/
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Abstract. We consider the complexity of answering conjunctive queries
in the description logic S, i.e., in ALC extended with transitive roles.
While a co-NExpTime lower bound was recently established in [5], the
best known upper bound was 2-ExpTime. In this paper, we concentrate
on the case where only a single transitive role (and no other role) is
present and establish a tight co-NExpTime upper bound.

1 Introduction

Formal ontologies have gained significant importance in the last decade and
play an increasing role in a growing number of application areas including the
semantic web, ontology-based information integration, and peer-to-peer data
management. As a result, ontology formalisms such as description logics (DLs)
are nowadays required to offer support for query answering that goes beyond
simple taxonomic questions and membership queries. In particular, conjunctive
queries (CQs) over instance data play a central role in many applications and
have consequently received considerable attention, cf. [11, 6, 9] and references
therein and below.

A main aim of recent research has been to identify the potential and limi-
tations of CQ answering in various DLs by mapping out the complexity land-
scape of this reasoning problem. When concerned with inexpressive DLs such
as DL-Lite and EL, one is typically interested in data complexity and efficient
implementations based on relational database systems [3, 8]. In expressive DLs,
the data complexity is almost always coNP-complete and it is more interesting
to study combined complexity. While 2-ExpTime upper bounds for expressive
DLs of the ALC family are known since 1998 [4], lower bounds except ExpTime-
hardness (which is trivially inherited from satisfiability) have long been elusive.
A first step was made in [7], where inverse roles were identified as a source of
complexity: CQ answering in plain ALC remains ExpTime-complete, but goes
up to 2-ExpTime-completeness in ALCI. When further extending ALCI to the
popular DL SHIQ, CQ answering remains 2-ExpTime-complete [6].

? This work was partially supported by the Austrian Science Fund (FWF) grant
P20840, the EC project OntoRule (IST-2009-231875) and the CONACYT grant
187697.

Proc. 23rd Int. Workshop on Description Logics (DL2010), CEUR-WS 573, Waterloo, Canada, 2010.
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Interestingly, inverse roles turn out not to be the only source of complexity
in SHIQ. In [5], we have shown that transitive roles, which play a central role in
many ontologies and are used to represent fundamental relations such as “part
of” [10], also increase the complexity of CQ answering. More specifically, CQ
answering is co-NExpTime-hard in the DL S, which is ALC extended with
transitive roles and the basic logic of the SHIQ family, even with only a single
transitive role and no other roles (and when the TBox is empty). We have also
shown in [5] that if we further add role hierarchies and thus extend S to SH,
CQ answering even becomes 2-ExpTime-complete.

However, the precise complexity of CQ answering in S has remained open
between co-NExpTime and 2-ExpTime. The only existing tight bound (also
from [5]) concerns tree-shaped ABoxes, for which CQ answering in S is only Ex-
pTime-complete (which is remarkable because previously known lower bounds
for CQ answering in DLs did not rely on the ABox structure). In this paper,
we present ongoing work on CQ answering in S and show that, in the pres-
ence of only a single transitive role and no other role, CQ answering in S is
in co-NExpTime, thus co-NExpTime-complete. This result is interesting for
two reasons. First, co-NExpTime is an unusual complexity class for CQ an-
swering in expressive DLs as all previous extensions of ALC have turned out
to be complete for a deterministic time complexity class; the only exception is
a co-NExpTime result for ALCI in [7] which is, however, entirely unsurpris-
ing because it concerns a syntactically and semantically restricted case (“rooted
CQ answering”) where a co-NExpTime bound comes naturally. And second,
we believe that the presented upper bound can be extended to the general case
where an arbitrary number of roles is allowed, though at the expense of making
it considerably more technical.

As usual, we consider conjunctive query entailment instead of CQ answering,
i.e., we replace the search problem by its decision problem counterpart. We use
the following strategy to obtain a co-NExpTime upper bound for CQ entail-
ment. First, we use a standard technique to show that CQ entailment over un-
restricted ABoxes can be reduced to entailment of UCQs (unions of conjunctive
queries) over ABoxes that contain only a single individual and no role assertions.
More precisely, we use a Turing reduction that requires an exponential number of
UCQ entailment checks, where each UCQ contains exponentially many disjuncts
in the worst case. Thus, it suffices to establish a co-NExpTime upper bound for
each of the required UCQ entailments. Second, we show that if one of the UCQ
entailments does not hold, then there is a tree-shaped counter-model with only
polynomially many types on each path. Third, we characterize counter-models
in terms of tree-interpretations that are annotated in a certain way with sub-
queries of the original CQ (so-called Q-markings). Thus, we can decide UCQ-
(non)-entailment by deciding the existence of a Q-marked tree-interpretation.
Fourth, we show that, additionally to the restriction on the number of types, it
suffices to consider Q-marked tree-interpretations in which there are only poly-
nomially many different annotations on each path. Finally, we prove that the
existence of a Q-marked tree-interpretation with the mentioned restrictions on
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the number of types and annotations can be checked by guessing an initial part
of the annotated tree-interpretation that has only polynomial depth and thus
exponential size, which gives the desired co-NExpTime bound.

2 Preliminaries

We briefly introduce the description logic S, conjunctive queries, and conjunctive
query entailment.

Knowledge Bases. We assume standard notation for the syntax and semantics
of S knowledge bases [6]. In particular, NC and NI are countably infinite and
disjoint sets of concept names and individual names. For the purpose of this
paper, we consider a single transitive role, denoted throughout by r. Concepts
are defined inductively: (a) each A∈NC is a concept, and (b) if C,D are concepts,
then C uD, ¬C, and ∃r.C are concepts.1 A TBox is a set of concept inclusions
C v D. An ABox is a set of assertions C(a) and r(a, b). A knowledge base (KB)
is a pair K = (T ,A) consisting of a TBox T and an ABox A. We use I to denote
an interpretation, ∆I for its domain, and CI and rI for the interpretation of
a concept C and the role r, respectively. We denote by Ind(A) the set of all
individual names in an ABox A.

Conjunctive Query Entailment. Let NV be a countably infinite set of vari-
ables. A conjunctive query (CQ or query) over a KB K is a finite set of atoms
of the form A(x) or r(x, y), where x, y ∈NV, and A is a concept name.2 For a
CQ q over K, let Var(q) denote the variables occurring in q. A match for q in an
interpretation I is a mapping π : Var(q)→ ∆I such that (i) π(x)∈AI for each
A(x)∈ q, and (ii) (π(x), π(y))∈ rI for each r(x, y)∈ q. We write I |= q if there
is a match for q in I. If I |= q for every model I of K, then K entails q, writ-
ten K |= q. The query entailment problem is to decide, given K and q, whether
K |= q. We sometimes also consider unions of conjunctive queries (UCQs), which
take the form

⋃
i qi, where each qi is a conjunctive query. The notions I |= q and

K |= q are lifted from CQs to UCQs in the obvious way.

The directed graph Gq associated with a query q is defined as (V,E), where
V = Var(q) and E = {(x, y) | r(x, y) ∈ q}. When deciding CQ entailment, we
assume without loss of generality that the input query q (i.e., the graph Gq) is
connected. For V ⊆ Var(q), we use q|V ↓ to denote the restriction of q to the set
of variables that are reachable in Gq starting from some element in V . We call
q|V ↓ a proper subquery of q if it is connected, and use sub(q) to denote the set
of all proper subqueries of q. Obviously, q ∈ sub(q).

1 Concepts of the form C tD and ∀r.C are viewed as abbreviations.
2 As usual, individuals in q can be simulated, and queries with answer variables can

be reduced to the Boolean CQs considered here.
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3 Reduction to Unary ABoxes

The objective of this section is to reduce CQ entailment over arbitrary knowledge
bases to UCQ entailment over knowledge bases whose ABoxes contain only a
single concept assertion and no role assertions.

Let K = (T ,A) be a knowledge base and q a CQ for which we want to decide
whether K |= q. We assume without loss of generality that T = {> v CT }. The
announced reduction, which is similar to one used in [5], makes use of the fact
that if there is an interpretation I of K with I 6|= q, then there is a forest-shaped
such model, i.e., a model that consists of an ABox part of unrestricted relational
structure and a tree-shaped part rooted at each ABox individual. To check for
the existence of a countermodel of this form, we consider all ways in which the
query variables can be distributed among the different parts of the model. The
query has no match if for each possible distribution, we can select an ABox
individual a such that some subquery assigned to the tree model below a is not
matched in that tree model. This leaves us with the problem of determining
the existence of certain tree models (one for each ABox individual) that spoil a
(worst-case exponential) set of subqueries.

To formally implement this idea, we require a few preliminary definitions.
We use cl(K) to denote the smallest set that contains CT , each concept C with
C(a) ∈ A, and is closed under single negation and subconcepts. A type is a
subset t ⊆ cl(K) that satisfies the following conditions:

1. ¬C ∈ t iff t /∈ C, for all ¬C ∈ cl(T );
2. C uD ∈ t iff C ∈ t and D ∈ t, for all C uD ∈ cl(T );
3. CT ∈ t.

We use tp(K) to denote the set of all types for K. A completion of A is an ABox
A′ such that

– A ⊆ A′ with Ind(A) = Ind(A′);
– for each a ∈ Ind(A), we have {C | C(a) ∈ A′} ∈ tp(K);
– r(a, b), r(b, c) ∈ A′ implies r(a, c) ∈ A′;
– ∃r.C ∈ cl(K), r(a, b) ∈ A, and C(b) ∈ A′ implies (∃r.C)(a) ∈ A′.

We use cpl(A) to denote the set of all completions for A. A match candidate
for a completion A′ ∈ cpl(A) describes a way of distributing the query variables
among the different parts of the model. Formally, it is a mapping ζ : Var(q) →
{a, a↓ | a ∈ Ind(A)} such that

– if A(x) ∈ q and ζ(x) = a, then A(a) ∈ A′;
– if r(x, y) ∈ q, ζ(x) = a, and ζ(y) = b, then r(a, b) ∈ A′;
– if r(x, y) ∈ q, ζ(x) = a, ζ(y) = b↓, and a 6= b, then r(a, b) ∈ A′;
– r(x, y) ∈ q and ζ(x) = a↓ implies ζ(y) = a↓.

For every r(x, y) ∈ q with ζ(x) = a and ζ(y) = b↓ (where potentially a = b),
define a subset V ⊆ Var(q) as the smallest set such that

– y ∈ V ;
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– if r(x′, y′) ∈ q with x′ ∈ V , then y′ ∈ V ;
– if r(x′, y′) ∈ q with y′ ∈ V and ζ(x′) = b↓, then x′ ∈ V .

We use q|r(x,y) to denote the restriction of q to the variables in V . Let Qζ denote
the set of all queries q|r(x,y) obtained in this way. It is straightforward to verify
that all these queries are proper subqueries, i.e., Qζ ⊆ sub(q).

A query annotation for A′ identifies the subqueries that do not have a match
in the counter-model that we construct. Formally, it is a map α : Ind(A)→ 2sub(q)

that satisfies the following conditions:

1. for every match candidate ζ for A′, there is a query q|r(x,y) ∈ Qζ such that
q|r(x,y) ∈ α(a) where ζ(y) = a↓;

2. q ∈ α(a) for all a ∈ Ind(A).

For each a ∈ Ind(A), we use A′|a to denote the restriction of A′ to assertions of
the form C(a). The proof of the following lemma is similar to that of a closely
related result in [6].

Lemma 1. K 6|= q iff there is a completion A′ of A and a query annotation α
for A′ such that for all a ∈ Ind(A), we have Ka 6|=

⋃
α(a), where Ka = (T ,A′|a).

Lemma 1 constitutes the announced reduction: to decide whether K |= q, we can
enumerate all completions A′ of A and query annotations α for A′, and then
perform the required UCQ entailment checks.

4 Characterization of Counter-models

It remains to decide whether Ka |=
⋃
α(a) holds for each a ∈ Ind(A). Since

α(a) may contain exponentially many different subqueries of q (this is what
actually happens in the lower bound proved in [5]), it is challenging to do this
in co-NExpTime. We start with a characterization of counter-models. In the
remainder of the section, for readability, we fix some a ∈ Ind(A), and we use Q
to denote α(a) and Ca to denote u{C | C(a) ∈ A′}.

Many of the subsequent techniques and results will be concerned with trees
and tree interpretations, which we introduce next. Let Σ be an arbitrary set.
Then a tree (over Σ with root p) is a set T = {p · w |w ∈ S} where p ∈ Σ∗ and
S ⊆ Σ∗ is a prefix-closed set of words. Each node w · c ∈ T , where w ∈ T and
c ∈ Σ, is a child of w. For a node w ∈ T , |w| denotes the length of w, disregarding
the prefix p (so that the root of T has length 0). We say the branching degree
of T is bounded by k if |{c ∈ Σ | w · c ∈ T}| ≤ k for all w ∈ T . A path in T , is
a (potentially infinite) sequence w0, w1, . . . of elements from T such that (i) w0

is the root of T , and (ii) for each i > 0, wi is a child of wi−1. If T is a tree
and f : T → S is a function with S finite, then we use max(T, f) to denote the
maximal number of distinct values that f can take on an arbitrary path in T .

An interpretation I is a tree interpretation if ∆I is a tree. We introduce the
notation root(I) to denote the root of the tree ∆I . A tree interpretation I is a
tree model of Ka if
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– I is a model of T , and root(I) ∈ CIa ,
– rI = {(w,w · c) | w,w · c ∈ ∆I ∧ c ∈ Σ}+, and
– for all ∃r.C ∈ cl(K) and w ∈ (∃r.C)I , there is c ∈ Σ such that w · c ∈ CI ,

i.e., all relevant existential restrictions are satisfied in one step.

Given a tree interpretation I and w ∈ ∆I , we use I|w to denote the restriction
of I to the subtree rooted at w.

The following lemma shows that we can restrict our attention to tree-shaped
interpretations in which only polynomially many types appear on any given path.
As the proof of the lemma is surprisingly subtle, we defer it to the appendix of
a longer version of this submission [1]. Given an interpretation I, we use tI(w)
to refer to the type of w ∈ ∆I in I, i.e. {C ∈ cl(K) | w ∈ CI}.
Lemma 2. If Ka 6|=

⋃
Q, then there is an interpretation I such that:

1. I is a tree model of Ka, and I 6|= ⋃
Q, and

2. max(∆I , tI) ≤ |cl(K)|.
To characterize counter-models, we employ marking of interpretations, simi-

lar to that in [5]. A marking simulates a top-down walk through a tree interpre-
tation I greedily matching the variables of the queries in Q. The marking fails
if we arrive at a subquery that is fully matched along this walk. As we show
next, the existence of a marking for a tree interpretation I is a necessary and
sufficient condition for I 6|= ⋃

Q.
For a query p and a variable x ∈ Var(p), we say that x is consumed (in p) by

a type t if {A | A(x) ∈ p} ⊆ t and {y | r(y, x) ∈ p} = ∅. Given a type t ∈ tp(K)
and a query p ∈ sub(q), we denote by subt(p) the set of all proper subqueries of
pt, where pt is obtained from p by removing all atoms involving a variable that
is consumed by t. In other words, subt(p) is the set of connected components in
the reduced query pt. Trivially, subt(p) = {p} if t does not consume any variable
in p.

The following lemma describes a single step of the top-down walk through a
tree interpretation.

Lemma 3. Assume a tree interpretation I, w ∈ ∆I and any set P of queries.
Then I|w 6|=

⋃
P iff there is a set P ′ such that:

(i) P ′ contains some non-empty p′ ∈ subtI(w)(p) for each p ∈ P ;
(ii) I|w′ 6|=

⋃
P ′ for each child w′ of w in ∆I .

Proof. For the if direction, we show that if I|w |=
⋃
P , then there is no set P ′

satisfying (i) and (ii). If I|w |=
⋃
P , then there is a match π in I|w for some

p ∈ P . We show that then, for each p′ ∈ subtI(w)(p), there exists a child w′ of w
such that I|w′ admits a match for p′. This implies that there is no set P ′, since
there is no possible choice of a subquery in subtI(w)(p) to be included.

Let π be a match for p in I|w, and let subπ(w)(p) denote the set of all proper
subqueries of the query pπ(w) that results from p by dropping each atom involving
a variable x with π(x) = w. By definition of a match, each x ∈ Var(p) with
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π(x) = w is consumed by tI(w). This implies that all atoms removed from p to
obtain pπ(w) are also removed to obtain ptI(w), and thus each p′ ∈ subtI(w)(p) is
contained in some p′′ ∈ subπ(w)(p). Since π is a match for p, each p′′ ∈ subπ(w)(p)
has a match in I|w′ for some child w′ of w (in particular, π restricted to the
domain of I|w′ is such a match), and so does each p′ ⊆ p′′. This shows that, for
each p′ ∈ subtI(w)(p), there exists a child w′ of w such that I|w′ |= p′.

For the other direction we show that if there does not exist a set P ′ as above,
then I|w |=

⋃
P . Assume that there is no P ′ satisfying (i) and (ii). Then we

can select some p ∈ P such that for each non-empty p′ ∈ subtI(w)(p), there is
a child w′ of w with I|w′ |= p′, and we can select a match πp′ in I|w′ for each
p′. Observe that each x ∈ Var(p) that is not consumed by tI(w) occurs in some
p′ and is in the scope of some πp′ . It can be easily verified that a match π for
p can be composed by taking the union of all π′p, and setting π(x) = w for all
remaining variables x. This shows I|w |= p and I|w |=

⋃
P . o

We can now formally define the notion of a marking, which describes a top-
down walk through a whole tree interepretation.

Definition 1. Let I be a tree interpretation. A Q-marking for I is a mapping
µ : ∆I → 2sub(q) such that:

1. µ(root(I)) = Q,
2. for each w ∈ ∆I and each pair w · i, w · j ∈ ∆I , µ(w · i) = µ(w · j),
3. for each w · i ∈ ∆I , µ(w · i) is a set containing a non-empty p′ ∈ subtI(w)(p)

for each p ∈ µ(w).

Using Lemma 3, we can characterize query non-entailment as follows:

Lemma 4. There is a Q-marking for a tree interpretation I iff I 6|= ⋃
Q.

Proof. For the if direction, assume I 6|= ⋃
Q. We define a Q-marking µ for I

inductively:

– µ(root(I)) = Q,
– µ(w·c) = µ(w)′ for all w·c ∈ ∆I , where µ(w)′ is a⊆-minimal set of subqueries

satisfying conditions (i) and (ii) of Lemma 3 (where we take P = µ(w) and
P ′ = µ(w)′).

Note that a suitable set µ(root(I))′ exists for the children of the root because
I 6|= ⋃

Q. Then at each step w · c, condition (ii) in Lemma 3 ensures that
I|w·c 6|=

⋃
µ(w · c). Applying the lemma again we ensure the existence of a

suitable set µ(w · c)′ for the children of w · c. It is trivial to verify that µ satisfies
the conditions in the definition of Q-marking (in particular, for condition 3 we
use condition (i) in Lemma 3).

The other direction follows easily from the first condition in Definition 1,
which ensures that the root is always marked with Q, and the following claim:

(∗) If µ is a Q-marking for I, then I|w 6|=
⋃
µ(w) for every w ∈ ∆I .
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To show (∗), we assume for a contradiction that µ is a Q-marking and that
I|w |=

⋃
µ(w) for some w ∈ ∆I . That is, I|w |= p for some p ∈ µ(w). Among all

such pairs (w, p), we select one with minimal |Var(p)|, i.e., such that |Var(p)| ≤
|Var(p′)| for every w′ ∈ ∆I and every p′ ∈ µ(w′) such that I|w′ |= p′. In the
case where tI(w) consumes no variable in p, we have that for every child w′

of w, µ(w) = µ(w′) and I|w |= p iff I|w′ |= p. We can iteratively apply this
argument to choose a w∗ ∈ ∆I|w (either w itself or a first descendant where some
variable is consumed) such that tI(w∗) consumes some x ∈ Var(p), I|w∗ |= p,
and µ(w∗) = µ(w). The fact that tI(w∗) consumes some x ∈ Var(p) ensures
|Var(p′)| < |Var(p)| for every p′ ∈ subtI(w

∗)(p). Since µ is a Q-marking for I and
p ∈ µ(w∗), by conditions 2 and 3 in Definition 1, there must be some non-empty
p′ ∈ subtI(w

∗)(p) such that p′ ∈ µ(w′) for all children w′ of w∗. We know from
Lemma 3 that I|w∗ |= {p} implies that I|w′ |= {p′} for some child w′ of w∗. But
as |Var(p′)| < |Var(p)|, this is a contradiction. o

We have shown that UCQ non-entailment reduces to deciding the existence of
a marking. The following lemma will help us to show that the latter problem can
be decided in NExpTime. It shows that, even though there can be exponentially
many queries in Q, the query set changes only a few times on each path of a
marked interpretation. More precisely:

Lemma 5. If I 6|= ⋃
Q, then I admits a Q-marking µ with max(∆I , µ) ≤

|Var(q)|2 + 1.

Proof. Let µ be the Q-marking defined in the proof of Lemma 4. We consider
an arbitrary path w1, w2, . . . in I, and show that l = |{µ(w1), µ(w2), . . .}|
≤ |Var(q)|2 + 1. We let J = {i | µ(wi) 6= µ(wi+1)}. We will show that |J | ≤ |q|2.
The desired bound will follow from this and the fact that l ≤ |J | + 1. Let
ti = tI(wi) for all i ≥ 0. We say a query q′ is i-matched if q′ has a match in Ii
but not on Ii−1, where Ik is defined by setting (i) ∆Ik = {(1, t1), . . . , (k, tk)};
(ii) rIk = {((i, ti), (j, tj)) | j > i}; (iii) AIk = {(i, ti) | A ∈ ti} for all A ∈ NC.
Note that, for any query q′, there is at most one index i such that q′ is i-matched.
For each pair x, y ∈ Var(q), let q|x,y be the query that is obtained by restricting
q|{x}↓ to the variable y and the variables that reach y in the graph Gq. Let
X = {q|x,y | x, y ∈ Var(q)}. Note that |X| ≤ |Var(q)|2. We now show that for
each i ∈ J , there exists some q′ ∈ X such that q′ is i-matched. Since there is at
most one i for each q′, this implies |J | ≤ |X| ≤ |q|2 and the bound follows.

Consider an arbitrary i ∈ J . Then µ(wi) 6= µ(wi+1) implies that for some
p′ ∈ µ(wi), µ(wi+1) contains some p′′ 6= p′ from subtI(w)(p′), and some x ∈
Var(p′) is consumed by tI(wi). By definition, the query p′ is a proper subquery
of some p ∈ Q. Observe that, if we restrict our attention to p and its subqueries,
the marking µ ‘moves’ to a strictly smaller subquery at every type that consumes
some variable. Let M be the set of source variables in the query graph Gp of
this p, i.e. M = {y ∈ Var(p) | {y′ | r(y′, y) ∈ p} = ∅}. It is not hard to see that,
if x ∈ Var(p′) is consumed by tI(wi), each q|y,x with y ∈ M has a match in Ii.
To see that there exists at least one y ∈M such that q|y,x is i-matched, assume
towards a contradiction that there is some j < i such that each q|y,x has a match
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in Ij , and take the smallest such j. Then all variables that reach x in Gq are
consumed by some type on the path to wj , and wj is marked with some p′′ ⊆ p
where {y | r(y, x) ∈ p′′} = ∅. As x is consumed by tI(wj), then the markings of
all descendants of wj contain some subquery of p′′ where x does not occur. This
contradicts the fact that p′ ∈ µ(wi) and x ∈ Var(p′). o

As a direct consequence of Lemmas 2, 4 and 5, we obtain the following charac-
terization of counter-models; this is the basis of our UCQ entailment algorithm.

Theorem 1. Ka 6|=
⋃
Q iff there is a tree interpretation I such that:

(A) I is a model of Ka with max(∆I , tI) ≤ |cl(K)|;
(B) I admits some Q-marking µ and max(∆I , µ) ≤ |Var(q)|2 + 1.

By removing domain elements not needed to satisfy existential restrictions from
cl(K), it is standard to show that we can assume the interpretation I from
Theorem 1 to have branching degree at most |cl(K)|.

5 Witnesses of Counter-models

By Theorem 1, Ka 6|=
⋃
Q can be decided by checking whether there is a tree

interpretation that satisfies conditions (A) and (B). As we show next, the exis-
tence of such an interpretation I is guaranteed if we can find an initial part of I
whose depth is bounded by dK,q := |cl(K)| × (|Var(q)|2 + 1). Since the branching
degree of I is linear in the size of K, this initial part is of at most exponential
size. A nondeterministic exponential time procedure for checking Ka 6|=

⋃
Q is

then almost immediate. We represent initial parts of countermodels as follows.

Definition 2. A witness for “Ka 6|=
⋃
Q” is a node-labeled tree W = (T, τ, ρ)

where τ : T → tp(K) and ρ : T → 2sub(q), such that:

1. The branching degree of T is bounded by |cl(K)|.
2. For each w ∈ T , |w| ≤ dK,q.
3. max(T, τ) ≤ |cl(K)| and max(T, ρ) ≤ |Var(q)|2 + 1;
4. {C | C(a) ∈ A′} ⊆ τ(e) and ρ(e) = Q for the root e of T .
5. For all w ∈ T with |w|<dK,q and ∃r.C ∈ τ(w), there is a child w′ of w with

C ∈ τ(w′).
6. For each w ∈ T and each child w′ of w, ¬∃r.D ∈ τ(w) implies {¬D,¬∃r.D} ⊆

τ(w′).
7. For each pair w1, w2 of children of w, ρ(w1) = ρ(w2) is a set containing some

nonempty p′ ∈ subt(p) for each p ∈ ρ(w).

An initial part of a tree interpretation represented by a witness can be unravelled
into a tree interpretation that satisfies (A) and (B) of Theorem 1, thus witnessing
Ka 6|=

⋃
Q.

Theorem 2. Ka 6|=
⋃
Q iff there exists a witness W for “Ka 6|=

⋃
Q”.
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Proof. For the ‘only if’ direction, by Theorem 1 there exists a tree-model I of
Ka and a Q-marking µ for I such that max(∆I , tI) ≤ |cl(K)|, max(∆I , µ) ≤
|Var(q)|2 + 1, and the branching degree of I is at most |cl(K)|. We can obtain
a witness by restricting I and µ to the first dK,q levels. More precisely, W =
(T, τ, ρ) is obtained by setting:

- T = {w ∈ ∆I | |w| ≤ dK,q};
- τ(w) = tI(w) and ρ(w) = µ(w) for all w ∈ T .

For the other direction, observe that a witness W = (T, τ, ρ) is almost a
Q-marked model of Ka, except a node w ∈ T with |w| = dK,q may not have the
children it needs to satisfy the existential restrictions. However, since the path
from the root to w has dK,q +1 nodes and due to (3) in Definition 2, there exists
a pair of nodes on this path that share the same type and query set. This allows
us to obtain a tree-model and a Q-marking by unraveling W as follows.

For each node w ∈ T , let s(w) be the shortest prefix of w such that τ(s(w)) =
τ(w) and ρ(s(w)) = ρ(w). Let D ⊆ T ∗ be the smallest set of such that:

- the root of T belongs to D, and
- if w0 · · ·wn ∈ D, then w0 · · ·wnw ∈ D for all children w of s(wn).

Consider the following interpretation I and marking µ:

- ∆I = D;
- AI = {w0 · · ·wn ∈ ∆I | A ∈ τ(vn)} for all concept names A;
- rI = {(w0 · · ·wn−1, w0 · · ·wn) | w0 · · ·wn ∈ ∆I};
- µ(w0 · · ·wn) = ρ(wn) for all w0 · · ·wn ∈ ∆I .

It is easy to check that µ is a Q-marking for I. To see that I is model of Ka,
observe that for each node w ∈ T with |w| = dK,q, there is a proper prefix w′

of w such that s(w′) 6= w′. This means that such a w will never be added to a
path in ∆I . This implies that each w0 · · ·wn ∈ ∆I has |wn| < dK,q and hence
satisfies all the existential restrictions. o

We can check for the existence of a witness by nondeterministically guessing an
(exponential size) candidate structure W = (T, τ, ρ) and then verifying condi-
tions (1-7) in Definition 2. The latter is feasible in time exponential in |K| and
|q|. Hence, Ka 6|=

⋃
Q can be decided nondeterministically in time exponential

in |K| and |q|.
For the overall algorithm, observe that each completion A′ of A is of size

polynomial in |K| and |q|, while the size of α(a) is at most exponential in |K|
and |q| for each a ∈ Ind(A). Thus, using Lemma 1, checking K 6|= q is trivially in
NExpTime provided that checking Ka 6|=

⋃
α(a) is NExpTime. By combining

this with the matching lower bound in [5], we get:

Theorem 3. CQ entailment over S KBs with one transitive role, and no other
roles, is co-NExpTime-complete.
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6 Conclusion

We believe that Theorem 3 can be extended to the case where there is an arbi-
trary number of roles, both transitive and unrestricted ones. This requires the
combination of the techniques presented in this paper with the ones developed
in [5]. In particular, different roles used in a query p ∈ Q induce a partitioning
of p into different “clusters”, and each cluster can be treated in a similar way as
an entire, unpartitioned query p ∈ Q in the current paper. Since the technical
details, which we are currently working out, can be expected to become some-
what cumbersome, we believe that it is instructive to first concentrate on the
case of a single transitive role as we have done in this paper.

It is interesting to note that the techniques from this paper can be used
to reprove in a transparent way the ExpTime upper bound for CQ answering
over S knowledge bases that contain only a single concept assertion and no role
assertions from [5]—restricted to a single transitive role, of course. In the case
of such ABoxes, we do not need the machinery from Sections 3 and 5, nor the
(subtle to prove) Lemma 2. The essential technique is Q-markings, which can
be simplified to maps from ∆I to sub(q) instead of to 2sub(q) because Q is a
singleton that consists only of the input query. By Lemma 4, it suffices to check
for the existence of a tree-shaped interpretation I along with a Q-marking for
I. This can be done by a standard type-elimination procedure.
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Abstract. In this paper we outline an algebraic tableau algorithm for the DL
SHOQ, which supports more informed reasoning due to the use of semantic
partitioning and integer programming. We introduce novel and adapt known op-
timization techniques and show their effectiveness on the basis of a prototype
reasoner implementing the optimization techniques for the algebraic approach.
Our first set of benchmarks clearly indicates the effectiveness of our approach
and a comparison with the DL reasoners Pellet and HermiT demonstrates a run-
time improvement of several orders of magnitude.

1 Motivation

Nominals play an important role in Description Logics (DLs) as they allow one to
express the notion of identity and enumeration; nominals must be interpreted as sin-
gleton sets. An example for the use of nominals in SHOQ would be Eye Color ≡
Green t Blue t Brown t Black t Hazel where each color is represented as a nominal.
The cardinality of Eye Color is restricted to have at most 5 instances, i.e., the above-
mentioned nominals. Qualified cardinality restrictions (QCRs) allow one to specify
lower (≥ n R.C) and upper (≤ n R.C) bounds on the number of elements related via a
certain role with additionally specifying qualities on the related elements. Due to the in-
teraction between nominals and QCRs the SHOQ concept ≥6 has color.Eye Color is
unsatisfiable. Each nominal must be interpreted as a set with the cardinality 1 (and thus
can be used to enumerate domain elements), whereas an atomic concept is interpreted
as a set with an unbounded cardinality. Moreover, the quasi-tree model property, which
has always been advantageous for DL tableau methods, does not hold for SHOQ.

Resolution-based reasoning procedures were proposed in [8] and were proven to be
weak in dealing with QCRs containing large numbers. Hypertableaux [9] were recently
studied to minimize non-determinism in DL reasoning with no special treatment for
QCRs. These approaches and standard tableau techniques suffer from the low level
of information about the cardinalities of concepts and the number of role successors
implied by nominals and QCRs (e.g., see the example above) because these algorithms
treat these cardinalities in a blind and uninformed way.

Our early work on performance improvements for reasoning with QCRs for the
DL SHQ was based on a so-called signature calculus [5] and, alternatively, on alge-
braic reasoning [6] (not applicable to Aboxes). Our algebraic approach represents the
knowledge about implied cardinalities as linear inequations. The advantages of such
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an approach have been demonstrated in [4] where an Abox calculus combining tableau
and algebraic reasoning for SHQ is presented that dramatically improves the runtime
performance for reasoning with QCRs. This paper extends this line of research [1, 3, 4]
to SHOQ. This calculus [2] is by no means a simple extension because (i) the quasi-
tree model property is lost, (ii) QCRs cannot be dealt with locally anymore, and (iii)
possible interactions between QCRs and nominals need to be considered globally.

2 The Description Logic SHOQ
Let NC, NR be non-empty and disjoint sets of concept and role names respectively. Let
No ⊆ NC be the set of nominals, and NR+ ⊆ NR the set of transitive role names. An RBox
R is a finite set of role inclusion axioms (RIAs) of the form R v S , where R, S are role
names in NR. With v∗ we denote the reflexive transitive closure of v on R. A role name
R is called simple if it is neither transitive nor has a transitive subrole. A TBox T is a
finite set of general concept inclusion axioms (GCIs) of the form C v D, where C, D
are concepts, and C ≡ D abbreviates {C v D, D v C}. The set of SHOQ concepts is
the smallest set such that: (i) A ∈ NC is a concept, and (ii) if C,D are concepts, R ∈ NR,
and S ∈ NR is a simple role then ¬C, (C t D), (C u D), (∃R.C), (∀R.C), (≥ nS .C),
(≤ nS .C) with n ∈ N are also concepts. We use > (⊥) as an abbreviation for A t ¬A
(A u ¬A) and ≥ nS (≤ nS ) for ≥ nS .> (≤ nS .>). We do not consider descriptions of
the form ∃R.C as they can be converted to ≥ 1 R.C, without imposing the simple role
restriction.

We assume a standard Tarski-style interpretation I = (∆I, ·I) such that AI ⊆ ∆I
for A ∈ NC, RI ⊆ ∆I × ∆I for R ∈ NR. Using # to denote the cardinality of a set, we
define the set of R-fillers for a given role name R and an individual s as FIL(R, s) =

{t ∈ ∆I | 〈s, t〉 ∈ RI} and the set of all R-fillers as: FIL(R) =
⋃

s∈∆I FIL(R, s). The
semantics of SHOQ concept descriptions is such that (C uD)I = CI ∩DI, (C tD)I =

CI ∪ DI, (¬C)I = ∆I \ CI, #oI = 1 for all o ∈ No, (∀R.C)I = {s ∈ ∆I | 〈s, t〉 ∈
RI ⇒ t ∈ CI}, (∃R.C)I = {s ∈ ∆I | ∃t : 〈s, t〉 ∈ RI∧ t ∈ CI}, (≥ n S .C)I = {s ∈
∆I | #(FIL(S , s) ∩CI) ≥ n}, (≤ n S .C)I = {s ∈ ∆I | #(FIL(S , s) ∩CI) ≤ n}.

Let KB(T ,R) denote a SHOQ knowledge base consisting of a TBox T and an
RBox R. The KB(T ,R) is said to be consistent iff there exists an interpretation I satis-
fying CI ⊆ DI for each C v D ∈ T and RI ⊆ S I for each R v S ∈ R. In this case, I
is said to be a model of KB(T ,R). A concept C is said to be satisfiable w.r.t. KB(T ,R)
iff CI , ∅. I is called a model of C w.r.t. R and T . A SHOQ ABox A is a finite set
of concept membership assertions of the form a : C or role membership assertions of
the form (a, b) : R with a, b two individual names. An Abox A is said to be consistent
w.r.t. KB(T , R) if there exists a model I of T and R such that aI ∈ CI is satisfied for
each a : C in A and (aI, bI) ∈ RI for each (a, b) : R in A. Using nominals, concept
satisfiability and ABox consistency can be reduced to KB consistency. Hence, without
loss of generality we restrict our attention to KB consistency in the following.

We assume all concepts to be in their negation normal form (NNF). We use ¬̇C to
denote the NNF of ¬C and nnf (C) to denote the NNF of C. When checking KB(T ,R)
consistency, the concept axioms in T can be reduced to a single axiom > v CT such
that CT abbreviates

�
CvD∈T nnf (¬C t D). A TBox consistency test can be checked by
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testing the consistency of o v CT with o ∈ No new in T , which means that at least
oI ∈ CT I and CT I , ∅. Moreover, since >I = ∆I then every domain element must
also satisfy CT (every domain element is a member of CT ).

3 Algebraic Tableau for SHOQ

Given KB (T ,R), such that we have > v CT , we apply a rewriting algorithm (see
[2] for details) to CT which returns C′T and extends R with role inclusion axioms.
This rewriting transforms all QCRs of the form ≥ nR.C or ≤ nR.C, where C can be
also equal to >, into unqualified cardinality restrictions of the form ≥ nR′ (≤ nR′) by
using a new role-set difference operator (∀\) and adding universal restrictions using
newly introduced subroles (R′ v R). Roughly speaking, ≥ n R.C is transformed into
≥ n R′ u∀R′.C with adding R′ v R to R, and ≤ n R.C into ≤ n R′ u∀R′.C u∀(R\R′).¬̇C
with adding R′ v R to R. In both cases R′ is always fresh in R, and the transformation
is satisfiability-preserving (see [2] for a proof and more details). The semantics of the
role-set operator is defined such that (∀(R\S ).D)I = {s ∈ ∆I | 〈s, t〉 ∈ RI∧〈s, t〉 < S I ⇒
t ∈ DI}.

3.1 Partitioning domain elements

The key technique and major difference between algebraic and standard tableau reason-
ing for SHOQ is the atomic decomposition technique [10] which is used to compute
a partitioning of domain elements into disjoint subsets allowing numerical restrictions
implied by QCRs and nominals to be encoded into sets of inequations.

Let H(R) denote the set of role names for all subroles of R ∈ NR: H(R) = {R′ |R′ v∗
R}. For technical reasons we do not add R to H(R) since R is a superrole for elements
in H(R) and R does not occur in number restrictions anymore after preprocessing. For
every role R′ ∈ H(R), the set of R′-fillers forms a subset of the set of R-fillers (FIL(R′)⊆
FIL(R)). We define R′ to be the complement of R′ w.r.t. H(R), the set of R′-fillers is then
defined as R′-fillers =(FIL(R) \ FIL(R′)). Since we do not have ≥ nR or ≤ nR concept
expressions using role complements, no role complement will be explicitly used. For
ease of presentation, we do not list role complements.

Qualifications on Role fillers: The atomic decomposition must also consider when
FIL(R) intersects with the interpretation of a qualifying concept. A qualifying concept
D is a concept used to impose a qualification, D, on the set of R-fillers for some role
R ∈ NR. Let QC(R) = {D | ∀S .D occurs in CT with R v∗ S ∈ R} be the set of qualifying
concepts for R ∈ NR. Since D ∈ QC(R) could be a complex expression or a nominal, and
for ease of presentation, we assign a unique qualification name q for each D ∈ QC(R).
Let QN be the set of all qualification names assigned, and QC =

⋃
R∈NR

QC(R) be the
set of qualifying concepts in CT . We maintain a mapping between qualification names
and their corresponding concept expressions using a bijection θ : QN → QC; in case a
nominal o ∈ No has been used as a qualifying concept expression then o is also used
as the qualification name and θ(o) = o. Let QN(R) denote the set of qualification names
for a role (R ∈ NR) then QN(R) is defined as QN(R) = {q ∈ QN | θ(q) ∈ QC(R)}.
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We define Q¬C = {¬̇D |D ∈ QC} as the set of negated qualifying concepts in their
NNF. A mapping ¬̇Q is maintained between QC and Q¬C such that given a qualifying
concept D ∈ QC, ¬̇Q(D) = ¬̇D with ¬̇D ∈ Q¬C.

Interaction with Nominals: For each nominal o ∈ No, oI can interact with R-fillers
for some R in NR such that (oI ⊆ FIL(R)). Also the same nominal o can interact with
R-fillers and S-fillers for R, S ∈ NR such that R, S do not necessarily share subroles or
superroles in R. This means that R-fillers and S-fillers could interact with each other
due to their common interaction with the same nominal o. These interactions lead to
the following definitions.

Definition 1 (Decomposition Set). Given a role R we define the decomposition set for
R-fillers asDR = H(R)∪QN(R)∪No.DR is a decomposition set since each subset P of
DR defines a unique set of nominals, roles, and/or qualification names that admits an in-
terpretation PI =

⋂
o∈P∩No

oI∩⋂i∈No\P ¬iI∩⋂R′∈P∩H(R) FIL(R′)∩⋂R′′∈(H(R)\P) FIL(R′′)∩⋂
p∈P∩QN (R) θ(p)I ∩⋂q∈(QN (R)\P)(¬̇θ(q))I. For all sets P,Q ⊆ DR with P , Q, it holds by

definition that PI , QI. This makes all PI with P ⊆ DR disjoint with one another and
the set of all P with P ⊆ DR defines a partitioning ofDR.

Definition 2 (Global Partitioning). LetDS = (
⋃

R∈NR
DR∪No)\{¬̇C | {C, ¬̇C} ⊆ QC}1.

The set P = {P | P ⊆ DS} defines a global partitioning of DS and PI = ∆I because
it includes all possible domain elements which correspond to a nominal and/or a role
filler: PI =

⋃
P⊆DS PI.

3.2 Encoding Numerical Restrictions into Inequations

Given T and a partitioning P for DS, one can reduce the satisfiability of expressions
of the form (≥ nR) and (≤ mR) and the satisfiability of the nominals semantics into
inequation solving based on the following principles.

Mapping Cardinalities to Variables A variable name v is assigned for each par-
tition name P such that v can be mapped to a non-negative integer value n using
σ : V → N with σ(v) denoting the cardinality of PI. Let V be the set of all variable
names and α : V → P be a one-to-one mapping between each partition name P ∈ P
and a variable v ∈ V such that α(v) = P, and if a non-negative integer n is assigned to
v using σ then σ(v) = n = #PI. Given L ⊆ DS, let VL denote the set of variable names
mapped to partitions satisfying LI, VL is defined as

VL =

 {v ∈ V | p ∈ α(v) for each p ∈ (L ∩ NR)} ∩
{v ∈ V | oq ∈ α(v) for each oq ∈ (L ∩ (No ∪ QN))} ∩
{v ∈ V | oq < α(v) for each ¬oq ∈ L, oq ∈ (No ∪ QN))}


Encoding Inequations Since the partitions in P are mutually disjoint the cardinal-

ity of a union of partitions is equal to the sum of the cardinalities of the partitions (e.g., if
P1, P2 ∈ P, then #(P1∪P1) = #P1 +#P2) and one can encode a cardinality restriction on
a partition’s elements into an inequation using ξ such that ξ(L,≥, n) =

∑
v∈VL

σ(v) ≥ n,
and ξ(L,≤,m) =

∑
v∈VL

σ(v) ≤ m where L ⊆ DS. With SHOQ we distinguish and
encode the following cardinalities: (i) Concepts of the form (≥ nR) and (≤ mR) in the
label of a node x express cardinality bounds n and m, respectively, on the set FIL(R, x)

1 When C and ¬̇C are both used as qualifying concepts, we only include C inDS.
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for some R ∈ NR. These bounds can be reduced into inequations using ξ(L,≥, n) and
ξ(L,≤,m) for L = {R} or L = {R, q}, if additionally, we have ∀S .C such that (R v∗ S )
with C ∈ DS and θ(q) = C. (ii) Nominals represent singleton sets. This cardinal-
ity bound can be encoded into inequations using ξ({o},≥, 1) and ξ({o},≤, 1) for each
nominal o ∈ No. When cardinalities (i) and (ii) are both encoded into inequations, the
interaction between nominals and role fillers is handled while preserving the semantics
of nominals.

Getting a Solution Given a set ξ of inequations, an integer solution defines the
mapping σ for each variable v occurring in ξ to a non-negative integer n denoting
the cardinality of the corresponding partition. For example, assuming σ(va) = 1 and
α(va) = {R1,R2}, this means that the corresponding partition (α(va))I must have 1 el-
ement; #(FIL(R1) ∩ FIL(R2)) = 1. Additionally, by setting the objective function to
minimize the sum of all variables, a minimum number of role fillers is ensured at each
level. A solution σ then defines a distribution of individuals that is consistent with the
numerical restrictions encoded in ξ.

3.3 Tableau Algorithm

The tableau algorithm described in this section relies on an inequation solver working
together with tableau expansion rules to construct a representation of a tableau model
using a compressed completion graph.

Definition 3. [Compressed Completion Graph] A (CCG) is a directed graph G = (V, E,
L,LE,LP), where nodes represent domain elements and the edges between the nodes
represent role relations. Each node x ∈ V is labeled with three labels: L(x), LE(x) and
LP(x), and each edge 〈x, y〉 ∈ E is labeled with a set, L(〈x, y〉) ⊆ NR, of role names.
L(x) denotes a set of concept expressions, L(x) ⊆ clos(T ), that the domain element,
ix, represented by x must satisfy. LP(x) denotes a non-atomic partition name (i.e., we
consider the set LP(x) as a name) and is used as a tag for x based on the partition that ix

belongs to. A partition name LP(x) ⊆ DS can include roles, nominals, or qualification
names.

When a role R ∈ NR appears in LP(x) this means that ix belongs to the partition
for R-fillers and can therefore be used as an R-filler. When a nominal o ∈ No appears
in LP(x) this means that ix ∈ oI, and o is added to L(x) when x is created. On the
other hand if a nominal i ∈ No does not appear in LP(x) this means that ix satisfies
the complement of i, ix ∈ (¬i)I and (¬i) is added to L(x) when x is created (see fil-
Rule). When a qualification name q ∈ QN appears in LP(x) this means that ix satisfies
the qualifying concept mapped to q, ix ∈ θ(q)I and θ(q) is added to L(x) when x is
created. As with the nominals case, if a qualification name p ∈ QN does not appear
in LP(x) this means that ix satisfies the complement of the qualifying concept mapped
to p, ix ∈ ¬̇(θ(p))I and ¬̇θ(p) is added to L(x) when x is created (see fil-Rule). Using
LP(x) as a tagging allows for the re-use of nodes instead of creating new ones.
LE(x) denotes a set ξx of inequations that must have a non-negative integer solu-

tion. The set ξx is the encoding of number restrictions and qualifications that must be
satisfied for x. In order to make sure that numerical restrictions local for a node x are
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satisfied while the global restrictions carried with nominals are not violated, the in-
equation solver collects all inequations and variable assignment in LE before returning
a distribution. This makes sure that an initial distribution of nominals and/or role fillers
is globally preserved while still satisfying the numerical restrictions (a distribution of
role fillers) at each level.

Definition 4. [Proxy node] A proxy node is a representative for the elements of each
partition. Proxy nodes can be used since partitions are disjoint and all elements within
a partition P satisfy common restrictions (see [2] for proofs).

Let us assume that KB(T ,R) such that T has been preprocessed and rewritten into
C′T . To check KB consistency, the algorithm starts with the completion graph G =

({r0}, ∅,L,LE). With LE(ro) =
⋃

o∈No
{ξ(o,≤, 1), ξ(o,≥, 1)} which is an encoding of the

nominal semantics into inequations. The node r0 is artificial and is not considered as part
of the tableau model, it is only used to process the numerical restrictions on nominals
using the inequation solver which returns a distribution for them.

The distribution of nominals is processed by the fil-Rule which is used to generate
individual nodes depending on the solution (σ) returned by the inequation solver. The
fil-Rule rule is fired for every non-empty partition P using σ(v). It generates one proxy
node y as the representative for the m elements assigned to PI by the inequation solver.
In the case of nominals, m is always equal to 1. The node y is tagged with its partition
name using α(v) in LP(y). The set of inequations is accumulated in LE(y). Nominals
and qualifications satisfied by the partition elements are extracted from the partition
name and added to L(y). C′T is also added to L(y) to make sure that every node created
by the fil-Rule also satisfies C′T .

After at least one nominal is created, G is expanded by applying the expansion rules
given in Fig. 1 until no rules are applicable or a clash occurs. The u-Rule, t-Rule, ∀-
Rule and the ∀+-Rule are similar to the ones in [1, 7]. The ∀\-Rule is used to enforce the
semantics of the role set difference operator ∀\ introduced at preprocessing by making
sure that all R-fillers are labelled. The Z-Rule encodes the numerical restrictions in the
labelL of a node x, for some role R ∈ NR, into a set of inequations maintained inLE(x).
The inequation solver is always active and responsible for finding a non-negative integer
solutionσ or triggering a clash if no solution is possible. If the inequations added by this
rule do not trigger a clash, then the encoded at-least/at-most restriction can be satisfied
by a possible distribution of role fillers. We distinguish two cases.

Case (i): R-fillers of x must also satisfy a qualifying concept C due to a ∀S .C re-
striction on a role S such that R v∗ S and C is either a nominal or a qualifying concept
such that θ−(C) in DS. Then the numerical restriction is encoded on partitions P ∈ P
with PI ⊆ (CI ∩ FIL(R)) which means {R, θ−(C)} ⊆ P.

Case (ii): There exist no qualified restrictions on R-fillers of x due to a ∀ restriction
on a role S such that R v∗ S . In this case the numerical restriction is encoded on
partitions P ∈ P with PI ⊆ FIL(R) which means {R} ⊆ P.

ch-Rule. This rule checks for empty partitions while ensuring completeness of the
algorithm. Given a set of inequations in the label LE(x) of a node x and a variable v
such that α(v) = P and P ∈ P we distinguish between two cases.

(i) PI must be empty (v ≤ 0); this happens when restrictions on elements of this
partition trigger a clash because the signature of P cannot be satisfied. For instance,
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u-Rule If C u D ∈ L(x), and {C,D} * L(x)
Then set L(x) = L(x) ∪ {C,D}.

t-Rule If C t D ∈ L(x), and {C,D} ∩ L(x) = ∅
Then set L(x) = L(x) ∪ {E} with E ∈ {C,D}.

∀-Rule If ∀R.C ∈ L(x) and there exists y such that L(〈x, y〉) ∩ (H(R) ∪ {R}) , ∅, and C < L(y)
Then set L(y) = L(y) ∪ {C}.

∀+-Rule If ∀R.C ∈ L(x) and there exists y such that L(〈x, y〉)∩ (H(S )∪ {S } ) , ∅, S ∈ NR+ with
S v∗ R, and ∀S .C < L(y)
Then set L(y) = L(y) ∪ {∀S .C}.

Z-Rule If (Z nR) ∈ L(x) for Z∈ {≤,≥},
Then If ∀S .C ∈ L(x) with R v∗ S and ξ({R, θ−(C)},Z, n) < LE(x)

Then set LE(x) = LE(x) ∪ {ξ({R, θ−(C)},Z, n)}.
Else If ξ({R},Z, n) < LE(x)
Then set LE(x) = LE(x) ∪ {ξ({R},Z, n)}.

ch-Rule If there exists v occurring in LE(x) such that {v ≥ 1, v ≤ 0} ∩ LE(x) = ∅
Then set LE(x) = LE(x) ∪ {V}, V ∈ {v ≥ 1, v ≤ 0}.

e-Rule If (Z nR) ∈ L(x), and there exists y such that R ∈ LP(y) and R < L(〈x, y〉)
Then If ∀S .C ∈ L(x) with R v∗ S and θ−(C) ∈ LP(y), OR ∀S .C < L(x) with R v∗ S

Then set L(〈x, y〉) = L(〈x, y〉) ∪ {R}, and
If LE(x)*LE(y) Then set LE(y) = LE(y) ∪ LE(x).

fil-Rule If there exists v occurring in LE(x) with σ(v) = m and m > 0, and there exists no y
with LP(y) = α(v)
Then 1. create a new node y, 2. set LP(y) = α(v), 3. set LE(y) = LE(x), 4. set L(y) =⋃

o∈(α(v)∩No) o ∪⋃i∈(No\α(v)) ¬i ∪⋃q∈(QN∩α(v)) θ(q) ∪⋃p∈(QN \(QN∩α(v))) ¬̇Qθ(p) ∪ {C′T }
∀\-Rule If ∀(R\S ).C ∈ L(x), and there exists y such thatL(〈x, y〉)∩(H(R)∪{R}) , ∅,L(〈x, y〉)∩

(H(S ) ∪ {S }) = ∅, and C < L(y)
Then set L(y) = L(y) ∪ {C}.

Fig. 1. Completion rules for SHOQ (in groups of decreasing priority from top to bottom)

if {∀R1.A,∀R2.¬A} ⊆ L(x), vR1R2 ≥ 1 ∈ LE(x) and there exists a node y with LP(y) =

{R1,R2} and {R1,R2} ⊆ L(〈x, y〉), the qualifications on R1 and R2-fillers trigger a clash
{A,¬A} ⊆ L(y) and vR1R2 ≤ 0 is enforced.

(ii) PI must have at least one element (1 ≤ m ≤ σ(v)); if PI can have at least
one element without causing any logical clash, this means that the signature of P is
satisfiable and we can also have m elements in PI without a clash.

e-Rule. This rule creates the edges between the proxy nodes created by the fil-Rule.
If ≥ nR ∈ L(x) for some R, this means that x must be connected to a number r of R-
fillers such that n ≤ r. If ≤ mR ∈ L(x) then x could be connected to a maximum number
r′ of R-fillers such that r′ ≤ m. If there exists a node y such that R ∈ LP(y), this means
that a distribution of R-fillers has been assigned by the inequation solver such that the
numbers n and m are satisfied and y is a representative for a number p of R-fillers such
that r ≤ p ≤ r′. We distinguish between two cases.

(i): R-fillers of x must also satisfy a qualifying concept C due to a ∀S .C restriction
on a role S such that R v∗ S . In this case, if θ−(C) is also in LP(y) then the partition
represented by y intersects with CI and y is a member of C.
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(ii): There exists no qualified restrictions on R-fillers. In this case there is no restric-
tion on the partitions intersecting with R-fillers.

In both cases, an edge can safely be created between x and y such that R ∈ L(〈x, y〉)
and this edge is also a representative for the number p of edges between x and the p
elements represented by y. If S is also in LP(y) this means that the p R-fillers repre-
sented by y are also S -fillers and y is a representative for a partition p ∈ P such that
pI ⊆ FIL(R) ∩ FIL(S ). Therefore y can be re-used to connect x or another node y
having ≥ n′S or ≤ m′S , n′ ≤ n and m′ ≥ m, in their label.

Definition 5. [Strategy of Rule Application] Given a node x in the completion graph,
the rules are triggered when applicable based on the following order (listed with de-
creasing priority) in order to ensure completeness of the algorithm (see [2] for details):
1. u-Rule, t-Rule, ∀-Rule, ∀+-Rule, ch-Rule, Z-Rule, e-Rule. These rules can be fired
in arbitrary order. 2. fil-Rule. 3. ∀\-Rule.

Definition 6. [Clash] A node x in (V \ {r0}) is said to contain a clash if: (i) {C,¬C} ⊆
L(x), or (ii) a subset of inequations ξx ⊆ LE(x) does not admit a non-negative integer
solution, this case is decided by the inequation solver.

When no rules are applicable or there is a clash, a completion graph is said to be
complete. When G is complete and clash free it means that a model exists for KB(T ,R)
satisfying the numerical and the logical restrictions; the algorithm returns that KB(T ,R)
is consistent, otherwise it returns that KB(T , R) is inconsistent.

4 Optimizing Algebraic Tableau Reasoning

The main goal for introducing algebraic reasoning to DL is to efficiently handle reason-
ing with QCRs and/or nominals. Although global partitioning of domain elements gives
a worst-case double exponential algorithm (see [2] for proofs), one can exploit its high
level of information to adapt well known and devise new optimization techniques for
improving reasoning with nominals and QCRs. The atomic decomposition technique
allows a more semantically structured model construction algorithm which exhibits a
high level of information on cardinalities implied by QCRs and nominals.

The next two optimization techniques exploit simple interactions between so-called
“told nominals” and QCRs to discard unnecessary partitions and impose some ordering
on applying the ch-Rule for nominal variables.

Discarding Partitions This optimization aims at reducing the number of partitions
and their variables. It does this at the preprocessing level by collecting and analyzing
the following interactions between nominals and QCRs.

(i) We have ≥ nR.C with C ≡ o1t· · ·ton or C v o1t· · ·ton. For example, ≥ 1R.o is
rewritten into ≥ 1R′u∀R′.o and this means that the partition for R′-fillers must intersect
with the partition for the nominal o and, therefore, the partitions for R′-fillers that do
not intersect with o can be safely discarded when computing the global partitioning.

(ii) We have ≤ nR.C with C ≡ o1 t · · · t on or C v o1 t · · · t on. For example,
≤ 1R.o is rewritten into ≤ 1R′ u ∀R′.o u ∀R\R′.¬o and similar to the case with ≥ nR.C
the partitions for R′-fillers that do not intersect with o can be discarded. Additionally,
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the partitions for R-fillers that do not intersect with R′-fillers and intersect with o can
also be discarded.

Variable Preference For each nominal o, only one variable v ∈ Vo can be assigned
≥ 1 by the ch-Rule. This heuristic aims at selecting nominal variables that are more
likely to succeed. It does this similarly to the case of discarding partitions and allows the
ch-Rule to branch on a partition, where nominals intersect with their interacting roles,
before branching on a variable, where these nominals do not intersect with the role
fillers. For example, we have two variables v1 and v2 for a nominal o with α(v1) = {o}
and α(v2) = {o,R′} and R′ is mapped to {o}. The variable-preference heuristic then
directs the ch-Rule to branch on v2 ≥ 1 before branching on v1 ≥ 1.

Skip UnSat ch-Rule This optimization affects the ch-Rule and aims at bypassing
choice points that are known to lead to a clash. For example, if the ch-Rule is applied to a
variable va with o ∈ α(va) for o ∈ No and v ≤ 0 for all v ∈ Vo, this means that branching
on va ≤ 0 will result in a clash because the encoded inequation ξ(o,≥, 1) for o becomes
infeasible. The branch for va ≤ 0 can be safely bypassed. If R ∈ α(va) for some R ∈ NR

and we have v ≤ 0 for all v ∈ VR, then the branch for va ≤ 0 can therefore be safely
bypassed if va occurs in an inequation encoding an at-least restriction. Similarly, the
branch for va ≥ 1 is discarded if assigning va a value ≥ 1 renders the inequation where
va occurs obviously infeasible.

Using noGood Variables A variable v is assigned to be a noGood if v must have the
value zero. This can happen for a partition P where α(v) = P must be empty because no
domain element can be distributed over P without causing a clash. Using the ch-Rule
a semantic split is performed over each partition’s elements; v ≥ 1 is the case when the
restrictions on the partition’s elements can be satisfied, and v ≤ 0 means the restrictions
on the partition’s elements cannot be satisfied.

Skip UnSat OR-Rule This optimization affects the t-Rule and aims at bypassing
choice points that are known to lead to a clash. When the t-Rule is applied to a node
y, the branch adding C to L(y) can be discarded for the following cases: (i) C is a
restriction ≥ nR and all variables mapped to R are noGood variables, then choosing this
disjunct will result in an arithmetic clash. (ii) C is a nominal o and y is assigned to a
partition P intersecting with ¬o ({o} < P). (iii) C is the complement of a nominal, ¬o,
and y is assigned to a partition P intersecting with o ({o} ∈ P).

Dependency Directed Backtracking This is a well known optimization technique
which allows a search algorithm to bypass choice points. We identify three types of
clashes: the logical, OR, and arithmetic clash, and for each type a clash handler is
responsible for setting the next choice point to explore.

Logical Clash Handler If a node y has {C,¬C} ⊆ L(y), y is said to contain a logical
clash. The logical clash handler analyzes the clash sources looking for alternative choice
points where the algorithm can backjump to. If no such alternative choice is found, then
y cannot survive without causing a clash. One can safely assume that the corresponding
partition represented in Lp(y) must be empty and the variable v with LP(y) = α(v)
must be zero. The algorithm can backjump to the ch-Rule choice point where v ≤ 0
and safely bypass the choice points with v ≥ 1. Additionally, if the noGood variable
optimization is turned on, then v is also assigned to be a noGood variable.
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OR Clash Handler If we have ¬o t ¬C ∈ L(y) and we have o,C ∈ LP(y) then the
node y will not survive because all choice points generated by the t-Rule will result in
a clash ({o,¬o} ⊆ L(y) or {C,¬C} ⊆ L(y)). The node y is said to contain an OR-clash
and the variable v with LP(y) = α(v) must be zero. The algorithm can backjump to the
ch-Rule choice point where v ≤ 0 and safely bypass the choice points with v ≥ 1. An
OR-clash can only be detected if the “Skip UnSat” optimization is turned on and the
OR clash handler cannot find alternative choice points because the applicability of the
OR-Rule returns an empty list of choice points, i.e., all choices would clash.

Arithmetic Clash Handler An arithmetic clash is detected when the system of
inequations cannot have a solution. The following arithmetic clashes can be detected
and handled even before running the Simplex procedure (i.e., as soon as inequations are
added by the Z-Rule). Clash A: If there exists a node y ∈ G such that ξ(L,≥,m) ∈ LE(y)
and v ≤ 0 ∈ LE(y) for all v ∈ VL (due to the ch-Rule), then ξ(L,≥,m) is infeasible and
renders ξy infeasible. Clash B: If there exists a node y ∈ G such that ξ(L,Z,m) ∈ LE(y)
and for all v ∈ VL, v has been assigned a value σ(v) (due to a previous distribution
σ) such that

∑
v∈VL

σ(v) does not satisfy m. Clash C: If there exists a node y ∈ G such
that ξ(L,Z,m) ∈ LE(y) and for some vn ∈ VL, the ch-Rule must skip the branch where
vn ≥ 1 because vn is a noGood and branching on vn ≤ 0 triggers a clash of type A. In
all three cases the algorithm can backjump to a branching point for some v ∈ VL where
v ≥ 1 and v has not been assigned to be a noGood.

5 Evaluation: First Experimental Results

Our prototype reasoner HARD (Hybrid Algebraic Reasoner for DL) is implemented
in Java and uses the OWL-API. We integrated the reasoner interfaces of Pellet v.2.0.0
[11] and HermiT v.1.1 [9] into our implementation and run KB consistency tests using
HARD, HermiT, or Pellet. This first evaluation was targeted to test how the algebraic
tableau in combination with the proposed optimizations scales for KBs exhibiting in-
teractions between nominals and QCRs. Unfortunately, there are not many suitable on-
tologies available because QCRs were only recently added to OWL 2 and the ones that
are available do not serve well as benchmarks for HARD because their potential diffi-
culty is not caused by interactions between nominals and QCRs. Furthermore, HARD
was designed as a research prototype to demonstrate the effectiveness of our algebraic
tableau approach and intentionally does not implement most of the optimization tech-
niques implemented by other DL reasoners. It is therefore not the focus of this paper to
evaluate HARD’s performance for real world ontologies due to the overhead necessary
to implement other optimization techniques not related to this line of research.

A typical nominal-QCR interaction occurs when a KB includes axioms of the form
C ≡ o1 t · · · t on with o1, . . ., on nominals, and D v ≥ mR.C or D v ≤ mR.C with
n,m ≥ 0 in T . Our claim is that these patterns are more likely to occur in real world
ontologies. For example, in a KB used to classify countries based on their spoken
languages one could find axioms of the form SSC ≡ Argentina t Belize t Bolivia t
· · · t Venezuela (SSC stands for Spanish Speaking Countries) and South America v
≥ 11 Includes.SSC u ≤ 11 Includes.SSC, and Caribbean v ≥ 3 Includes.SSC where
Argentina, . . . ,Venezuela are all distinct nominals representing unique countries.
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Fig. 2. Evaluation of HARD with HermiT and Pellet (all runtimes in seconds)

We developed two sets of benchmarks consisting of the simple TBoxes TA and TB

defined below where o1, . . ., on are all disjoint nominals and n and m positive numbers:
TA = {C ≡ o1 t . . . t on, D v ≥ (m+1) R.C},TB = {C ≡ o1 t . . . t on, D v ≥ m R.C}

In a first set of benchmarks we set n = m and increment n by 1. Notice that due
to the nominals semantics and their interaction with FIL(R), TA is inconsistent because
the cardinality of FIL(R) can be at most n while TB is consistent. The results of the
tests are shown in Fig. 2 (the runtimes were computed as the average of 10 independent
runs). For HARD all optimization techniques described above were switched on. In
the case of inconsistent KBs (Fig. 2(a)) one can easily see that HARD outperforms the
other reasoners whose performance quickly degrades even with small values of n. In
the case of consistent KBs (Fig. 2(b)) HARD performs similar to HermiT while Pellet’s
performance degrades. In a second set of tests for consistent KBs the size of m in TB

increases but the number of nominals remains constant; we set n = 5 and increment
m by 50. Fig. 2(c) clearly demonstrates that HARD’s performance remains constant
while the performance of the other reasoners severely degrades as m grows (observe the
logarithmic scale for the runtime).

6 Conclusion and Future Work

We exploited the high level of information of the algebraic method and presented op-
timization techniques related to nominals, QCRs and their interactions. Our first ex-
perimental results show that algebraic reasoning outperforms existing DL reasoning
methods by several orders of magnitude, although we used small examples. One might
argue that these results are based on special case patterns, however, it is clear that such
patterns are inevitable for designing some real world ontologies. It is part of ongoing
work to report on performance improvements in more general cases. We are also work-
ing on extending our calculus to SHOIQ by additionally allowing inverse roles. Our
conjecture is that the worst-case complexity of our calculus might remain unchanged
and, thus, would become worst-case optimal for SHOIQ.
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1 Introduction

In real world applications where ontologies are employed, often the knowledge
engineer not only wants to know whether her ontology has a certain (unwanted)
consequence or not, but also wants to know why it has this consequence. Even
for ontologies of moderate size, finding explanations for a given consequence is
not an easy task without getting support from an automated tool. The task
of finding explanations for a given consequence, i.e., minimal subsets of the
original ontology that have the given consequence is called axiom pinpointing in
the literature.

Existing work on axiom pinpointing in DLs can be classified under two main
categories, namely the glass-box approach, and the black-box approach. The
idea underlying the glass-box approach is to extend the existing reasoning algo-
rithms such that while doing reasoning, at the same time they can keep track
of the axioms used, and detect which of the axioms in the TBox are responsible
for a given consequence. In [24] a pinpointing extension of the tableau-based
satisfiability algorithm for the DL ALC has been introduced. Later in [19], this
approach has been further extended to DLs that are more expressive than ALC.
In [17] a pinpointing algorithm for ALC with general concept inclusions (GCIs)
has been presented by following the approach in [2]. In order to overcome the
problem of developing a pinpointing extension for every particular tableau-based
algorithm, a general pinpointing extension for tableau algorithms has been de-
veloped in [3, 6]. Similarly, an automata-based general approach for obtaining
glass-box pinpointing algorithms has been introduced in [4, 5].

In contrast to the glass-box approach, the idea underlying the black-box ap-
proach is to make use of the existing highly optimized reasoning algorithms
wihout having to modify them. The most näıve black-box approach would of
course be to generate every subset of the original TBox, and ask a DL reasoner
whether this subset has the given consequence or not, which obviously is very
inefficient. In [16] more efficient approaches based on Reiter’s hitting set tree
algorithm [23] have been presented. The experimental resuts in [16] demonstrate
that this approach behaves quite well in practice on realistic TBoxes written in
expressive DLs. A similar approach has successfully been used in [14] for explain-
ing inconsistencies in OWL ontologies. The main advantages of the black-box
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approach are that one can use existing DL reasoners, and that it is independent
of the DL reasoner being used. In [13] the black-box approach has been used
for computing more fine grained explanations, i.e., not just the set of relevant
axioms in the TBox but parts of these axioms that actually lead to the given
consequence.

Although various methods and aspects of axiom pinpointing have been con-
sidered in the literature, its computational complexity has not been investigated
in detail yet. Obviously, axiom pinpointing is at least as hard as standard rea-
soning. Nevertheless, especially for tractable DLs it makes sense to investigate
whether explanations for a consequence can efficiently be enumerated or not.
In [7] it has been shown that a given consequence can have exponentially many
explanations (there called MinAs, which stands for minimal axiom sets), and
checking the existence of a MinA within a cardinality bound is np-hard even for
a fragment of EL that only allows for conjunction on both sides of a GCI. In [20–
22] we have investigated the complexity of axiom pinpointing in the propositional
Horn fragment, and in the tractable DL EL. We have given a polynomial delay
algorithm for enumerating MinAs in the propositional Horn setting that works
even if the MinAs are required to be enumerated in reverse lexicographic order.
We have also shown that for the dual-Horn setting, where the axioms have at
most one negative literal, this problem is at least as hard as the hypergraph
transversal enumeration problem, whose exact complexity is a prominent open
problem [12]. Moreover, we have shown that for EL TBoxes MinAs cannot be
enumerated in output-polynomial time unless p = np.

In the present work we investigate the complexity of axiom pinpointing in
the other family of tractable DLs, namely the DL-Lite family, which has been
very popular due to its success in efficiently accessing large data and answering
complex queries on this data [10, 1]. For this family various aspects of finding
explanations have already been considered in [9, 8]. There the main focus is on the
problem of explaining query answering and ABox reasoning, which are the most
standard types of reasoning problems in the DL-Lite family. In particular the
authors investigate in detail the problem of determining why a value is returned
as an answer to a conjunctive query posed to a DL-Lite ABox, why a conjunctive
query is unsatifiable, and why a particular value is not returned as answer to
a conjunctive query. Complementary to the work in [9, 8] here we consider the
problem of explaining TBox reasoning. We investigate in detail the complexity of
enumerating MinAs in a DL-Lite TBox for a given consequence of this TBox. We
show that for DL−LiteHcore, DL−LiteHkrom and DL−LiteNhorn TBoxes MinAs are
efficiently enumerable with polynomial delay, but for DL−Litebool they cannot
be enumerated in output-polynomial time unless p = np.

2 Preliminaries

We briefly introduce the syntax of the DL-Lite family following the notation
in [1]. DL-Lite concepts and roles are constructed as follows:

r := p | p−, B := ⊥ | A | ≥ q r, C := B | ¬C | C1 u C2,
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where A is a concept name, p is a role name, and q is a natural number. Concepts
of the form B are called basic, and those of form C are called general concepts.

A DL−LiteNbool TBox is a set of axioms of the form C1 v C2, where C1, C2 are
general concepts. A TBox is called core, denoted as DL−LiteNcore, if its axioms
are of the form B1 v B2, or B1 v ¬B2 , where B1, B2 are basic concepts. Krom
TBoxes generalize core ones by allowing also axioms of the form ¬B1 v B2.
These TBoxes are denoted asDL−LiteNkrom. Finally, a Horn TBoxDL−LiteNhorn
is composed only of axioms of the form

d
k Bk v B. We can drop the superscript

N from the knowledge bases by allowing only number restrictions of the form
≥ 1 r for constructing basic concepts. We will sometimes use the expression ∃r
to represent ≥ 1 r. To any of the previously defined TBoxes, we can add role
inclusion axioms of the form r1 v r2. This will be denoted using the superscript
H in the name; e.g. DL−LiteHNbool . Since we are not dealing with individuals in the
present work, role inclusion axioms do not add any expressivity to DL−LiteHα
TBoxes for α ∈ {core, horn, krom}. Indeed, a basic concept B will only make
use of a role r if B is an existential restriction ∃r. As we are only interested in
concept subsumption, we can represent the role inclusion axiom r1 v r2 by the
concept inclusion ∃r1 v ∃r2. Thus, the complexity results we present here for
for DL−Liteα TBoxes also hold for DL−LiteHα TBoxes.3 For sake of simplicity,
in the present work we do not consider inverse roles.

Finally we recall basic notions from complexity of enumeration algorithms.
For analyzing the performance of algorithms where the size of the output can
be exponential in the size of the input, we consider other measures of efficiency.
We say that an algorithm runs with polynomial delay [15] if the time until the
first output is generated, and thereafter the time between any two consecutive
outputs is bounded by a polynomial in the size of the input. We say that it runs
in output polynomial time [15] if it outputs all solutions in time polynomial in
the size of the input and the output.

3 Complexity of Enumerating all MinAs

The main problem we consider in the present work is, given a DL-Lite TBox and
a consequence of it, compute all MinAs for this consequence in the given TBox.
We start with defining a MinA.

Definition 1. Let T be a DL-Lite TBox and ϕ a DL-Lite axiom that follows
from it, i.e., T |= ϕ. We call a set M⊆ T a minimal axiom set or MinA for ϕ
in T if M |= ϕ and it is minimal w.r.t. set inclusion.

We define our problem without mentioning a particular DL-Lite fragment but
investigate its computational complexity for different fragments in the coming
sections separately. In the following, the only consequences we consider are sub-
sumption relations that can be expressed by axioms in the corresponding DL-Lite
fragment.
3 Notice that this may not be true if number restrictions are allowed; that is, the

complexity results for DL−LiteNα may not transfer to DL−LiteHNα .
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Problem: mina-enum
Input: A DL-Lite TBox T and a DL-Lite axiom ϕ such that T |= ϕ.
Output: The set of all MinAs for ϕ in T .

3.1 Enumerating MinAs in DL−Litecore and DL−Litekrom TBoxes

We start with a basic observation. In the simplest setting where we can consider
mina-enum, T is a DL−Litecore TBox whose concept inclusion axioms are all
of the form A1 v A2 for atomic concepts A1, A2. Note that in his setting T
becomes just a directed graph, and a MinA for An v Am is just a simple path
between the nodes An and Am.4 That is, mina-enum boils down to enumerating
the simple paths between two vertices in a given directed graph. This problem
is well-known, and can be solved with polynomial delay, even if the simple paths
are required to be output in the increasing order of their lengths [25]. This
observation has already been briefly mentioned in the works [9, 8], which mainly
concentrate on explaining query answering.

In DL−Litecore TBoxes, additionally we need to deal with unqualified exis-
tential restriction, and also with inclusion axioms that have negated basic con-
cepts in the right hand side. Since unqualified existential restrictions cannot
interact and give rise to additional MinAs in a DL−Litecore TBox, we can treat
them as atomic concepts. We need to deal with the axioms with a negated basic
concept in the right hand side separately since they can lead to additional MinAs
due to contraposition. We demonstrate this with an example.

Example 1. Consider the DL−Litecore TBox T = {A v ¬∃r1, ∃r2 v ∃r1, D v
∃r2, D v ∃r1, A v D} and the axiom ϕ : A v ¬D which follows from T . We can
treat ∃r1 and ∃r2 just like atomic concepts since without role inclusion axioms
they cannot interact and lead to additional MinAs. That is we have the MinAs
M1 = {A v ¬∃r1, ∃r2 v ∃r1, D v ∃r2}, and M2 = {A v ¬∃r1, D v ∃r1}.

Note that A is actually unsatisfiable, i.e., it is subsumed by any other concept.
This might also be the reason why ϕ follows from T . This means that we also
need to find out the reasons why A is unsatisfiable. The only MinA for A v ¬A
in T is M = {A v ¬∃r1, D v ∃r1, A v D}. However, it contains M2, which is a
MinA for ϕ, thus M is not a minimal axiom set, i.e., a MinA for ϕ. It means that
when we are looking for MinAs for an axiom B1 v B2 s.t. B1 is unsatisfiable,
we also need to find MinAs for B1 v ¬B1 that do not contain any of the MinAs
for the original axiom.

Our algorithm that takes all these cases into account is described in detail in
Algorithm 1 where t(ϕ) stands for the tail (i.e. the left hand side), and h(ϕ)
stands for the head (i.e. the right hand side) of axiom ϕ.

Theorem 1. Algorithm 1 solves mina-enum for DL−Litekrom TBoxes with
polynomial delay.

4 A simple path is a path with no repeated vertices.
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Algorithm 1 Enumerating all MinAs for DL−Litekrom TBoxes
Procedure: all-MinAs(T ,ϕ) (T a DL−Litekrom TBox, ϕ an axiom s.t. T |= ϕ)

1: all-MinAs-aux(T , ϕ)
2: if T |= t(ϕ) v ¬t(ϕ) then
3: T ′ := {ψ ∈ T | h(ψ) 6= h(ϕ) and t(ψ) 6= ¬h(ϕ)}
4: all-MinAs-aux(T ′, t(ϕ) v ¬t(ϕ)) (MinAs for unsatisfiability of t(ϕ))
5: end if

Procedure: all-MinAs-aux(T ,ϕ) (T a DL−Litekrom TBox, ϕ an axiom, T |= ϕ)

1: if t(ϕ) = h(ϕ) then return ∅
2: end if
3: for all ψ ∈ T do
4: if t(ϕ) = t(ψ) and T \ {ψ} |= h(ψ) v h(ϕ) then
5: print{ψ} ∪ all-MinAs(T \ {ψ}, h(ψ) v h(ϕ))
6: end if
7: if t(ϕ) = ¬h(ψ) and T \ {ψ} |= ¬t(ψ) v h(ϕ) then
8: print{ψ} ∪ all-MinAs(T \ {ψ},¬t(ψ) v h(ϕ))
9: end if

10: end for

Proof. It is not difficult to see that the algorithm terminates. Termination of
the procedure all-MinAs depends on the termination of the procedure all-
MinAs-aux. all-MinAs-aux terminates since the base case of the recursion is
well established, and there are finitely many ψ in T .

The algorithm is sound. all-MinAs-aux outputs an axiom ψ, only if using
it ϕ can be derived. Moreover, as soon as the head and the tail of ϕ become
equal, it terminates in line 1. That is it does not allow ‘cycles’, or redundant
axioms in the output. Hence, the outputs of all-MinAs-aux are indeed MinAs
for ϕ in T . all-MinAs additionally checks if the tail of ϕ is unsatisfiable, and
if this is the case also outputs the MinAs for t(ϕ) v ¬t(ϕ) that do not contain
any of the previously output MinAs.

The algorithm is complete. all-MinAs-aux iterates over the axioms in T
and searches for the MinAs for ϕ in a depth-first manner. If T |= t(ϕ) v ¬t(ϕ),
then all-MinAs additionally searches for MinAs for t(ϕ) v ¬t(ϕ), in the same
manner. These are all MinAs for ϕ in T .

Note that in lines 4 and 7 of the procedure all-MinAs-aux the algo-
rithm checks whether the selected axiom ψ will lead to a MinA. Clearly, for
DL−Litecore and DL−Litekrom this check is polynomial. Moreover, this check
avoids the algorithm picking a ‘wrong’ axiom that will result in an exponential
number of recursive calls that do not lead to a MinA. That is, it guarantees
that the algorithm outputs the next MinA, or stops, after at most a polynomial
number of steps, i.e., it is polynomial delay. 2

3.2 MinAs in DL−LiteN
horn TBoxes

Next we show that for DL−LiteNhorn TBoxes, MinAs can be enumerated with
polynomial delay as well. Furthermore, we show that this is true even if the
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MinAs are required to be output in a given reverse lexicographic order. To do
this, we construct, for every DL−LiteNhorn TBox T a propositional Horn TBox
GT as follows: for every basic concept B create a propositional variable vB ; for
every axiom

dn
i=1Bi v B add the Horn clause

∧n
i=1 vBi

→ vB ; and for each
pair of number restrictions ≥ q1r,≥ q2r with q1 > q2 appearing in T , add the
Horn clause v≥q1r → v≥q2r. We will call the latter ones implicit axioms. It is not
difficult to see that T |= dn

i=1Ai v C iff GT |=
∧n
i=1 vAi

→ vC . Furthermore,
MinA M in GT gives rise to a MinA in T consisting of all axioms representing
non implicit axioms in M. However, different MinAs in GT can give rise to
the same MinA in T . For instance let T = {A v ≥ 2r,A v ≥ 3r,≥ 1r v B}.
Clearly GT constructed from T as described has three MinAs for vA → vB ,
but there are only two MinAs for A v B in T . The reason is that the implicit
subsumption ≥ 3r v ≥ 1r is represented twice in GT : one through the direct
edge, and another with a path travelling along v≥2r. We solve this problem by
using immediate MinAs.

Definition 2. Let T be a DL−LiteNhorn TBox. A MinA M in GT is called
immediate if for every implicit axiom τ ∈ GT ,M |= τ implies τ ∈M.

Note that there is a one-to-one correspondence between MinAs for
dn
i=1Ai v C

in T and immediate MinAs for
∧n
i=1 vAi → vC in GT . Thus, if we can enumerate

all immediate MinAs in GT in output polynomial time, we will be able to enu-
merate also all MinAs in T within the same complexity bound. We now show
how all immediate paths can be computed. For this, we first need to introduce
the notion of a valid ordering on the axioms in a TBox.

Definition 3. Let T be a propositional Horn TBox, and φ =
∧n
i=1 ai → b be

an axiom in T . We denote the left-handside (lhs) of φ with T(φ), and its right-
handside (rhs) with h(φ), i.e., T(φ) := {a1, . . . , an} and h(φ) := b. With h−1(b)
we denote the set of axioms in T whose rhs are b. Let M = {t1, . . . , tm} be a
MinA for

∧
a∈A a → c. We call an ordering t1 < . . . < tm a valid ordering on

M if for every 1 ≤ i ≤ m, T(ti) ⊆ A ∪ {h(t1), . . . , h(ti−1)} holds.5

It is easy to see that for every immediate MinA there is always at least one such
valid ordering. In the following, we use this fact to construct a set of sub-TBoxes
that contain all and only the remaining immediate MinAs, following the ideas
in [18].

Definition 4. Let M be an immediate MinA in GT with |M| = m, and < be
a valid ordering on M. For each 1 ≤ i ≤ m we obtain a TBox Ti from GT
as follows: if ti is an implicit axiom, then Ti = ∅; otherwise, (i) for each j
s.t. i < j ≤ m remove all axioms in h−1(h(tj)) except for tj, i.e., remove all
axioms with the same rhs as tj except for tj itself, (ii) remove ti, and (iii) add
all implicit axioms.

The näıve method for computing one MinA can be easily adapted to the
computation of an immediate MinA in polynomial time by simply considering
5 That is, each variable on the lhs of ti is in A, or it is the rhs of a previous axiom.
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Algorithm 2 Enumerating all MinAs for DL−LiteNhorn TBoxes
Procedure all-MinAs(T ,φ) (T a DL−LiteNhorn TBox, φ an axiom s.t. T |= φ)

1: if T 6|= φ then return
2: else
3: M := an immediate MinA in GT
4: I := {t | t is an implicit axiom}
5: output M\ I
6: for 1 ≤ i ≤ |M| do
7: compute Ti from M as in Definition 4
8: all-MinAs(Ti \ I,φ)
9: end for

10: end if

first all non-implicit axioms for removal, and ordering the implicit ones as follows:
if t1 := (≥ q1r) v (≥ q2r), and t2 := (≥ q′1r) v (≥ q′2r) are two implicit
axioms and q1 − q2 < q′1 − q′2, then t1 appears before t2.

Lemma 1. Let M be an immediate MinA for φ in T , and let T1, . . . , Tm be
constructed from T and M as in Definition 4. Then, for every immediate MinA
N for φ in T that is different from M, there exists exactly one i, where 1 ≤
i ≤ m, such that N is a MinA for φ in Ti.

Proof. Let t1 < . . . < tm be a valid ordering on M, and N an immediate MinA
for φ in T such thatN 6=M. Then,M\N 6= ∅. Let tk be the largest non-implicit
axiom in M\N w.r.t. the ordering <. We show that N ⊆ Tk and N 6⊆ Ti for
all i 6= k, 1 ≤ i ≤ m.

Assume there is an axiom t ∈ N s.t. t 6∈ Tk. Since Tk contains all implicit
axioms, t should be one of the non-implicit axioms removed from T either in
step (i) or in step (ii) of Definition 4. It cannot be step (ii) because tk 6∈ N
since tk ∈M\N . Thus, it should be step (i). This implies that there exists a j,
k < j ≤ m, such that tj satisfies h(t) = h(tj). Recall that we chose k to be the
largest axiom in M\N w.r.t. the valid ordering < on M. Then this tj should
be in N . But then N contains two axioms with the rhs h(t), which contradicts
with the fact that N is a MinA, and thus it is minimal. Hence, N ⊆ Tk.

Now take an i s.t. i 6= k. If i > k, then ti ∈ N but ti /∈ Ti, and hence N 6⊆ Ti.
If i < k, then there is an axiom t ∈ N such that h(t) = h(tk) since otherwiseM
and N would not be MinAs. By construction, t /∈ Ti, hence N 6⊆ Ti. ut

Lemma 1 gives an idea of how to compute the remaining MinAs from a given
one in the DL−LiteNhorn setting. Algorithm 2 describes how we can use this
lemma to enumerate all MinAs in a DL−LiteNhorn TBox T by enumerating all
immediate MinAs in GT .

Theorem 2. Algorithm 2 solves mina-enum for DL−LiteNhorn TBoxes with
polynomial delay.
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Proof. The algorithm terminates since T is finite. It is sound since its outputs
are MinAs for φ in T . Completeness follows from Lemma 1.

In each recursive call of the algorithm there is one consequence check (line 1),
and one MinA computation (line 3). The consequence check can be done in
polynomial time [1]. One MinA is computed in polynomial time by iterating over
the axioms in T and removing the redundant ones. Thus the algorithm spends
at most polynomial time between each output, i.e., it is polynomial delay. 2

We now modify Algorithm 2 and show that it can also enumerate MinAs in
reverse lexicographic order with polynomial delay. The lexicographic order we
use is defined as follows:

Definition 5. Let the elements of a set S be linearly ordered. This order induces
a linear strict order on P(S), which is called the lexicographic order. We say
that a set R ⊆ S is lexicographically smaller than a set T ⊆ S where R 6= T if
the first element at which they disagree is in R.

The modified algorithm keeps a set of TBoxes in a priority queue Q. These
TBoxes are the “candidates” from which the MinAs are going to be computed.
Each TBox can contain zero or more MinAs. They are inserted into Q by the
algorithm at a cost of O(|T | · log(M)) per insertion, where T is the original
TBox and M is the total number of TBoxes inserted. Note that M can be expo-
nentially bigger than |T | since there can be exponentially many MinAs. That is
the algorithm uses potentially exponential space. The other operation that the
algorithm performs on Q is to find and delete the maximum element of Q. The
maximum element of Q is the TBox in Q that contains the lexicographically
largest MinA among the MinAs contained in all other TBoxes in Q. This opera-
tion can also be performed within O(|T | · log(M)) time bound. Note that given
a T , the lexicographically largest MinA in T can be computed by starting with
the axiom that is the smallest one w.r.t. the linear oder on T , iterating over
the axioms and removing an axiom if the resulting TBox still has the required
consequence. Obviously this operation is in O(|T |). This is why the time bounds
for insertion and deletion depend also on |T | and not only on M .

Theorem 3. Algorithm 3 enumerates all MinAs for a DL−LiteNhorn TBox in
reverse lexicographic order with polynomial delay.

Proof. The algorithm terminates since T is finite. Soundness is shown as fol-
lows: Q contains initially only the original TBox T . Thus the first output is
lexicographically the last MinA in T . By Lemma 1 the MinA that comes just
before the last one is contained in exactly one of the Tis that are computed and
inserted into Q in lines 8 and 9. In line 3 J is assigned the TBox that contains
this MinA. Thus the next output will be the MinA that comes just before the
lexicographically last one. It is not difficult to see that in this way the MinAs
will be enumerated in reverse lexicographic order. By Lemma 1 it is guaranteed
that the algorithm enumerates all MinAs.

In one iteration, the algorithm performs one find operation and one delete
operation onQ, each of which takes time O(n·log(M)), and a MinA computation
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Algorithm 3 Enumerating all MinAs in reverse lexicographical order
Procedure all-MinAs-rev-ord(T ,φ) (T a DL−LiteNhorn TBox, φ an ax., T |= φ)

1: Q := {T }
2: while Q 6= ∅ do
3: J := maximum element of Q
4: remove J from Q
5: M := the lexicographical largest MinA in J
6: output M
7: for 1 ≤ i ≤ |M| do
8: compute Ti from M as in Definition 4
9: insert Ti into Q if Ti |= φ

10: end for
11: end while

that takes O(n) time, where n = |T |. In addition it performs at most n Ti
computations, and at most n insertions into Q. Each Ti requires O(n2) time to
be constructed, and each insertion into Q takes O(n · log(M)) time. The total
delay is thus O(2 · (n · log(M)) + n+ n · (n2 + n · log(M))) = O(n3). ut

3.3 MinAs in DL−Litebool TBoxes

The axioms that we have used so far allowed for only basic concepts and their
negations, and we were able to show that in this restricted setting, MinAs are
enumerable with polynomial delay. However, we have not yet explored the com-
plexity of these problems if general concepts are allowed. As shown in [1], de-
ciding whether an axiom follows from a DL−Litebool TBox is already np-hard.
Since computing a MinA is at least as hard as doing a consequence check, we can-
not expect to find a single MinA in polynomial time. This in particular implies
that MinAs cannot be enumerated with polynomial delay in the DL−Litebool
setting. What we can ask next is whether all MinAs are computable in output
polynomial time. In order to answer this, we investigate the decision version of
this problem:

Problem: all-minas
Input: A DL-Lite TBox T and an axiom ϕ such that T |= ϕ, and a set of TBoxes
T ⊆P(T ).
Question: Is T precisely the set of all MinAs for ϕ in T ?

Because if this problem is not solvable in polynomial time, then all MinAs cannot
be computed in output-polynomial time. Due to lack of space, we cannot include
the proof of this claim here. The proof is based on a general argument and can
be found in [21] (Proposition 6). Next we show that all-minas is conp-hard for
DL−Litebool TBoxes.

Lemma 2. all-minas is conp-hard for DL−Litebool TBoxes. This already holds
if the axioms in T are of the form A v C where A is a concept name and C a
general concept.
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Proof. We present a reduction from the following conp-hard problem [11, 7].

Problem: all-mv
Input: A monotone Boolean formula φ and a set V of minimal valuations satis-
fying φ.
Question: Is V precisely the set of all minimal valuations satisfying φ?

Let φ,V be an instance of all-mv. We introduce a concept name Ap for each
propositional variable p appearing in φ and two additional concept names A0, A1.
From φ we construct the general concep Cφ by changing each conjunction ∧ to
u, each disjunction ∨ to t and each propositional variable p to ¬Bp.6 Using
these we construct the TBox T := {A1 v ¬Cφ} ∪ {Bp v ¬A0 | p ∈ var(φ)} and
the set of MinAs T := {{A1 v Cφ} ∪ {Bp v ¬A0 | p ∈ V} | V ∈ V }. It is
easy to see that T and T indeed form an instance of all-minas for the axiom
A0 v ¬A1. Furthermore, T is the set of all MinAs for A0 v ¬A1 iff V is the set
of all minimal valuations satisfying φ. ut
The following is an immediate consequence of Lemma 2.

Corollary 1. For DL−Litebool TBoxes all MinAs cannot be computed in output-
polynomial time unless p = np.

4 Concluding Remarks and Future Work

We have investigated the complexity of axiom pinpointing in the DL-Lite family.
We have shown that for DL−LiteHcore, DL−LiteHkrom and DL−LiteNhorn TBoxes
MinAs are efficiently enumerable with polynomial delay, but for DL−Litebool
they cannot be enumerated in output-polynomial time unless p = np. For sim-
plicity we did not consider inverse roles here, although we believe our results
will hold in presence of inverse roles. As future work we are going to investigate
whether this is the case.

Finding explanations for query answering and ABox reasoning has already
been considered in [9, 8]. However, these works investigate computing only one
explanation. As future work we are going to work on the problem of computing
all MinAs for explaining the reasoning problems considered there.
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Abstract. Scalability of reasoning systems is one of the main criteria
which will determine the success of Semantic Web systems in the future.
The focus of recent work is either on (a) expressive description logic sys-
tems which rely on in-memory structures or (b) not-so-expressive ontol-
ogy languages, which can be dealt with by using database technologies.
In this paper we introduce a method to perform query answering for
semi-expressive ontologies without the limit of in-memory structures.
Our main idea is to compute small and characteristic representations of
the assertional part of the input ontology. Query answering is then more
efficiently performed over a reduced set of these small representations. We
show that query answering can be distributed in a network of description
logic reasoning systems in order to support scalable reasoning. Our initial
results are encouraging.

1 Introduction

As the Semantic Web evolves, scalability of inference techniques becomes in-
creasingly important. While in recent years the focus was on pure terminological
reasoning, the interest shifts now more to reasoning with respect to large asser-
tional parts, e.g. in the order of millions or billions of triples. Research on on-
tologies with medium-sized assertional information has already been conducted
on less expressive description logics, e.g. in [CDGL+05]. Further techniques were
investigated in [FKM+06]. The authors propose to extract a condensed summary
graph out of the assertional part of an ontology, and then perform reasoning on
that summary. [FKM+06] reports encouraging performance results. However,
for avoiding inconsistencies due to merging, the summaries have to be rewritten
in expensive query-dependent refinement steps. With increasing numbers of re-
finement steps necessary, the performance of the approach degrades [DFK+09].
Moreover, the technical criteria for summarization (creating representative nodes
by grouping concept sets), seems arbitrary. In [WM08], a method is proposed to
identify the relevant islands, i.e. set of assertions/information, required to reason
about a given individual. The main motivation is to enable in-memory reason-
ing over ontologies with a large ABox, for traditional tableau-based reasoning
systems.

Given the island of an individual, we will make the idea of summarization
more formal. In this paper we present an approach to execute efficient instance

Proc. 23rd Int. Workshop on Description Logics (DL2010), CEUR-WS 573, Waterloo, Canada, 2010.

185



Fig. 1. Efficient query answering for expressive description logics ([KMWW08])

retrieval tests on database-oriented ontologies. The main insight of our work is
that the islands computed in [WM08] can be checked for similarity and instance
retrieval can then be performed over equivalence classes of similar islands. The
query answering algorithm for instance retrieval over similar islands is imple-
mented in a distributed manner. We report interesting scalability results with
respect to our test ontology: increasing the number of nodes in the network by
the factor of n almost reduces the query answering time to 1

n . Moreover, we
implemented our algorithm in such a way that the input ontology can be loaded
in an offline phase and changed afterwards incrementally online.

Figure 1 is taken from [KMWW08] and shows the general structure of an op-
timized query answering system for expressive description logics. Let us assumed
that a query Q is to be answered w.r.t. a Tbox (lower-left corner). The Tbox
is approximated into a DL-Lite Tbox (a complete but unsound approximation
is use). Exploiting DL-Lite query answering by transforming queries w.r.t. on-
tologies (Tboxes) into SQL queries (see the rectangle in the left-upper corner)
[CDGL+05], candidates are generated for the query w.r.t. the original Tbox. Af-
terwards, candidates can possibly be eliminated in beforehand. The remaining
candidates must be investigated using a reasoner for the expressive Tbox. In
order to be able to do this, huge Aboxes are partitioned (as explained above).
The approach described in this paper is situated in the modules Partitioning
and Candidate Eliminator.

The remaining parts of the paper are structured as follows. Section 2 in-
troduces necessary formal notions and gives an overview over related work. In
Section 3 we adopt the underlying island computation process from [WM08].
The main theoretical contribution of our work is in Section 4, the isomorphism

186 Distributed Island-based Query Answering for Expressive Ontologies



criteria for islands. We show our implementation in Section 5 and provide initial
evaluation results in Section 6. The paper is concluded in Section 7.

There is an extended version of this paper available with proofs and further
comments on the implementation and evaluation [WM10].

2 Preliminaries

For details about syntax and semantics of the description logic ALCHI we refer
to [BCM+07]. Some definitions are appropriate to explain our nomenclature,
however. We assume a collection of disjoint sets: a set of concept names NCN ,
a set of role names NRN and a set of individual names NI . The set of roles NR
is NRN ∪ {R−|R ∈ NRN}. We say that a concept description is atomic, if it is a
concept name or its negation. With SAC we denote all atomic concepts.

Furthermore we assume the notions of TBoxes (T ), RBoxes (R) and ABoxes
(A) as in [BCM+07]. An ontology O is a tuple 〈T ,R,A〉, where T is a TBox,
R is a RBox and A is a ABox. We restrict the concept assertions in A to
only use atomic concepts. This is a common assumption, e.g. in [GH06], when
dealing with large assertional datasets stemming from databases. With Ind(A)
we denote the set of individuals occurring in A. Throughout the remaining part
of the paper we assume the Unique Name Assumption (UNA), i.e. two distinct
individual names denote distinct domain objects.

In Example 1 we define an example ontology, used throughout the remain-
ing part of the paper to explain definitions. The example ontology is in the
setting of universities. We evaluate our ideas w.r.t. to “full” LUBM [GPH05]
(in fact LUBM without the transitive role subOrganzationOf , because we han-
dle ALCHI) in Section 6. Although this is a synthetic benchmark, several (if
not most) papers on scalability of ontological reasoning consider it as a base
reference.

Example 1. Let OEX1 = 〈TEX1,REX1,AEX1〉, s.t.

TEX1 ={Chair ≡ (∃headOf.Department) u Person, Prof v Person,
GraduateCourseTeacher ≡ Prof u ∃teaches.GraduateCourse}

REX1 ={headOf v worksFor}
AEX1 =see Figure 2

Next we discuss related work relevant to our contribution. In [SP08], the
authors discuss a general approach to partition OWL knowledge bases and dis-
tribute reasoning over partitions to different processors/nodes. The idea is that
the input for their partitioning algorithm is a fixed number of desired parti-
tions, which can be calculated by different means (weighted graphs, hash-based
distribution or domain specific partitions). The partitions are not independent
from each other. Moreover, in some cases, the data is just arbitrarily spread
over the different nodes in the networks. This leads to a noticeable amount
of communication overhead between the nodes because partial results have to
be passed in between the nodes. The authors discuss rather small data sets,
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Fig. 2. Example ABox AEX1

e.g., 1 million triples. These problems can already be solved with state-of-the-
art tableau-based reasoning systems. Furthermore, their evaluation only talks
about speed-up, without mentioning the actual run-time, or referring to some
open/state-of-the art implementation.

The work in [UKOvH09] proposes a technique based on MapReduce [DG04]
to compute the closure (set of all implications) over ontologies (in the spirit of
Abox realization). Given the underlying MapReduce framework, their approach
could scale in theory. The major difference to our work is that we focus on
query answering instead of brute force (bottom-up) generation of all possible
implications of a given knowledge base. Moreover we focus on more expressive
description logics and it is at least doubtful, whether their approach will work
for expressive logics, i.e., logics allowing for disjunctions or the specification of
ontologies which have only infinite models.

The authors of [BS03] discuss an approach to integrate ontologies from dif-
ferent sources in a distributed setting. They introduce so-called bridge-rules to
identify, which parts of the ontologies overlap (and thus need to be communi-
cated between the different reasoning nodes). The main focus of their work is
rather on the integration of distributed ontologies, but not on scalable query
answering over large ontologies. There is additional work on distributed Data-
log implementations (see, e.g., [ZWC95] and [GST90]) and on non-distributed
reasoning optimization techniques for description logics [GH06].

3 Island calculation

In [WM08], a method is proposed to identify the relevant information (assertions)
to reason about an individual. The main motivation is to enable in-memory
reasoning over large ontologies, i.e. ontologies with a large ABox, for traditional
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tableau-based reasoning systems. More formally, given an input individual a,
the proposal is to compute a set of ABox assertions Aisl (a subset of the source
ABox A), such that for all concept descriptions C, we have 〈T,R,A〉 � C(a)
iff 〈T,R,Aisl〉 � C(a). We call these sets of assertions islands. Despite the fact
that query answering is , in order to support more complex reasoning tasks, e.g.,
answering conjunctive queries, island computation as described in [WM08] is not
enough. Given an instance retrieval task for concept C with respect to ontology
O =〈T,R,A〉, a naive approach will iterate over all individuals a ∈ Ind(A) of
the input ABox in order to determine whether 〈T,R,A〉 � C(a). If yes, then a
is included in the result set for the instance retrieval query.

The performance of instance retrieval queries in [WM08] depends highly on
the number of individuals in the ABox. For 100 universities, we have around
300.000 individuals, i.e., 300.000 islands. If we assumed that one instance re-
trieval check takes around 1 ms, we would need already 1 hour to answer one
instance retrieval query on a single machine. If one intended to improve query
answering times using a MapReduce approach, one could parallelize the island
checks. For example, in the best case, one would need to have 3600 machines at
ones disposal to obtain all answers within one second. If the average instance
checking time is higher, or the number of individuals is larger (= more universi-
ties), then the situation becomes even worse. Thus, our motivation is to further
improve instance retrieval time, while still supporting expressive logics.

4 Similarity of Islands

In the following, we discuss how islands can be used for optimized instance
retrieval tests. The main insight is that many of the computed islands are similar
to each other. Especially in database-oriented scenarios, ontologies contain a lot
of individuals following patterns defined by a schema (the terminology of the
ontology). If it is possible to define a formal notion of similarity for islands, and
to show that it is sufficient to perform reasoning over one representative island
instead, then query answering can potentially be increased by several orders of
magnitude (depending on the number of dissimilar island classes). We consider
an example to demonstrate the idea of island similarities.

In Figure 3 we show the extracted islands of all professors in our example
ontology OEX1. While all four graphs are different, they have some similarities
in common, and this can be exploited to optimize reasoning over these islands.
To define similarities over islands, we formally introduce the notion of an island
and define the similarity criterion.

Definition 1. A individual-island-graph IIG is a tuple 〈N,φn , φe , root〉, such
that
– N is a set of nodes,
– φn : N → 2SAC is a node-labeling function (SAC is the set of atomic con-

cepts),
– φe : N ×N → 2Le is a edge-labeling function
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Fig. 3. Example: Islands of the four Professors in OEX1

– root ∈ N is a distinguished root node.

If we have φe(a, b) = ρ and ρ 6= ∅, then we write a
ρ−→IIG b. The definition

of individual-island-graphs is quite straight-forward. In the following we define
a similarity relation over two individual-island-graphs, based on graph bisim-
ulations. Although the term bisimulation is usually used in process algebra to
define similar processes, we use it here in the context of graphs.

Definition 2. A bisimulation over IIG1 = 〈NIIG1 , φnIIG1
, φeIIG1

, rootIIG1〉
and IIG2 = 〈NIIG2 , φnIIG2

, φeIIG2
, rootIIG2〉 is a binary relation RIIG1,IIG2 ⊆

NIIG1 ×NIIG2 , such that
– RIIG1,IIG2(rootIIG1 , rootIIG2)
– if RIIG1,IIG2(a, b) then φnIIG1

(a) = φnIIG2
(b)

– if RIIG1,IIG2(a, b) and a
ρ−→IIG1 a‘ then there exists a b‘ ∈ NIIG2 with

b
ρ−→IIG2 b‘ and RIIG1,IIG2(a‘, b‘)

– if RIIG1,IIG2(a, b) and b →ρ
IIG2

b‘ then there exists a a‘ ∈ NIIG1 with
a
ρ−→IIG2 a‘ and RIIG1,IIG2(a‘, b‘)

Definition 3. Two individual-island-graphs IIG1 and IIG2 are called bisimi-
lar, if there exists a bisimulation R for them.
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Example 2. To illustrate these definitions we show individual-island-graphs for
amanda, jim, and frank, together with a possible bisimulation between amanda
and jim:
– IIGamanda = 〈Namanda, φnamanda, φeamanda, rootamanda〉, s.t.

Namanda ={xamanda, xcl, xlaura}
φnamanda ={xamanda → {Prof}, xcl → {Course}, xlaura → {Student}}
φeamanda ={(xamanda, xcl)→ {teaches}, (xlaura, xcl)→ {takes}}

rootamanda ={xamanda}
– IIGjim = 〈Njim, φnjim, φejim, rootjim〉, s.t.

Njim ={yjim, yai2, ytl, yluis, yanna, ylisa}
φnjim ={yjim → {Prof}, yai2 → {Course}, ytl → {Course}, yluis → {Student}, ...}
φejim ={(yjim, yai2)→ {teaches}, (yjim, ytl)→ {teaches}, (yluis,

xai2)→ {takes}, ...}
rootjim ={yjim}

– IIGfrank = 〈Nfrank, φnfrank, φefrank, rootfrank〉, s.t.

Nfrank ={zfrank, zai, zinf , zalice, zanna}
φnfrank ={zfrank → {Prof}, zai → {Course}, zinf → {Department},

zalice → {Student}, zanna → {Student}}
φefrank ={(zfrank, zai)→ {teaches}, (zfrank, zinf )→ {headOf},

(zalice, zai)→ {takes}, (zanna, zai)→ {takes}}
rootjim ={zjim}

– Rjim,amanda =

{(xamanda, yjim), (xcl, yai2), (xcl, ytl), (xlaura, yluis),

(xanna, ylisa)}

It is easy to see that Rjim,amanda is a bisimulation for the islands (graphs)
of the individuals jim and amanda. Furthermore, it is easy to see that there
cannot be a bisimulation, for instance, between jim and frank.

The important insight is that bisimilar islands entail the same concept sets for
their root individual if the underlying description logic is restricted to ALCHI.
This is shown in the following theorem.

Theorem 1. Given two individuals a and b and any concept description C, it
holds that 〈T,R, ISLAND(a)〉 � C(a) ⇐⇒ 〈T,R, ISLAND(b)〉 � C(b) if there
exists a bisimulation Ra,b, for ISLAND(a) and ISLAND(b).

For the proof see [WM10]. The above theorem can be easily lifted to the case
of more than two individuals, i.e. if we have n individuals, and for all of their
islands one can find a bisimilarity relation, it is sufficient to perform instance
checking on one island. In practice, especially in database-oriented ontologies,
this can dramatically speed up the time for instance retrieval. To show this, we
need to further introduce some mathematical notions.
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Definition 4. An individual-island-equivalence ∼ISL is an equivalence relation
over individual islands, such that we have ∼ISL (ISL1, ISL2) if we can find a
bisimulation RISL1,ISL2 between the two islands ISL1 and ISL2. With [∼ISL]
we denote the set of equivalence classes of ∼ISL.

The main theoretical result of our work is summarized in the following theorem.

Theorem 2. Given an ontology 〈T,R,A〉, one can perform grounded instance
retrieval for the atomic concept C over [∼ISL].

For details see [WM10]. Please note that our approach does not work directly
for more expressive description logics, e.g. SHOIQ. In the presence of cardinal-
ity restrictions we will need more sophisticated bisimulation criteria to identify
similar nodes, since the number of related similar individuals matters. Nominals
can further complicate the bisimulation criteria, since individuals can be forced
by the terminological axioms to refer to the same domain object, i.e. one might
need to compute all TBox consequences in the worst case.

5 Distributed Implementation

We have implemented our proposal for Island Simulations in Java. For ontol-
ogy access we use the OWLAPI 2.2.0 [BVL03]. The general structure of our
implementation, a description of each component, and additional performance
optimization insights can be found in [WM10]. Here we only give a short overview
on the modules.
– (Server) OWL-Converter: converts OWL data to an internal representation
– (Server) Update Handler: determines changed islands in case of ontology

updates
– (Server) Island Computer: computes the island for a given individual and

performs similarity computation
– (Server) Node Scheduler : determines the responsible node for the island:

Round-Robin / capability-based
– (Server) TBox/ABox Storage: terminological/assertional part of the ontol-

ogy.
– (Client) Query Manager: determines all active islands and uses the DL Rea-

soner module to find out which islands match the input query.
– (Client) DL Reasoner: implements an interface to a general description logic

reasoner (in our case we used RacerPro [HM03]).
One more remark on our implementation should be pointed out here: While
loading an ontology we built a dependency tree for storing which impact updates
on particular islands have, e.g., we store that if we add a teaches-relation to
a particular individual (island), we obtain another fixed island. This kind of
lookup-table greatly improved the performance in our tests because we do not
have to recompute complete islands in case there were similar updates before.
As usual, in order to obtain optimal performances, many details have to be
appropriately handled.
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Fig. 4. Input size and load time (number of universities on the x-axis)

6 Evaluation

Our tests were run with respect to the synthetic benchmark ontology LUBM
[GPH05]. Although some people claim that LUBM does not fully represent all
the capabilities provided by the complete OWL specification, we think that it fits
our constraint of database-oriented ontologies: rather small and simple TBox,
but a bulk of assertional information with a realistic distribution with respect to
numbers of professors, students, departments, etc. In our evaluation we compare
three different measures to determine the performance of our implementation:

– Load time: In Figure 4 we show the size of the assertional part in triples and
compare the load time with different number of nodes in our network (1, 2
and 4 nodes). The load time only represents the time spent to traverse the
input ontology once in order to compute the bisimilarity relation over all
islands of all individuals. It can be seen that the load time increases linearly
with the number of triples in the assertional part. Please note that our
loading algorithm is designed and implemented as an incremental algorithm.
Thus, if we add a new assertion, we do not have to recompute all internal
structures, but only update relevant structures.

– Preparation time: This measure indicates an initial preparation time after the
ontology is fully loaded. The time is spent to prepare the internal structures
of the DL reasoner for incoming queries. Please note that this preprocessing
step is independent of the query and only performed once after the ontology
was updated. The idea is that we can perform incremental bulk loading
(measured in load time) without updating the (expensive) internal structures
of the DL reasoner all the time.
In the left part of Figure 5, we show the query preparation time for different
numbers of universities and different numbers of nodes in the network. The
number of nodes indeed affects the query preparation time. If we use 8 nodes,
the preparation time is almost 1

8 of the time needed for one node. Thus, the
distribution of computational power works for query preparation.
In the right part of Figure 5 we indicate the necessary number of islands to
perform instance retrieval with the original work in [WM08]. The number
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Fig. 5. Query preparation time and island count

of islands increases linearly with the size of the input ontology for [WM08]
(please note the logarithmic scale). Using bisimulation, the number of islands
is almost constant for all input ontologies, since most of the newly introduced
individual-islands are bisimilar to each other, e.g., professors who teach par-
ticular students in particular kinds of courses.

– Query answering time: The third measure indicates how long the actual
query answering process takes. In Figure 6, the query answering time (for
instance retrieval) for the concepts Chair (small number of answers, linearly
growing with the number of universities) are shown. Please note that query
answering times are rather independent from the chosen concept description
for instance retrieval. We only focus on Chair, since it is also commonly
used in the literature to perform benchmarks on LUBM because instances of
Chair are not syntactically identifiable. In Figure 6 we show the time needed
to identify the islands which entail instances of the concept Chair. This is
the actual description-logic-hard task. In addition one needs to lookup all
individuals for the given islands, which is a database-dominated task and
usually takes linear time.

Fig. 6. Query answering time
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7 Conclusions

We have proposed a method for instance retrieval over ontologies in a distributed
system of DL reasoners. To the best of our knowledge, we are the first to propose
instance retrieval reasoning based on similarity of individual-islands. The results
are encouraging so far. We emphasize that our approach especially works for
ontologies with a rather simple or average size terminological part. For future
work, it will be important to investigate more ontologies and check the perfor-
mance of our proposal. Furthermore, we want to extend our proposal to more
expressive description logics, e.g. SHIQ or even SHOIQ.
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Abstract. Inconsistency handling is of growing importance in Knowl-
edge Representation since inconsistencies may frequently occur in an
open world. Paraconsistent (or inconsistency-tolerant) description logics
have been studied by several researchers to cope with such inconsis-
tencies. In this paper, a new paraconsistent description logic, PALC,
is obtained from the description logic ALC by adding a paraconsistent
negation. Some theorems for embedding PALC into ACL are proved,
and PALC is shown to be decidable. A tableau calculus for PALC is
introduced, and the completeness theorem for this calculus is proved.

1 Introduction

Inconsistency handling is of growing importance in Knowledge Representation
since inconsistencies may frequently occur in an open world. Paraconsistent
(or inconsistency-tolerant) description logics have been studied by several re-
searchers [5–8, 11–13, 16, 18, 19] to cope with such inconsistencies.

However, the existing paraconsistent description logics have no good compat-
ibility with the standard description logics such as ALC [15] etc. in the following
sense:

1. these paraconsistent description logics are not a straightforward extension
of the standard ones,

2. some paraconsistent description logics have no translation into a standard
description logic.

Such compatibility is important to adopt and re-use the existing applications
and algorithms for the standard description logics. A translation or reduction of
a paraconsistent description logic into a standard description logic is especially
important for such a compatibility issue [5, 6].

The aim of this paper is thus to introduce a compatible paraconsistent de-
scription logic which is a straightforward extension of ALC and is also embed-
dable into ALC. To construct such a compatible paraconsistent description logic,
some merits of some existing paraconsistent description logics are adopted and
combined.

Some examples of studies of paraconsistent description logics are presented as
follows. An inconsistency-tolerant four-valued terminological logic was originally
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introduced by Patel-Schneider [13], three inconsistency-tolerant constructive de-
scription logics, which are based on intuitionistic logic, were studied by Odintsov
and Wansing [11, 12], some paraconsistent four-valued description logics includ-
ing ALC4 were studied by Ma et al. [5, 6], some quasi-classical description logics
were developed by Zhang et al. [18, 19], a sequent calculus for reasoning in four-
valued description logics was introduced by Straccia [16], and an application of
four-valued description logic to information retrieval was studied by Meghini et
al. [7, 8].

The logic ALC4 [5] has a good translation into ALC, and using this trans-
lation, the satisfiability problem for ALC4 is shown to be decidable. However,
ALC4 and its variations have no classical negation (or complement), i.e., these
logics are not an extension of the standard description logics. The quasi-classical
description logics [18, 19] have the classical negation, i.e., these logics are re-
garded as extensions of the standard description logics. However, translations
of quasi-classical description logics into the corresponding standard description
logics have not been proposed yet.

The paraconsistent description logic proposed in this paper supports both
the merits of ALC4 and the quasi-classical description logics, i.e., it has the
translation and the classical negation. Moreover, a simple dual-interpretation
semantics is used in the proposed logic. Such a dual-interpretation semantics is
taken over from the dual-consequence Kripke-style semantics for Nelson’s para-
consistent four-valued logic with strong negation N4 [1, 9].

A description logic (calledALCn
∼) with such a dual (or multiple)-interpretation

semantics was introduced and studied by Kaneiwa [4] to deal with a negation
issue, but not to deal with an issue of inconsistency handling. The logic ALCn

∼ is
a natural extension of ALC, and ALCn

∼ is shown to be decidable (w.r.t. the con-
cept satisfiability problem) and complete (w.r.t. a tableau calculus). But, ALCn

∼
is not paraconsistent, and a translation into ALC has not been proposed yet. The
present paper is based on the spirit of ALCn

∼ for dual (or multiple)-interpretation
semantics.

The contents of this paper are then summarized as follows. A new paraconsis-
tent description logic, PALC, is obtained from ALC by adding a paraconsistent
negation similar to the strong negation in Nelson’s N4. A semantical embed-
ding theorem of PALC into ALC is shown by constructing a standard single-
interpretation of ALC from a paraconsistent dual-interpretation of PALC, and
vice versa. By using this embedding theorem, the concept satisfiability problem
for PALC is shown to be decidable. The complexity of the decision procedure
for PALC is also shown to be the same complexity as that of ALC. Next, a
tableau calculus, T PALC (for PALC), is introduced, and a syntactical embed-
ding theorem of this calculus into a tableau calculus, T ALC (for ALC), is proved.
The completeness theorem for T PALC is proved by combining both the seman-
tical and syntactical embedding theorems. A comparision of PALC and other
paraconsistent description logics is explained.
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2 Paraconsistent Description Logic

In this section, firstly, we present a semantical definition of ALC, and secondly,
we introduce PALC by extending ALC with a paraconsistent negation.

2.1 ALC
The ALC-language is constructed from atomic concepts, atomic roles, u (inter-
section), t (union), ¬ (classical negation or complement), ∀R (universal concept
quantification) and ∃R (existential concept quantification). We use the letters A
and Ai for atomic concepts, the letter R for atomic roles, and the letters C and
D for concepts.

Definition 1 Concepts C are defined by the following grammar:

C ::= A | ¬C | C u C | C t C | ∀R.C | ∃R.C

Definition 2 An interpretation I is a pair 〈∆I , ·I〉 where

1. ∆I is a non-empty set,
2. ·I is an interpretation function which assigns to every atomic concept A a

set AI ⊆ ∆I and to every atomic role R a binary relation RI ⊆ ∆I ×∆I .

The interpretation function is extended to concepts by the following inductive
definitions:

1. (¬C)I := ∆I \ CI ,
2. (C uD)I := CI ∩DI ,
3. (C tD)I := CI ∪DI ,
4. (∀R.C)I := {a ∈ ∆I | ∀b [(a, b) ∈ RI ⇒ b ∈ CI ]},
5. (∃R.C)I := {a ∈ ∆I | ∃b [(a, b) ∈ RI ∧ b ∈ CI ]}.

An interpretation I is a model of a concept C (denoted as I |= C) if CI 6= ∅.
A concept C is said to be satisfiable in ALC if there exists an interpretation I
such that I |= C.

The syntax of ALC is extended by a non-empty set NI of individual names.
We denote individual names by o, o1, o2, x, y and z.

Definition 3 An ABox is a finite set of expressions of the form: C(o) or R(o1, o2)
where o, o1 and o2 are in NI , C is a concept, and R is an atomic role. An ex-
pression C(o) or R(o1, o2) is called an ABox statement. An interpretation I in
Definition 2 is extended to apply also to individual names o such that oI ∈ ∆I .
Such an interpretation is a model of an ABox A if for every C(o) ∈ A, oI ∈ CI

and for every R(o1, o2) ∈ A, (oI1 , oI2 ) ∈ RI . An ABox A is called satisfiable in
ALC if it has a model.

We adopt the following unique name assumption: for any o1, o2 ∈ NI , if
o1 6= o2, then oI1 6= oI2 .
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Definition 4 A TBox is a finite set of expressions of the form: C v D. The
elements of a TBox are called TBox statments. An interpretation I := 〈∆I , ·I〉
is called a model of C v D if CI ⊆ DI . An interpretation I is said to be a
model of a TBox T if I is a model of every element of T . A TBox T is called
satisfiable in ALC if it has a model.

Definition 5 A knowledge base Σ is a pair (T ,A) where T is a TBox and A
is an ABox. An interpretation I is a model of Σ if I is a model of both T and
A. A knowledge base Σ is called satisfiable in ALC if it has a model.

Since the satisfiability for an ABox, a TBox or a knowledge base can be
reduced to the satisfiability for a concept [2], we focus on the concept satisfiability
in the following discussion.

2.2 PALC
Similar notions and terminologies for ALC are also used for PALC. The PALC-
language is constructed from the ALC-language by adding ∼ (paraconsistent
negation).

Definition 6 Concepts C are defined by the following grammar:

C ::= A | ¬C | ∼C | C u C | C t C | ∀R.C | ∃R.C

Definition 7 A paraconsistent interpretation PI is a structure 〈∆PI , ·I+
, ·I−〉

where

1. ∆PI is a non-empty set,
2. ·I+

is an interpretation function which assigns to every atomic concept A
a set AI+ ⊆ ∆PI and to every atomic role R a binary relation RI+ ⊆
∆PI ×∆PI ,

3. ·I− is an interpretation function which assigns to every atomic concept A
a set AI− ⊆ ∆PI and to every atomic role R a binary relation RI− ⊆
∆PI ×∆PI ,

4. for any atomic role R, RI+
= RI− .

The interpretation functions are extended to concepts by the following induc-
tive definitions:

1. (∼C)I
+

:= CI− ,
2. (¬C)I

+
:= ∆PI \ CI+

,
3. (C uD)I

+
:= CI+ ∩DI+

,
4. (C tD)I

+
:= CI+ ∪DI+

,
5. (∀R.C)I

+
:= {a ∈ ∆PI | ∀b [(a, b) ∈ RI+ ⇒ b ∈ CI+

]},
6. (∃R.C)I

+
:= {a ∈ ∆PI | ∃b [(a, b) ∈ RI+ ∧ b ∈ CI+

]},
7. (∼C)I

−
:= CI+

,
8. (¬C)I

−
:= ∆PI \ CI− ,
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9. (C uD)I
−

:= CI− ∪DI− ,
10. (C tD)I

−
:= CI− ∩DI− ,

11. (∀R.C)I
−

:= {a ∈ ∆PI | ∃b [(a, b) ∈ RI− ∧ b ∈ CI− ]},
12. (∃R.C)I

−
:= {a ∈ ∆PI | ∀b [(a, b) ∈ RI− ⇒ b ∈ CI− ]}.

An expression I∗ |= C (∗ ∈ {+,−}) is defined as CI∗ 6= ∅. A paraconsistent
interpretation PI := 〈∆PI , ·I+

, ·I−〉 is a model of a concept C (denoted as
PI |= C) if I+ |= C. A concept C is said to be satisfiable in PALC if there
exists a paraconsistent interpretation PI such that PI |= C.

The interpretation functions ·I+
and ·I− are intended to represent “verifica-

tion” and “falsification”, respectively.

Definition 8 A paraconsistent interpretation PI in Definition 7 is extended to
apply also to individual names o such that oI

+
, oI

− ∈ ∆PI and oI+
= oI− . Such

a paraconsistent interpretation is a model of an ABox A if for every C(o) ∈ A,
oI

+ ∈ CI+
and for every R(o1, o2) ∈ A, (oI

+

1 , oI
+

2 ) ∈ RI+
. Such a paraconsistent

interpretation is called a model of C v D if CI+ ⊆ DI+
. The satisfiability of

ABox, a TBox or a knowledge base in PALC is defined in the same way as in
ALC.

3 Semantical Embedding and Decidability

In the following, we introduce a translation of PALC into ALC, and by using
this translation, we show a semantical embedding theorem of PALC into ALC.
The translation introduced is a slight modification of the translation introduced
by Ma et al. [5] to embed ALC4 into ALC. A similar translation has been used by
Gurevich [3] and Rautenberg [14] to embed Nelson’s three-valued constructive
logic [1, 9] into intuitionistic logic. The way of showing the semantical and syn-
tactical embedding theorems of PALC into ALC is a new technical contribution
developed in this paper. The semantical and syntactical embedding theorems
are used to show the decidability and completeness theorems for PALC.

Definition 9 Let NC be a non-empty set of atomic concepts and N ′
C be the set

{A′ | A ∈ NC} of atomic concepts. 1 Let NR be a non-empty set of atomic roles
and NI be a non-empty set of individual names. The language L∼ of PALC is
defined using NC , NR, NI , ∼, ¬,u,t, ∀R and ∃R. The language L of ALC is
obtained from L∼ by adding N ′

C and deleting ∼.
A mapping f from L∼ to L is defined inductively by

1. for any R ∈ NR and any o ∈ NI , f(R) := R and f(o) := o,
2. for any A ∈ NC , f(A) := A and f(∼A) := A′ ∈ N ′

C ,
3. For any A(o) ∈ NC , f(A(o)) := A(f(o)) and f(∼A(o)) := A′(f(o)) ∈ N ′

C ,
4. f(¬C) := ¬f(C),
1 A can include individual names, i.e., A can be A(o) for any o ∈ NI .
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5. f(C ] D) := f(C) ] f(D) where ] ∈ {u,t},
6. f(∀R.C) := ∀f(R).f(C),
7. f(∃R.C) := ∃f(R).f(C),
8. f(∼∼C) := f(C),
9. f(∼¬C) := ¬f(∼C),

10. f(∼(C uD)) := f(∼C) t f(∼D),
11. f(∼(C tD)) := f(∼C) u f(∼D),
12. f(∼∀R.C) := ∃f(R).f(∼C),
13. f(∼∃R.C) := ∀f(R).f(∼C).

Lemma 10 Let f be the mapping defined in Definition 9. For any paraconsistent
interpretation PI := 〈∆PI , ·I+

, ·I−〉 of PALC, we can construct an interpreta-
tion I := 〈∆I , ·I〉 of ALC such that for any concept C in L∼,

1. CI+
= f(C)I ,

2. CI− = f(∼C)I .

Proof. Let NC be a non-empty set of atomic concepts and N ′
C be the set

{A′ | A ∈ NC} of atomic concepts. Let NR and NI be sets of atomic roles and
individual names, respectively.

Suppose that PI is a paraconsistent interpretation 〈∆PI , ·I+
, ·I−〉 where

1. ∆PI is a non-empty set,
2. ·I+

is an interpretation function which assigns to every atomic concept A ∈
NC a set AI+ ⊆ ∆PI , to every atomic role R ∈ NR a binary relation RI+ ⊆
∆PI ×∆PI and to every individual name o ∈ NI an element oI

+ ∈ ∆PI ,
3. ·I− is an interpretation function which assigns to every atomic concept A ∈

NC a set AI− ⊆ ∆PI , to every atomic role R ∈ NR a binary relation RI− ⊆
∆PI ×∆PI and to every individual name o ∈ NI an element oI

− ∈ ∆PI ,
4. for any R ∈ NR and any o ∈ NI , RI+

= RI− and oI
+

= oI
−
.

Suppose that I is an interpretation 〈∆I , ·I〉 where

1. ∆I is a non-empty set such that ∆I = ∆PI ,
2. ·I is an interpretation function which assigns to every atomic concept A ∈

NC ∪ N ′
C a set AI ⊆ ∆I , to every atomic role R ∈ NR a binary relation

RI ⊆ ∆I ×∆I and to every individual name o ∈ NI an element oI ∈ ∆I ,
3. for any R ∈ NR and any o ∈ NI , RI = RI+

= RI− and oI = oI
+

= oI
−
.

Suppose moreover that PI and I satisfy the following conditions: for any
A ∈ NC and any o ∈ NI ,

1. AI+
= AI and (A(o))I

+
= (A(o))I ,

2. AI− = (A′)I and (A(o))I
−

= (A′(o))I .

The lemma is then proved by (simultaneous) induction on the complexity of
C. The base step is obvious. We show only some cases on the induction step
below.
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Case C ≡ ¬D: For (1), we obtain: a ∈ (¬D)I
+

iff a ∈ ∆PI \ DI+
iff a ∈

∆I \ DI+
(by the condition ∆PI = ∆I) iff a ∈ ∆I \ f(D)I (by induction

hypothesis for 1) iff a ∈ (¬f(D))I iff a ∈ f(¬D)I (by the definition of f).
For (2), we obtain: a ∈ (¬D)I

−
iff a ∈ ∆PI \ DI− iff a ∈ ∆I \ DI− (by the

condition ∆PI = ∆I) iff a ∈ ∆I \ f(∼D)I (by induction hypothesis for 2) iff
a ∈ (¬f(∼D))I iff a ∈ f(∼¬D)I (by the definition of f).

Case C ≡ ∼D: For (1), we obtain: a ∈ (∼D)I
+

iff a ∈ DI− iff a ∈ f(∼D)I

(by induction hypothesis for 2). For (2), we obtain: a ∈ (∼D)I
−

iff a ∈ DI+
iff

a ∈ f(D)I (by induction hypothesis for 1) iff a ∈ f(∼∼D)I (by the definition
of f).

Case C ≡ ∀R.D: We show only (2) below.

d ∈ (∀R.D)I
−

iff d ∈ {a ∈ ∆PI | ∃b [(a, b) ∈ RI− ∧ b ∈ DI− ]}
iff d ∈ {a ∈ ∆I | ∃b [(a, b) ∈ RI ∧ b ∈ DI− ]} (by the conditions ∆PI = ∆I and

RI− = RI)
iff d ∈ {a ∈ ∆I | ∃b [(a, b) ∈ RI ∧ b ∈ f(∼D)I ]} (by induction hypothesis for

2)
iff d ∈ ((∃R.f(∼D))I)
iff d ∈ ((∃f(R).f(∼D))I) (by the definition of f)
iff d ∈ ((f(∼∀R.D))I) (by the definition of f).

Lemma 11 Let f be the mapping defined in Definition 9. For any paraconsistent
interpretation PI := 〈∆PI , ·I+

, ·I−〉 of PALC, we can construct an interpreta-
tion I := 〈∆I , ·I〉 of ALC such that for any concept C in L∼,

1. I+ |= C iff I |= f(C),
2. I− |= C iff I |= f(∼C).

Proof. By Lemma 10.

Lemma 12 Let f be the mapping defined in Definition 9. For any interpretation
I := 〈∆I , ·I〉 of ALC, we can construct a paraconsistent interpretation PI :=
〈∆PI , ·I+

, ·I−〉 of PALC such that for any concept C in L∼,

1. I |= f(C) iff I+ |= C,
2. I |= f(∼C) iff I− |= C.

Proof. Similar to the proof of Lemma 11.

Theorem 13 (Semantical embedding) Let f be the mapping defined in Def-
inition 9. For any concept C,

C is satisfiable in PALC iff f(C) is satisfiable in ALC.
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Proof. By Lemmas 11 and 12.

Theorem 14 (Decidability) The concept satisfiability problem for PALC is
decidable.

Proof. By decidability of the satisfiability problem for ALC, for each concept C
of PALC, it is possible to decide if f(C) is satisfiable in ALC. Then, by Theorem
13, the satisfiability problem for PALC is decidable.

The satisfiability problems of a TBox, an ABox and a knowledge base for
PALC are also shown to be decidable.

Since f is a polynomial-time reduction, the complexities of the satisfiability
problems of a TBox, an ABox and a knowledge base for PALC can be reduced
to those for ALC, i.e., the complexities of the problems for PALC are the same
as those for ALC. For example, the satisfiability problems of an acyclic TBox
and a general TBox for PALC are PSPACE-complete and EXPTIME-complete,
respectively.

For the concept satisfiability problem for PALC, the existing tableau algo-
rithms for ALC are applicable by using the translation f with Theorem 13.

4 Syntactical Embedding and Completeness

From a purely theoretical or logical point of view, a sound and complete axiom-
atization is required for the underlying semantics. In this section, we thus give
a sound and complete tableau calculus T AALC for PALC.

Definition 15 A concept is called a negation normal form (NNF) if the classical
negation connective ¬ occurs only in front of atomic concepts.

Let C(x) be a concept in NNF. In order to test satisfiability of C(x), the
tableau algorithm starts with the ABox A = {C(x)}, and applies the inference
rules of a tableau calculus to the ABox until no more rules apply.

Definition 16 (T ALC) Let A be an ABox that consists only of NNF-concepts.
The inference rules for the tableau calculus T ALC for ALC are of the form:

A
A ∪ {C1(x), C2(x)} (u)

where (C1 u C2)(x) ∈ A, C1(x) /∈ A or C2(x) /∈ A,

A
A ∪ {C1(x)} | A ∪ {C2(x)} (t)

where (C1 t C2)(x) ∈ A and [C1(x) /∈ A and C2(x) /∈ A],

A
A ∪ {C(y)} (∀R)
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where (∀R.C)(x) ∈ A, R(x, y) ∈ A and C(y) /∈ A,

A
A ∪ {C(y), R(x, y)} (∃R)

where (∃R.C)(x) ∈ A, there is no individual name z such that C(z) ∈ A and
R(x, z) ∈ A, and y is an individual name not occurring in A.

Definition 17 Let A be an ABox that consists only of NNF-concepts. Then,
A is called complete if there is no more rules apply to A. A is called clash if
{A(x),¬A(x)} ⊆ A for some atomic concept A(x). A tree produced by a tableau
calculus from A is called complete if all the nodes in the tree are complete. A
branch of a tree produced by a tableau calculus from A is called clash-free if all
its nodes are not clash.

The following theorem is known.

Theorem 18 (Completeness) For any ALC-concept C in NNF, T ALC pro-
duces a complete tree with a clash-free branch from the Abox {C} iff C is satis-
fiable in ALC.

For PALC-concepts, we use the same definition of NNF as that of ALC-
concepts, i.e., “negation” in the term NNF means “classical negation.” The way
of obtaining NNFs for PALC-concepts is almost the same as that for ALC-
concepts, except that we also use the law: ¬∼C ↔ ∼¬C, which is justified by
the fact: (¬∼C)I

+
= (∼¬C)I

+
.

Definition 19 (T PALC) Let A be an ABox that consists only of NNF-concepts.
The inference rules for the tableau calculus T PALC for PALC are obtained

from T ALC by adding the inference rules of the form:

A
A ∪ {C(x)} (∼)

where ∼∼C(x) ∈ A, 2

A
A ∪ {∼C1(x)} | A ∪ {∼C2(x)} (∼u)

where (∼(C1 u C2))(x) ∈ A and [∼C1(x) /∈ A and ∼C2(x) /∈ A],

A
A ∪ {∼C1(x),∼C2(x)} (∼t)

where (∼(C1 t C2))(x) ∈ A, ∼C1(x) /∈ A or ∼C2(x) /∈ A,

A
A ∪ {∼C(y), R(x, y)} (∼∀R)

2 We do not use the condition: C(x) /∈ A in (∼). This is from a technical reason. See
the proof of Theorem 20.
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where (∼∀R.C)(x) ∈ A, there is no individual name z such that ∼C(z) ∈ A and
R(x, z) ∈ A, and y is an individual name not occurring in A,

A
A ∪ {∼C(y)} (∼∃R)

where (∼∃R.C)(x) ∈ A, R(x, y) ∈ A and ∼C(y) /∈ A.

An expression f(A) denotes the set {f(α) | α ∈ A}.

Theorem 20 (Syntactical embedding) Let A be an ABox that consists only
of NNF-concepts in L∼, and f be the mapping defined in Definition 9. Then:

T PALC produces a complete tree with a clash-free branch from A iff
T ALC produces a complete tree with a clash-free branch from f(A)

Proof. • (=⇒): By induction on the complete trees T with a clash-free branch
from A in T PALC. We distinguish the cases according to the first inference of
T . The base step is obvious. The induction step is considered below. We show
only the following case.

Case (∼): The first inference of T is of the form:

A
A ∪ {C(x)} (∼)

where ∼∼C(x) ∈ A. By induction hypothesis, T ALC produces a complete tree
with a clash-free branch from f(A)∪{f(C(x))} with f(∼∼C(x)) ∈ f(A). By the
definition of f , we have f(∼∼C(x)) = f(C(x)), and hence f(A) ∪ {f(C(x))} =
f(A) ∈ f(A). Therefore, T ALC provides a complete tree with a clash-free branch
from f(A).

• (⇐=): By induction on the complete trees T ′ with a clash-free branch from
f(A) in T ALC. We distinguish the cases according to the first inference of T ′.
We show only the following case.

Case (∀R): The first inference of T ′ is of the form:

f(A)
f(A) ∪ {f(∼C(y))} (∀R)

where ∀R.f(∼C(x)) ∈ f(A), f(R(x, y)) ∈ f(A) and f(∼C(y)) /∈ f(A). By in-
duction hypothesis, T PALC provides a complete tree with a clash-free branch
fromA∪{∼C(y)}. By the definition of f , we have ∀R.f(∼C(x)) = ∀f(R).f(∼C(x))
= f(∼∃R.C(x)) and f(R(x, y)) = R(x, y). Thus, we obtain:

A
A ∪ {∼C(y)} (∼∃R).

Therefore, T PALC provides a complete tree with a clash-free branch from A.
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Theorem 21 (Completeness) For any PALC-concept C in NNF, T PALC
produces a complete tree with a clash-free branch from the Abox {C} iff C is
satisfiable in PALC.
Proof. Let C be a PALC-concept in NNF. Then, we obtain:

T PALC produces a complete tree with a clash-free branch from {C}
iff T ALC produces a complete tree with a clash-free branch from {f(C)} (by

Theorem 20)
iff f(C) is satisfiable in ALC (by Theorem 18)
iff C is satisfiable in PALC (by Theorem 13).

5 Remarks

We now explain about some differences and similarities among ALC4 [5], quasi-
classical description logics [18, 19] and PALC. In ALC4, a four-valued interpre-
tation I := (∆I , ·I) is defined using a pair 〈P, N〉 of subsets of ∆I and the
projection functions proj+〈P, N〉 := P and proj−〈P,N〉 := N . The interpreta-
tions of an atomic concept A and a conjunctive concept C1uC2 are then defined
as follows:

1. AI := 〈P, N〉 where P,N ⊆ ∆I ,
2. (C1 u C2)I := 〈P1 ∩ P2, N1 ∪N2〉 if CI

i = 〈Pi, Ni〉 for i = 1, 2.

In quasi-classical description logics, a reformulation or simplification of the four-
valued interpretations of ALC4 is used: An interpretation is defined using a pair
〈+C,−C〉 of subsets of ∆I without using projection functions. The interpreta-
tions of an atomic concept A and a conjunctive concept C1uC2 are then defined
as follows:

1. AI := 〈+A,−A〉 where +A,−A ⊆ ∆I ,
2. (C1 u C2)I := 〈+C1 ∩+C2,−C1 ∪ −C2〉.

The pairing functions used in the four-valued and quasi-classical semantics have
been used in some algebraic semantics for Nelson’s logics (see e.g. [10] and the
references therein). On the other hand, the semantics of PALC is defined us-
ing two interpretation functions ·I+

and ·I+
instead of the pairing functions.

These interpretation functions have been used in some Kripke-type semantics
for Nelson’s logics (see e.g. [17] and the references therein). The “horizontal”
semantics using paring functions and the “vertical” semantics using two kinds
of interpretation functions have thus essentially the same meaning.
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Optimized DL Reasoning via Core Blocking

Birte Glimm, Ian Horrocks, and Boris Motik

Oxford University Computing Laboratory, UK

1 Introduction

State of the art reasoners for expressive DLs are typically model building procedures
that decide the (un)satisfiability of a knowledge base K via a constructive search for
an abstraction of a model for K. Despite numerous optimizations, certain existing and
emerging knowledge bases still pose significant challenges to such reasoners mainly
because these abstractions can be very large.

To ensure that only finite model abstractions are constructed (hyper)tableau reason-
ers use a cycle detection technique called blocking. It has already been demonstrated
that using a more fine-grained blocking condition can make the constructed abstractions
smaller, resulting in a significant speedup [1]. Even with such a blocking condition,
however, the constructed model abstractions can be very large; furthermore, checking
such fine-grained conditions can itself be costly.

To address these problems, we propose a new core blocking technique. Our tech-
nique first employs an easy-to-check and very “aggressive” blocking condition that can
halt the model construction much earlier than existing techniques. This condition is
so aggressive that, if used alone, it is not necessarily the case that the constructed ab-
straction can be expanded into a model. Therefore, after a model abstraction has been
constructed, a detailed check is performed to ensure that all blocks are indeed valid, and
the model construction terminates only if all blocks pass this check.

We further present an empirical evaluation using a prototypical implementation of
our technique in the HermiT reasoner. The evaluation compares the performance of
the hypertableau algorithm employing the original blocking condition and several core
blocking variants on widely used ontologies. The evaluation shows that the model ab-
straction size can be reduced significantly. The effects of core blocking are most pro-
nounced with large and complex ontologies such as DOLCE or GALEN. Furthermore,
core blocking allows HermiT to classify an OWL version of the FMA ontology [2],
whereas with standard blocking the reasoner runs out or memory.

Further details and evaluation results are available in a technical report [3].

2 Preliminaries

The formal definition of the hypertableau calculus is technically involved; therefore, we
will introduce only those aspects needed to understand the idea behind core blocking.
For further details and the precise definitions, we refer to [4].

The calculus is applicable to a knowledge base K = (T ,A) expressed in SROIQ
[5]. The calculus does not operate on K directly; rather, in order to reduce nondeter-
minism, it first translates K into a set of clauses C and an ABox A. The class of clauses
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on which the hypertableau calculus operates is called HT-clauses. An HT-clause is
an implication of the form

∧m
i=1 Ui →

∨n
j=1 Vj , where Ui and Vj are called the an-

tecedent and the consequent atoms, respectively. Most notably, for r an atomic role, s
is a role, A is an atomic concept, and B, each antecedent atom is of the form A(x),
r(x, x), r(x, yi), r(yi, x), A(yi), or A(zj). Each consequent atom is of the form B(x),
>n s.B(x), B(yi), r(x, x), r(x, yi), r(yi, x), r(x, zj), r(zj , x), x ≈ zj , or yi ≈ yj .
These syntactic restrictions reflect the structure of DL axioms and ultimately ensure
termination of the calculus. HT-clauses are straightforwardly interpreted in first-order
logic, and they intuitively state that at least one consequent atom must be true whenever
all atoms in the antecedent are true. We next revise the derivation rules of the calculus.

The Hyp-rule is the main derivation rule. The rule is applicable to an HT-clause
cl and an ABox A` if a mapping σ from the variables in cl to the individuals in A`

exists such that σ(Ui) ∈ A` for each 1 ≤ i ≤ m, but σ(Vj) 6∈ A` for each 1 ≤ j ≤ m;
if such σ exists, then a consequent atom Vj of cl is nondeterministically chosen and
A` is extended to A`+1 = A` ∪ {σ(Vj)}. For example, when applied to the HT-clause
r(x, y)→ (> 1 r.A)(x) ∨D(y) and an ABox A` containing r(a, b), the Hyp-rule ex-
tends A` either with (> 1 r.A)(a) or D(b). The >-rule deals with existential quan-
tifiers and number restrictions. Let ar(s, a, b) = s(a, b) if s is an atomic role and
ar(s, a, b) = r(b, a) if s is an inverse role such that s = r−. The rule is applicable
to (>n r.B)(a) ∈ A` if no individuals b1, . . . , bn exist such that ar(r, a, bi) ∈ A` and
B(bi) ∈ A` for each 1 ≤ i ≤ n, and bi 6≈ bj ∈ A` for each 1 ≤ i < j ≤ n. If this is
the case, then A` is extended to A`+1 by introducing fresh individuals c1, . . . , cn and
adding assertions ar(r, a, ci) and B(ci) for 1 ≤ i ≤ n, and ci 6≈ cj for 1 ≤ i < j ≤ n.

The ≈-rule deals with equality: given a ≈ b, the rule replaces the individual a in all
assertions with the individual b, and adds some bookkeeping information to keep track
of the rule application. Finally, the⊥-rule detects contradictions—called clashes—such
as A(a) and ¬A(a), or a 6≈ a. A clash-free ABox to which no derivation rule is appli-
cable is called a pre-model.

2.1 Blocking

Unrestricted application of the >-rule could lead to nontermination of the HT calculus.
To prevent that, the>-rule is applied to an assertion (>n r.B)(a) only if the individual
a is not blocked, as described next.

To apply blocking, the individuals are split into two sets. Root individuals (mainly
individuals occurring in the input), which are never blocked and blockable individuals,
which are introduced by the >-rule and they can be blocked. For A an atomic concept
and r an atomic role, we define labels of an individual and an individual pair as follows:

LA(s) = {A | A(s) ∈ A} LA(s, t) = {r | r(s, t) ∈ A}

To prevent cyclic blocks, we use a strict order ≺ over all individuals, which coincides
with the order in which individuals are inserted into the ABox.

Pairwise anywhere blocking is necessary for knowledge bases that use inverse roles
and number restrictions. Each individual s in an ABox A is assigned by induction on
≺ a status as follows: s is blocked if it is directly or indirectly blocked; s is indirectly
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blocked if it has a blocked ancestor; and s is directly blocked by an individual t if, for
s′ and t′ the predecessors of s and t, respectively, s, t, s′, and t′ are all blockable, t is
not blocked, t ≺ s, and (1) –(4) hold.

LA(s) = LA(t) (1) LA(s′) = LA(t′) (2)
LA(s, s′) = LA(t, t′) (3) LA(s′, s) = LA(t′, t) (4)

For an efficient implementation, we build, for each individual, a blocking signature that
consist of the four label sets. A hash table containing the blocking signatures for possi-
ble blockers can then be used to cheaply look-up a blocker for an unblocked individual
before the >-rule is applied.

The simpler single anywhere blocking can be used on knowledge bases without
inverse roles, and it differs from the above definition in that s is directly blocked by an
individual t if s and t are blockable, t is not blocked, t ≺ s, and (1) holds.

A pre-model A′ can be extended to a model for (A, C) by unraveling. Roughly
speaking, each individual s that is directly blocked in A′ by t is replaced by a “copy”
of t; a precise account of this process is given in [4].

3 Optimized Blocking Strategies

For tableau algorithms that normally require pairwise blocking, Horrocks and Sattler
proposed a more precise blocking condition [1], which amounts to single subset block-
ing with additional constraints on the predecessor of the individual that is to be blocked
and on the blocker itself. Although checking the blocking conditions is quite expensive,
the optimization exhibits substantial improvements in reasoning performance due to the
significantly smaller pre-models.

Related blocking optimizations were proposed in the context of first-order theorem
proving [6]; however, these techniques do not guarantee termination for DLs such as
SROIQ that provide for nominals, number restrictions, and inverse roles.

Caching [7] is an orthogonal approach for reducing the pre-model size by reusing
already constructed pre-model fragments. In fact, caching techniques can be used to
obtain a worst-case optimal algorithm for certain DLs [8, 9]; in contrast, standard (hy-
per)tableau algorithms are usually not worst-case optimal.

3.1 Core Blocking

Unlike existing blocking techniques, core blocking is approximate rather than exact: ap-
plying core blocking alone does not guarantee that a pre-model can indeed be unraveled
into a model. To ensure the latter, a pre-model needs to be checked to discover invalid
blocks; if such blocks are found, the derivation is continued until either a contradiction
is derived or all blocks become valid.

To formalize the process of discovering approximate blocks, we assume that each
assertion α in an ABox is associated with a Boolean flag that determines whether α is
a core assertion. A core blocking policy will be used to determine which assertions are
core. In Section 3.3 we present two policies that strike a balance between the poten-
tial for reduction in the pre-model size and the cost of validating blocks. Before that,
however, we introduce a general notion of core blocking that is applicable to any policy.
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Definition 1. For an ABox A and a pair of individuals s and t, let

Lcore
A (s) ={A | A ∈ LA(s) and A(s) is a core assertion in A} and

Lcore
A (s, t) ={r | r(s, t) ∈ LA(s, t) and r(s, t) is a core assertion in A}.

Single and pairwise core blocking are obtained from the respective definitions given in
Section 2.1 by using Lcore

A instead of LA in conditions (1)–(4); furthermore, in single
core blocking, for s to be directly blocked by t we additionally require both s and t to
be successors of blockable individuals.

The requirement that s and t are successors of blockable individuals ensures that
single core blocking can also be used with knowledge bases that contain inverse roles.

A blocking validation test checks whether any of the derivation rules would be ap-
plicable if we were to unravel a candidate pre-modelA` to a model. If no rule becomes
applicable, then we can guarantee that the model construction succeeds, i.e., the block
is indeed valid. To this end, we define an ABox valA`

(s) for a blockable individual s
that, intuitively, contains the assertions from the unraveling of A` that affect inferences
involving s.

Definition 2. Let C be a set of HT clauses, and letA` be an ABox. For an individual w,
let |w| = w if w is not blocked in A`, and |w| = w′ if w is blocked in A` by w′. For a
blockable individual s, the ABox valA`

(s) is the union of the sets shown in the following
table, where u denotes the predecessor of s, v denotes a successor of |s|, b denotes a
root individual, C denotes a concept, and r denotes an atomic role.

1 2 3
{C(u) | C(u) ∈ A`} {r(u, s) | r(u, s) ∈ A`} {r(s, u) | r(s, u) ∈ A`}
{C(s) | C(|s|) ∈ A`}
{C(v) | C(|v|) ∈ A`} {r(s, v) | r(|s|, v) ∈ A`} {r(v, s) | r(v, |s|) ∈ A`}
{C(b) | C(b) ∈ A`} {r(s, b) | r(|s|, b) ∈ A`} {r(b, s) | r(b, |s|) ∈ A`}

A blockable individual s is safe for blocking in an ABox A` if the following condi-
tions are satisfied:

– the Hyp-rule is not applicable to an HT-clause γ ∈ C and valA`
(s) with a mapping

σ such that σ(x) = s, and
– the >-rule is not applicable to an assertion (>n r.B)(s) in valA`

(s).

A directly blocked individual s with predecessor s′ is validly blocked in A` if both s
and s′ are safe for blocking.

On knowledge bases that normally require single blocking (i.e., that do not contain
inverse roles), Definitions 1 and 2 can be simplified. By the model construction from
[4], valA`

(s) then needs to contain only sets from columns 1 and 2 in Definition 2;
this, in turn, allows us to drop the extra requirement on the predecessors of s and t in
Definition 1 in the case of single core blocking.
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3.2 Applying Core Blocking in a Derivation

If an individual s is core-blocked by an individual t but the block is identified as in-
valid, one should reconsider t as a potential blocker for s only after valA`

(s) changes;
otherwise, the calculus might get stuck in an endless loop trying to block s by t and sub-
sequently discovering the block to be invalid. We deal with this problem by associating
with each individual s in A` a Boolean flag modA`

(s) that is updated as the derivation
progresses. Intuitively, modA`

(s) = true means that valA`
(s) has changed since the

last time blocks were checked for validity. We also maintain a set S of pairs of validly
blocked and blocking individuals, which we to ensure that the calculus terminates only
when all blocks are valid.

Definition 3. Let S be a set of pairs of individuals; let A` be an ABox; and let s and
t be individuals occurring in A`. Then, s is directly blocked by t in A` for S-core
blocking iff s is directly blocked by t in A` for core blocking and

〈s, t〉 ∈ S or modA`
(s) = true or modA`

(t) = true.

A derivation by the hypertableau calculus with core blocking for a set of HT-clauses C
and an ABox A is constructed by applying the following steps.

1. Set S := ∅, Aa := A, and modAa(s) := true for each individual s in Aa.
2. Apply the hypertableau calculus exhaustively toAa and C while using S-core block-

ing in the >-rule; furthermore, whenever A`+1 is derived from A`, for each indi-
vidual s in A`+1 set
(a) modA`+1(s) := true if valA`+1(s) 6= valA`

(s) or if s does not occur inA`, and
(b) modA`+1(s) := modA`

(s) otherwise.
Let Ab be a resulting ABox to which no derivation rule is applicable.

3. Set S to be equal to the set of pairs 〈s, t〉 of individuals such that s is directly
blocked in Ab by t and s is validly blocked in Ab.

4. Set modAb(s) := false for each individual s in Ab.
5. If an individual s exists such that s is core blocked in Ab by t but 〈s, t〉 6∈ S, then

set Aa := Ab and go to Step 2.
6. Return Ab.

Roughly speaking, our algorithm first applies the derivation rules as usual, with the
difference that core blocking is used (this is because S = ∅ in Step 1). After computing
a candidate pre-modelAb in Step 2, in Step 3 the algorithm updates S to the set of pairs
of valid blocks, and in Step 4 it marks all individuals in Ab as not changed. In Step 5,
the algorithm checks whetherAb contains invalid blocks. If that is the case, the process
is repeated; but then, S-core blocking ensures that only those blocks are considered that
are known to be valid or for which at least one of the individuals has changed since the
last validation. Theorem 1 shows that the calculus is sound, complete, and terminating.

Theorem 1. Let K = (T ,A) be a SROIQ knowledge base and C the set of HT-
clauses for K.

1. The hypertableau calculus with core blocking terminates.

Birte Glimm, Ian Horrocks and Boris Motik. 213



2. If C and A are satisfiable, then ⊥ 6∈ Ab for some Ab computed by the calculus.
3. If C and A are unsatisfiable, then ⊥ ∈ Ab for each Ab computed by the calculus.

Proof (Sketch). For the first claim, assume thatAb is an ABox computed in Step 2 such
that, whenever s is directly blocked in Ab by t for core blocking, then s is directly
blocked in Ab by t for standard blocking. Each individual s is then validly blocked in
Ab, so 〈s, t〉 ∈ S at Step 3 and the condition at Step 5 is not satisfied, so the calculus
terminates. Thus, in the worst case, core blocking reduces to standard blocking, which
implies a bound on the size of Ab in the usual way [4]. Furthermore, if an individual
t does not validly block s in an ABox Ab, then t can be considered again as a blocker
for s only after valAb(s) or valAb(t) changes. Since Ab is bounded in size, valAb(s)
and valAb(t) can change only a bounded number of times; hence, t is considered as a
candidate blocker for s only a finite number of times, which implies termination.

The second claim holds in the same way as in [4]. Finally, for the third claim,
given an ABox Ab computed by the calculus such that ⊥ 6∈ Ab, we unravel Ab into
an interpretation in the standard way [4]. From the definition of unraveling in [4], one
can see that, for each blockable individual s, the ABox valAb(s) contains the assertions
that correspond to the part of the unraveled interpretation involving s. Since s is validly
blocked in Ab, all the relevant restrictions are satisfied for s. Since all blocks are valid
in Ab, the unraveled interpretation is a model of C and A. ut

3.3 Core Blocking Policies

We now present two policies for identifying core assertions. Each policy can be used
with either single or pairwise core blocking.

The simple core policy is inspired by the following observation. Let A be a poten-
tially infinite ABox obtained by applying the hypertableau calculus without blocking
to an EL knowledge base K, and let s and t be two individuals introduced by ap-
plying the >-rule to assertions of the form (>n r.B)(s′) and (>mr′.B)(t′). Then,
LA(s) = LA(t); in fact, the concept labels LA(s) and LA(t) depend only on the con-
cept B. The policy thus makes such assertions B(s) and B(t) core in the hope that, if a
knowledge base is sufficiently “EL-like,” then s would validly block t.

Definition 4. The simple core policy marks all assertions as not core unless they are
covered by one of the following rules.

– Each assertion B(cj) derived by applying the >-rule to an assertion of the form
(>n r.B)(a) is marked as core.

– Each assertion α′ derived by the≈-rule from an assertion α via merging is marked
as core if and only if α is core.

– If an ABox contains α as a noncore assertion but some derivation rule derives α as
a core assertion, the former assertion is replaced with the latter.

Simple core blocking generates very small cores, but it can be imprecise and can
therefore lead to frequent validation of blocks. For example, if s and t are individuals
introduced by applying the >-rule as above, then inferences involving the predecessor
of s can cause the propagation of new concepts to s, which might invalidate blocking.

214 Optimized DL Reasoning via Core Blocking



Furthermore, if the knowledge base contains nondeterministic concepts, then nondeter-
ministic inferences involving s and tmay cause LA(s) and LA(t) to diverge, which can
also invalidate blocking. We therefore define the following, stronger notion of cores.

Definition 5. The complex core policy is the extension of the simple core policy in
which, whenever the Hyp-rule derives an assertion σ(Vj) using a mapping σ and an
HT-clause γ =

∧m
i=1 Ui →

∨n
j=1 Vj , the assertion σ(Vj) is marked as core if and only

if σ(Vj) is a concept assertion and

– n > 1, or
– σ(Vj) is of the form B(s) with s a successor of σ(w) for some variable w in γ.

The complex core policy is motivated by the fact that, when EL-style algorithms
are extended to expressive but deterministic DLs such as Horn-SHIQ [10], the con-
cepts that are propagated to an individual from its predecessor uniquely determine the
individual’s label, so we mark all such assertions as core.

4 Empirical Evaluation

We implemented the different core blocking strategies in our HermiT reasoner and car-
ried out a preliminary empirical evaluation. For the evaluation, we selected several on-
tologies commonly used in practice. We classified each ontology and tested the satis-
fiability of all concepts from the ontologies with the different blocking strategies. Our
main measurement is the number individuals in the final pre-model since this number
directly relates to the amount of memory required by the reasoner.

We conducted our tests on a 2.6 GHz Windows 7 Desktop machine with 8 GB
of RAM. We used Java 1.6 allowing for 1 GB of heap space in each test. All tested
ontologies, a version of HermiT that supports core blocking, and Excel spreadsheets
containing test results are available online.1

Figures 1–4 contain concepts on the x-axis; however, concept names are not shown
due to the high number of concepts. The concepts are ordered according to the per-
formance under the standard blocking strategy reasoner. The y-axis either displays the
number of individuals in the pre-models or the reasoning times in milliseconds. All rea-
soning times exclude loading and preprocessing times, since these are independent of
the blocking strategy. Some figures employ a logarithmic scale to improve readability.
The label standard pairwise refers to the standard pairwise anywhere blocking strategy,
complex pairwise refers to pairwise core blocking with the complex core policy, etc.

Tables 1–2 show average measurements taken while testing the satisfiability of all
concepts in an ontology. The meaning of various rows is as follows: final pre-model size
shows the average number of individuals in the final pre-model; finally blocked shows
the average number of blocked individuals in the final pre-model; and number of valida-
tions shows the average number of validations before a pre-model was found in which
all blocks are valid; time in ms shows the average time to test concept satisfiability; and
validation part shows the percentage of this time taken to validate blocks. Finally, all ta-
bles show the time needed to classify the ontology in the format hours:minutes:seconds.

1 http://www.hermit-reasoner.com/coreBlocking.html
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Fig. 1. The number of individuals in the pre-models for all concepts in DOLCE

Fig. 2. The reasoning times in ms for testing the satisfiability of all concepts in DOLCE

DOLCE is a small but complex SHOIQ(D) ontology containing 209 concepts and
1,537 axioms that produce 2,325 HT-clauses. Core blocking works particularly well on
DOLCE. The pre-model sizes (see Figure 1) and the reasoning times (see Figure 2)
for all core blocking variants are consistently below those obtained with the standard
anywhere blocking strategy. The simple single core blocking strategy gives the smallest
pre-models but the reasoning times are slightly smaller for the simple pairwise strategy.
This is because the simple single strategy produces more invalid blocks and, conse-
quently, requires more expansion and (expensive) validation cycles before a final pre-
model is found (see Table 1). Overall, the strategies work very well because DOLCE
does not seem to be very highly constrained and many blocks are valid immediately.

GALEN is the original version of the GALEN medical ontology dating from about
10 years ago. Apart from CB [10], which implements an extension of an EL-style
algorithm to Horn-SHIQ [10], HermiT is currently the only reasoner that can clas-
sify this ontology. GALEN is a Horn-SHIF ontology containing 2,748 concepts and
4,979 axioms that produce 8,189 HT-clauses, and it normally requires pairwise block-
ing. GALEN is unusual in that it contains 2,256 “easy” concepts that are satisfied in very
small pre-models (< 200 individuals) and 492 “hard” concepts that are satisfied in very
large pre-models (> 35,000 individuals) for the standard blocking strategy. The classi-
fication times in Table 2 take all concepts into account; in all other cases we omit the
measurements for the “easy” concepts since they do not show much difference between
the different blocking strategies and just clutter the presentation. As for DOLCE, the
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Table 1. Average measurements over all concepts in DOLCE and the classification time

standard complex complex simple simple
pairwise pairwise single pairwise single

final pre-model size 28,310 13,583 5,942 1,634 1,426
finally blocked 19,319 9,341 4,241 1,207 1,046
number of validations — 1.03 1.06 1.09 2.09
time in ms 41,821 5,970 1,663 511 601
validation part — 2.17% 3.98% 48.84% 65.63%
classification time 01:18:32 00:24:03 00:08:43 00:03:45 00:05:29

Fig. 3. The number of individuals in the pre-models for the (hard) concepts in GALEN

simple single core blocking strategy produces the most significant reduction in model
size (see Figure 3). Although this strategy requires the most validation rounds, and these
take up 86% of the overall reasoning time, this strategy is still the fastest (see Figure 4)
since the reduction in model sizes compensates for the expensive block validations.

The only optimization in HermiT that needs adapting in order to work with core
blocking is the blocking cache: once a pre-model for a concept is constructed, parts of
the pre-model are reused in the remaining subsumption tests [4]. This dramatically re-
duces the overall classification time. The blocking cache can only be used on ontologies
without nominals; in out test suite only GALEN falls into that category. Although the
blocking cache could in principle be adapted for use with core blocking, this has not
yet been implemented, so we switched this optimization off.

The foundational model of anatomy (FMA) is a domain ontology about human
anatomy [2]. The ontology is one of the largest OWL ontologies available, containing
41,648 concepts and 122,617ALCOIF(D) axioms, and it is transformed into 125,346
HT-clauses and 3,740 ABox assertions. We initially tried to take the same measurements
for FMA as for the other ontologies; however, after 20 hours we processed only about
10% of the concepts (5,288 out of 41,648), so we aborted the test. Only the single
simple core blocking strategy was able to process all 5,288 concepts. The pairwise
simple core strategy stayed within the memory limit, but was significantly slower and
suffered from 5 timeouts due to our imposition of a 2 minute time limit per concept. The
standard blocking strategy exceeded either the memory or the time limit on 56 concepts,
the pairwise complex core strategy on 70, and the single complex core strategy on 37
concepts. Therefore, we produced complete measurements only with single simple core
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Fig. 4. The reasoning times for testing the satisfiability of the (hard) concepts in GALEN

Table 2. Average measurements over (hard) concepts in GALEN and the classification time

standard complex complex simple simple
pairwise pairwise single pairwise single

final pre-model size 37,747 33,557 4,876 4,869 2,975
finally blocked 19,290 19,726 2,234 1,896 1,247
number of validations — 9.18 12.65 8.87 13.91
time in ms 33,293 36,213 8,050 10,485 7,608
validation part — 27.47% 74.91% 81.47% 86.78%
classification time 03:50:01 04:35:12 01:07:18 01:27:50 01:02:44

blocking, using which HermiT was able to classify the entire ontology in about 5.5
hours, discovering 33,431 unsatisfiable concepts. The ontology thus seems to contain
modeling errors that went undetected so far due to lack of adequate tool support. The
unsatisfiability of all of these concepts was detected before blocking validation was
required. The sizes of the ABoxes constructed while processing unsatisfiable concepts
is included in the final pre-model size in Table 3, although these are not strictly pre-
models since they contain a clash.

We also tested how much memory is necessary to construct all pre-models for
DOLCE and GALEN under different blocking strategies. Starting with 16MB, we dou-
bled the memory until the tested strategy could build all pre-models. The simple and
complex core blocking strategies require as little as 64MB and 128MB of memory,
respectively, whereas the standard blocking technique requires 512MB.

5 Discussion

In this paper we presented several novel blocking strategies that can improve the perfor-
mance of DL reasoners by significantly reducing the size of the pre-models generated
during satisfiability tests. Although we expected complex core blocking to work better
on knowledge bases in expressive DLs, the evaluation shows that the simple core pol-
icy clearly outperforms the complex core policy regarding space and time on all tested
ontologies. On more complex ontologies, the memory requirement with core blocking
seems to decrease significantly.
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Table 3. Average measurements over FMA with the single simple core strategy

final pre-model size 1,747 finally blocked 1,074
time in ms 518 validation part 0.00%
number of validations 0.2 classification time 05:31:23

On ontologies where very few individuals are blocked (e.g., Wine) the new strate-
gies cannot really reduce the sizes of the pre-models [3]; however, they do not seem to
have a negative effect on the reasoning times either.

The current publicly available version of HermiT (1.2.2) uses simple single core
blocking as its default blocking strategy for ontologies with nominals; for ontologies
without nominals it uses standard anywhere blocking with the blocking cache opti-
mization, an optimization that has not yet been extended to core blocking.

Blocking validation is not highly optimized in our prototypical implementation.
This is most apparent for the single simple core strategy that causes the most invalid
blocks and where block validation takes 86% of the time for GALEN. Only the signifi-
cant model size reductions allows this strategy to nevertheless be the fastest. We believe
that we can significantly improve the performance in the future. We identified the two
most common reasons for invalid blocks: the >-rule is applicable to an assertion from
valA`

(s) of a blocked individual, or the Hyp-rule is applicable to the assertions from the
temporary ABox of the predecessor of a directly blocked individual. Testing for these
two cases first should reduce the overall time of validity tests. Finally, we shall adapt
the blocking cache technique to core blocking.
Acknowledgements The presented work is funded by the EPSRC project HermiT: Rea-
soning with Large Ontologies.
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Abstract. Recent research has shown that annotations are useful for
representing access restrictions to the axioms of an ontology and their im-
plicit consequences. Previous work focused on computing a consequence’s
access restriction efficiently from the restrictions of its implying axioms.
However, a security administrator might not be satisfied since the in-
tended restriction differs from the one obtained through these methods.
In this case, one is interested in finding a minimal set of axioms which
need changed restrictions. In this paper we look at this problem and
present algorithms based on ontology repair for solving it. Our first ex-
perimental results on large scale ontologies show that our methods per-
form well in practice.

1 Introduction

Description Logics (DL) [1] have been successfully used to model a wide variety
of real-world application domains. The relevant portions of these domains are
described through a DL ontology and highly optimized reasoners can then be
used to deduce facts implicitely described in the ontology. In information systems
with a huge ontology it is desirable to restrict the access of users to only a
portion of the whole ontology, selected in accordance to an appropriate criterion.
Motivations might be reducing information overload, filtering with respect to a
trust level, or controlled access following a strict policy. For the access control
scenario, each axiom is assigned a privacy level and each user is assigned a
security clearance. A user can then see only those axioms whose privacy level is
exceeded by the clearance of the user. One naive approach would be to maintain
a separate sub-ontology obtained from one big ontology for each possible security
clearance which means that any update in the ontology needs to be propagated
to each of the sub-ontologies, and any change in the privacy levels or security
clearances may result in a full recomputation of the sub-ontologies. Moreover,
this would require separate reasoning for each sub-ontology. In order to avoid
this, one rather keeps only the big ontology and stores the access information for
axioms and users so that they can be retrieved easily. The approach proposed
in [2] is to use a labeling lattice (L,≤). Every axiom and user gets a label in L
assigned, and the sub-ontology accessible to a user with label ` is the set of all
axioms whose label is greater than or equal to `. In [2] it was also shown that
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any implicit consequence c from the ontology can be assigned a label, called a
boundary, such that deciding whether a user has access to c requires again only
a computationally cheap label comparison.

DL systems consist of an ontology which represents explicit knowledge and
a reasoner which makes implicit consequences of this knowledge explicit. The
explicit and implied knowledge is exploited by the application by interacting
with the DL system. A correct access labeling of an ontology is a difficult task.
Indeed, several seemingly harmless axioms might possibly be combined to deduce
information that is considered private. On the other hand, an over-restrictive
labeling of axioms may cause public information to be inaccessible to some users.
If the knowledge engineer finds that the boundary for a given consequence differs
from the desired one, then she would like to automatically receive suggestions
on how to modify the labeling function and correct this error. In this paper we
present some methods in this direction. We assume that the knowledge engineer
knows the exact boundary `g that the consequence c should receive, and propose
a set S of axioms of minimal cardinality such that if all the axioms in S are
relabeled to `g, then the boundary of c will be `g. We call S a change set.

We show that the main ideas from axiom-pinpointing [11, 10, 8, 4, 3] can be
exploited in the computation of a change set and present a hitting set tree-based
black-box approach that yields the desired set. Our experimental results at the
end of the paper show that our algorithms behave well in practice.

2 Preliminaries

To keep our presentation and results as general as possible, we impose only
minimal restrictions to our ontology language. We just assume that an ontology
is a finite set, whose elements are called axioms, such that every subset of an
ontology is itself an ontology. If O′ ⊆ O and O is an ontology, then O′ is called
a sub-ontology of O. A monotone consequence relation |= is a binary relation
between ontologies O and consequences c such that if O |= c, then for every
ontology O′ ⊇ O it holds that O′ |= c. If O |= c, we say that c follows from
O or that O entails c. An ontology language specifies which sets of axioms
are admitted as ontologies. Consider, for instance, a Description Logic L. Then,
an ontology is a finite set of general concept inclusion axioms (GCIs) of the
form C v D, with C,D L-concept descriptions and assertion axioms of the form
C(a), with C an L-concept description and a an individual name. Examples of
consequences are subsumption relations A v B for concept names A,B.

If O |= c, we may be interested in finding the axioms responsible for this
fact. A sub-ontology S ⊆ O is called a MinA for O,c if S |= c and for every
S ′ ⊂ S,S ′ 6|= c. The dual notion of a MinA is that of a diagnosis. A diagnosis for
O,c is a sub-ontology S ⊆ O such that O \ S 6|= c and O \ S ′ |= c for all S ′ ⊂ S.

For a lattice (L,≤) and a set K ⊆ L, we denote as
⊕

`∈K ` and
⊗

`∈K ` the
join (least upper bound) and meet (greatest lower bound) of K, respectively. We
consider that ontologies are labeled with elements of the lattice. More formally,
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for an ontology O there is a labeling function lab that assigns a label lab(a) ∈ L
to every element a of O. We will often use the notation Llab := {lab(a) | a ∈ O}.

For a user labeled with ` ∈ L, we denote as O≥` the sub-ontology O≥` :=
{a ∈ O | lab(a) ≥ `} visible for him. The sub-ontologies O≤`,O=`,O6=`,O6≥`,
and O6≤` are defined analogously. This notion is extended to sets of labels in the
natural way, e.g. O=K := {a ∈ O | lab(a) = ` for some ` ∈ K}. Conversely, for a
sub-ontology S ⊆ O, we define λS :=

⊗
a∈S lab(a) and µS :=

⊕
a∈S lab(a). An

element ` ∈ L is called join prime relative to Llab if for every K1, . . . ,Kn ⊆ Llab,
` ≤⊕n

i=1 λKi implies that there is i, 1 ≤ i ≤ n such that ` ≤ λKi . For instance,
in Figure 1, `1 and `4 are the only elements that are not join prime relative
to Llab = {`1, . . . , `5}, since `1 ≤ `2 ⊕ `4 but neither `1 ≤ `2 nor `1 ≤ `4 and
similarly `4 ≤ `5 ⊕ `3 but neither `4 ≤ `5 nor `4 ≤ `3. Join prime elements
relative to Llab are called user labels. The set of all user labels is denoted as U .
When dealing with labeled ontologies, the reasoning problem of interest consists
on the computation of a boundary for a consequence c. Intuitively, the boundary
divides the user labels ` of U according to whether O≥` entails c or not.

Definition 1 (Boundary). Let O be an ontology and c a consequence. An
element ν ∈ L is called a boundary for O,c if for every join prime element
relative to Llab ` it holds that ` ≤ ν iff O≥` |= c.

Given a user label `u, we will say that the user sees a consequence c if `u ≤ ν
for some boundary ν. The following lemma relating MinAs and boundaries was
shown in [2].

Lemma 1. If S1, . . . ,Sn are all MinAs for O,c, then
⊕n

i=1 λSi is a boundary
for O,c.

A dual result, which relates the boundary with the set of diagnoses, also
exists. The proof follows easily from the definitions given in this section.

Lemma 2. If S1, . . . ,Sn are all diagnoses for O,c, then
⊗n

i=1 µSi
is a boundary

for O,c.

Example 1. Let (Ld,≤d) be the lattice shown in Figure 1, and O a labeled
ontology from a marketplace in the Semantic Web with the following axioms

a1 : EUecoService uHighperformanceService(ecoCalculatorV1 )
a2 : HighperformanceService
v ServiceWithLowCustomerNr u LowProfitService

a3 : EUecoService v ServiceWithLowCustomerNr u LowProfitService
a4 : ServiceWithLowCustomerNr v ServiceWithComingPriceIncrease
a5 : LowProfitService v ServiceWithComingPriceIncrease

where the function lab assigns to each axiom the labels as shown in Figure 1.
This ontology entails c : ServiceWithComingPriceIncrease(ecoCalculatorV1 ).
The MinAs for O,c are {a1, a2, a4}, {a1, a2, a5}, {a1, a3, a4}, {a1, a3, a5}, and its
diagnoses are {a1}, {a2, a3}, {a4, a5}. Using Lemma 2, we can compute the bound-
ary as µ{a1} ⊗ µ{a2,a3} ⊗ µ{a4,a5} = `1 ⊗ `2 ⊗ `4 = `3. Valid user labels are
`0, `2, `3, `5 which represent user roles as illustrated. Only for `0 and `3, c is
visible.
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Fig. 1. Lattice (Ld,≤d) with 4 user labels and an assignment of 5 axioms to labels

3 Modifying the Boundary

Once the boundary for a consequence c has been computed, it is possible that
the knowledge engineer or the security administrator considers this solution er-
roneous. For instance, the boundary may express that a given user u is able to
deduce c, although this was not intended. Alternatively, the boundary may imply
that c is a very confidential consequence, only visible to a few, high-clearance
users, while in reality c should be more publicly available.

Example 2. The boundary `3 computed in Example 1 expresses that the conse-
quence c can only be seen by the development engineers and customer service
employees (see Figure 1). It could be, however, that c is not expected to be
accessible to development engineers, but rather to customers. In that case, we
wish to modify the boundary of c to `5.

The problem we face is how to change the labeling function so that the
computed boundary corresponds to the desired label in the lattice. This problem
can be formalized and approached in several different ways. In our approach, we
fix a goal label `g and try to modify the labeling of as few axioms as possible so
that the boundary equals `g.

Definition 2. Let O be an ontology, lab a labeling function, S ⊆ O and `g ∈ L
the goal label. The modified assignment labS,`g is given by

labS,`g
(a) =

{
`g, if a ∈ S,
lab(a), otherwise.

A sub-ontology S ⊆ O is called a change set (CS) for `g if the boundary for O,c
under the labeling function labS,`g equals `g.

Obviously, the original ontology O is always a CS set for any goal label if
O |= c. However, we are interested in performing minimal changes to the labeling
function. Hence, we search for a CS of minimum cardinality.

Let `g denote the goal label and `c the computed boundary for c. If `g 6= `c, we
have three cases: either (1) `g < `c, (2) `c < `g, or (3) `g and `c are incomparable.
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In our example, the three cases are given by `g being `0, `4, and `5, respectively.
Consider the first case, where `g < `c. Then, from Lemma 2 it follows that any
diagnosis S is a CS for `g: since `g < `c, then for every diagnosis S ′, `g < µS′ .
But then, under the new labeling labS,`g we get that µS = `g. And hence, when
the greatest lower bound of all µS′ is computed, we obtain `g as a boundary.
Using an analogous argument and Lemma 1, it is possible to show that if `c < `g,
then every MinA is a CS for `g. The third case can be solved using a combination
of the previous two: if `g and `c are incomparable, we can first set as a partial
goal `′g := `g ⊗ `c. Thus, we can first solve the first case, to set the boundary to
`′g, and then, using the second approach, modify this new boundary once more
to `g. Rather than actually performing this task as a two-step computation, we
can simply compute a MinA and a diagnose. The union of these two sets yields
a CS. Unfortunately, the CS computed this way is not necessarily of minimum
cardinality, even if the smallest diagnosis or MinA is used, as shown in the
following example.

Example 3. Let O,c and lab be as in Example 1. We then know that `c := `3 is
a boundary for O,c. Suppose now that the goal label is `g := `4. Since `c < `g,
we know that any MinA is a CS. Since all MinAs for O,c have exactly three
elements, any CS produced this way will have cardinality three. However, {a2}
or {a3} are also valid CS, whose cardinalities are obviously smaller.

To understand why the minimality of MinAs is not sufficient for obtaining a
minimum CS, we can look back to Lemma 1. This lemma says that in order to
find a boundary, we need to compute the join of all λS , with S a MinA, and λS
the meet of the labels of all axioms in S. But then, for any axiom a ∈ S such
that `g ≤ lab(a), modifying this label to `g will have no influence in the result
of λS . In Example 3, there is a MinA {a1, a2, a4}, where two axioms, namely a1

and a4 have a label greater or equal to `g = `4. Thus, the only axiom that needs
to be relabeled is in fact a2, which yields the minimum CS {a2} shown in the
example. Basically, we consider every axiom a ∈ O such that `g ≤ lab(a) as fixed
in the sense that it is superfluous for any CS. For this reason, we will deal with a
generalization of MinAs and diagnoses, that we call IAS and RAS, respectively.

Definition 3 (IAS,RAS). A minimal inserted axiom set (IAS) for `g is a
subset I ⊆ O 6≥`g

such that O≥`g
∪ I |= c and for every I ′ ⊂ I : O≥`g

∪ I ′ 6|= c.
A minimal removed axiom set (RAS) for `g is a subset R ⊆ O6≤`g

such that
O6≤`g

\R 6|= c and for every R′ ⊂ R : O6≤`g
\R′ |= c.

The following theorem justifies the use of IAS and RAS when searching for
a CS of minimum cardinality.

Theorem 1. Let `c be a boundary for O,c, `g the goal label, and mR,mI and
mU the cardinalities of the smallest RAS, the smallest IAS and the smallest
union of an IAS and a RAS for `g, respectively. Then, for every IAS I and RAS
R for `g it holds:

– if `g < `c and |R| = mR, then R is a CS of minimum cardinality,
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– if `c < `g and |I| = mI , then I is a CS of minimum cardinality,
– if `c and `g are incomparable and |R ∪ I| = mU , then I ∪ R is a CS of

minimum cardinality.

4 Computing a Minimal Change Set

Näıvely the smallest CS can be found by computing all CS and selecting the
smallest. As explained above, the task of computing all CS is related to com-
puting all diagnoses and all MinAs, which has been widely studied in recent
years, and there exist black-box implementations based on the hitting set tree
(HST) algorithm [7, 12]. Our approach to compute a minimal CS follows similar
ideas. The HST algorithm makes repeated calls to an auxiliary procedure that
computes a single CS. Further CS are found by building a tree, where nodes are
labeled with CS and edges with axioms. If the CS labeling a node has n axioms
(S := {a1, . . . , an}), then this node will have n children: the edge to the i-th
child labeled with ai, the child labeled with a CS that is not allowed to contain
neither ai nor any ancestor’s edge label. This ensures that each node is labeled
with a CS distinct from those of its predecessors.

For the auxiliary procedure to compute a single CS, we will use two sub
procedures extracting RAS and IAS, respectively. In Algorithm 1 we present
a variation of the logarithmic MinA extraction procedure presented in [5] that
is able to compute an IAS or stop once this has reached a size n and return a
partial IAS. We also show the RAS variant in Algorithm 2. Given a goal label `g,
if we want to compute a IAS or a partial IAS of size exactly n for a consequence
c, then we would make a call to extract-partial-IAS(O≥`g ,O6≥`g , c, n). Similarly, a
call to extract-partial-RAS(O 6≤`g ,O6≤`g , c, n) yields a RAS of size ≤ n or a partial
RAS of size exactly n. The cardinality limit will be used to avoid unnecessary
computations when looking for the smallest CS.

Given the procedures to extract RAS and IAS, Algorithm 3 extracts a CS. In
order to label a node, we compute a CS with extract-partial-CS(O, lab, c, `g, H, n),
where H is the set of all labels attached to edges on the way from the node to
the root of the tree. Note that axioms in H are removed from the search space
to extract the IAS and RAS. Furthermore, axioms in the IAS are considered as
fixed for the RAS computation. The returned set is a CS of size ≤ n or a partial
CS of size n.

Example 4. Returning to our running example, suppose now that we want to
modify the label of consequence c to `g = `5. Algorithm 3 starts by making
a call to extract-partial-IAS(O≥`5 ,O 6≥`5 , c).

1 A possible output for this call is
I = {a3}. We can then call extract-partial-RAS(O 6≤`5 \ I,O6≤`5 \ I, c), which may
output e.g. the set R = {a1}. Thus, globally the algorithm returns {a3, a1},
which can be easily verified to be a CS for `5.

One of the advantages of the HST algorithm is that the labels of any node
are always ensured not to contain the label of any of its predecessor nodes. In
1 For this example, we ignore the cardinality limit, as we want to find only one CS.
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Algorithm 1 Compute (partial) IAS
Procedure extract-partial-IAS(Ofix,Otest, c, n)
Input: Ofix: fixed axioms; Otest: axioms; c: consequence; n: limit
Output: first n elements of a minimal S ⊆ Otest such that Ofix ∪ S |= c

1: Global l := 0, n
2: return extract-partial-IAS-r(Ofix,Otest, c)

Subprocedure extract-partial-IAS-r(Ofix,Otest, c)

1: if n = l then
2: return ∅
3: if |Otest| = 1 then
4: l := l + 1
5: return Otest

6: S1,S2 := halve(Otest) (partition Otest so that ||S1| − |S2|| ≤ 1)
7: if Ofix ∪ S1 |= c then
8: return extract-partial-IAS-r(Ofix,S1, c)
9: if Ofix ∪ S2 |= c then

10: return extract-partial-IAS-r(Ofix,S2, c)
11: S ′1 := extract-partial-IAS-r(Ofix ∪ S2,S1, c)
12: S ′2 := extract-partial-IAS-r(Ofix ∪ S ′1,S2, c)
13: return S ′1 ∪ S ′2

particular this means that even if we compute a partial CS, the algorithm will
still correctly find all CS that do not contain any of the partial CS found during
the execution. Since we are interested in finding the CS of minimum cardinality,
we can set the limit n to the size of the smallest CS found so far. This limit is
initially fixed to the size of the ontology. If extract-partial-CS outputs a set with
fewer elements, we are sure that this is indeed a full CS, and our new smallest
known CS. The HST algorithm will not find all CS in this way, but we can
be sure that one CS with the minimum cardinality will be found. The idea of
limiting cardinality for finding the smallest CS can be taken a step further by
not expanding each node for all the axioms in it, but rather only on the first
n − 1, where n is the size of the smallest CS found so far. This further reduces
the search space by decreasing the branching factor of the search tree. Notice
that the highest advantage of this second optimization appears when the HST
is constructed in a depth-first fashion. In that case, a smaller CS found further
below in the tree will reduce the branching factor of all its predecessors. So the
cardinality limit reduces the search space in two dimensions: (1) the computation
of a single CS is limited to n axioms and (2) only n − 1 axioms are expanded
from each node. The following theorem shows that such a variant of the HST
algorithm is correct.

Theorem 2. Let O be an ontology, c a consequence with O |= c, and `g a
goal label. If m is the minimum cardinality of all CS for `g, the HST algorithm
described above outputs a CS S such that |S| = m.
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Algorithm 2 Compute (partial) RAS
Procedure extract-partial-RAS(Ononfix,Otest, c, n)
Input: Ononfix: axioms; Otest ⊆ Ononfix: axioms; c: consequence; n: limit
Output: first n elements of a minimal S ⊆ Otest such that Ononfix \ S 6|= c

1: Global l := 0,Ononfix, n
2: return extract-partial-RAS-r(∅,Otest, c)

Subprocedure extract-partial-RAS-r(Ohold,Otest, c)

1: if n = l then
2: return ∅
3: if |Otest| = 1 then
4: l := l + 1
5: return Otest

6: S1,S2 := halve(Otest) (partition Otest so that ||S1| − |S2|| ≤ 1)
7: if Ononfix \ (Ohold ∪ S1) 6|= c then
8: return extract-partial-RAS-r(Ohold,S1, c)
9: if Ononfix \ (Ohold ∪ S2) 6|= c then

10: return extract-partial-RAS-r(Ohold,S2, c)
11: S ′1 := extract-partial-RAS-r(Ohold ∪ S2,S1, c)
12: S ′2 := extract-partial-RAS-r(Ohold ∪ S ′1,S2, c)
13: return S ′1 ∪ S ′2

Proof. The described algorithm outputs a CS since the globally stored and finally
returned S is only modified when the output of extract-partial-CS has size strictly
smaller than the limit n, and hence only when this is indeed a CS itself. Suppose
now that the output S is such that m < |S|, and let S0 be a CS such that
|S0| = m, which exists by assumption. Then, every set obtained by calls to
extract-partial-CS has size strictly greater than m, since otherwise, S and n would
be updated. Consider now an arbitrary set S ′ found during the execution through
a call to extract-partial-CS, and let S ′n := {a1, . . . , an} be the first n elements of
S ′. Since S ′ is a (partial) CS, it must be the case that S0 6⊆ S ′n since every
returned CS is minimal in the sense that no axiom might be removed to obtain
another CS. Then, there must be an i, 1 ≤ i ≤ n such that ai /∈ S0. But then,
S0 will still be a CS after axiom {ai} has been removed. Since this argument is
true for all nodes, it is in particular true for all leaf nodes, but then they should
not be leaf nodes, since a new CS, namely S0 can still be found by expanding
the HST, which contradicts the fact that S is the output of the algorithm. ut

Example 5. Returning to our running example, suppose that we want to set the
label of c to `g = `0. Algorithm 3 first calls extract-partial-RAS(O6≤`0 ,O6≤`0 , c, 5).
A possible output of this call is R = {a2, a3}. The tree now branches through
a2 and a3. In the first case it calls extract-partial-RAS(O 6≤`0 ,O 6≤`0 \ {a2}, c, 2),
which could yield R = {a4, a5}. This might be a partial CS since its size equals
the cardinality limit. The next call extract-partial-RAS(O 6≤`0 ,O6≤`0 \{a2, a4}, c, 2)
yields the smallest R = {a1}, and the HST terminates. Notice that if {a1} had
been the first change set found, the process would have immediately terminated.
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Algorithm 3 Compute (partial) Change Set
Procedure extract-partial-CS(O, lab, c, `g, H, n)

1: `c := hst-boundary(O, c) function defined in [2]
2: return extract-partial-CS(O, lab, c, `g,
`g 6< `c ∧ O≥`g 6|= c,
`g 6> `c ∧ O 6≤`g |= c, H, n)

Procedure extract-partial-CS(O, lab, c, `g, isI , isR, H, n)
Input: O, lab: labeled ontology; c: consequence; `g: goal label; isI : decision to compute
IAS; isR: decision to compute RAS; H: HST edge labels; n: limit
Output: first n elements of a minimal CS S ⊆ O
1: if 1 ≥ n or isI ∧ O≥`g ∪ (O6≥`g \H) 6|= c or isR ∧H |= c then
2: return ∅ (HST normal termination)
3: if isI then
4: I := extract-partial-IAS(O≥`g ,O 6≥`g \H, c, n)
5: if isR and O 6≤`g \ I |= c then
6: R := extract-partial-RAS(O 6≤`g \ I,O 6≤`g \ (I ∪H), c, n− |I|)
7: return I ∪R

Fig. 2. Hitting Set Trees to compute all MinAs (left) and a minimal change set for
`g = `5 (right)

Efficient implementations of the original version of the HST algorithm rely
on several optimizations. Two standard optimizations described in the literature
are node-reuse and early path termination (see, e.g. [7, 12, 2]). Node-reuse keeps
a history of all nodes computed so far in order to avoid useless (and usually
expensive) calls to the auxiliary procedure that computes a new node. Early path
termination, on the other hand, prunes the hitting set tree by avoiding expanding
nodes when no new information can be derived from further expansion. In order
to avoid unnecessary confusion, we have described the modified HST algorithm
without including these optimizations. However, it should be clear that both,
node-reuse and early path termination, can be included in the algorithm without
destroying its correctness. The implementation used for our experiments contain
these two optimizations.

Figure 2 shows the expansion of the HST trees when computing all MinAs
and all diagnoses, in comparison with the one obtained for computing a minimal
change set for `g = `5, using the ontology and consequences of Example 1.
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This paper’s results are a continuation of work in [9], where we had not one
Hitting Set Tree Algorithm but two separately for the smallest IAS and the
smallest RAS. This paper’s variant is guaranteed to find the smallest CS, as
given in the Proof above. For a CS consisting of an IAS and a RAS, computing
a smallest of both does not necessarily yield the smallest CS, as the following
example shows. Assume {a1, a2}, {a2, a3} are the smallest RAS and {a1, a4} is
the smallest IAS, then {a1, a2, a4} is the smallest CS, but choosing one small-
est IAS and one smallest RAS might yield a CS of cardinality 4. In [9] we also
investigated the performance gain by taking not only advantage of fixing a sub-
set of the axioms and limiting cardinality but also by taking the labels of the
remaining axioms into account.

5 Empirical Evaluation

We implemented and evaluated our algorithms empirically with large practi-
cal ontologies. The test system is identical to one used previous work in [2],
so we describe it here very briefly. The two labeling lattices used are (Ld,≤d),
already introduced in Figure 1, and the linear order (Ll,≤l) with 6 elements
Ll = Ld = {`0, . . . , `5} with ≤l := {(`n, `n+1) | `n, `n+1 ∈ Ll ∧ 0 ≤ n ≤ 5}.
We used the two ontologies OSnomed and OFunct with different expressivity and
types of consequences for our experiments. The Systematized Nomenclature of
Medicine, Clinical Terms (Snomed ct) is a comprehensive medical and clinical
ontology which is built using the Description Logic (DL) EL+. From the Jan-
uary/2005 release of the DL version, which contains 379,691 concept names, 62
object property names, and 379,704 axioms, and entails more than five million
subsumptions, we used a sampled set of 27,477 positive subsumptions. OFunct

is an OWL-DL ontology for functional description of mechanical engineering
solutions [6]. It has 115 concept names, 47 object property names, 16 data prop-
erty names, 545 individual names, 3,176 axioms, and the DL expressivity is
SHOIN (D). Its 716 consequences are 12 subsumption and 704 instance rela-
tionships (class assertions).

We computed the boundary `c of each consequence c of the ontologies with
the algorithms described in [2] and then computed the change set for goal bound-
ary `g = `3. Consequences where `c = `g were not considered. Thus, from the
716 consequences in OFunct, we have 415 remaining with labeling lattice (Ld,≤d)
and 474 remaining with (Ll,≤l). From the 27,477 consequences in OSnomed we
have 23,695 remaining with labeling lattice (Ld,≤d) and 25,897 with (Ll,≤l).

Table 1 contains results for the 4 combinations of the two ontologies and
the two labeling lattices. For each of them we tested our algorithm against the
basic approach of computing all MinAs and diagnoses. We limit the number of
computed MinAs and CS to 10, so our algorithms might not find the smallest
change set before reaching the limit. We measure the quality of the presented
variants given those limitations at execution time. Table 1 lists the ratio of
correct solutions where at least 1 correct change set was computed, and the ratio
of optimal solutions where the limit was not reached during the computation
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O
n
t. Lattice Variant Runtime Limit Time Ratio of Ratio of

per goal (minutes) correct optimal
solutions solutions

O
F
u
n
c
t

nonlinear all diagnoses and MinAs ≤ 10 MinA 44.05 96% 47%
a minimal CS ≤ 10 (partial) CS 8.66 100% 98%

linear all diagnoses and MinAs ≤ 10 MinA 54.46 98% 49%
a minimal CS ≤ 10 (partial) CS 8.61 100% 99%

O
S
n
o
m
e
d nonlinear all diagnoses and MinAs ≤ 10 MinA 184.76 100% 75%

a minimal CS ≤ 10 (partial) CS 10.51 100% 100%
linear all diagnoses and MinAs ≤ 10 MinAs 185.35 100% 75%

a minimal CS ≤ 10 (partial) CS 28.14 100% 98%

Table 1. Results comparing our with the reference approach in 4 test settings

and thus yielded the smallest change set possible. Notice however that the ratio
of cases with the minimal change set successfully computed might be higher,
including those where the limitation was reached but the minimal change set
was already found.

Computing all MinAs is clearly outperformed by our optimized approach.
To conclude, fixed sub-ontologies and cardinality limit are optimizations with
reasonable impact.

6 Conclusions

Previous work has studied labeled ontologies and methods to compute bound-
aries for their consequences. In this paper we considered scenarios where a se-
curity administrator is not satisfied with the access restriction level computed
from the access restriction levels of the implying axioms. Based on ontology re-
pair techniques we developed algorithms to compute a change set of minimal
cardinality, which contains axioms to be relabeled in order to yield a conse-
quence’s access restriction. The base problem, finding the smallest MinA and
diagnosis without computing all of them might be interesting beyond our ap-
plication domain. Our algorithms take advantage of (1) fixing a subset of the
axioms which are not part of the search space, and (2) limiting cardinality of
change sets to be computed in the Hitting Set Tree to the smallest known change
set. We implemented the algorithms and have first experimental results on large-
scale ontologies which show that our ideas yield tangible improvements in both
the execution time and the quality of the solution.

As future work we intend to study the problem of finding change sets for
several consequences (each with its own goal label) simultaneously. We will also
look at more flexible restrictions on the goal label and other criteria for the
minimality of change sets for example not counting the amount of changed axiom
label assignments but the distance of the new from the old label in the lattice
or the amount of other consequence’s boundaries changed.
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1 Introduction

Why modularize an ontology? In software engineering, modularly struc-
tured systems are desirable, all other things being equal. Given a well-designed
modular program, it is generally easier to process, modify, and analyze it and to
reuse parts by exploiting the modular structure. As a result, support for modules
(or components, classes, objects, packages, aspects) is a commonplace feature in
programming languages.

Ontologies are computational artefacts akin to programs and, in notable
examples, can get quite large as well as complex, which suggests that exploiting
modularity might be fruitful, and research into modularity for ontologies has
been an active area for ontology engineering. Recently, a lot of effort has gone
into developing logically sensible modules, that is, modules which offer strong
logical guarantees for intuitive modular properties. One such guarantee is called
coverage and means that the module captures all the ontology’s knowledge about
a given set of terms (signature)—a kind of dependancy isolation. A module in this
sense is therefore a subset of the axioms in an ontology that provides coverage
for a signature, and each possible signature determines such a module. Coverage
is provided by modules based on conservative extensions, but also by efficiently
computable approximations, such as modules based on syntactic locality [1].

The task of extracting one such module given a signature, which we call
GetOne in this section, is well understood and starting to be deployed in stand-
ard ontology development environments, such as Protégé 4,1 and online.2 The
extraction of locality-based modules has already been effectively used in the field
for ontology reuse [2] as well as a subservice for incremental reasoning [3].

While GetOne is an important and useful service, it, by itself, tells us nothing
about the modular structure of the ontology as a whole. The modular structure
is determined by the set of all modules and their inter-relations, or at least a
suitable subset thereof. We call the task of a-posteriori determining the modular
structure of an ontology GetStruct and, in order to determine that structure, we
investigate here the task GetAll of extracting all modules. While GetOne is well-
understood and often computationally cheap, GetAll has hardly been examined
? This work has been supported by the UK EPSRC grant no. EP/E065155/1.
1 http://www.co-ode.org/downloads/protege-x
2 http://owl.cs.manchester.ac.uk/modularity
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for module notions with strong logical guarantees, with the work described in [4]
being a promising exception. GetOne also requires the user to know in advance
the right set of terms to input to the extractor: we call this a seed signature
for the module and note that one module can have several such seed signatures.
Since there are non-obvious relations between the final signature of a module and
its seed signature, users are often unsure how to generate a proper request and
confused by the results. If they had access to the overall modular structure of the
ontology determined by GetAll, they could use it to guide their extraction choices.
In general, supported by the experience described in [4], we believe that, by
revealing the modular structure of an ontology, we can obtain information about
its topicality, connectedness, structure, superfluous parts, or agreement between
actual and intended modeling. Our use-cases include: for ontology engineers, the
possibility of checking the ontology design—for example, if the module relative
to some terms corresponds to the intuitive “knowledge encapsulation” about
that term; for end users, the possibility to support the understanding of what
the ontology deals with, and where the topic they want to focus on is placed
within the ontology.

In the worst case, the number of all modules of an ontology is exponential in
the number of terms or axioms in the ontology, in fact in the minimum of these
numbers. Hence, it is possibly the case that ontologies have too many modules
to extract all of them, even with an optimized extraction methodology. Even
with only polynomially many modules, there may be too many for direct user
inspection. Then, some other form of analysis would have to be designed.

We report on experiments to obtain or estimate this number and to evaluate
the modular structure of an ontology where we succeeded to compute it.

Related work. One solution to GetStruct is described in [4,5] via partitions
related to E-connections. The resulting modules are disjoint, and this technique
is of limited applicability—when it succeeds, it divides an ontology into three
kinds of modules: (A) those which import vocabulary from others, (B) those
whose vocabulary is imported, and (C) isolated parts. In experiments and user
experience, the numbers of parts extracted were quite low and often correspon-
ded usefully to user understanding. For instance, the tutorial ontology Koala,
consisting of 42 logical axioms, is partitioned into one A-module about animals
and three B-modules about genders, degrees and habitats.

It has also been shown in [4] that certain combinations of these parts provide
coverage. For Koala, such a combination would still be the whole ontology. In
general, partitions were observed to be too coarse grained; sometimes extraction
resulted in a single partition even though the ontology seemed well structured.
Furthermore, the robustness properties of the parts (e.g., under vocabulary ex-
tension) are not as well-understood as those of locality-based modules. However,
partitions share efficient computability with locality-based modules.

Another approach to GetStruct is described in [6]. It underlies the tool Mod-
Onto, which aims at providing support for working with ontology modules that
is similar to, and borrows intuitions from, software modules. This approach is
logic-based and a-posteriori but, to the best of our knowledge, it has not been ex-
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amined whether such modules provide coverage in the above sense. Furthermore,
ModOnto does not aim at obtaining all modules from an ontology.

Another procedure for partitioning an ontology is described in [7]. However,
this method only takes the concept hierarchy of the ontology into account and
can therefore not provide the strong logical guarantee of coverage.

Among the a-posteriori approaches to GetOne, some provide logical guaran-
tees such as coverage, and others do not. The latter are not of interest for this
paper. The former are usually restricted to DLs of low expressivity, where decid-
ing conservative extensions—which underly coverage—is tractable. Prominent
examples are the module extraction feature of CEL [8] and the system MEX [9].
However, we aim at an approach that covers DLs up to OWL 2.

There are a number of logic-based approaches to modularity that function
a-priori, i.e., the modules of an ontology have to be specified in advance by fea-
tures that are added to the underlying (description) logic and whose semantics
is well-defined. These approaches often support distributed reasoning; they in-
clude C-OWL [10], E-connections [11], Distributed Description Logics [12], and
Package-Based Description Logics [13]. Even in these cases, however, we may
want to understand the modular structure of the syntactically delineated parts.
Furthermore, with imposed structure, it is not always clear that that structure is
correct. Decisions about modular structure have to be taken early in the model-
ing which may enshrine misunderstandings. Examples were reported in [4], where
user attempts to capture the modular structure of their ontology by separating
the axioms into separate files were totally at odds with the analyzed structure.
Overview of the experiments and results. In the following, we will report
on experiments performed to extract all modules from several ontologies as a
first solution candidate for GetAll. We have considered three notions of modules
based on syntactic locality—they all provide coverage, but differ in the size of the
modules and in other useful properties of modules, see [14]—and extracted such
modules for all subsets of the terms in the respective ontology. At this stage, we
are mainly interested in module numbers rather than sizes or interrelations: the
main concern is whether the suspected combinatorial explosion occurs. In order
to test the latter, we have sampled subsets of each ontology and performed a full
modularization on each subontology, measuring the relation between module
number and subontology size for each ontology. We have also tried different
approaches to reduce the number of modules to the most “interesting” ones.

An extended version of this paper and additional material for the evaluation
of the experiments, such as spreadsheets and charts, are available online [15,16].

2 Preliminaries

Underlying description logics. We assume the reader to be familiar with
OWL and the underlying description logics (DLs) [17,18]. We consider an on-
tology to be a finite set of axioms, which are of the form C v D or C ≡ D,
where C,D are (possibly complex) concepts, or R v S, where R,S are (pos-
sibly inverse) roles. Since we are interested in the logical part of an ontology, we
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disregard non-logical axioms. However, it is easy to add the corresponding an-
notation and declaration axioms in retrospect once the logical part of a module
has been extracted. This is included in the publicly available implementation of
locality-based module extraction in the OWL API.3

Let NC be a set of concept names, and NR a set of role names. A signa-
ture Σ is a set of terms, i.e., Σ ⊆ NC ∪ NR. We can think of a signature
as specifying a topic of interest. Axioms that only use terms from Σ can be
thought of as “on-topic”, and all other axioms as “off-topic”. For instance,
if Σ = {Animal,Duck,Grass, eats}, then Duck v ∃eats.Grass is on-topic, while
Duck v Bird is off-topic.

Any concept or role name, ontology, or axiom that uses only terms from Σ is
called a Σ-concept, Σ-role, Σ-ontology, or Σ-axiom. Given any such object X,
we call the set of terms in X the signature of X and denote it with X̃.
Conservative extensions and locality. Conservative extensions (CEs) cap-
ture the above described encapsulation of knowledge. A CE-based module for a
signature Σ of an ontology O preserves all entailments η in O that can be for-
mulated using symbols Σ only. For more precise definitions, see e.g., [19,20,15].

Unfortunately, CEs are hard or even impossible to decide for many DLs, see
[21,19,14]. Therefore, approximations have been devised. We focus on syntactic
locality (here for short: locality). Locality-based modules can be efficiently com-
puted and provide coverage, that is, they capture all the relevant entailments,
but not necessarily only those [1,22]. Although locality is defined for the DL
SHIQ, it is straightforward to extend it to SHOIQ(D) (see [1,22]), and the
implementation of locality-based module extraction in the OWL API. We are
using the notion of locality from [14].

Definition 1. An axiom α is called syntactically ⊥-local (>-local) w.r.t. signa-
ture Σ if it is of the form C⊥ v C, C v C>, R⊥ v R (R v R>), or Trans(R⊥)
(Trans(R>)), where C is an arbitrary concept, R is an arbitrary role name,
R⊥ /∈ Σ (R> /∈ Σ), and C⊥ and C> are from Bot(Σ) and Top(Σ) as defined in
Figure 2 (a) (Figure 2 (b)).

It has been shown in [1] thatM⊆ O and all axioms in O \M being ⊥-local
(or all axioms being >-local) w.r.t. Σ ∪ M̃ is sufficient for M to be a CE-based
module for Σ of O. The converse does not hold in general.

It is described in [1] how to obtain modules of O for >- and ⊥-locality.
We are using the notions of >-, ⊥-, >⊥∗- and ⊥>∗-modules from [14, Def.
4]. That is, given an ontology O, a seed signature Σ and a module notion
x ∈ {>,⊥,>⊥∗,⊥>∗}, we denote the x-module of O w.r.t. Σ by x-mod(Σ,O). If
we do not specify x, we generally speak of a locality-based module. It is straight-
forward to show that >⊥∗-mod(Σ,O) = ⊥>∗-mod(Σ,O) for each O and Σ. In
contrast, >- and ⊥-modules do not have to be equal—in fact, the former are
usually larger than the latter. Through the nesting, >⊥∗-mod(Σ,O) is always
contained in >-mod(Σ,O) and ⊥-mod(Σ,O). Finally, we want to point out that,
for M = x-mod(Σ,O), neither Σ ⊆ M̃ nor M̃ ⊆ Σ needs to hold.
3 http://owlapi.sourceforge.net
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(a) ⊥-Locality

Let A⊥, R⊥ /∈ Σ, C⊥ ∈ Bot(Σ), C>(i) ∈ Top(Σ), n̄ ∈ N \ {0}
Bot(Σ) ::= A⊥ | ⊥ | ¬C> | C u C⊥ | C⊥ u C | ∃R.C⊥ | >n̄ R.C⊥ | >n̄ R⊥.C
Top(Σ) ::= > | ¬C⊥ | C>1 u C>2 | >0R.C

(b) >-Locality

Let A>, R> /∈ Σ, C⊥ ∈ Bot(Σ), C>(i) ∈ Top(Σ), n̄ ∈ N \ {0}
Bot(Σ) ::= ⊥ | ¬C> | C u C⊥ | C⊥ u C | >n̄ R.C⊥
Top(Σ) ::= A> | > | ¬C⊥ | C>1 u C>2 | >n̄ R>.C> | >0R.C

Figure 1. Syntactic locality conditions

The following property of locality-based modules has been shown in [1] for
x ∈ {⊥,>}. The transfer to nested modules is straightforward.

Proposition 2. Let O be an ontology, Σ,Σ′ be a signatures, x ∈ {⊥,>,>⊥∗};
let M = x-mod(Σ,O) and Σ ⊆ Σ′ ⊆ Σ ∪ M̃. Then x-mod(Σ′,O) =M.

Genuine modules. In order to limit the overall number of modules, we in-
troduce the notion of a genuine module. Intuitively, a given module M of an
ontology is fake if it can be partitioned into a set {M1, . . . ,Mn} of smaller
modules such that each “relevant” entailment of M follows from some Mi.

Since the definition of relevance of an entailment within a module is still
in progress, we use a computable approximation, described in Definition 3. We
first introduce some useful notions. Let O be an ontology and M be the set
of all modules of O. An atomic concept C is called top-level for M (bottom-
level for M) if O |= A v C (O |= C v A) for all atomic concepts A ∈ M̃ . A
set {Σ1, . . . , Σn} of signatures is called M-almost pairwise disjoint if every two
signatures Σi, Σj with i 6= j are disjoint or share at most one symbol, which is
an atomic concept, and if the set of all these shared atomic concepts contains at
most one top-level and at most one bottom-level concept for M.

Definition 3. A module M ∈M is fake if there exist modules M1, . . . ,Mn ∈
M such that M = M1 ] · · · ] Mn and the set {M̃1, . . . ,M̃n} is M-almost
pairwise disjoint. Otherwise M is called genuine.

In particular, if a module is fake, then it consists of disjoint modules whose
signatures almost disjoint. For example, in Koala, we have a fake module about
habitat that consists of a rainforest and a dryforest submodule, which only over-
lap in the term habitat and do not share any other terms and no axioms. Fake
modules are uninteresting because M being fake means that different seed sig-
natures of the Mi do not interact with each other. Given that often the overall
number of modules appears to grow exponentially with the size of the subonto-
logy, a natural question arising is whether this is only caused by the fact that
there are exponentially many fake modules.
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3 Description of the experiments

Ontologies. We performed the experiments on several existing ontologies that
we consider to be well designed and sufficiently diverse. We used Koala, Mere-
ology, University, People, miniTambis, OWL-S, Tambis and Galen, whose sizes
(axioms + terms) range from 42 + 25 to 4,528 + 3,161. See [15] for an overview
of sizes and expressivities as well as an explanation of the choice criteria.
Full modularization. Let O be the ontology to be modularized. Our goal is
to find all modules of O, i.e., to compute {x-mod(Σ,O) | Σ ∈ Õ}. In order to
keep track of the seed signatures, we seek an algorithm which, given O as input,
returns a representation of all pairs (Σ,M) with Σ ⊆ Õ andM = x-mod(Σ,O).

The most näıve procedure is to simply traverse through all seed signatures
Σ, extract the corresponding module and add it to the output. Since there are
exponentially many seed signatures, this is not feasible—even for Koala, 225

runs of even the easiest test is unrealistic. Fortunately, we have good reasons
to believe that there are significantly fewer modules than seed signatures in
realistic ontologies: first, Proposition 2 says that, given the locality-based module
M = x-mod(Σ,O), every seed signature Σ′ that extends Σ and is a subset of
Σ ∪ M̃ yields the same module M. Second, even if two seed signatures Σ and
Σ′ are not in such a relationship, the modules for Σ and Σ′ can still coincide.

It should be noted, however, that there are very simple families of ontolo-
gies that already have exponentially many genuine modules, for instance the
taxonomies Tn = {B v A} ∪ {Ci v B | i = 1, . . . , n}, or the ontologies
On = {Bi v A, Ci v Bi | i = 1, . . . , n} ∪ {Bi v ¬Bj | 1 6 i < j 6 n}.
More examples are given in [15]. However, we have not been able to construct
any example with exponentially many genuine modules for inferred concept hier-
archies of bounded width. In contrast, there are ontologies of arbitrary size that
have exactly one module or at most quadratically many modules. Thus, while
the worst case number of modules is high, it is not analytically impossible that
real ontologies would have a reasonable number of modules. Unfortunately, em-
pirically, as discussed in Section 4, this does not seem to be the case. We are not
aware of any systematic study about theoretically possible module numbers.

Since a module can have several seed signatures, we represent a module as a
pair consisting ofM and the set S of all minimal seed signatures Σ for whichM
is a module. Whenever a module for a new seed signature Σ′ is to be computed,
we first check whether Σ′ satisfies Σ ⊆ Σ′ ⊆ Σ ∪M̃ for some already extracted
module M and some associated minimal seed signature Σ. Only if this is not
the case, the module M′ = x-mod(Σ′,O) is computed. If M′ coincides with
some already extracted module M, then Σ′ is added to the set of minimal seed
signatures associated withM; otherwise the pair ({Σ′},M′) is added to the set
of extracted modules. This is performed by Algorithm 1, which calls Alg. 2. For
soundness and completeness of Algorithm 1 and optimizations, see [15].
Sampling via subsets. In preliminary testing it soon became apparent that
even our optimized algorithm would not reasonably terminate on even fairly
small ontologies. Since we have a search space exponential in the size of the
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Algorithm 1 Extract all x-modules
1: Input: an ontology O with signature Õ
2: Output: a set M = {(S1,M1), . . . , (Sn,Mn)}

of all x-modules of O,
associated with their sets of
minimal seed signatures (SSigs)

3: {Start : extract x-modules for all singleton SSigs}
4: M← ∅
5: for all t ∈ Õ do
6: M← extract x-module of O w.r.t. {t}
7: call integrate(M, {t},M)
8: end for

9: {Extension: iteratively add single terms to SSigs}
10: while M contains (S,M) with marked Σ ∈ S do
11: (S,M)← some elem. of M with marked Σ ∈ S
12: Σ ← some marked element of S
13: for all t ∈ Õ \ (Σ ∪ M̃) do
14: M′ ← extract x-module of O w.r.t. Σ ∪ {t}
15: call integrate(M, Σ ∪ {t},M′)
16: end for
17: unmark Σ in (S,M)
18: end while
19: return M

Algorithm 2
integrate(M, Σ,M)

for all (S ′,M′) ∈M′ do
if M =M′ then
S ′ ← S ′ ∪ {Σ}
mark Σ in (S ′,M′)
return

end if
end for
M←M ∪ ({Σ},M)
mark Σ in ({Σ},M)
return

ontology and potentially exponentially many modules, it was not clear whether
the problem was that our algorithm was not sufficiently optimized (so that the
search space dominated) or that the output was impossible to generate. Since
it is pointless to try to optimize an algorithm for a function whose output is
exponentially large in the size of the typical input, it is imperative to determine
whether real-world ontologies do have an exponential number of modules. This
last question is one goal of the experiments described in this paper.

In order to test the hypothesis that real-life ontologies have an exponential
number of modules, we have sampled subsets of different sizes from the ontologies
considered. By fully modularizing each of these subsets, we can draw conclusions
about the asymptotic relation between its size and the number of modules ob-
tained. Randomly generated subsets would tend to contain unrelated axioms,
taken out of the context in which they have been included by the ontology
developers. Since unrelated axioms, or ontologies with many unrelated terms,
generally yield many modules, it would be harder to justify the hypothesis that
real-world ontologies tend to have significantly less than exponentially many
modules if we used arbitrary, less coherent subsets.

We have therefore chosen to let each subset be a module for a randomly
generated signature—although we are aware that such subsets are more modular
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than necessary because ontologies are not normally developed modularly. But
this is not a problem: it can only cause us to understate the number of modules.

We have sampled 10 signatures of each size between 0 and a threshold of 50
(or ontology’s signature size if that was smaller). In some cases where the subset
sizes were not optimally distributed (e.g., when small subsets were missing), we
sampled 30 signatures of each size. For these signatures, we have extracted the
>⊥∗-modules, excluding duplicates, and ordered them by size. Then we have
fully modularized all subsets in descending order, aborting when a single modu-
larization took longer than a preset timeout of 20, 60 or 600 minutes, see Section
4 for an explanation of that choice. For each subset, we counted the number of
all modules and of its genuine modules. See [15] for computer specifications.

4 Results

Module numbers for full modularization. Figure 2 shows the full modular-
ization of Koala and Mereology for the module types >, ⊥ and >⊥∗. In the case
of >⊥∗, we also determined genuine modules, denoted by >⊥∗g. In addition to the
number of modules, we have listed the runtime and four aggregations of module
sizes, where “size” refers to the number of logical axioms. Since the number of
axioms is a syntax-dependent measure, we plan to include other measures, such
as the number of terms and the sum of the sizes of all axioms, in future work.

Koala Mereology

> ⊥ >⊥∗ >⊥∗g > ⊥ >⊥∗ >⊥∗g
#Modules 12 520 3,660 2,143 40 552 1952 272
Time [s] 0 1 9 34 0 6 158 158
Min size 29 6 0 0 18 0 0 0
Avg size 35 27 23 23 26 25 20 22
Max size 42 42 42 42 40 40 40 38
Std. dev. 4 6 6 6 6 7 8 8

>⊥∗g = genuine >⊥∗ modules. “Size” = number of logical axioms.

Figure 2. Full modularization of Koala and Mereology

For both ontologies, the number of modules increases from >- via ⊥- to
>⊥∗ modules as expected: as mentioned before, >-modules tend to be bigger,
and therefore more modules coincide in this case. However, >-modules are too
coarse-grained: most of them comprise almost the whole ontology, and all have
a size of at least 29 (69% of Koala) or 18 (41% of Mereology).

The extracted ⊥-modules yield a more fine-grained picture, although all their
sizes for Koala are still above 6 (14%). We already pay for this with an increase in
the number of modules by a factor of more than 43 (Koala) and 14 (Mereology).
With >⊥∗, smaller modules are included, but for the price of another increase
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in module numbers by a factor of 7 (Koala) and 3.5 (Mereology). For a more
fine-grained modularization, we also pay with an increased extraction time. See
[15] for comments on the observed differences between Koala and Mereology.

Attempts to fully modularize ontologies larger than Koala and Mereology with
the described algorithm did not succeed. We cancelled each such computation
after several hours, when thousands of modules have been extracted.

Although Koala and Mereology have much fewer modules than the theoretical
upper bound of 225, we still get too many for (regular) inspection by ontology
users. We have therefore tried two more ways to reduce their modules to fewer
“interesting” ones. Both approaches showed no significant impact, see [15].

Module numbers for subset sampling. After carrying out the subset sam-
pling technique described in Section 3, we are strongly convinced that most of
the ontologies examined exhibit the feared exponential behavior. Figure 3 shows
scatterplots of the number of>⊥∗ modules (genuine>⊥∗ modules) versus the size
of the subset for People and Koala. Each chart shows an exponential trendline,
which is the least-squares fit through the data points by using the equation
m = cebn, where n is the size of the subset, m is the number of modules, e is
the base of the natural logarithm, and c, b are constants. This equation and the
corresponding determination coefficient (R2 value) are given beneath each chart.
Spreadsheets with the underlying data, as well as spreadsheets and charts for
the other ontologies, can be found at [16]. The R2 values and trendline equations
for the examined ontologies are summarized in Figure 4, where we also included
the estimated number of modules for the full ontology as per the equation, the
timeout used and the overall runtime.
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Figure 3. Numbers of modules versus subset sizes for Koala and People

The scatterplots and determination coefficients for the first six ontologies in
Figure 4 provide strong evidence that the number of modules depends exponen-
tially on the size of the subset.

Weight analysis for Koala. Even if we consider only genuine modules, there
are ontologies that have exponentially many of them. In order to focus on even
fewer, “interesting” modules, we have devised the measures cohesion and pulling
power. Thy are based on the number of seed signatures (SSigs) of a module M
and the number of terms in M̃. An SSig Σ of M is called minimal (MSSig) if
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Confidence Trendline equation Estimate Timeout Runtime
Ontology R2

m R2
g m g m g [min] [min]

People .95 .95 both 2 · 10−13e.41n 106 106 20 148
Mereology .87 .94 1.2e.16n 1.1e.13n 103 102 — 4
Koala .90 .88 .45e.21n .50e.19n 103 103 — 4
Galen .94 .86 1.2e.24n 1.6e.16n NaN NaN 60 288
University .84 .83 1.7e.19n 1.6e.14n 104 103 20 354
OWL-S .82 .84 .0027e.17n .0032e.16n 1017 1017 60 73

Tambis .75 .70 1.1e.22n 1.4e.13n 1058 1033 600 681
miniTambis .47 .52 2.6e.18n 2.5e.14n 1014 1010 600 963

m, g >⊥∗ modules, genuine >⊥∗ modules
R2

m, R2
g Determination coefficient of fitted trendlines

Estimate Module numbers for full ontology as per trendline
NaN Estimate is larger than 10142

Figure 4. Witnesses for exponential behavior

there is no signature Σ′ ⊂ Σ that is an SSig ofM. If we ignore terms not present
in the module, we speak of a real MSSig forM: this is a signature Σ′ = Σ ∩M̃
where Σ is an MSSig for M. Let r, s,m be the number of real MSSigs for M,
the size of the smallest MSSig for M, and the size of M̃.

The cohesion ofM measures how strongly the terms inM are held together,
as indicated by the number of seed signatures forM. More precisely, the cohesion
ofM is defined to be the ratio r/s. The pulling power ofM measures how many
terms are needed in an MSSig to “pull” all terms intoM that we find there. We
define the pulling power of M to be the ratio m/s.

As a first draft, we define the weight of a module M to be the product of
its cohesion and pulling power: w = r·m

s2 . We computed the weight of all 3660
modules of Koala. The 11 heaviest modules and their set differences yield a
partition of almost the whole ontology into 10 parts, each of which consists of
terms that intutively form a topic (subconcepts included): Animal; Person and
isHardWorking; Student; Parent; Koala and Marsupial; TasmanianDevil; Quokka;
Habitat; Degree; Gender. These topics reflect the core parts of the ontology. Ax-
ioms that do not occur among the heaviest modules tend to be those that we in-
tuitively would call less important for the ontology, e.g., RainForest v Forest.The
first 11 (34) modules cover 39 (42) out of all 42 logical axioms.

The next step will be to refine this measure and apply it to more ontologies
and to find ways to extract heavy-weight modules separately.

5 Discussion and outlook

The fundamental conclusion is clear: the number of modules, even when we
restrict our attention to genuine modules, is exponential in the size of the on-
tology for real ontologies. Our most reasonable estimates of the total number
of modules in small to midsize ontologies (i.e., anything over 100 axioms) show
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that full modularization is practically impossible. As we are computing local-
ity based modules, which tend to be larger than conservative extension based
modules, our results give us a lower bound on the number of modules.

It is, of course, possible that there are principled ways to reduce the target
number of modules. We could use a coarser approximation, though that would
be hard to justify on logical grounds. Attempts to use “less minimal” modules
or to heuristically merge modules have exhibited bad behavior, with a strong
tendency to collapse to very few modules that comprise most of the ontology.

We believe that this conclusion is robust, even with the failure of our experi-
ments on Tambis and miniTambis to uncover exponential behavior. As we said in
Section 4, our expectation is that a longer timeout will reveal the problematic
behavior. We also suspect a connection between the relatively low number of
modules for these two ontologies and the fact that they have a large number of
unsatisfiable concepts. For details, see [15]. The ratio between genuine and fake
modules can be seen as a measure of axiomatic richness, at least indicating how
strongly the axioms in the ontology connect its terms: the fewer of its modules
are fake, the more “mutually touching” its terms are.

Attempts at estimating the module number statistically were unhelpful too.
We could randomly draw a small number of seed signatures, compute their mod-
ules and use that number to estimate the number of all modules. We convinced
ourselves using elementary stochastics that we cannot get a confident estimate
by sampling only a small proportion of all seed signatures. See [15] for details.

While the outcome of the experiments is discouraging from the point of view
of using the complete modularization in order to analyze the ontology, it does
suggest several interesting lines of future work. First, we have already seen sev-
eral features of ontologies that correlate well with a large or small number of
modules. However, except for the phenomenon seen in Mereology, we do not
have a verified explanation. Thus, for example, we need to get a precise picture
of the relationship between justificatory and modular structure. Second, even if
we cannot compute all modules, we may be able to compute a better approx-
imation of their number. Given that signature sampling did not seem to help,
we intend to explore sources of module number increase or reduction, such as
the shape of the inferred concept hierarchy and patterns of axioms. Methodolo-
gically, it seems that artificial ontologies should be used, e.g., for confirmation
of the relationship between justificatory structure and module number. Third,
our preliminary experiments aimed at computing heavy weight ontologies are
promising: our weights seem to capture nicely the cohesion and pulling power
of a module, and the resulting heavy modules seem to correlate nicely with top-
ics. We are currently investigating whether it is possible to compute all heavy
modules without computing all modules, and also looking into a suitable notion
of building blocks of modules. The latter concept is closely related to fake and
genuine modules, which we are also investigating in more detail.
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Abstract. Sophisticated uncertainty representation and reasoning are
necessary for the alignment and integration of Web data from different
sources. For this purpose the extension of the Description Logics using
fuzzy set theory has been proposed, resulting to fuzzy Description Logics
(DLs). However, despite the fact that since the initial proposal a lot of
work has been done in the area, the practicability of very expressive
fuzzy DLs still remains open, due to the absence of practically scalable
systems. This paper presents optimization techniques that can improve
the performance of fuzzy-DL systems’ reasoning.

1 Introduction

Fuzzy ontologies are envisioned to be very useful in the Semantic Web. Further-
more, the need for handling fuzzy and uncertain information is crucial to the
Web, since information and data along it may often be uncertain or imperfect.
This requirement for uncertainty representation has led W3C to set up the Un-
certainty Reasoning for the World Wide Web XG3. Currently FiRE 4 [13] and
FuzzyDL5 [1] are the only existing systems for very expressive fuzzy description
logics (DLs) supporting the fKD-SHIN and fuzzy SHIf languages respectively.
Furthermore, the DeLorean reasoner that supports fKD−SROIQ was recently
proposed in literature [3]. This reasoner does not implement a fuzzy tableau al-
gorithm but an algorithm that reduces a fuzzy knowledge base to a crisp one [2]
using Pellet [12] for reasoning.

Despite the fact that the first proposal for fuzzy DLs was made by Straccia
in 1998 [16], since then little work has been done in order to permit the use
of expressive fuzzy DLs in realistic applications. The theoretical complexity of
the tableau reasoning algorithm for f-SHIN , presented in [14], is 2-Nexptime

3 http://www.w3.org/2005/Incubator/urw3/
4 http://www.image.ece.ntua.gr/~nsimou/FiRE/
5 http://gaia.isti.cnr.it/~straccia/software/fuzzyDL/fuzzyDL.html
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that is very expensive. Therefore an implementation directly based on this very
expensive algorithm, would result to a reasoner that could not be applied to
real case scenarios. This problem was handled in crisp DLs, that also suffer from
high complexity, by the use of optimization techniques [8, 18]. Using these tech-
niques, a theoretically expensive computation can be converted to an equivalent
of practically lower complexity. As a result many optimized reasoners were im-
plemented for expressive DLs like FaCT++ [17], Racer [5] and Pellet [12] that
can handle effectively large and expressive knowledge bases.

Regarding optimization techniques for fuzzy DLs there is only the work of
Haarslev et al. [6] that presents an optimized prototype system supporting ALC
extended with uncertainty. This system uses fuzzy, probabilistic and possibilistic
functions, while the optimizations presented are quite general. Our work, on the
other hand, focuses on optimization techniques only for fuzzy DLs and more
specifically for the expressive DL fKD-SHIN . We present in detail the proposed
optimization techniques, we discuss their applicability to fuzzy DLs using other
fuzzy operators than those used in fKD-SHIN , and we optimize the operation
of the greatest lower bound that is the main reasoning service of fuzzy DLs. The
main contributions of this paper are the following:

1. It presents novel optimization techniques that can be applied to fuzzy DLs.
2. It provides an experimental evaluation of the proposed optimization tech-

niques.

The rest of the paper is organized as follows. The following section introduces
fKD-SHIN , section 3 presents the proposed optimizations techniques and sec-
tion 4 illustrates the evaluation of our proposal. Finally, section 5 concludes the
paper and provides a discussion on the achieved results and possible future work.

2 The Fuzzy DL fKD-SHIN
In this section, we briefly present the syntax and semantics of DL fKD-SHIN
which is a fuzzy extension of the DL SHIN [9]. Similarly to crisp description
logic languages, a fuzzy description logic language consists of an alphabet of
distinct concepts names (C), role names (R) and individual names (I), together
with a set of constructors to construct concept and role descriptions. If R is a
role then R− is also a role, namely the inverse of R. fKD-SHIN -concepts are
inductively defined as follows,

1. If C ∈ C, then C is a fKD-SHIN -concept,
2. If C and D are concepts, R is a role, S is a simple role and n ∈ N, then

(¬C), (C t D), (C u D), (∀R.C), (∃R.C), (≥ nS) and (≤ nS) are also
fKD-SHIN -concepts.

In contrast to crisp DLs, the semantics of fuzzy DLs are provided by a fuzzy
interpretation [15]. A fuzzy interpretation is a pair I = 〈∆I , ·I〉 where ∆I is a
non-empty set of objects and ·I is a fuzzy interpretation function, which maps
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an individual name a to elements of aI ∈ ∆I and a concept name A (role name
R) to a membership function AI : ∆I → [0, 1] (RI : ∆I ×∆I → [0, 1]).

By using fuzzy set theoretic operations the fuzzy interpretation function can
be extended to give semantics to complex concepts, roles and axioms. fKD-SHIN
uses the standard fuzzy operators of 1−x for fuzzy negation, max, min for fuzzy
union and intersection respectively and Kleenes Dienes implication [10].

A fKD-SHIN knowledge base Σ is a triple 〈T ,R,A〉, where T is a fuzzy
TBox, R is a fuzzy RBox and A is a fuzzy ABox. The TBox is a finite set
of fuzzy concept axioms which are of the form C v D called fuzzy concept
inclusion axioms and C ≡ D called fuzzy concept equivalence axioms, where
C is a concept name and D an fKD-SHIN concept. Similarly, the RBox is a
finite set of fuzzy role axioms of the form Trans(R) called fuzzy transitive role
axioms and R v S called fuzzy role inclusion axioms. Finally, the ABox is a
finite set of fuzzy assertions of the form 〈a : C./n〉, 〈(a, b) : R./n〉, where ./
stands for ≥, >,≤ or <, or a 6 .= b, for a, b ∈ I. Furthermore, the symbols B and
C are used as a placeholder for the inequalities ≥, > and ≤, < respectively. An
assertion is called positive if defined by B while it is called negative if defined
by C. Intuitively, a fuzzy assertion of the form 〈a : C ≥ n〉 means that the
membership degree of a to the concept C is at least equal to n.

As in crisp DLs, the main reasoning services of fKD-SHIN are entailment,
ABox consistency and subsumption. Furthermore, since a fuzzy ABox might
contain many positive assertions for an individual, without forming a contradic-
tion, two additional reasoning services exist in fKD-SHIN to compute what is
the best lower and upper truth-value bounds of a fuzzy assertion. The greatest
lower bound (glb) and the least upper bound (lub) of an assertion with respect
to a knowledge base have been defined in [15].

The reasoning services in fuzzy DLs are reduced to ABox consistency. This
problem in the majority of expressive DLs is solved with the use of tableaux
algorithms [7] that operate by decomposing complex concepts contained in an
ABox according to their semantics. This procedure is made by expansion rules
that differ for each DL constructor. The main objective of tableaux algorithms is
to create a tableau structure that will be an abstraction of a model of an ABox
A [9]. In a similar way, a tableau algorithm is used in fuzzy DLs to construct a
fuzzy tableau for a fuzzy ABox A [14].

The tableau algorithm, presented by Stoilos et al. [14] for fKD-SHIN , op-
erates in completion forests similar to the SHIN algorithm [9]. A completion
forest consists of a set of completion trees that are connected as the defined
assertions of an ABox A specify. Each node x is labelled with a set L(x), which
contains membership triples of the form 〈C, ./, n〉, where C a fKD-SHIN con-
cept that appears within A and n ∈ [0, 1]. Similarly, each edge 〈x, y〉 is labelled
with a set L(〈x, y〉) which contains membership triples of the form 〈R, ./, n〉,
where R is an fKD-SHIN role that occurs in A. The algorithm expands the
tree either by expanding the set L(x), of a node x with new triples, or by adding
new leaf nodes. The expansion of the completion forest is determined from the
tableau expansion rules that apply for the membership triples of a node. If
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for example 〈C1 u C2,B, n〉 ∈ L(x), and {〈C1,B, n〉, 〈C2,B, n〉} 6⊆ L(x) then
L(x)→ L(x)∪{〈C1,B, n〉, 〈C2,B, n〉}. It is very important to note at this point
that tableau expansion rules for fuzzy DLs depend on the type of assertion,
hence a positive conjuction is treated differently from a negative one. Finally,
intuitively a clash is contained in a node when there are two conjugated triples
i.e L(x) = {〈C,>, n〉 〈C,<, l〉 }, with n > l. For a detailed presentation of the
fKD-SHIN tableau algorithm, the interested reader is referred to [14].

3 Optimizations techniques

3.1 Degrees Normalization

The ABox in fuzzy DLs contains concepts assertions, in which an individual
participates in a concept with a degree, as well as role assertions, in which two
individuals are related through a role with a degree. Due to this extension, in
fuzzy DLs we can end up with an ABox in which an individual participates in
the same concept with different degrees without forming a contradiction. Since
the ABox of a fuzzy knowledge base in many cases is automatically generated
[11], the existence of multiple assertions that can degrade the performance of
reasoning is possible. Therefore, we can end up with a node

L(x) = {〈C,Bi, ni〉, 〈C,Cj , `j〉},
where C is a fKD-SHIN concept, ni, `j ∈ [0, 1] are degrees and 1 ≤ i ≤ k, 1 ≤
j ≤ m. This situation is particularly problematic for many reasons. Firstly, in
order to check for a clash we need to perform a proper number of checks, which
here is k×m. Subsuquently, if the node is clash-free and C is the complex concept
∃R.A, then one needs to apply rule ∃B k times creating k different edges 〈x, yi〉
with L(yi) = {〈A,Bi, ni〉}.

This situation can be solved more effectively by normalizing the participation
degrees in the membership triples of a node that use the same concept, reducing
the assertions of this concept in a node to at most 2. In other words, we only
allow the greatest positive assertion and the least negative assertion of a concept
in a node, i.e.

L(x) = {〈C,B, dmax〉 〈C,C, dmin〉}.
If we furthermore extend this idea to concept assertions that include the nega-
tion of a concept, we end up with the rules illustrated in Table 1 for degrees
normalization in a node.

Additionally, during the process of degrees normalization, we can introduce
some additional rules based on the expansion rules of fKD-SHIN in order to
detect a contradiction. Lets assume node

L(x) = {〈C,>, n〉 〈¬C,>, l〉 }
and n + l ≥ 1 which means that there is a clash that can be detected without
applying the fKD-SHIN rule of negation.

Nikolaos Simou, et al. 247



Table 1. Rules for degrees normalization

Assertion 1 Assertion 2 Condition Action

〈C,B, n〉 ∈ L(x) 〈C,B,m〉 ∈ L(x) nBm Delete 〈C,B,m〉
〈C,>, n〉 ∈ L(x) 〈C,≥,m〉 ∈ L(x) n ≥ m Delete 〈C,≥,m〉
〈C,C, n〉 ∈ L(x) 〈C,C,m〉 ∈ L(x) nC l Delete 〈C,B,m〉
〈C,<, n〉 ∈ L(x) 〈C,≤,m〉 ∈ L(x) n ≤ m Delete 〈C,≥,m〉
〈C,C, n〉 ∈ L(x) 〈¬C,B,m〉 ∈ L(x) n ≤ 1−m Delete 〈¬C,B,m〉

n > 1−m Delete 〈C,C, n〉
〈C,B, n〉 ∈ L(x) 〈¬C,C,m〉 ∈ L(x) n ≥ 1−m Delete 〈¬C,C,m〉

n < 1−m Delete 〈C,B, n〉

The technique of degrees normalization can be also extended to the role
assertions of a fuzzy ABox. Degrees normalization is easily implemented and for
a node x that contains n membership triples the possible checks that need to be
done are the combinations per 2 i.e. n!

2!(n−2)! which means that this technique is
of polynomial complexity. Additionally, the rules for early clash detection can
be modified according to the fuzzy complement used for the interpretation of
negation, permiting in that way its use in fuzzy DLs that use different fuzzy
logics. The only disadvantage of this optimization technique is that it is strongly
depended on the knowledge base. In other words, it is possible that the use of
degrees normalization technique for some knowledge bases (more specifically for
knowledge bases that do not contain membership triples of the same concept)
will have no result in the performance.

3.2 ABox Partitioning

An optimization technique that was applied in crisp reasoners and can be also
used in fuzzy reasoners to boost up their performance is ABox partitioning [4,
6]. This technique is based on the fact that tableau expansion rules have specific
effect on the tableau structure. Hence, a tableau expansion rule can either add
(i) a new neighbour node to the node of examination, (ii) new membership
triples in this node or finally (iii) new membership triples to neighbouring nodes.
Therefore, due to this property of the fKD-SHIN constructors, the assertional
component of a fuzzy knowledge base can be divided in smaller partitions, which
can be examined independently. Let’s examine the following example in order
to understand the benefits from the ABox partitioning technique.

Example 1. Let us assume the completion forest shown in Fig. 1 where A, B, C,
D, E, F are fKD-SHIN concepts and R, S, L are fKD-SHIN roles.

Assuming that B is a complex fKD-SHIN concept, we will examine the
different ways that the tableau expansion rules affect this completion forest,
with respect to the different forms that B can have and the different forms of
inequalities (B,C) that can appear in membership triples with B. Consequently
we distinguish the following cases: If B consists of:
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v

w

x

y

z

u

S > 0.8 L > 0.6

L(v) = {〈B,>, 0.6〉}

R > 0.6

L(x) = {〈D,>, 0.7〉}

R > 0.7

L(y) = {〈E,>, 0.5〉}

L(w) = {〈C,>, 0.4〉}

L(z) = {〈F,>, 0.8〉}

L(u) = {〈A,>, 0.5〉}

Fig. 1. The completion forest of two ABox partitions.

– constructors of the form ¬,u,t, then only node v is affected.
– constructors ∃ and ≥ and the membership triple contains B or constructors
∀ and ≤ and the inequality is C, then new neighbor nodes are created for
node v.

– constructor ∀ and inequality B or constructor ∃ and inequality C, then
all existing and (possibly) new neighbors of v are affected can be affected
(depending on the role S that participates in the concept B = ∀S.C and
whether there exists R with R v* S).

– constructor ≤ and inequality B, or ≥ and inequality C, then nodes w, x and
also the possible new neighbors of v are affected.

Finally, if we consider R− as the inverse role of R then again the expansion
of a rule with inverse roles will only affect the neighbors of v.

As we can observe, in any case the consistency of node v is independent of
nodes z and u. In other words, the ABox of the Example 1 can be partitioned
in two smaller ABoxes that can be examined independently. If both partitions
are consistent then the ABox will be consistent as well, while if even one of the
partitions is inconsistent then the ABox will be inconsistent.

In that way the storage requirements of tableau are considerably reduced,
since the nodes that are not connected to the node that is examined, and there-
fore do not directly affect its consistency, can be omitted. Additionally, the
storage requirements can be further reduced because after the expansion of a
consistent partition of the ABox, the partition can be discarded from the com-
pletion forest. Formally given ABox partitions are evaluated as folows.

Definition 1. (Connection Relation) We inductively define the connection
relation between two individuals a, b ∈ I w.r.t. an ABox A (denoted with !A)
as follows:

a!A b⇐⇒


R (a, b)B d ∈ A for some role R and d ∈ [0, 1] or
R (b, a)B d ∈ A for some role R and d ∈ [0, 1] or
a!A c and c!Ab for some individual c ∈ I

(1)
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Definition 2. For an ABox A and the set of individuals in it I, for each a ∈ I
the set [a]A contains a and all the individuals related to it w.r.t A.

[a]A = {a}∪ {b | b ∈ I and a!A b} (2)

Definition 3. We denote with A[a] the partition of the ABox A that contains
only individuals in [a]A:

A[a] = {C (b) ./d | C (b) ./d ∈ A and b ∈ [a]A}∪ (3)
{R (b, c)B d | R (b, c)B d ∈ A and b, c ∈ b ∈ [a]A}

Definition 4. The set A is the smallest subset of the powerset of A such that
it applies:

a ∈ I =⇒ A[a] ∈ A (4)

Theorem 1. It holds that:

1. ∪
Ai∈A

Ai = A,

2. Ai
⋂Aj = ∅, for each pair Ai,Aj ∈ A such that Ai 6= Aj ,

3. A is consistent w.r.t. a TBox T iff each Ai ∈ A is consistent w.r.t. a TBox
T .

ABox partitioning is a very effective optimization technique. It is of poly-
nomial complexity and it can be applied to any fuzzy DL without nominals
independently from the fuzzy operators used to provide the interpretations. The
extreme case in which ABox partitioning does not boost up the performance of
reasoning is when all the individuals are connected with each other. Addition-
ally, ABox partitioning is very important because the consistency of a node can
be examined independently of the others nodes contained in an ABox, a fact
that is very useful for greatest lower bound reasoning service (see Section 3.3).

3.3 Optimized GLB

One of the most interesting and important reasoning services offered by fuzzy
DLs is computing the greatest lower bound of some individual a to some concept
C. Formally for a fuzzy knowledge base Σ and a crip assertion ϕ, the greatest
lower bound (glb) of ϕ w.r.t.Σ is glb(Σ,ϕ) = sup{n | Σ |= ϕ ≥ n}, where sup ∅ =
0 while the least upper bound lub of c w.r.t. Σ is lub(Σ,ϕ) = inf{n | Σ |= ϕ ≤ n},
where inf ∅ = 1. A decision procedure for solving greatest lower and least upper
bounds was proposed by Straccia [15]. More precisely, one first defines the set
of “relative” degrees as complemented values (for membership degree 0.4, the
complemented value is C0.4 = 1−0.4 = 0.6) and the degrees 0, 0.5 and 1 form the
set of membership degrees NΣ = {n, 1−n | {(a : C)./n, ((a, b) : R)./n}∩A 6= ∅}.
Then, in order to evaluate the glb of an assertion ϕ one evaluates the greatest
n ∈ NΣ such that Σ |= ϕ ≥ n. An optimization in the search space, proposed
in [15], is to use binary search algorithm reducing in that way the satisfiability
checks required. To better understand the operation for the evaluation of glb
let’s consider the following example.
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Example 2. LetΣ be a satisfiable fuzzy knowledge base withNΣ = {0, . . . , 0.5, . . . , 1}
that contains the following nodes

L(x) = {〈(E uD),≥, 0.6〉, 〈∃R.(∀R−.C),≥ 0.8〉}

L(y) = {〈(A uB),≥, 0.7〉}
and glb(Σ, (x : C)) is asked.

Since glb is asked Σ |= ϕ ≥ n,∀n ∈ NΣ must be solved to find the greatest
n. We apply the binary search algorithm, assuming that 0.5 is the middle if we
sort the elements of NΣ . Therefore, we evaluate if Σ |= (x : C) ≥ 0.5 and in case
it is (i.e. Σ ∪ (x : C) < 0.5 is unsatisfiable) we move on to higher degree until
Σ 6|= (x : C) ≥ n that indicates that the previous degree is the glb(Σ, (x : C)),
differently (i.e. Σ |= (x : C) ≥ n, ∀n ∈ NΣ) glb(Σ, (x : C)) = 1.

1. Add membership triple 〈C,<, 0.5〉 to node x.

L(x) = {〈(E uD),≥, 0.6〉, 〈∃R.(∀R−.C),≥, 0.8〉〈C,<, 0.5〉}

L(y) = {〈(A uB),≥, 0.7〉}
2. Application of (E uD),≥, 0.6

L(x) = {〈E,≥, 0.6〉, 〈D,≥, 0.6〉, 〈∃R.(∀R−.C),≥, 0.8〉〈C,<, 0.5〉}

L(y) = {〈(A uB),≥, 0.7〉}
3. Application of 〈∃R.(∀R−.C),≥, 0.8〉

L(x) = {〈E,≥, 0.6〉, 〈D,≥, 0.6〉, 〈∃R.(∀R−.C),≥, 0.8〉, 〈C,<, 0.5〉, 〈C,≥, 0.8〉}

L(x, y) = {〈R,≥, 0.8〉}

L(x) = {〈∀R−.C,≥, 0.8〉}

L(y) = {〈A,≥, 0.7〉, 〈B,≥, 0.7〉}
4. Clash detected i.e. Σ |= (x : C) ≥ 0.5 and we move on to next n ∈ NΣ

selected by binary search by adding membership triple 〈C,<, n〉 to node x.
5. Application of (E uD),≥, 0.6

L(x) = {〈E,≥, 0.6〉, 〈D,≥, 0.6〉, 〈∃R.(∀R−.C),≥, 0.8〉〈C,<, n〉}

L(y) = {〈(A uB),≥, 0.7〉}
...

Nikolaos Simou, et al. 251



In order to improve the performance of the algorithm for the evaluation of glb
we propose the use of two techniques. Firstly, since this check refers to a specific
individual ABox partitioning can be used in order to examine only the ABox
partition A′ in which the individual of assertion ϕ is contained. (Note that node
y in the above example is unnecessary.) It is important to note at this point
that the knowledge base must be consistent, differently the partition selected
may be an consistent partition of an inconsistent ABox that will give incorrect
results. By selecting a partition A′ a new set of membership degrees only for it
with NA

′ ⊆ NΣ is evaluated that in most cases contains a significantly smaller
amount of degrees resulting to less satisfiability checks.

Furthermore, as we can observe from the previous example, when satisfiabil-
ity for glb is solved the assertions of the examined node are expanded in the same
way regardless of the new membership triple that is added each time. The per-
formance of glb can be further improved by preventing this recurrent expansion
of the membership triples in the original ABox. This can be achieved by expand-
ing the A′ partition resulting to a completion forest F in which no expansion
rule can apply, which is then cached. Then, the membership triple that results
from the assertion examined for glb ϕ is added to the cached completion forest
i.e. F ∪ ϕ and the resulting completion forest is expanded. In that way, we get
the same satisfiability result without the recurrent expansion of the membership
triples contained in A′, a fact which makes the glb computation much faster.

The described optimizations for glb are very effective since they reduce the
search space of tableau independently of the fuzzy knowledge base used. Addi-
tionally, they are applicable to any fuzzy DL since they do not depend on the
fuzzy operators used and they are easily implemented. Finally, despite the fact
that the storage requirements may increase due to caching, the overall storage
requirements of tableau remains low compared to unoptimized glb.

4 Results

Our evaluation focuses on the performance of greatest lower bound reasoning
service. More specifically, we evaluate the performance of global greatest lower
bound i.e. the greatest lower bound of all the individuals in a fuzzy knowledge
base with all the defined concepts of the TBox. The TBox used is acyclic and it
contains 43 defined concepts of fKD-SHIN expressiveness. All the experiments
performed using FiRE under Linux on a Core 2 Duo 2G machine with 2Gb
memory. We examined the performance of this reasoning service using fuzzy
knowledge bases of different sizes by adjusting the size of individuals, the results
are illustrated in Table 2.

As we can observe the optimization techniques dramatically reduce the time
required for the evaluation of global greatest lower bound in all cases. More
specifically, unoptimized FiRE cannot perform global glb for more than about
1200 individuals because the system runs out of memory. This is because the
size of the tableau increases proportionally to the number of individuals in the
knowledge base. On the other hand, optimized FiRE using ABox partitioning is
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able to reduce the storage requirements making in that way the problem almost
scalable. Furthermore the optimized use of glb service avoids the recurrence
satisfiability test saving in that way space and time. However, it is very important
to note in the specific knowledge base ABox partitioning operates very well,
fact that boosts the overall performance. In the worst case scenario that ABox
partitioning cannot apply the space and time required remain very large.

Table 2. Performance of global glb in knowledge bases of different size. The response
time is in milliseconds

Individuals Unoptimized FiRE Optimized FiRE

500 1.436.127 277.006
1000 3.992.231 651.342
1550 Out of Memory 984.966
2140 Out of Memory 1326.072

5 Conclusions

In this paper optimizations techniques that can boost the performance of fuzzy
DLs were presented. Our main objective was to present novel optimization tech-
niques that can apply to fuzzy DLs. We first made an introduction to the fuzzy
DL fKD-SHIN and we then presented degrees normalization, ABox partitioning
and an optimized method for the evaluation of the greatest lower bound, which
is a very important reasoning service for fuzzy DLs. After that, we performed an
evaluation of the proposed optimization techniques using fuzzy reasoning engine
FiRE in which they are implemented. Evaluation of FiRE using the optimiza-
tion techniques showed that reasoning in fuzzy DLs can be very effective. More
specifically optimized FiRE reduces the storage requirements making in that
way the global greatest lower bound problem almost scalable.

As far as future directions are concerned, we intend to further investigate on
optimization techniques for very expressive fuzzy DLs.
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Role-depth Bounded Least Common Subsumers
by Completion for EL- and Prob-EL-TBoxes

Rafael Peñaloza and Anni-Yasmin Turhan

TU Dresden, Institute for Theoretical Computer Science

Abstract. The least common subsumer (lcs) w.r.t general EL-TBoxes
does not need to exists in general due to cyclic axioms. In this paper we
present an algorithm for computing role-depth bounded EL-lcs based on
the completion algorithm for EL. We extend this computation algorithm
to a recently introduced probabilistic variant of EL: Prob-EL01.

1 Introduction

The least common subsumer (lcs) inference yields a concept description, that
generalizes a collection of concepts by extracting their commonalities. This in-
ference was introduced in [8]. Most prominently the lcs is used in the bottom-up
construction of knowledge bases [5], where a collection of individuals is selected
for which a new concept definition is to be introduced in the TBox. This is can
be achieved by first generalizing each selected individual into a concept descrip-
tion (by computing the most specific concept) and then applying the lcs to these
concept descriptions. Further applications of the lcs include similarity-based In-
formation Retrieval or learning from examples.

The lightweight Description Logic EL and many of its extensions enjoy the
nice property that concept subsumption and classification of TBoxes can be
computed in polynomial time [3]. Thus, despite of its limited expressiveness,
EL is used in many practical applications – most prominently in the medical
ontology Snomed [15] – and is the basis for the EL profile of the OWL 2.0
standard.

However, some practical applications such as medical or context-aware appli-
cations need to represent information that holds only with a certain probability.
For instance, context-aware applications may need to represent sensor data in
their ontology, which is correct only with a certain probability. This sort of in-
formation can be represented by the probabilistic DLs recently introduced in
[12], which allows to represent subjective probabilities. These DLs are based on
Halpern’s probabilistic FOL variant called Type-2 [9] and they allow to assign
probabilistic information to concepts (and roles) and not, as in other probabilis-
tic DLs, to concept axioms [11, 10]. In particular, in [12] the DL Prob-EL01 was
introduced, which allows to express limited probability values for EL-concepts,
and it was shown that instance checking is in PTime.

If in applications different information sources supply varying information on
the same topic, the generalization of this information by the lcs gives a descrip-
tion of what the sources agree upon. For both, EL and Prob-EL, the computation
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of the lcs is a desirable task. Unfortunately, the lcs w.r.t. general TBoxes does
not need to exist in this setting (see [1]), due to cyclic definitions in the TBox.

In this paper we present practical algorithms for computing the lcs up to a
certain role-depth for EL and Prob-EL01. The concept obtained is still a gen-
eralization of the input concepts, but not necessarily the least one w.r.t. sub-
sumption. Our computation algorithms are based on the completion algorithms
for classification in EL and Prob-EL01 and thus can be implemented on top of
reasoners for these two DLs. Due to space limitations most of the proofs can be
found in [14].

2 EL and Prob-EL
Starting from two disjoint sets NC and NR of concept and role names, respec-
tively, EL-concept descriptions are built using the concept top (>) and the con-
structors conjunction (u), and existential restriction (∃r.C). We will often call
concept descriptions simply concepts for brevity. The semantics of EL is defined
with the help of interpretations I = (∆I , ·I) consisting of a non-empty domain
∆I and an interpretation function ·I that assigns binary relations on ∆I to role
names and subsets of ∆I to concepts.

A TBox is a set of concept inclusion axioms of the form C v D, where
C,D are concept descriptions. An interpretation I satisfies the concept inclusion
C v D, denoted as I |= C v D iff CI ⊆ DI . I is a model of a TBox T if it
satisfies all axioms in T . A concept C is subsumed by a concept D w.r.t. T
(denoted C vT D) if, for every model I of T it holds that I |= C v D.

We now introduce Prob-EL01, a probabilistic logic that extends EL with
the probabilistic constructors P>0 and P=1. Intuitively, the concepts P>0C and
P=1C express that the probability of C being satisfied is greater than 0, and equal
to 1, respectively. This logic was first introduced, along with more expressive
probabilistic DLs in [12]. Formally, Prob-EL01 concepts are constructed as

C ::= > | A | C uD | ∃r.C | P∗C,
where A is a concept name, r is a role name, and ∗ is one of {> 0,= 1}.

In contrast to previously introduced probabilistic DLs, uncertainty in Prob-
EL01 is expressed by assigning probabilities to concepts, instead of axioms. Thus,
the semantics of Prob-EL01 generalize the interpretation-based semantics of EL
towards the possible worlds semantic used by Halpern [9]. A probabilistic inter-
pretation is of the form

I = (∆I ,W, (Iw)w∈W , µ),

where ∆I is the (non-empty) domain, W is a set of worlds, µ is a discrete
probability distribution on W , and for each world w ∈ W , Iw is a classical
EL interpretation with domain ∆I . The probability that a given element of the
domain d ∈ ∆I belongs to the interpretation of a concept name A is given by

pId (A) := µ({w ∈W | d ∈ AIw}).
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The functions Iw and pId are extended to complex concepts in the usual way for
the classical EL constructors, where the extension to the new constructors P∗ is
defined as

(P>0C)Iw := {d ∈ ∆I | pId (C) > 0},
(P=1C)Iw := {d ∈ ∆I | pId (C) = 1}.

A probabilistic interpretation I satisfies a concept inclusion C v D, denoted as
I |= C v D if for every w ∈ W it holds that CIw ⊆ DIw . It is a model of a
TBox T if it satisfies all concept inclusions in T . Let C,D be two Prob-EL01

concepts and T a TBox. We say that C is subsumed by D w.r.t. T (denoted as
C vT D) if for every model I of T it holds that I |= C v D.

Intuitively, the different worlds express the different possibilities for the do-
main elements to be interpreted (in the sense of crisp EL interpretations), and
the probability of a concept C being satisfied by a given individual a is given by
the probabilities of the different worlds in which a belongs to C.

An interesting property of this logic is that subsumption between concepts
can be decided in polynomial time [12]. Moreover, as we will see in the following
section, an algorithm for deciding subsumption can be obtained by extending
the completion algorithm for (crisp) EL.

3 Completion-based Subsumption Algorithms

We briefly sketch the completion algorithms for deciding subsumption in EL [3]
and in Prob-EL01 [12]. Completion-based methods compute not only subsump-
tion relations for a pair of concept names, but classify the whole TBox.

3.1 Completion-based Subsumption Algorithm for EL
Given an EL-TBox T , we use BCT to denote the set of basic concepts for T , i.e.,
the smallest set of concept descriptions which contains (1) > and (2) all concept
names used in T . A normal form for EL-TBoxes can be defined as follows.

Definition 1 (Normal Form for EL-TBoxes). An EL-TBox T is in normal
form if all concept inclusions have one of the following forms, where C1, C2, D ∈
BCT :

C1 v D, C1 u C2 v D, C1 v ∃r.C2 or ∃r.C1 v D.
Any EL-TBox T can be transformed into a normalized TBox T ′ by introducing
new concept names. EL-TBoxes can be transformed into normal form by applying
the normalization rules displayed in Figure 1 exhaustively. These rules replace
the GCI on the left-hand side of the rules with the set of GCIs on the right-hand
side of the rule.

Let T be a TBox in normal form to be classified and let RT denote the set
of all role names appearing in T . The completion algorithm works on two kinds
on completion sets: S(C) and S(C, r) for each C ∈ BCT and r ∈ RT , which
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NF1 C u D̂ v E −→ { D̂ v A,C uA v E }
NF2 ∃r.Ĉ v D −→ { Ĉ v A,∃r.A v D }
NF3 Ĉ v D̂ −→ { Ĉ v A,A v D̂ }
NF4 B v ∃r.Ĉ −→ { B v ∃r.A,A v Ĉ }
NF5 B v C uD −→ { B v C,B v D }

where Ĉ, D̂ 6∈ BCT and A is a new concept name.

Fig. 1. EL normalization rules

CR1 If C′ ∈ S(C), C′ v D ∈ T , and D 6∈ S(C)
then S(C) := S(C) ∪ {D}

CR2 If C1, C2 ∈ S(C), C1 u C2 v D ∈ T , and D 6∈ S(C)
then S(C) := S(C) ∪ {D}

CR3 If C′ ∈ S(C), C′ v ∃r.D ∈ T , and D /∈ S(C, r)
then S(C, r) := S(C, r) ∪ {D}

CR4 If D ∈ S(C, r), D′ ∈ S(D), ∃r.D′ v E ∈ T , and E /∈ S(C)
then S(C) := S(C) ∪ {E}

Fig. 2. EL completion rules

contain concept names from BCT . The intuition is that the completion rules
make implicit subsumption relationships explicit in the following sense:

– D ∈ S(C) implies that C vT D,
– D ∈ S(C, r) implies that C vT ∃r.D.

By ST we denote the set containing all completion sets of T . In the algorithm,
the completion sets are initialized as follows:

– S(C) := {C,>} for each C ∈ BCT ,
– S(C, r) := ∅ for each r ∈ RT .

The sets S(C) and S(C, r) are extended by applying the completion rules shown
in Figure 2 until no more rule applies. After the completion has terminated,
the subsumption relation between two basic concepts A and B can be tested by
checking whether B ∈ S(A). Soundness and completeness of the EL-completion
algorithm has been shown in [4] as well as that it runs in polynomial time. This
algorithm has recently been extended for a probabilistic variant of EL, which we
introduce next.
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PCR1 If C′ ∈ S∗(C, v), C′ v D ∈ T , and D 6∈ S∗(C, v)
then S∗(C, v) := S∗(C, v) ∪ {D}

PCR2 If C1, C2 ∈ S∗(C, v), C1 u C2 v D ∈ T , and D 6∈ S∗(C, v)
then S∗(C, v) := S∗(C, v) ∪ {D}

PCR3 If C′ ∈ S∗(C, v), C′ v ∃r.D ∈ T , and D /∈ S∗(C, r, v)
then S∗(C, r, v) := S∗(C, r, v) ∪ {D}

PCR4 If D ∈ S∗(C, r, v), D′ ∈ Sγ(v)(D, γ(v)), ∃r.D′ v E ∈ T , and E /∈ S∗(C, v)
then S∗(C, v) := S∗(C, v) ∪ {E}

PCR5 If P>0A ∈ S∗(C, v), and A /∈ S∗(C,P>0A)
then S∗(C,P>0A) := S∗(C,P>0A) ∪ {A}

PCR6 If P=1A ∈ S∗(C, v), v 6= 0, and A /∈ S∗(C, v)
then S∗(C, v) := S∗(C, v) ∪ {A}

PCR7 If A ∈ S∗(C, v), v 6= 0, P>0A ∈ PT0 , and P>0A /∈ S∗(C, v′)
then S∗(C, v′) := S∗(C, v′) ∪ {P>0A}

PCR8 If A ∈ S∗(C, 1), P=1A ∈ PT1 , and P=1A /∈ S∗(C, v)
then S∗(C, v) := S∗(C, v) ∪ {P=1A}

Fig. 3. Prob-EL01 completion rules

3.2 Completion-based Subsumption Algorithm for Prob-EL
In Prob-EL01, basic concepts also include the probabilistic constructors; that is,
the set BCT of Prob-EL01 basic concepts for T is the smallest set that contains
(1) >, (2) all concept names used in T , and (3) all concepts of the form P∗A,
where A is a concept name in T .

Definition 2 (Normal Form for Prob-EL01-TBoxes). A Prob-EL01-TBox
T is in normal form if all its axioms are of one of the following forms

C v D, C1 u C2 v D, C v ∃r.A, or ∃r.A v D,

where C,C1, C2, D ∈ BCT and A is a new concept name.

The normalization rules in Figure 1 can also be used to transform a Prob-EL01-
TBox into this extended notion of normal form. We denote as PT0 and PT1 the
set of all concepts of the form P>0A and P=1A, respectively, occurring in a
normalized TBox T .

The completion algorithm for Prob-EL01 follows the same idea as the algo-
rithm for EL, but uses several completion sets to deal with the information of
what needs to be satisfied in the different worlds of a model. We define the set
of worlds V := {0, ε, 1} ∪ PT0 , where the probability distribution µ assigns a
probability of 0 to the world 0, and the uniform probability 1/(|V | − 1) to all
other worlds. For each concept name A, role name r and world v, we store the
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completion sets S0(A, v), Sε(A, v), S0(A, r, v), and Sε(A, r, v). These completion
sets are simple generalizations of the completion sets for crisp EL. Intuitively,
D ∈ S0(C, v) implies C v D if v = 0, C v P=1D if v = 1, and C v P>0D,
otherwise. Likewise, D ∈ Sε(C, v) implies P>0C v D if v = 0, P>0C v P=1D if
v = 1, and P>0C v P>0D, otherwise.

The algorithm initializes the sets as follows for every A ∈ BCT and r ∈ RT :

– S0(A, 0) = {>, A} and S0(A, v) = {>} for all v ∈ V \ {0},
– Sε(A, ε) = {>, A} and Sε(A, v) = {>} for all v ∈ V \ {ε},
– S0(A, r, v) = Sε(A, r, v) = ∅ for all v ∈ V .

These sets are then extended by exhaustively applying the rules shown in Fig-
ure 3, where ∗ ∈ {0, ε} and γ : V → {0, ε} is defined by γ(0) = 0, and γ(v) = ε
for all v ∈ V \ {0}.

The first four rules are simple adaptations of the completion rules for EL,
while the last four rules deal with probabilistic concepts. This algorithm ter-
minates in polynomial time. After termination it holds that, for every pair of
concept names A,B, B ∈ S0(A, 0) if and only if A vT B [12].

4 Computing Least Common Subsumers using
Completion

The least common subsumer was first mentioned in [8] and has since been inves-
tigated for several DLs. However, most lcs computation algorithms were devised
for concept descriptions only or for unfoldable TBoxes (see e.g. [5]) and are not
capable of handling general TBoxes. In case of EL the lcs has been investigated
for cyclic TBoxes: the lcs does not need to exist w.r.t. descriptive semantics [2],
which is the usual semantics for DLs. One approach to compute the lcs even in
the presence of GCIs is to use different semantics for the underlying DL, e.g.,
greatest fixed-point semantics have been employed in [1, 7]. A different approach
was followed in [6, 16], where the lcs was investigated for unfoldable TBoxes
written in a “small” DL using concepts from an expressive general background
TBox.

All approaches for proving the (non-)existence of the lcs or devising com-
putation algorithms for the lcs are built on a characterization of subsumption
for the respective DL and for the underlying TBox formalism. For instance, the
lcs algorithm for EL-concept descriptions [5] uses homomorphisms between so-
called EL-description trees. The work on the lcs w.r.t. cyclic EL-TBoxes [1, 2]
uses (synchronized) simulations between EL-description graphs to characterize
subsumption. In this paper we use the completion algorithm from [3] as the un-
derlying characterization of subsumption to obtain a role-depth bounded lcs in
EL.

Formally the lcs is defined as follows. Let T be a TBox and C,D concept
descriptions in the DL L, then the L-concept description L is the least common
subsumer (lcs) of C,D w.r.t. T (written lcsT (C,D)) iff
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1. C vT L and D vT L, and
2. for all L-concept descriptions E it holds that,
C vT E and D vT E implies L vT E.

Note, that the lcs is defined w.r.t. to a certain DL L. In cases where the lcs is
computed for concept descriptions, we can simply use an empty TBox T . Due to
the associativity of the lcs operator, the lcs can be defined as a n-ary operation.
However, we stick to its binary version for simplicity of the presentation.

4.1 Role-depth bounded lcs in EL

As mentioned, the lcs does not need to exist due to cycles in the TBox. Consider
the TBox T = {A v ∃r.A u C, B v ∃r.B u C}. The lcs of A and B is then
C u ∃r.(C u ∃r.(C u ∃r.(C u · · · and cannot be expressed by a finite concept
description. To avoid such infinite nestings, we limit the role-depth of the concept
description to be computed. Let C, D be EL-concept descriptions, then the role-
depth of a concept description C (denoted rd(C)) is:

– 0 for concept names and >
– max(rd(C), rd(D)) for a conjunction C uD, and
– 1 + rd(C) for existential restrictions of the form ∃r.C.

Now we can define the lcs with limited role-depth for EL.

Definition 3 (Role-depth bounded EL-lcs). Let T be an EL-TBox and C,D
EL-concept descriptions and k ∈ IN. Then the EL-concept description L is the
role-depth bounded EL-least common subsumer of C,D w.r.t. T and role-depth
k (written k-lcs(C,D)) iff

1. rd(L) ≤ k,
2. C vT L and D vT L, and
3. for all EL-concept descriptions E with rd(E) ≤ k it holds that,

C vT E and C vT E implies L vT E.

4.2 Computing the Role-depth Bounded EL- lcs

The computation algorithm for the role-depth bounded lcs w.r.t. general EL-
TBoxes, constructs the concept description from the set of completion sets. More
precisely, it combines and intersects the completion sets in the same fashion as in
the cross-product computation in the lcs algorithm for EL-concept descriptions
from [5].

However, the completion sets may contain concept names that were intro-
duced during normalization. The returned lcs-concept description should only
contain concept names that appear in the initial TBox, thus we need to “de-
normalize” the concept descriptions obtained from the completion sets.
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De-normalizing EL-concept Descriptions. The signature of a concept de-
scription C (denoted sig(C)) is the set of concept names and role names that
appear in C. The signature of a TBox T (denoted sig(T )) is the set of concept
names and role names that appear in T .

Clearly, the signature of T may be extended during normalization. To capture
the relation between T and its normalized variant, we introduce the notion of a
conservative extension as in [13].

Definition 4 (sig(T )-inseparable, conservative extension). Let T1, T2 be
EL-TBoxes.

– T1 and T2 are sig(T1)-inseparable w.r.t. concept inclusion in EL, iff for all
EL-concept descriptions C,D with sig(C) ∪ sig(D) ⊆ sig(T1), we have T1 |=
C v D iff T2 |= C v D.

– T2 is a conservative extension of T1 w.r.t. concept inclusion in EL, if
• T1 ⊆ T2, and
• T1 and T2 are sig(T1)-inseparable w.r.t. concept inclusion in EL.

However, the extension of the signature by normalization according to the nor-
malization rules from Figure 1 does not affect subsumption tests for EL-concept
descriptions formulated w.r.t. the initial signature of T .

Lemma 1. Let T be an EL-TBox and T ′ the TBox obtained from T by applying
the EL normalization rules, C, D be EL-concept descriptions with sig(C) ⊆ sig(T )
and sig(D) ⊆ sig(T ′) and D′ be the concept description obtained by replacing all
names A ∈ sig(T ′) \ sig(T ) from D with >. Then C vT ′ D iff C ′ vT D′.
Proof. Since T ′ is a conservative extension of T w.r.t. concept inclusion in EL,
it is implied that T and T ′ are sig(T )-inseparable w.r.t. concept inclusion in EL.
Thus the claim follows directly. ut

Lemma 1 guarantees that subsumption relations w.r.t. the normalized TBox
T ′ between C and D, also hold w.r.t. the original TBox T for C and D′, which is
basically obtained from D by removing the names introduced by normalization,
i.e., concept names from sig(T ′) \ sig(T ).

A Computation Algorithm for k-lcs. We assume that the role-depth of each
input concept of the lcs has a role-depth less or equal to k. This assumption is
motivated by the applications of the lcs on the one hand and on the other by
the simplicity of presentation, rather than a technical necessity. The algorithm
for computing the role-depth bounded lcs of two EL-concept descriptions is de-
picted in Algorithm 1. It consists of the procedure k-lcs, which calls the recursive
procedure k-lcs-r.

The procedure k-lcs first adds concept definitions for the input concept de-
scriptions to (a copy of) the TBox and transforms this TBox into the normalized
TBox T ′. Next, it calls the procedure apply-completion-rules, which applies the
EL completion rules exhaustively to the TBox T ′, and stores the obtained set of
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Algorithm 1 Computation of a role-depth bounded EL-lcs.
Procedure k-lcs (C,D, T , k)
Input: C,D: EL-concept descriptions; T : EL-TBox; k: natural number
Output: k-lcs(C,D): role-depth bounded EL-lcs of C and D w.r.t T and k.

1: T ′ := normalize(T ∪ {A ≡ C,B ≡ D})
2: ST ′ := apply-completion-rules(T ′)
3: L := k-lcs-r (A,B, ST ′ , k)
4: if L = A then return C
5: else if L = B then return D
6: else return remove-normalization-names(L)
7: end if

Procedure k-lcs-r (A, B, S, k)
Input: A,B: concept names; S: set of completion sets; k: natural number
Output: k-lcs(A,B): role-depth bounded EL-lcs of A and B w.r.t T and k.

1: if B ∈ S(A) then return B
2: else if A ∈ S(B) then return A
3: end if
4: common-names := S(A) ∩ S(B)

5: if k = 0 then return
d

P∈common−names

P

6: else return
d

P∈common−names

P ud
r∈RT

` d
(E,F ) ∈ S(A,r)×S(B,r)

∃r. k-lcs-r (E,F,S, k − 1)
´

7: end if

completion sets in S. Then it calls the function k-lcs-r with the concept names
A and B for the input concepts, the set of completion sets S, and the role-
depth limit k. The result is then de-normalized and returned (lines 4 to 6). More
precisely, in case a complex concept description is returned from k-lcs-r, the
procedure remove-normalization-names removes concept names that were added
during the normalization of the TBox.

The function k-lcs-r gets a pair of concept names, a set of completion sets
and a natural number as inputs. First, it tests whether one of the input concepts
subsumes the other w.r.t. T ′. In that case the name of the subsuming concept
is returned. Otherwise the set of concept names that appear in the completion
sets of both input concepts is stored in common-names (line 4).1 In case the
role-depth bound is reached (k = 0), the conjunction of the elements in common-
names is returned. Otherwise, the elements in common-names are conjoined with
a conjunction over all roles r ∈ RT , where for each r and each element of the
cross-product over the r-successors of the current A and B a recursive call to
k-lcs-r is made with the role-depth bound reduced by 1 (line 6). This conjunction
is then returned to k-lcs.

1 Note, that the intersection S(A) ∩ S(B) is never empty, since both sets contain >.
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For L = k-lcs(C,D, T , k) it holds by construction that rd(L) ≤ k.2 We now
show that the result of the function k-lcs is a common subsumer of the input
concept descriptions.

Lemma 2. Let C and D be EL-concept descriptions, T an EL-TBox, k ∈ IN and
L = k-lcs(C,D, T , k). Then C vT L and D vT L.

Lemma 1 justifies to replace “normalization names” in the concept description
constructed from the normalization sets in the fashion described earlier and still
preserve the subsumption relationships. Lemma 2 can be shown by induction on
k. For the full proof see [14].

Next, we show that the result of the function k-lcs obtained for EL-concept
descriptions C and D is the least (w.r.t. subsumption) concept description of
role-depth up to k that subsumes the input concepts, see [14].

Lemma 3. Let C and D be EL-concept descriptions, T an EL-TBox, k ∈ IN
and L = k-lcs(C,D, T , k) and E an EL-concept description with rd(E) ≤ k. If
C vT E and D vT E, then L vT E.

We obtain together with Lemma 2 and Lemma 3 that all conditions of Defi-
nition 3 are fulfilled for k-lcs(C,D, T , k).

Theorem 1. Let C and D be EL-concept descriptions, T an EL-TBox, k ∈ IN,
then k-lcs(C,D, T , k) ≡ k-lcs(C,D).

For cases where k-lcs returns a concept description with role-depth of less than
k we conjecture that it is the exact lcs.

The complexity of the overall method is exponential. However, if a com-
pact representation of the lcs with structure sharing is used, the lcs-concept
descriptions can be represented polynomially. In contrast to the lcs algorithm
for EL-concept descriptions, the algorithm k-lcs does not need to copy concepts3

that are referenced several times, but proceeds by structure sharing by re-using
the completion sets. Thus completion-based algorithm is even advantageous for
unfoldable EL-TBoxes such as Snomed.

Moreover, if a k-lcs is too general and a bigger role depth of the k-lcs is
desired, the completion of the TBox does not have to be redone for a second
computation. The completion sets can simply be “traversed” further.

4.3 Computing the Role-depth Bounded Prob-EL01-lcs

The computation of the role-depth bounded Prob-EL01-lcs follows the same steps
as in Section 4.2. First, it adds concept definitions for the input concepts to the
TBox and normalizes it. It then applies the completion rules from Figure 3
exhaustively to produce the set of completion sets S. It then calls a variation of
the function k-lcs-r that can deal with probabilistic concepts. The new function

2 Recall our assumption: the role-depth of each input concept is less or equal to k.
3 as typically done during unfolding
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k-lcs-r is identical to the one presented in Algorithm 1, except that in line 6 it
now returns:l

P∈common−names

P u
l

r∈RT

( l
(E,F )∈S0(A,r,0)×S0(B,r,0)

∃r.k-lcs-r(E,F,S, k − 1)u
l

(E,F )∈S>0
0 (A,r)×S>0

0 (B,r)

P>0(∃r.k-lcs-r(E,F, S, k − 1))u
l

(E,F )∈S0(A,r,1)×S0(B,r,1)

P=1(∃r.k-lcs-r(E,F,S, k − 1))
)
,

where S>0
0 (A, r) :=

⋃
v∈V \{0} S0(A, r, v). The result is then de-normalized by re-

moving all concept names that were introduced during the normalization phase.
The correctness of this procedure can be shown in a similar way as it was done
for EL before.

Theorem 2. Let C and D be Prob-EL01-concept descriptions, T a Prob-EL01-
TBox, and k ∈ IN; then k-lcs(C,D, T , k) ≡ k-lcs(C,D).

Again, the proof is given in [14].

5 Conclusions

In this paper we have presented a practical method for computing the role-
depth bounded lcs of EL-concepts w.r.t. a general TBox. Our approach is based
on the completion sets that are computed during classification of a TBox. Thus,
any of the available implementation of the EL completion algorithm can be eas-
ily extended to an implementation of the lcs computation algorithm. We also
showed that the same idea can be adapted for the computation of the lcs in the
probabilistic DL Prob-EL01.

As future work, we want to investigate the computation of the most specific
Prob-EL01 concept (msc) that describes a given individual in an ABox. We also
plan to investigate the bottom-up constructions (i. e. lcs and msc computations)
in more expressive probabilistic DLs. One possible extension is by studying Prob-
ALE . A second approach is to weaken the restrictions imposed in Prob-EL01,
allowing for different probabilistic constructors.
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Abstract. In this paper we present practical algorithms for query answering and
knowledge base satisfiability checking in DL-Lite(HN )

horn , a logic from the extended
DL-Lite family that contains horn concept inclusions and number restriction. This
logic is the most expressive DL that is shown to be FOL-rewritable. The algo-
rithms we present are based on the rewriting technique so that reasoning over
the TBox and over the ABox can be done independently of each other, and the
inference problems are reduced to first order query evaluation. This allows for
employing relational database technology for the final query evaluation and gives
optimal data complexity.

1 Introduction

Query answering is the main reasoning task in the setting of ontology based data ac-
cess [1,2] and data integration [3], where large amounts of data are stored in external
databases, and accessed through a conceptual layers provided by an ontology (expressed
in terms of a description logic knowledge base). Query answering in this case requires
reasoning, and to perform it efficiently in practice the underlying description logic has
to be ‘lite’ enough, to be more precise it should enjoy first-order rewritability: it should
be possible to rewrite a query q posed over the ontology in terms of a new query that
can be directly evaluated over the data, and that provides the same answers as those
provided by q.

The DL-Lite family [4] is a family of description logics that enjoy such nice compu-
tational properties, i.e., data complexity of query answering is in AC0. For DL-Litecore

and DL-LiteFcore
1, the basic logics of the DL-Lite family, a polynomial query answering

algorithm was established in [4], and later extended to DL-LiteA [1]. The idea of the
algorithm is to first rewrite the query by taking into account the assertions in the TBox
and then to evaluate the rewritten query over the ABox. Based on this approach, several
systems were implemented, notably QUONTO [6,7].

DL-Lite(HN )
horn is a more expressive logic than DL-LiteA, which contains number

restrictions (as opposed to global functionality assertions), allows for conjunction of
basic concepts on the left-hand side of concept inclusions, and for role inclusions that

? This work has been partially supported by the EU project Ontorule (ICT-231875).
1 Notice that we adopt here the naming convention for logics introduced in [5].
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however cannot interact with maximum number restriction. As shown in [5], also DL-
Lite(HN )

horn is FOL-rewritable, i.e., a similar approach to the one discussed above can be
used for query answering over ontologies. However, the algorithm presented in [5] is not
immediately implementable, since it would generate queries that would be extremely
difficult to process and optimize by a DBMS. Indeed as demonstrated by recent ex-
periments with ontology based data access systems [2], commercial relational DBMSs
are not designed and optimized to process complex queries (where, e.g., joins are per-
formed over unions), and for such kinds of queries performance degrades dramatically
when the size of the data increases.

Therefore, in this paper we address the problem of devising an algorithm for an-
swering unions of conjunctive queries in DL-Lite(HN )

horn that is based on rewriting, and
where the rewriting step generates again a union of conjunctive queries. Such an algo-
rithm can be directly implemented in a system like QUONTO by extending the current
algorithm for DL-LiteA. Moreover, since current DBMSs are optimized for the evalu-
ation of conjunctive queries, they can process the queries generated by our rewriting
algorithm more efficiently than queries generated by an algorithm that tries to delegate
complex operations to the DBMS.

Summing up, our contributions are the following:
– We present an algorithm for answering unions of conjunctive queries posed to DL-

Lite(HN )
horn knowledge bases that is in AC0 for data complexity. We employ the query

rewriting approach, that is, query answering is performed in two steps. First, the
initial query is rewritten using the TBox. Then, the rewritten query is evaluated
over the ABox. The main advantage of this approach is that the part of the process
requiring TBox reasoning is independent of the ABox, and the part of the process
requiring access to the ABox can be carried out by an SQL engine.

– We provide an algorithm that checks satisfiability of DL-Lite(HN )
horn knowledge bases

by evaluating a first-order query over the ABox and that is in AC0 for data complex-
ity. Thus, the knowledge base satisfiability problem is reduced to query evaluation
and again the TBox and the ABox are processed independently of each other.

2 The Description Logic DL-Lite(HN )
horn

In this section we present the logic DL-Lite(HN )
horn and give other preliminary definitions.

The language of DL-Lite(HN )
horn contains atomic concept and role names, respectively

denoted by A and P , possibly with subscripts. Basic roles and concepts, denoted re-
spectively by R and B, possibly with subscripts, are defined as R ::= P | P− and
B ::= ⊥ | A | ≥k R, where k is a positive integer.≥k R is called a number restriction.

A DL-Lite(HN )
horn TBox, T , is a finite set of concept and role inclusion axioms of the

form B1 u · · · uBn v B and R1 v R2, respectively, and role constraints Dis(R1, R2),
Asym(P ), Sym(P ), Irr(P ) and Ref(P ). The TBox T may also contain occurrences of
qualified number restrictions≥k R.B on the right-hand side of concept inclusions. The
TBox assertions must satisfy the following conditions:
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(inter) if R has a proper sub-role in T (i.e., R′ v R, R 6v R′ for some R′), then T
does not contain occurrences of number restrictions ≥k R or ≥k R− with k ≥ 2
on the left-hand side of concept inclusions.

(exists) if ≥k R.B occurs in T , then T does not contain occurrences of ≥k′R or
≥k′R−, for k′ ≥ 2, on the left-hand side of concept inclusions.

Note that disjointness between concepts B1 and B2 is expressed as B1 u B2 v ⊥.
Also, DL-Lite(HN )

horn allows for expressing local cardinality constraints, e.g., the assertion
A u ≥3R v ⊥ is equivalent to A v ≤2R.

An ABox A is a finite set of membership assertions of the form A(a), ¬A(a),
P (a, b), and ¬P (a, b). T and A constitute the knowledge base K = 〈T ,A〉.

In the following, we use R− to denote P− if R = P and P if R = P−, R(x, y)
to denote P (x, y) if R = P , and P (y, x) if R = P−. For a TBox T , let v± denote
the closure under inverses of the subrole relation: R v± R′ ∈ T iff R v R′ ∈ T or
R− v R′− ∈ T .

The formal semantics relies on the standard notion of interpretation [8]. Here we
adopt the unique name assumption (UNA). In the following we assume that TBoxes do
not contain role constraints Asym(P ), Sym(P ), Irr(P ), Ref(P ) and qualified number
restrictions: we can get rid of them as described in [5].

In this work we concentrate on two reasoning tasks for DL-Lite(HN )
horn , to which other

reasoning tasks can be reduced: knowledge base satisfiability and query answering. The
KB satisfiability problem is to check, given a KB K, whether K admits at least one
model. To define the query answering problem, we first provide some definitions.

A conjunctive query (CQ) q over a KB K is a first-order formula of the form:
q(x) = ∃y.conj(x,y), where conj(x,y) is a conjunction of atoms of the form A(t)
and P (t1, t2), and t, t1, t2 are either constants in K or variables in x and y, x are
the free variables of q, also called distinguished variables. A union of conjunctive
queries (UCQ) q is a formula of the form q(x) =

∨
i=1,...,n ∃yi.conji(x,yi), with

conji(x,yi) as before. Given a query q (either a CQ or a UCQ) and an interpretation
I, we denote by qI the set of tuples of elements of ∆I obtained by evaluating q in I.
The answer to q over a KB K is the set ans(q,K) of tuples a of constants appearing
in K such that aI ∈ qI , for every model I of K. Each such tuple is called certain an-
swer. Observe that, ifK is unsatisfiable, then ans(q,K) is trivially the set of all possible
tuples of constants in K whose arity is the one of the query. We denote such a set by
AllTup(q,K). The query answering problem is defined as follows: given a KB K and
a query q (either a CQ or a UCQ) over K, compute the set ans(q,K).

3 Knowledge Base Satisfiability

To check KB satisfiability, we exploit the notions of canonical interpretation and closure
of negative inclusions. First, we define negative and positive inclusion assertions, and
the database interpretation.

We call negative inclusions (NI) assertions of the form B1 u · · · u Bn v ⊥ and
Dis(R1, R2). Other assertions are called positive inclusions (PI). TN denotes the set
of all negative inclusions in T , and TP the set of positive inclusions in T . Obviously,
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T = TN ∪ TP . Note that NIs include also those assertions that express functionality of
roles, e.g. ≥2R v ⊥, and more in general maximum number restrictions.

The database interpretation db(A) = 〈∆db(A), ·db(A)〉 of an ABox A is defined
as follows: ∆db(A) is the nonempty set consisting of all constants occurring in A;
adb(A) = a, for each constant a; Adb(A) = {a | A(a) ∈ A}, for each atomic con-
cept A; P db(A) = {(a1, a2) | P (a1, a2) ∈ A}, for each atomic role P .

The canonical interpretation is an interpretation constructed according to the notion
of chase [9]. Following [4] we can construct the chase of a KB starting from the ABox,
and applying positive inclusions to sets of membership assertions. In the definition of
chase, we concentrate here on the differences with respect to the definition of chase
given in [4]. We remark, however, that for the application of the chase rules we assume
to have a total (lexicographic) ordering on the assertions and on all the constants (in-
cluding the newly introduced ones). The chase of K is the set of membership assertions
chase(K) =

⋃
j∈N Sj , where S0 = A, Sj+1 = Sj ∪ Snew

j , and Snew
j is the set of new

membership assertions obtained from Sj according to the chase rules cr1, cr2, cr3:

cr1 if I = B1 u · · · u Bn v A, S′ = SB1(a) ∪ · · · ∪ SBn(a), and A(a) /∈ Sj , then
Snew

j = {A(a)},
cr2 if I = B1u· · ·uBn v ≥k R and S′ = SB1(a)∪· · ·∪SBn

(a), k1 = ]{b |R(a, b) ∈
S} < k, then Snew

j = {R(a, bk1+1), . . . , R(a, bk)}, where bk1+1, . . . , bk are k−k1

new constants in ΓN that follow lexicographically the constants introduced in the
previous steps,

cr3 if I = R1 v± R2, S′ = {R1(a, b)}, and R1(a, b) /∈ Sj then Snew
j = {R2(a, b)},

where S′ is the first (in lexicographic order) set of membership assertions in Sj s.t. there
exists a PI applicable2 to it, I is the first such PI, and we use SB(a) to denote {A(a)}
if B = A and {R(a, b1), . . . , R(a, bk)} if B = ≥k R, with b1, . . . , bk some constants.
We denote by chasei(K) the portion of the chase obtained after i applications of the
chase rules.

The canonical interpretation is the interpretation can(K) = 〈∆can(K), ·can(K)〉
where ∆can(K) is the set of constants occurring in chase(K), acan(K) = a, for each
constant a, Acan(K) = {a | A(a) ∈ chase(K)}, for each atomic concept A, and
P can(K) = {(a1, a2) | P (a1, a2) ∈ chase(K)}, for each atomic role P . The canonical
interpretation is constructed in such a way that all the positive inclusions of the TBox
are satisfied, so a knowledge base where the TBox contains only positive inclusions is
always satisfiable. The following lemma establishes a notable property of can(K).

Lemma 1. Let K = 〈T ,A〉 be a DL-Lite(HN )
horn KB, and let TP be the set of positive

inclusion assertions in T . Then can(K) is a model of 〈TP ,A〉.

In order to check satisfiability of DL-Lite(HN )
horn KBs, negative inclusions must be

considered. Thus, if a negative inclusion in the TBox is violated by membership asser-
tions of the ABox, then the knowledge base is inconsistent and, therefore, unsatisfiable.
Besides, an interaction of positive and negative inclusions may cause inconsistency. So
we need to consider all NIs implied by the TBox.

2 The notion of applicability of a PI suitably extends the one in [4].
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Definition 2. Let T be a TBox. We call NI-closure of T , denoted by cln(T ), the fol-
lowing set of assertions defined inductively:

1. TN ⊆ cln(T ).
2. if B1 u · · · uBn uA v ⊥ ∈ cln(T ), n ≥ 0 and B′1 u · · · uB′m v A is in T , then

also B1 u · · · uBn uB′1 u · · · uB′m v ⊥ ∈ cln(T ).
3. if B1 u · · · uBn u≥k R v ⊥ ∈ cln(T ), n ≥ 0 and B′1 u · · · uB′m v ≥k′R is in
T for k′ ≥ k, then also B1 u · · · uBn uB′1 u · · · uB′m v ⊥ ∈ cln(T ).

4. if B1 u · · · u Bn u ≥1R v ⊥ ∈ cln(T ), n ≥ 0 and R′ v± R is in T , then also
B1 u · · · uBn u ≥1R′ v ⊥ ∈ cln(T ).

5. if Dis(R,R1) or Dis(R1, R) ∈ cln(T ) and R′ v± R is in T , then also
Dis(R′, R1) ∈ cln(T ).

6. if either ≥1R v ⊥, or ≥1R− v ⊥, or Dis(R,R) is in cln(T ), then all three
assertions are in cln(T ).

Note, that in rule 4 it is enough to consider k = 1 because the condition (inter)
ensures that concepts of the form ≥k R, for k ≥ 2, do not occur in the left-hand side
of concept inclusions when R appears in the right-hand side of a role inclusion. Also
we don’t need to add both inclusions Dis(R,R1) and Dis(R1, R) to cln(T ), since to
trigger rule 5 one of them is sufficient.

The canonical interpretation can also be exploited for checking satisfiability of a KB
containing negative inclusions. To establish that they are satisfied by can(K), it suffices
to verify that the interpretation db(A) satisfies cln(T ).

Lemma 3. LetK = 〈T ,A〉 be a DL-Lite(HN )
horn KB. Then can(K) is a model ofK if and

only if db(A) is a model of 〈cln(T ),A〉.
The proof follows the line of that of Lemma 12 in [4], but we need to take into

account the modified definition of chase, and hence of can(K). Now we can show
that to check satisfiability of a KB it is is sufficient (and necessary) to look at db(A)
(provided we have computed cln(T )). More precisely, the next theorem shows that a
contradiction on a DL-Lite(HN )

horn KB may hold only if a membership assertion in the
ABox contradicts a negative inclusion in the closure cln(T ).

Theorem 4. Let K = 〈T ,A〉 be a DL-Lite(HN )
horn KB. Then K is satisfiable if and only if

db(A) is a model of 〈cln(T ),A〉.
Having these results, we can formulate the satisfiability problem in terms of evalua-

tion of a first order query over the database (interpretation). In order to do so we define
a translation δ from assertions in cln(T ) to FOL formulas encoding their violation:

δ(B1 u · · · uBn v ⊥) = ∃x(γB1(x) ∧ · · · ∧ γBn(x))
δ(Dis(R1, R2)) = ∃x, y(ρR1(x, y) ∧ ρR2(x, y))

where:

γBi
(x) = A(x), if Bi = A;

γBi
(x) = ∃y1, . . . , yk(P (x, y1) ∧ · · · ∧ P (x, yk) ∧∧

j<l yj 6= yl), if Bi = ≥k P ;
γBi

(x) = ∃y1, . . . , yk(P (y1, x) ∧ · · · ∧ P (yk, x) ∧
∧

j<l yj 6= yl), if Bi = ≥k P−;
ρRi

(x, y) = P (x, y), if Ri = P ; ρRi
(x, y) = P (y, x), if Ri = P−.
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Algorithm Consistent(K)
Input: DL-Lite(HN )

horn KB K = 〈T ,A〉
Output: true if K is satisfiable, false otherwise
qunsat = ⊥;
for each I ∈ cln(T ) do qunsat = qunsat ∨ δ(I);
if qunsat

db(A) = ∅ then return true; else return false;

Fig. 1. The algorithm Consistent

The algorithm Consistent, depicted in Fig. 1, takes as input a DL-Lite(HN )
horn KB,

computes db(A) and cln(T ), and evaluates over db(A) the Boolean FOL query ob-
tained by taking the union of all FOL formulas returned by the application of the above
function δ to every assertion in cln(T ). In the algorithm, the symbol⊥ indicates a pred-
icate whose evaluation is false in every interpretation. Therefore, when K contains no
negative inclusions, qunsat

db(A) = ⊥db(A), and Consistent(K) returns true.
One can show that the algorithm Consistent terminates and a KB K is satisfiable

if and only if Consistent(K) = true . As a direct consequence, we get the following
theorem, which provides an alternative proof of an analogous result shown in [5].

Theorem 5. In DL-Lite(HN )
horn , knowledge base satisfiability is FOL-rewritable.

Now we can characterize the computational complexity of the algorithm Consistent.

Theorem 6. The algorithm Consistent is AC0 in the size of the ABox and runs in ex-
ponential time in the size of the TBox.

The following example demonstrates the worst case behaviour of the algorithm,
where the size of cln(T ) is exponential in the size of T .

Example 7. Let us consider the TBox T consisting of the assertions: A′1 v A1, . . . ,
A′n v An, A1 u · · · uAn v ⊥. Then cln(T ) contains 2n negative inclusion assertions
of the formB1u· · ·uBn v ⊥, where eachBi is eitherAi orA′i. Moreover, none of the
assertions can be omitted: for every negative inclusion I = B1 u · · · u Bn v ⊥ there
is an ABox A such that δ(I)db(A) = ∅. It is enough to take A = {B1(a), . . . , Bn(a)}
with a a fresh object name. Therefore, in order to ensure that the algorithm detects
unsatisfiability of 〈T ,A〉, all the possible negative inclusions must be present in cln(T )
and its size is exponential in the size of T .

Note that the algorithm Consistent can be turned into a non-deterministic PTIME

algorithm for checking unsatisfiability of DL-Lite(HN )
horn KBs.

4 Query Answering

The aim of this section is to devise an algorithm for answering unions of CQs in DL-
Lite(HN )

horn that is based on query reformulation, and hence can be easily implemented:
in the rewriting step the assertions of the TBox are compiled into the query, then the
resulting query is evaluated over the ABox without considering the TBox.
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LetQ =
⋃

i qi be a UCQ. We say that an argument of an atom in a query is bound if
it corresponds either to a constant, or to a distinguished variable, or to a shared variable,
that is, a variable occurring at least twice in the query body. Instead, an argument of an
atom in a query is unbound if it corresponds to a nondistinguished nonshared variable.
The symbol ‘ ’ is used to represent unbound variables.

LetQR
T denote the set of natural numbers containing 1 and all the numerical param-

eters k for which the concept ≥k R occurs in T . The extension ext(T ) of T contains

– ≥k′R v ≥k R, for all k, k′ ∈ QR
T such that k′ > k and k′ > k′′ > k for no

k′′ ∈ QR
T and R is either a direct or inverse role in T , and

– ≥k R v ≥k R′, for all k ∈ QR
T and R v± R′ ∈ T .

A positive concept inclusion I is applicable to an atom B(x) if I has B on the
right-hand side, where B(x) = A(x) if B = A, B(x) = EkP (x) if B = ≥k P , and
B(x) = EkP

−(x) if B = ≥k P−. A positive role inclusion I is applicable to an atom
P (x1, x2) if I has either P or P− on the right-hand side. We indicate with gr(g, I) the
atom obtained from the atom g by applying the applicable inclusion I . Formally:

Definition 8. Let I ∈ ext(T ) be a positive inclusion assertion that is applicable to the
atom g. Then, gr(g, I) is the formula defined as follows:

1. if g = A(x) and I = B1 u · · · uBn v A, then gr(g, I) = B1(x) ∧ · · · ∧Bn(x),
2. if g = EkR(x) and I = B1 u · · · u Bn v ≥k′R, k′ ≥ k, then gr(g, I) =
B1(x) ∧ · · · ∧Bn(x),

3. if g = E1R( ) and I = B1 u · · · u Bn v ≥k R, then gr(g, I) = B1(x) ∧ · · · ∧
Bn(x), for a fresh variable x,

4. if g = EkR(x) and I = P1 v± R, then gr(g, I) = EkP1(x),
5. if g = EkR(x) and I = P1 v± R−, then gr(g, I) = EkP

−
1 (x),

6. if g = P (x1, x2) and I = P1 v± P , then gr(g, I) = P1(x1, x2),
7. if g = P (x1, x2) and I = P1 v± P−, then gr(g, I) = P1(x2, x1).

We also define the most general unifier, mgu, between two atoms g1, g2 of a query
q that unify. In the case where g1 and g2 are respectively of the form A(x) and A(z),
or P (x, y) and P (z, w), the mgu is defined as usual (see [4]), taking also into account
the possible presence of inequalities x 6= z (and y 6= w). However, we allow also an
atom P (x, y) to unify with E1P (z) and E1P

−(w). Moreover, when one of the atoms
is of the form EkR(x), then the mgu is defined as follows: let g1 = Ek1R(x) and
g2 = Ek2R(z), k = max(k1, k2), and x 6= z does not occur in q; or g1 = EkR(x) and
g2 = E1R

−( ), then mgu = EkR(x).
In Fig. 2 we provide the algorithm PerfectRef, which reformulates a UCQ taking

into account the PIs of a TBox T . In the algorithm, q[g/g′] denotes the CQ obtained
from a CQ q by replacing the atom g with a new atom g′. The function remdup removes
from the body of a CQ duplicated atoms, or if a query contains two atoms of the form
Ek1R(x) and Ek2R(x), then it removes the atom with the smaller ki. Furthermore, τ is
a function that takes as input a CQ q and returns a new CQ obtained by replacing each
occurrence of an unbound variable in q with the symbol , whereby P (x, ) becomes
E1P (x), P ( , x) becomes E1P

−(x) (and P ( , ) becomes E1P ( )). Finally, reduce
is a function that takes as input a CQ q and two atoms g1 and g2 that unify and occur
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Algorithm PerfectRef(Q, T )
Input: union of conjunctive queries Q, DL-Lite(HN )

horn TBox T
Output: union of conjunctive queries PR
PR := {remdup(τ(q)) | q is a CQ in Q};
repeat (1)

PR′ := PR;
for each q ∈ PR′

(a) for each g in q
for each PI I in ext(T )

if I is applicable to g
then PR := PR ∪ {remdup(q[g/gr(g, I)])};

(b) for each g1, g2 in q
if g1 and g2 unify
then PR := PR ∪ {remdup(τ(reduce(q, g1, g2)))};

until PR′ = PR;
for each q ∈ PR (2)

for each g in q
if g is of the form EkR(x), k ≥ 2, then replace g with γ≥k R(x);
if g is of the form E1R(x) then replace g with R(x, );

return PR.

Fig. 2. The algorithm PerfectRef

in the body of q, and returns a CQ q′ obtained by applying to q the most general unifier
between g1 and g2.

Informally, part (1) of the algorithm reformulates the query by replacing and unify-
ing atoms, and accumulates the new queries. In this part all possible applications of the
PIs, according to Definition 8, are exhausted. Part (2) performs unfolding of the atoms
EkR(x). Notice that it is sufficient to perform unfolding of the atoms EkR(x) in the
very end for the following reasons: first, if k ≥ 2, then only role inclusions could be
applied to the atoms of the form R(x, y); however condition (inter) ensures that in this
case there are no such inclusions. If k = 1, then such role inclusions have already been
aplied in step (1). Second, one could reduce some of the atoms R(x, y), but it would
not produce new answers, since all variables in the new R-atoms are bound.

This algorithm is an extension of the PerfectRef algorithm devised for the logic DL-
LiteA [4]. The extended version has to deal with inequality atoms and with atoms of the
formEkR(x) that later need to be unfolded. In contrast with the algorithm for DL-LiteA
the query may grow, so one also needs to take care of redundant atoms. Notice also that
the number of CQs in PR may be exponential in the size of the TBox (and not only in
the length of q), due to the fact that horn inclusions may cause a single CQ to become
of length linear in the size of the TBox. Here, we assume that numbers in the TBox are
coded in unary.

Now, to compute the answers to Q over the KB K = 〈T ,A〉, we need to evaluate
the set of conjunctive queries PR produced by the algorithm PerfectRef over the ABox
A considered as a relational database. The algorithm computing ans(Q,K) is exactly
the same as in [4], so we do not present it here. Correctness of the above described
query-answering technique is established in the following. We start by observing that,
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as in [4], query answering can in principle be done by evaluating the query over the
model can(K).

Theorem 9. Let K be a satisfiable DL-Lite(HN )
horn KB, and let Q be a union of conjunc-

tive queries over K. Then, ans(Q,K) = Qcan(K).

Since can(K) is in general infinite, we cannot compute it and evaluate Q over it.
Instead, we compile the TBox into the query, thus simulating the evaluation of the query
over can(K) by evaluating a finite reformulation of the query over the ABox considered
as a database. The proof of the following lemma is inspired by the one for DL-LiteR in
[4], but needs to take into account number restrictions and horn inclusion assertions.

Lemma 10. Let T be a DL-Lite(HN )
horn TBox, Q a UCQ over T , and PR the UCQ re-

turned by PerfectRef(Q, T ). For every DL-Lite(HN )
horn ABoxA such that 〈T ,A〉 is satis-

fiable, ans(Q, 〈T ,A〉) = PRdb(A).

Proof. We first introduce the preliminary notion of witness of a tuple of constants with
respect to a CQ q in Q. Given a DL-Lite(HN )

horn knowledge base K = 〈T ,A〉, a CQ
q(x) ← conj(x,y) over K, and a tuple t of constants occurring in K, a set of mem-
bership assertions G is a witness of t w.r.t. q if there exists a substitution σ from the
variables y in conj(t,y) to constants in G such that the set of atoms in σ(conj(t,y))
is equal to G. Then t ∈ qcan(K) iff there exists a witness G of t w.r.t. q such that
G ⊆ chase(K). The cardinality of a witness G, denoted by |G|, is the number of mem-
bership assertions in G.

Let us prove first the statement for a modified version of PerfectRef, where at the
end of the algorithm we perform an additional step of unifications as in step (b) of
part (1). Let us call PerfectRefu this extended version of PerfectRef.

We have that ans(Q, 〈T ,A〉) = Qcan(K) =
⋃

q∈Q q
can(K), and PRdb(A) =⋃

q̂∈PR q̂
db(A), where PR is the UCQ returned by PerfectRefu(Q, T ). Hence, we need

to show that
⋃

q̂∈PR q̂
db(A) = Qcan(K). For simplicity, we consider the case where Q

consists of a single CQ q.
“⇐” We have to prove that q̂db(A) ⊆ qcan(K), for each q̂ ∈ PR. Let qi+1 be ob-

tained from qi by some step of the algorithm PerfectRefu. We can show that qcan(K)
i+1 ⊆

q
can(K)
i at any step. Since each query of PR is either q or a query obtained from q by

repeatedly applying steps (a) and (b) of the algorithm PerfectRefu, then by the rewrit-
ing in part (2), and the unification step in the end, it follows that for each q̂ ∈ PR,
q̂can(K) ⊆ qcan(K), by repeatedly applying the property q

can(K)
i+1 ⊆ q

can(K)
i . Since

db(A) ⊆ can(K) and CQs are monotonic queries, we get q̂db(A) ⊆ q̂can(K) ⊆ qcan(K)

for each CQ q̂ ∈ PR.
“⇒” We have to show that for each tuple t ∈ qcan(K), there exists q̂ ∈ PR such

that t ∈ q̂db(A). First, since t ∈ qcan(K), it follows that there exists a finite number h
such that there is a witness Gh of t w.r.t. q contained in chaseh(K). Moreover, w.l.o.g.
we can assume that every rule cr1, cr2 and cr3 used in the construction of chase(K) is
necessary in order to generate such a witness Gh. In the following, we say that a set S of
membership assertions is an ancestor of a set S′ of membership assertions in a set S of
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membership assertions, if there exist S1, . . . , Sn in S, where S1 = S and Sn = S′, such
that, for each j ∈ {2, . . . , n}, Sj can be generated by applying a chase rule to a subset
of Sj−1. We also say that S′ is a successor of S. Furthermore, for each i ∈ {0, . . . , h},
we denote with Gi the pre-witness of t w.r.t. q in chaseh(K), defined as follows:

Gi =
⋃

S′⊆Gh

{ S ⊆ chasei(K) | S is an ancestor of S′ in chaseh(K) and
there exists no successor of S in chasei(K)
that is an ancestor of S′ in chaseh(K) }.

Now we prove by induction on i that, starting from Gh, we can “go back” through
the rule applications and find a query q̂ in PR such that the pre-witness Gh−i of t w.r.t.
q in chaseh−i(K) is also a witness of t w.r.t. q̂. To this aim, we prove that there exists
q̂ ∈ PR such that Gh−i is a witness of t w.r.t. q̂ and |q̂| = |Gh−i|, where |q̂| indicates
the number of atoms in the CQ q̂ except inequality atoms. The claim then follows for
i = h, since chase0(K) = A.

Base step: There exists q̂ ∈ PR such that Gh is a witness of t w.r.t. q̂ and |q̂| = |Gh|.
This is an immediate consequence of the fact that (1) q ∈ PR and (2) PR is closed with
respect to step (b) of the algorithm PerfectRefu.

Inductive step: Suppose there exists q̂ ∈ PR such that Gh−i+1 is a witness of t w.r.t.
q̂ in chaseh−i+1(K) and |q̂| = |Gh−i+1|. Let us assume that chaseh−i+1(K) is obtained
by applying chase rule cr2 to chaseh−i(K) (the proof for rules cr1 and cr3 is analo-
gous). Hence, a PI of the form B1 u · · · uBn v ≥k R, where Bj , 1 ≤ j ≤ n, are basic
concepts and R is a basic role, is applied in chaseh−i(K) to a set of membership asser-
tions S′ = SB1(a)∪ · · · ∪ SBn

(a), such that k1 = ]{b | R(a, b) ∈ chaseh−i(K)} < k.
Therefore, chaseh−i+1(K) = chaseh−i(K) ∪ {R(a, bk1+1), . . . , R(a, bk)}, where
bk1+1, . . . , bk ∈ ΓN follow lexicographically all constants occurring in chaseh−i(K).
Since every rule used in the construction of chase(K) is necessary for generating
Gh−i+1 and the set of membership assertions {R(a, bk1+1), . . . , R(a, bk)} does not
have successors in chaseh−i+1(K), so {R(a, bk1+1), . . . , R(a, bk)} ⊆ Gh−i+1.

Let {R(a, b1), . . . , R(a, bk2)}, 0 ≤ k2 ≤ k1, be the minimal set of membership
assertions that has successors in chaseh−i+1(K). Then, according to the definition
of Gi, the set {R(a, bk2+1), . . . , R(a, bk1)} ⊆ Gh−i+1. By the inductive assumption,
|q̂| = |Gh−i+1|, and {R(a, bk2+1), . . . , R(a, bk)} ⊆ Gh−i+1, hence, q̂ has to contain
the atoms R(x, yk2+1), . . . , R(x, yk), where yk2+1, . . . , yk appear only in the men-
tioned predicate atoms and possibly inequalities. We show that in q̂ there must be all
the possible inequalities yj1 6= yj2 , for k2 + 1 ≤ j1 < j2 ≤ k.

By contradiction, assume that not all variables are related to each other by inequal-
ities, i.e. there are m ≥ 2 sets of variables yk2+1, . . . , yk such that the variables within
one set are mutually unequal and variables from different sets are not constrained to be
different. It means that the part of q̂ with yk2+1, . . . , yk looks as follows:

R(x, y11), . . . , R(x, y1l1), y11 6= y12, . . . , y1l1−1 6= y1l1 ,
R(x, y21), . . . , R(x, y2l2), y21 6= y22, . . . , y2l2−1 6= y2l2 ,

. . .
R(x, ym1), . . . , R(x, ymlm), ym1 6= ym2, . . . , ymlm−1 6= ymlm ,

where lj ≥ 1, j ∈ {1, . . . ,m}, ∑
lj = k − k2. Therefore, q̂ has to be the result of

unfolding by part (2) of the algorithm PerfectRefu of a query q1 with the corresponding
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part El1R(x), . . . , ElmR(x). However, the algorithm cannot produce such a query: the
function remdup would keep in q1 only one such atomElmax

R(x) with lmax < k−k2,
lmax = maxj{lj}, which unfolded would contain less than k − k2 atoms of the form
R(x, yj). The contradiction rises from the assumption m ≥ 2. So, m has to be equal to
1 and all variables yk2+1, . . . , yk appear in pairwise inequalities in q̂.

Thus, there exists a query q1 in PR1 that contains the atomEk−k2R(x), k−k2 ≤ k,
and q̂ is obtained from q1 by part (2) of the algorithm. Then, by step (a) it follows that
there exists a query q2 = remdup(q̂1[Ek−k2R(x)/B1(x)∧ · · · ∧Bn(x)]) in PR1 such
that Gh−i is a witness of t w.r.t. q2. Let q̂1 be the result of unfolding q2 by part (2) of
the algorithm, then Gh−i is a witness of t w.r.t. q̂1 as well and |q̂1| ≥ |Gh−i|.

If |q̂1| > |Gh−i| it implies that there exists at least one membership assertion f in
Gh−i such that there exist at least two atoms g1, g2 in q̂1 that both unify with f . Hence
g1 and g2 unify, and by step (b) of the algorithm it follows that in PR there exists
q3 = remdup(τ(reduce(q̂1, g1, g2))), |q3| < |q̂1| and Gh−i is a witness of t w.r.t. q3. If
|q3| > |Gh−i| then by applying the argument consecutively there is a query q̂2 such that
|q̂2| = |Gh−i| and Gh−i is a witness of t w.r.t. q̂2, which proves the claim.

Finally, we observe that unification of atoms of the query at the end of PerfectRefu

does not add new answers to the set ans(Q, 〈T ,A〉) since all variables in the new
R atoms introduced in part (2) are bound. Therefore, the theorem holds also for the
algorithm PerfectRef. ut

Based on the above property, we are finally able to establish correctness of the
algorithm Answer and its computational complexity.

Theorem 11. Let K = 〈T ,A〉 be a DL-Lite(HN )
horn KB, Q a UCQ over T , and t a tuple

of constants in K. Then, t ∈ ans(Q,K) if and only if t ∈ Answer(Q,K).

Theorem 12. The algorithm Answer is exponential in the size of the TBox, and AC0 in
the size of the ABox (data complexity).

Note that we can modify PerfectRef to get an algorithm for the decision problem
associated with the query answering problem that runs in nondeterministic polynomial
time in combined complexity: it nondeterministically returns one of the CQs from the
reformulation of the input query (polynomially many rewriting steps) and in polynomial
time checks whether a tuple is in the answer to this CQ. The corresponding version of
Answer also runs in nondeterministic polynomial time.

5 Conclusions

This paper presents practical algorithms for query answering and knowledge base sat-
isfiability in DL-Lite(HN )

horn . They are based on the same idea as those devised for the
original DL-Lite logics. The distinguishing feature of these algorithms is a separation
between TBox and ABox reasoning, which enables an interesting modularization of
query answering: the part of the process requiring TBox reasoning is independent of
the ABox, and the part of the process requiring access to the ABox can be carried out
by an SQL engine. We showed that the algorithms are sound and complete.

The complexity of the developed algorithms is AC0 w.r.t. data complexity, NP in
the size of the TBox and NP w.r.t. combined complexity.
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Abstract. The standard reasoning problem, concept satisfiability, in the
basic description logic ALC is PSPACE-complete, and it is EXPTIME-
complete in the presence of unrestricted axioms. Several fragments of
ALC, notably logics in the FL, EL, and DL-Lite families, have an easier
satisfiability problem; sometimes it is even tractable. All these fragments
restrict the use of Boolean operators in one way or another. We look
at systematic and more general restrictions of the Boolean operators
and establish the complexity of the concept satisfiability problem in the
presence of axioms. We separate tractable from intractable cases.

1 Introduction

Standard reasoning problems of description logics, such as satisfiability or sub-
sumption, have been studied extensively. Depending on the expressivity of the
logic and the reasoning problem, the complexity of reasoning for DLs ranging
from logics below the basic description logic ALC to the OWL DL standard
SROIQ is between tractable and NEXPTIME.

For ALC, concept satisfiability is PSPACE-complete [27] and, in the presence
of unrestricted axioms, it is EXPTIME-complete due to the correspondence with
propositional dynamic logic [25, 29, 14]. Since the standard reasoning tasks are
interreducible in the presence of all Boolean operators, subsumption has the same
complexity.

Several fragments of ALC, such as logics in the FL, EL or DL-Lite families,
are well-understood. They often restrict the use of Boolean operators, and it
is known that their reasoning problems are often easier than for ALC. For
instance, concept subsumption with respect to acyclic and cyclic TBoxes, and
even with GCIs is tractable in the logic EL, which allows only conjunctions
and existential restrictions, [4, 9], and it remains tractable under a variety of
extensions such as nominals, concrete domains, role chain inclusions, and domain
and range restrictions [5, 6]. However, the presence of universal quantifiers breaks
tractability: Subsumption in FL0, which allows only conjunction and universal
restrictions, is coNP-complete [22] and increases to PSPACE-complete with
respect to cyclic TBoxes [3, 18] and to EXPTIME-complete with GCIs [5, 17]. In
[12, 13], concept satisfiability and subsumption for several logics below and above
ALC that extend FL0 with disjunction, negation and existential restrictions and
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other features, is shown to be tractable, NP-complete, coNP-complete or PSPACE-
complete. Subsumption in the presence of general axioms is EXPTIME-complete
in logics containing both existential and universal restrictions plus conjunction or
disjunction [15], as well as in AL, where only conjunction, universal restrictions
and unqualified existential restrictions are allowed [11]. In DL-Lite, where atomic
negation, unqualified existential and universal restrictions, conjunctions and
inverse roles are allowed, satisfiability of ontologies is tractable [10]. Several
extensions of DL-Lite are shown to have tractable and NP-complete satisfiability
problems in [1, 2].

This paper revisits restrictions to the Boolean operators in ALC. Instead of
looking at one particular subset of {∧,∨,¬}, we are considering all possible sets
of Boolean operators, including less commonly used operators such as the binary
exclusive or ⊕. Our aim is to find for every possible combination of Boolean
operators whether it makes satisfiability of the corresponding restriction of ALC
hard or easy. Since each Boolean operator corresponds to a Boolean function—
i.e., an n-ary function whose arguments and values are in {⊥,>}—there are
infinitely many sets of Boolean operators determining fragments of ALC. The
complexity of the corresponding concept satisfiability problems without theories,
which are equivalent to the satisfiability problems for the corresponding fragments
of multimodal logic, has already been classified in [16]: it is PSPACE-complete if
at least the ternary operator x ∧ (y ∨ z) and the constant ⊥ are allowed, coNP-
complete if at least conjunctions and at most conjunctions plus the constant ⊥ are
allowed, and trivial otherwise, i.e., for all other sets of Boolean operators, every
modal formula (concept description) is satisfiable. We will put this classification
into the context of the above listed results for ALC fragments.

The tool used in [16] for classifying the infinitely many satisfiability problems
was Post’s lattice [24], which consists of all sets of Boolean functions closed under
superposition. These sets directly correspond to all sets of Boolean operators
closed under nesting. Similar classifications have been achieved for satisfiability
for classical propositional logic [19], Linear Temporal Logic [7], hybrid logic [20],
and for constraint satisfaction problems [26, 28].

In this paper, we classify the concept satisfiability problems with respect to
theories for ALC fragments obtained by arbitrary sets of Boolean operators. We
will separate tractable and intractable cases, showing that these problems are

– EXPTIME-hard whenever we allow at least conjunction, disjunction or all
self-dual operators, where a Boolean function is called self-dual if negating
all its arguments negates its value,

– PSPACE-hard whenever we allow at least negation or both constants ⊥,>,
– coNP-hard whenever we allow at least the constant ⊥,
– trivial, which means that all instances are satisfiable, in all other cases.

We will also put these results into the context of the above listed results for ALC
fragments. This is work in progress which we plan to extend by corresponding
upper bounds, restricted use of ∃,∀, and terminological restrictions to TBoxes
such as acyclicity and atomic left-hand sides of axioms. Furthermore, not all
results carry over straightforwardly to other reasoning problems because some of
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the standard reductions use Boolean operators that are not available in every
fragment.

2 Preliminaries

Description Logic. We use the standard syntax and semantics of ALC with
the Boolean operators u, t, ¬, >, ⊥ replaced by arbitrary operators o that
correspond to Boolean functions fo of arbitrary arity. Let NC, NR and NI be sets
of atomic concepts, roles and individuals. Then the set of concept descriptions,
for short concepts, is defined by

C := A | o(C, . . . , C) | ∃R.C | ∀R.C,

where A ∈ NC, R ∈ NR, and o is a Boolean operator. A general concept inclusion
(GCI) is an axiom of the form C v D where C,D are concepts. We use “C ≡ D”
as the usual syntactic sugar for “C v D and D v C”. A TBox is a finite set of
GCIs without restrictions. An ABox is a finite set of axioms of the form C(x) or
R(x, y), where C is a concept, R ∈ NR and x, y ∈ NI. An ontology is the union of
a TBox and an ABox. This simplified view suffices for our purposes.

An interpretation is a pair I = (∆I , ·I), where ∆I is a nonempty set and ·I
is a mapping from NC to P(∆I), from NR to P(∆I ×∆I) and from NI to ∆I

that is extended to arbitrary concepts as follows:

o(C1, . . . , Cn)I = {x ∈ ∆I | fo(‖x ∈ CI1 ‖, . . . , ‖x ∈ CIn‖) = >},
where ‖x ∈ CI1 ‖ = > if x ∈ CI1 and ‖x ∈ CI1 ‖ = ⊥ if x /∈ CI1 ,

∃R.CI = {x ∈ ∆I | {y ∈ CI | (x, y) ∈ RI} 6= ∅},
∀R.CI = {x ∈ ∆I | {y ∈ CI | (x, y) /∈ RI} = ∅}.

An interpretation I satisfies the axiom C v D, written I |= C v D, if CI ⊆ DI .
Furthermore, I satisfies C(x) or R(x, y) if xI ∈ CI or (xI , yI) ∈ RI . An
interpretation I satisfies a TBox (ABox, ontology) if it satisfies every axiom
therein. It is then called a model of this set of axioms.

Let B be a finite set of Boolean operators and use Con(B) and Ax(B) to
denote the set of all concepts and axioms using only operators in B. The following
decision problems are of interest for this paper.

Concept satisfiability CSAT(B):
Given a concept C ∈ Con(B), is there an interpretation I s.t. CI 6= ∅ ?

TBox satisfiability TSAT(B):
Given a TBox T ⊆ Ax(B), is there an interpretation I s.t. I |= T ?

TBox-concept satisfiability TCSAT(B):
Given T ⊆ Ax(B) and C ∈ Con(B), is there an I s.t. I |= T and CI 6= ∅ ?

Ontology satisfiability OSAT(B):
Given an ontology O ⊆ Ax(B), is there an interpretation I s.t. I |= O ?
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Ontology-concept satisfiability OCSAT(B):
Given O ⊆ Ax(B) and C ∈ Con(B), is there an I s.t. I |= O and CI 6= ∅ ?

These problems are interreducible independently of B in the following way:

CSAT(B) ≤log
m OSAT(B)

TSAT(B) ≤log
m TCSAT(B) ≤log

m OSAT(B) ≡log
m OCSAT(B)

The reasons are: a concept C is satisfiable iff the ontology {a : C} is satisfiable,
for some individual a; a terminology T is satisfiable iff a fresh atomic concept A
is satisfiable w.r.t. T ; C is satisfiable w.r.t. T iff T ∪ {a : C} is satisfiable, for a
fresh individual a.

Complexity Theory. We assume familiarity with the standard notions of complex-
ity theory as, e. g., defined in [23]. In particular, we will make use of the classes
P, NP, coNP, PSPACE, and EXPTIME, as well as logspace reductions ≤log

m .

Boolean operators. This study aims at being complete with respect to Boolean
operators, which correspond to Boolean functions. A set of Boolean functions
is called a clone if it is closed under superpositions of functions, i.e., nesting of
operators. The lattice of all clones has been established in [24], see [8] for a more
succinct but complete presentation. Via the inclusion structure, lower and upper
complexity bounds carry over to higher and lower clones. We will therefore only
state our results for minimal and maximal clones.

Given a finite set B of functions, the smallest clone containing B is denoted
by [B]. The set B is called a base of [B], but [B] often has other bases as
well. On the operator side, [B] consists of all operators obtained by nesting
operators in B into each other. For example, nesting of binary conjunction yields
conjunctions of arbitrary arity. The table below lists all clones that we will refer
to, using the following definitions. A Boolean function f is called self-dual if
f(x1, . . . , xn) = f(x1, . . . , xn), c-reproducing if f(c, . . . , c) = c, and c-separating
if there is an 1 ≤ i ≤ n s.t. for each (b1, . . . , bn) ∈ f−1(c) bi = c for c ∈ {>,⊥}.
The symbol ⊕ denotes the binary exclusive or.

Clone Description Base

BF all Boolean functions {∧,¬}
M All monotone functions {∧,∨,⊥,>}
S11 >-separating, monotone function {x ∧ (y ∨ z),⊥}
D self-dual functions {(x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z)}
E conjunctions and constants {∧,⊥,>}
E0 conjunctions and ⊥ {∧,⊥}
V0 disjunctions and ⊥ {∨,⊥}
R1 >-reproducing functions {∨, x⊕ y ⊕>}
R0 ⊥-reproducing functions {∧,⊕}
N2 negation {¬}
I identity functions and constants {id,⊥,>}
I0 identity functions and ⊥ {id,⊥}
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Auxiliary results. The following lemmata contain technical results that will be
useful to formulate our main results. We use ?SAT(B) to speak about any of
the four satisfiability problems TSAT,TCSAT,OSAT and OCSAT introduced
above.

Lemma 1. Let B be a finite set of Boolean functions. If N2 ⊆ [B], then it holds
that ?SAT(B) ≡log

m ?SAT(B ∪ {>,⊥}).

Proof. It is easy to observe that the concepts > and ⊥ can be simulated by fresh
atomic concepts T and B, using the axioms ¬T v T and B v ¬B. 2
Lemma 2. Let B be a finite set of Boolean functions. Then it holds that
TCSAT(B) ≤log

m TSAT(B ∪ {>}).

Proof. It can be easily shown that 〈C, T 〉 ∈ TCSAT(B) iff 〈T ∪ {> v ∃R.C}〉 ∈
TSAT(B ∪ {>}), where R is a fresh relational symbol. For ”⇒” observe that
for the satisfying interpretation I = (∆I , ·I) there must be a world w′ where C
holds and then from every world w ∈ ∆I there can be an R-edge from w to w′

to satisfy T ∪ {> v ∃R.C}. For ”⇐” note that for a satisfying interpretation
I = (∆I , ·I) all axioms in T ∪ {> v ∃R.C} are satisfied. In particular the axiom
> v ∃R.C. Hence there must be at least one world w′ s.t. w′ |= C. Thus I |= T
and CI ⊇ {w′} 6= ∅. 2
Furthermore, we observe that, for each set B of Boolean functions with >,⊥ ∈ [B],
we can simulate the negation of an atomic concept using a fresh atomic concept
A and role RA: if we add the axioms A ≡ ∃RA.> and A′ ≡ ∀RA.⊥ to the given
terminology T , then each model of T has to interpret A′ as the complement of
A.

3 Complexity results for CSAT

The following classification of concept satisfiability has been obtained in [16].

Theorem 3 ([16]). Let B be a finite set of Boolean functions.

1. If S11 ⊆ [B], then CSAT(B) is PSPACE-complete.
2. If [B] ∈ {E,E0}, then CSAT(B) is coNP-complete.
3. If [B] ⊆ R1, then CSAT(B) is trivial.
4. Otherwise CSAT(B) ∈ P.

Part (1) is in contrast with the coNP-completeness of ALU satisfiability
[27] because the operators in ALU can express the canonical base of S11. The
difference is caused by the fact that ALU allows only unqualified existential
restrictions. Part (2) generalises the coNP-completeness of ALE satisfiability,
where hardness is proven in [12] without using atomic negation. It is in contrast
with the tractability of AL satisfiability [13], again because of the unqualified
restrictions. Part (3) generalises the known fact that every EL, FL0, and FL−
concept is satisfiable. The results for logics in the DL-Lite family cannot be put
into this context because DL-Lite quantifiers are unqualified.
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4 Complexity Results for TSAT, TCSAT, OSAT, OCSAT

In this section we will completely classify the above mentioned satisfiability
problems for their tractability with respect to sub-Boolean fragments and put
them into context with existing results for fragments of ALC.

Main results. Due to the interreducibilities stated in Section 2, it suffices to show
lower bounds for TSAT and upper bounds for OCSAT.

Theorem 4. Let B be a finite set of Boolean functions.

1. If ∧ ∈ B or ∨ ∈ B, then TCSAT(B) is EXPTIME-hard.
If also > ∈ B, then even TSAT(B) is EXPTIME-hard.

2. If all functions in B are self-dual, then TSAT(B) is EXPTIME-hard.
3. If ¬ ∈ B or {>,⊥} ⊆ B, then TSAT(B) is PSPACE-hard.
4. If all functions in B are ⊥-reproducing, then TSAT(B) is trivial.

5. If ⊥ ∈ B, then TCSAT(B) is coNP-hard.
6. If all functions in B are >-reproducing, then OCSAT(B) is trivial.

Proof. Parts 1.–6. are formulated as Lemmas 9, 10, 11, 7, 8, 12, and are proven
below. The second part of (1.) follows from Lemma 9 in combination with Lemma
2. 2

As a consequence of Theorem 4 in combination with Lemma 6 in [21] , we
obtain the following two corollaries that generalise the results to arbitrary bases
for all four satisfiability problems.

Corollary 5. Let B be a finite set of Boolean functions and ?SAT′ one of the
problems TCSAT, OSAT and OCSAT.

1. If E0 ⊆ [B] or V0 ⊆ [B], and [B] ⊆ M, then ?SAT′(B) is EXPTIME-hard.
2. If [B] = D or [B] = BF, then ?SAT′(B) is EXPTIME-hard.
3. If N2 ⊆ [B] or I ⊆ [B], then ?SAT′(B) is PSPACE-hard.
4. If [B] = I0, then ?SAT′(B) is coNP-hard.
5. If [B] ⊆ R1, then ?SAT′(B) is trivial.

Corollary 6. Let B be a finite set of Boolean functions.

1. If E ⊆ [B] or V ⊆ [B], and [B] ⊆ M, then TSAT(B) is EXPTIME-hard.
2. If [B] = D or [B] = BF, then TSAT(B) is EXPTIME-hard.
3. If N2 ⊆ [B] or I ⊆ [B], then TSAT(B) is PSPACE-hard.
4. If [B] ⊆ R0, or [B] ⊆ R1, then TSAT(B) is trivial.

Part (1) generalises the EXPTIME-hardness of subsumption for FL0 and
AL with respect to GCIs [15, 11, 17]. It is in contrast to the tractability of
subsumption with respect to GCIs in EL because our result does not separate
the two types of restriction, because EL has only existential restriction, and our
results do not (yet) consider existential, resp., universal restrictions separately.
This undermines the observation that, for negation-free fragments, the choice
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of the quantifier affects tractability and not the choice between conjunction
and disjunction. Again, DL-Lite cannot be put into this context because of the
unqualified restrictions.

Parts (2)–(4) (resp. (2) and (3) for Corollary 6) show that satisfiability with
respect to theories is already intractable for even smaller sets of Boolean operators.
One reason is that sets of axioms already contain limited forms of implication
and conjunction. This also causes the results of this analysis to differ from similar
analyses for related logics in that hardness already holds for bases of clones that
are comparatively low in Post’s lattice.

Due to Post’s lattice, our analysis is complete for dividing the fragments into
tractable and intractable cases.

Proofs of the main results.

Lemma 7. Let B be a finite set of Boolean functions s.t. B contains only >-
reproducing functions. Then OCSAT(B) is trivial.

Proof. According to Post’s lattice, every B that does not fall under Theorem 4 (1)–
(4)+(6) contains only >-reproducing functions. Hence the following interpretation
satisfies any instance (O, C): I = ({w}, ·I) s.t. AI = {w} for each atomic concept
A, rI = {(w,w)} for each role r, and aI = w for each individual a. It then holds
trivially that I |= O and CI = {w} 6= ∅. 2
Lemma 8. Let B be a finite set of Boolean functions s.t. B contains only ⊥-
reproducing functions. Then TSAT(B) is trivial.

Proof. The intepretation I = ({w}, ·I) with AI = ∅ for each atomic concept A,
and rI = {(w,w)} for each role r satisfies any instance T for TSAT(B), where B
contains only ⊥-reproducing functions. This follows from the observation that for
each axiom A v B in T both sides are always falsified by I (because every atomic
concept is falsified, and we only have ⊥-reproducing operators as connectives).
This can be shown by an easy induction on the concept structure. Please note that
we need to construct a looping node concerning the transition relations due to
the fact that we need to falsify axioms with ∀r.⊥ on the left side for some relation
r. If we set rI = ∅ then this expression would be satisfied and would contradict
our argumentation for the axiom ∀r.⊥ v ⊥. Moreover this construction cannot
fulfill wrongly the left side of an axiom because of the absence of > and as no
atomic concept has instances with w. 2
Lemma 9. Let B be a finite set of Boolean functions with ∧ ∈ B, or ∨ ∈ B.
Then TCSAT(B) is EXPTIME-hard. If all self-dual functions can be expressed
in B, then TSAT(B) is EXPTIME-hard.

Proof. The cases ∧ ∈ B and ∨ ∈ B follow from [15]. The remaining case for the
self-dual functions follows from Lemma 1, as all self-dual functions in combination
with the constants >,⊥ (to which we have access as ¬ is self-dual) can express
any arbitrary Boolean function. 2
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Lemma 10. Let B be a finite set of Boolean functions s.t. {⊥,>} ⊆ B. Then
TSAT(B) is PSPACE-hard.

Proof. To prove PSPACE-hardness, we state a ≤cd-reduction from QBF-3-SAT
to TSAT(B) and only allow ⊥ and > as available functions in B. Let ϕ ≡
a1x1a2x2 · · ·anxn(C1∧· · ·∧Cm) be a quantified Boolean formula and ai ∈ {∃,∀}.
In the following we construct a TBox T ⊆ Ax(B) s.t. ϕ ≡ > if and only if
T ∈ TSAT(B), where B consists only of > and ⊥.

We are first adding the following axioms to the TBox T using atomic con-
cepts d0, . . . , dn, x1, . . . , xn, x

′
1, . . . , x

′
n and roles Rr, R1, . . . , Rn, S,Rx1 , . . . , Rxn ,

Rd1 , . . . , Rdn
, RC1 , . . . , RCm

, P11, P21, P31, . . . , P1m, P2m, P3m. The atomic con-
cepts di stand for levels, xi and x′i for assigning truth values to the variables.

Initial starting point:
{> v ∃S.d0} (1)
xi is the negation of x′i:
{xi ≡ ∃Rxi

.> | 1 ≤ i ≤ n} ∪ {x′i ≡ ∀Rxi
.⊥ | 1 ≤ i ≤ n} (2)

in each level di we have Ri+1-successors where xi+1 and x′i+1 hold:

{di v ∃Ri+1.xi+1 | 0 ≤ i < n} ∪ {di v ∃Ri+1.x
′
i+1 | 0 ≤ i < n} (3)

the levels di are disjoint and we have succeeding levels:
{di v ∀Ri+1.di+1 | 0 ≤ i < n} ∪
{di v ∃Rdi .>, dj v ∀Rdi .⊥ | 0 ≤ i < j ≤ n} (4)

xi and x′i carry over:
{xi v ∀Rj .xi | 1 ≤ i < j ≤ n} ∪ {x′i v ∀Rj .x

′
i | 1 ≤ i < j ≤ n} (5)

Now T is consistent, and each of its models contains a tree-like substructure
similar to the one depicted in Figure 2. The root of this substructure is an instance
of d0. The individuals at depth n counting from the root are called leaves.

x2, x
′
3, x

′
5

C′
6

f

x′
3

x′
5

P16

P26

Fig. 1. clause C6 ≡
x2 ∨ x3 ∨ x5

Please note that each individual in ∆I is an instance
of either xi or x′i because of axiom (2). In particular, this
holds for the leaves. Furthermore, this enforcement does
not contradict the level-based labeling of the xi—e.g., the
atomic concepts xi and x′i “labeled in d0” are not carried
forward to the next levels because axiom (5) states this
carry only if j > i.

In the remaining part, we need to ensure the following,
where Cj is an arbitrary clause in ϕ. Each leaf w is an
instance of the atomic concept Cj if and only if the com-
bination of the xi-values in w satisfies the clause Cj . In
order to achieve this, we again use two complementary atomic propositions Cj

and C ′j . The C ′j must be enforced in all leaves where all literals of Cj are set to
false. For a literal ` ∈ {x1, x1, . . . , xn, xn}, use ˜̀ to denote the atomic concept xi

if ` = xi and x′i if ` = xi. The correct labeling of the leaves by the Cj and C ′j

286 The Complexity of Satisfiability for Sub-Boolean Fragments of ALC



is ensured by adding the following axioms to T , which enforce substructures as
depicted for the example in Figure 1:{

l̃1j v ∃P1j .>, l̃2j v ∀P1j .l̃2j , ∃P1j .l̃2j v ∃P2j .>,

l̃3j v ∀P2j .l̃3j , ∃P2j .l̃3j v C ′j ,
∣∣∣ Cj = l1j ∨ l2j ∨ l3j in ϕ

}
∪ (6){

C ′j v f | 1 ≤ j ≤ m} ∪ (7)

{f v ∃F.>, f ′ v ∀F.⊥} ∪ (8){
Cj ≡ ∃RCj .>, C ′j ≡ ∀RCj .⊥ | 1 ≤ j ≤ m} (9)

d0

d1, x1

d1, x′
1

d2
x1, x2

d2

x1, x′
2

d2

x′
1, x2

d2

x′
1, x′

2

d3, x1, x2, x3

C′
2, f

d3, x1, x2, x′
3

d3, x1, x′
2, x3

d3, x1, x′
2, x′

3

d3, x′
1, x2, x3

d3, x′
1, x2, x′

3
C′

1, f

d3, x′
1, x′

2, x3

d3, x′
1, x′

2, x′
3

S

R1

R1

R2

R2

R2

R2

R3

R3

R3

R3

R3

R3

R3

R3

x2

P11

P21

x2

P11

x′
3P21

P11

P11

x2

P12

x3
P22

x2

P12

P22

P12

P12

Fig. 2. Essential part of the in-
terpretation for the qBf ϕ =
∃x1∀x2∃x3(x1∨¬x2∨x3)∧(¬x1∨
¬x2 ∨ ¬x3).

Finally we need to ensure that all con-
cepts Cj are true in the leaves depending on
the quantifications a1x1a2x2 · · ·anxn. For
this purpose, we add the following axioms
to the TBox T which ensure that, starting
at the root, we run through each variable
level of the tree as required by the quantifi-
cation in ϕ, and reach only leaves that are
no instances of f , i.e., that are instances of
f ′:

{d0 v a1R1.a2R2. · · ·anRn.f
′} (10)

Claim. ϕ ≡ > iff T ∈ TSAT({>,⊥}).

Proof. “⇐”: Let I = (∆I , ·I) be an interpre-
tation s.t. I |= T . Due to axiom (1), there
exists an individual w0 that is an instance
of d0. Because of axioms (3) and (4), there
are at least two different R1-successors of d0,
one being an instance of x1 and the other
of x′1 (axiom (5) in combination with axiom
(4) ensure that these successors are fresh in-
dividuals). Every other R1-successor is an
instance of either x1 or x′1, due to axiom (2).
Other possible Rj-edges for 2 ≤ j ≤ n will
not affect our argumentation as we will see
in the following.

Repeated application of axioms (3) and
(4) shows that this structure becomes a com-
plete binary tree of depth n with (at least)
2n leaves. Each leaf represents one of all pos-
sible Boolean combinations of xi and x′i for
1 ≤ i ≤ n. Due to axioms (3) and (4), every possible combination does occur.
In addition, axiom (9) and (7) ensure the following: each leaf is an instance of
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either Cj or C ′j , for each 1 ≤ j ≤ m; if a leaf is an instance of at least one such
Cj , it is also an instance of f .

Axiom (10) allows us to conclude that all relevant leaves that represent the
assignments θi : {x1, . . . , xn} → {0, 1} for which θi |= C1 ∧ · · · ∧ Cm must hold,
are instances of the proposition f ′. Additional Rj-edges, as mentioned above, do
not contradict the argumentation. Hence every relevant leaf must be an instance
of every Cj because otherwise it were an instance of C ′j and thus of f ′. Therefore,
at least one literal in each clause is labeled and thereby satisfied. Hence ϕ ≡ >.

Note that only those leaves that correspond to an assignment satisfying Cj

can be instances of Cj . To clarify this fact, consider a clause Cj = l1j ∨ l2j ∨ l3j

that is not satisfied by some assignment θ : {x1, . . . , xn} → {>,⊥}, and some
leaf w is (erroneously) an instance of Cj . As θ 6|= Cj , it holds that θ 6|= lij for
1 ≤ i ≤ 3. Thus l′ij must be labeled in w in order for axiom (2) to be satisfied.
Now axiom (6) enforces R1j- and R2j-edges to successors satisfying l̃2j and l̃3j .
Finally, these propositions and transitions lead to w being an instance of C ′j .
This is not possible because Cj and C ′j are disjoint due to axiom (9).

“⇒”: Let n be the number of variables in ϕ. In [21] we show by induction on
n: if ϕ = ∃x1∀x2 · · ·axn(C1 ∧ · · · ∧ Cm) ≡ >, then T ∈ TSAT({>,⊥}). 3

As the number of axioms in T is polynomially bounded and the terminology
is consistent if and only if the quantified Boolean formula ϕ is satisfiable, the
lemma applies. 2
Lemma 11. TSAT({¬}) is PSPACE-hard.

Proof. From Lemma 1 we can simulate > and ⊥ with fresh atomic concepts.
Then the argumentation follows similarly to Lemma 10. 2
Lemma 12. TCSAT({⊥}) is coNP-hard.

Proof. In contrast to Lemma 10, the instances of TCSAT(I0) consist of a concept
C and a TBox T ⊆ Ax({⊥}). Both do not contain the concept >. Now we adapt
the proof of Lemma 10 to this new setting as follows: in all axioms containing
>, we replace > with a fresh atomic concept t. This is unproblematic except for
axiom (1), where we need to enforce d0 to have an instance. For this purpose,
we remove the axiom > v ∃S.d0 from T and set C = d0. Additionally, we need
to adopt axiom (10) to d0 v ∀R1.∀R2. · · · ∀Rn.f

′ to match the desired reduction
from TAUT. Please note, that with this construction it is not possible to state a
reduction from QBF-3-SAT, because an interpretation where whenever we want
to branch existentially, a respective individual with neither xi nor x′i labeled can
be added without interfering the axioms, in particular axiom (2). 2
5 Conclusion

With Corollaries 5 and 6, we have separated the problems TSAT, TCSAT, OSAT
and OCSAT for ALC fragments obtained by arbitrary sets of Boolean operators
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into tractable and intractable cases. We have shown that these problems are on
the one hand for TSAT

– EXPTIME-hard whenever we allow the constant > in combination with at
least conjunction or disjunction,

– EXPTIME-hard whenever all Boolean self-dual functions can be expressed,
– PSPACE-hard whenever we allow at least negation or both constants ⊥,>,
– trivial in all other cases.

On the other hand for the remaining three satisfiability problems we reached
EXPTIME-hardness even for only disjunction or conjunction (without the con-
stant >), and got coNP-hard cases whenever we allow at least the constant ⊥
(hence the ⊥-reproducing cases that are trivial for TSAT drop to intractable for
these problems).

According to the Figures 4 and 5 in [21], which arrange our results in Post’s
lattice, this classification covers all sets of Boolean operators closed under nesting.

We have also shown how our results, and the direct transfer of the results in
[16] to concept satisfiability, generalise known results for the FL and EL family
and other fragments of ALC. Furthermore, due to the presence of arbitrary
axioms, the overall picture differs from similar analyses for related logics in that
hardness already holds for small sets of inexpressive Boolean operators.

It remains for future work to find matching upper bounds for the hardness
results, to look at fragments with only existential or universal restrictions, and
to restrict the background theories to terminologies with atomic left-hand sides
of concept inclusion axioms with and without cycles. Furthermore, since the
standard reasoning tasks are not always interreducible if the set of Boolean
operators is restricted, a similar classification for other decision problems such as
concept subsumption is pending.
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Abstract. Multiple distributed and modular ontology representation
frameworks have recently appeared. They typically extend Description
Logics (DL), with new constructs to represent relations between entities
across several ontologies. Three kinds of constructs appear in the liter-
ature: link properties, found in E-connections, semantic mapping, found
in Distributed Description Logics (DDL), and semantic imports, used in
Package-based Description Logics (P-DL). In this work, we aim towards
formal comparison of the expressive power of these frameworks, and thus
also the ontology combination paradigms that they instantiate. Reduc-
tion from DDL to E-connections is already known. We present two new
reductions, from P-DL to DDL and vice versa. These results show that
there are similarities between these frameworks. However, due to the fact
that none of the reductions is unconditional, it cannot be claimed that
any of the three approaches is strictly more expressive than another.

1 Introduction

There are multiple reasons behind the research in modular and distributed on-
tologies. Introduction of modularity into ontology engineering, inspired by modu-
lar software engineering, calls for organizing ontologies into modules which could
then be reused and combined in novel ways and thus the whole ontology engi-
neering process will be facilitated and simplified. Another motivation comes from
the Semantic Web vision, where ontologies are seen as a central ingredient, but
on the other hand, decentralization and duplicity of knowledge sources is seen as
very important too [1]. The centralized, monolithic treatment of ontologies, pre-
dominant in the mainstream theoretical research on ontology representation [2],
is not sufficient; a novel decentralized and distributed ontology representation
approach is of demand, that would deal with duplicity, temporal unavailability
and also occasional inconsistence of the various ontological data sources.

The effort to achieve such an ontological representation breaks down into
two problems: what are the requirements for an encapsulated and reusable on-
tology module, and how to combine such modules and enable reasoning with
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the combined ontology. There are two main research directions. The first is to
combine the modules simply by means of union and to find out the requirements
under which such combination is feasible [3,4,5]. The second direction, on which
we focus in this paper, imposes none or only very basic requirements on the
modules and provides new constructs in order to combine the modules. Repre-
sentation frameworks of this kind typically work with multiple DL [2] ontologies,
and they provide novel constructs to interlink these ontologies. Each framework
employs slightly different constructs; three ontology combination paradigms are
distinguished: ontology linking, ontology mapping and ontology importing.

Ontology linking allows individuals from distinct ontologies to be coupled
with links. A strict requirement is that the domains of the ontologies that are
being combined are disjoint. See Fig. 1 a), where an ontology of companies is
inter-linked with another ontology of products using the link produces. Links
allow for complex concepts to be constructed, and they basically act as cross-
ontology roles. The linking paradigm is employed by E-connections [6].

Ontology mapping, in contrast, allows to relate ontologies on the same do-
main or on partially overlapping domains. Special mapping constructs indicate
how elements from different ontologies are semantically related. Concepts, roles
and individuals are possibly related. Mapping enables for knowledge reuse and
also for resolution of semantic heterogeneity between ontologies that model the
same domain but each from a different perspective. See Fig. 1 b), where map-
ping is expressed between two ontologies which possibly cover same entities but
one models business relations and the other one models legal relations of these
entities. In this paper we take a look at DDL [7], another notable instance of
this paradigm are Integrated Distributed Description Logics [8].

Ontology importing allows a subset of concepts, relations and individuals
defined in one ontology to be imported into another ontology where they are
then reused. The importing takes care of propagating also the semantic relations
that exist between these entities in their home ontology into the ontology that
imports them. In Fig. 1 c), several roles are imported from a dedicated ontology
module that deals with partonomy. Importing has been studied by Pan et al.
[9]. The P-DL framework [10] falls under this paradigm.

This work aims towards comparison of the expressive power of these ap-
proaches. Some comparisons have already appeared in the literature. Some of
them stay on qualitative or intuitive level [11,12]. Formal comparisons of the
expressive power are less frequent. To our best knowledge, only reduction that is
known is between DDL and E-connections [13,6]. In this paper, we extend these
efforts by producing two new reductions, from P-DL to DDL (with a specifically
adjusted semantics), and vice versa. These results show, that there are certain
similarities between P-DL and DDL, however, the semantics of P-DL is stronger,
and it cannot be claimed that one of the frameworks is more expressive than the
other. Similarly, one has to be careful when interpreting the reduction between
DDL and E-connections [13,6], because also this result assumes a DDL semantics
which is not currently considered the standard one.
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Fig. 1. Ontology combination paradigms: a) ontology linking; b) ontology mapping; c)
ontology importing.
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On the other hand, these results provide us with valuable insight on the rela-
tion between the paradigms of ontology linking, ontology mapping and ontology
import, and can possibly guide the user that is to pick an appropriate formalism
for a particular application.

2 Distributed Description Logics

DDL [7,14,15] follow the ontology mapping paradigm. They allow to connect
multiple DL KB with bridge rules, a new kind of axioms that represents the
mapping. An important point is that bridge rules are directed. Typically, DDL
are built over SHIQ. For the lack of space we cannot introduce SHIQ fully,
please see the paper by Horrocks et al. [16].

Assume an index set I. Sets NC = {NCi}i∈I , NR = {NRi}i∈I and NI = {NIi}
will be used for concept, role and individual names respectively. A distributed
TBox is a family of TBoxes T = {Ti}i∈I , a distributed RBox is a family of
RBoxes R = {Ri}i∈I , a distributed ABox is a family of ABoxes A = {Ai}i∈I ,
such that K = 〈Ti,Ri,Ai〉 is a SHIQ KB built over symbols from NCi, NRi,
and NIi. By i : φ we denote that φ is a formula from Ki. A bridge rule from i to
j is an expression of one of the forms:

i : X v−→ j : Y , i : X w−→ j : Y , i : a 7−→ j : b ,

where X and Y are either both concepts or both roles, and a, b are two individ-
uals, in the respective language. The expression i : X ≡−→ j : Y is a syntactic
shorthand for the pair of bridge rules i : X v−→ j : Y and i : X w−→ j : Y . The
symbol B stands for a set of bridge rules, such that B =

⋃
i,j∈I,i6=j Bij where

Bij contains only bridge rules from i to j. A DDL KB over I is K = 〈T,R,A,B〉
with all four components ranging over I.

A distributed interpretation I = 〈{Ii}i∈I , {rij}i,j∈I,i6=j〉 consists of local in-
terpretations {Ii}i∈I and domain mappings {rij}i,j∈I,i6=j (notation: rij(d) =
{d′ | 〈d, d′〉 ∈ rij} and rij(D) =

⋃
d∈D rij(d)). For each i ∈ I the local interpre-

tation is of the form Ii =
〈
∆Ii , ·Ii

〉
. In DDL, ∆Ii may also be empty. In such a

case we call Ii a hole and denote it by Ii = Iε. A distributed interpretation I
satisfies elements of K (denoted by I |=ε ·) according to the following clauses:

1. I |=ε i : φ if Ii |= φ;
2. I |=ε Ti if I |=ε i : φ for each φ ∈ Ti;
3. I |=ε T if I |=ε Ti for each i ∈ I;
4. I |=ε Ri if I |=ε i : φ for each φ ∈ Ri;
5. I |=ε R if I |=ε Ri for each i ∈ I;
6. I |=ε Ai if I |=ε φ for each φ ∈ Ai;
7. I |=ε A if I |=ε Ai for each i ∈ I;
8. I |=ε i : X v−→ j : Y if rij

(
XIi

) ⊆ Y Ij ;
9. I |=ε i : X w−→ j : Y if rij

(
XIi

) ⊇ Y Ij ;
10. I |=ε i : a 7−→ j : b if bIj ∈ rij

(
aIi
)
;

11. I |=ε B if I |=ε φ for all axioms φ ∈ B.
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A distributed interpretation I is a distributed model, also ε-model, of K, if
I |=ε T, I |=ε R, I |=ε A and I |=ε B (denoted I |=ε K). I is a d-model of K, if
I |=ε K and it contains no hole (denoted I |=d K). A DDL KB K is i-consistent,
if it has an ε-model with Ii 6= Iε; it is globally consistent if it has a d-model.

A concept C is ε-satisfiable (d-satisfiable) with respect to Ki of K, if there
is an ε-model (d-model) I of K such that CIi 6= ∅. A formula i : φ is ε-entailed
(d-entailed) with respect to K, if in every ε-model (d-model) of K we have I
satisfies i : φ. This is denoted by K |=ε i : φ (K |=d i : φ).

The semantics corresponding to ε-satisfiability and ε-entailment is the actual
state of the art in DDL. It enjoys many reasonable properties [7,14]. We will
call this semantics DDLε. The notions of d-satisfiability and d-entailment (the
semantics DDLd) are rather auxiliary. As usual, entailment of subsumption for-
mulae and (un)satisfiability are interreducible and both reducible into deciding
i-consistence of a KB (DDLε) or global consistence of a KB (DDLd).

DDLε and DDLd permit any domain relations [7], but also alternate seman-
tics with restricted domain relations have been investigated [17,18]. DDLε which
requires domain relations to be partial functions is denoted by DDLε(F). DDLε
with injective domain relations is denoted by DDLε(I). DDLε with composition-
ally consistent domain relations (rij ◦ rjk = rik for any distinct i, j, k ∈ I) is
denoted by DDLε(CC). DDLε with restricted compositionality (rij ◦ rjk = rik
for any distinct i, j, k ∈ I, if there is a directed path of bridge rules from i to j
and from j to k) is denoted by DDLε(RC). DDLε with role-preserving domain
relation (if (x, y) ∈ RIi than rij(x) 6= ∅ =⇒ rij(y) 6= ∅), for each R that
appears on the left hand side of any bridge rule from i to j, will be denoted
by DDLε(RP). Variants with DDLd and combinations are possible (e.g., later
on we will discuss DDLε(F,I,RC,RP), the semantics with partially functional,
injective, restricted-compositional and role-preserving domain relations).

In addition, we will assume that local alphabets are mutually disjoint, and
only atomic concepts are used in bridge rules. This is a normal form of DDL
which is equivalent to the full version without these restrictions.

3 Package-based Description Logics

P-DL instantiate the ontology import paradigm. They allow a subset of terms to
be imported from one DL KB to another (in P-DL these ontology modules are
called packages). The review is based on the recent publication of Bao et al. [19]
which builds on top of SHOIQ resulting into P-DL language SHOIQP. The
space does not permit us to introduce SHOIQ formally, please see the work of
Horrocks [20].

A package based ontology is any SHOIQ ontology P which partitions into a
finite set of packages {Pi}i∈I , using an index set I. Each Pi uses its own alphabet
of terms NCi]NRi]NIi (concept, role and individual names, respectively). The
alphabets are not mutually disjoint, but for any term t there is a unique home
package of t, denoted by home (t). The set of home terms of a package Pi ∈ P
is denoted by ∆Si

. A term t occurring in Pi is a local term in Pi if home (t) = i,
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otherwise it is a foreign term in Pi. If t is a foreign term in Pj , and home (t) = i,
then we write Pi

t→ Pj . If Pi
t→ Pj for any term t, then also the package Pj

imports the package Pi (denoted Pi → Pj). By ∗→ we denote the transitive
closure of → and by P ∗j the set Pj ∪ {Pi|i ∗→ j}.

When Pi → Pj , the symbol >i occurring within Pj represents the imported
domain of Pi. Also in this case a novel contextualized negation constructor ¬i is
applicable within Pj ¬i (it is however a mere syntactic sugar and can be ruled
out as we always have ¬iC ≡ >i u ¬jC).

A distributed interpretation of P is a pair I =
〈
{Ii}i∈I , {rij}i ∗→j

〉
, such that

each Ii =
〈
∆Ii , ·Ii

〉
is an interpretation of the local package Pi and each rij ⊆

∆Ii×∆Ij is a domain relation between ∆Ii and ∆Ij . A distributed interpretation
I is a model of {Pi}i∈I , if the following conditions hold:

1. there is at least one i ∈ I such that ∆Ii 6= ∅;
2. Ii |= Pi;
3. rij is an injective partial function, and rii is the identity function;
4. if i ∗→ j and j

∗→ k, then rik = rij ◦ rjk (compositional consistency);

5. if i t→ j, then rij(tIi) = tIj ;

6. if i R→ j and (x, y) ∈ RIi than rij(x) 6= ∅ =⇒ rij(y) 6= ∅ (role preserving).

The three main reasoning tasks for P-DL are consistency of KB, concept
satisfiability and concept subsumption entailment with respect to a KB. These
are always defined with respect to a so called witness package Pw ∈ P. A package-
based ontology P is consistent as witnessed by a package Pw of P, if there exists a
model I of P ∗w such that ∆Iw 6= ∅. In this case we also say that P is w-consistent.
A concept C is satisfiable as witnessed by a package Pw of P, if there exists a
model I of P ∗w such that CIw 6= ∅. A subsumption formula C v D is valid as
witnessed by a package Pw of P (denoted P |= C vw D), if for every model I
of P ∗w we have CIw ⊆ DIw .

4 E-connections

The E-connections framework represents the ontology linking paradigm. Al-
though many flavours of E-connections are known, for sake of simplicity we
introduce the language CE(SHIQ) [6,21,22]. This language allows to connect
multiple ontologies expressed in SHIQ [16] with links.

Assume a finite index set I. For i ∈ I let NCi and NIi be pairwise disjoint
sets of concepts names and individual names respectively. For i, j ∈ I, i and j
not necessarily distinct, let εij be sets of properties, not necessarily mutually
disjoint, but disjoint with respect to NC

mk

k and NI
mk

k . An ij-property axiom is
of the form P1 v P2, where P1, P2 ∈ εij . An ij-property box Rij is a finite set
of ij-property axioms. The combined property box R contains all the property
boxes for each i, j ∈ I.
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Given some i ∈ I, A ∈ NCi, two i-concepts C and D, and a j-concept Z, and
P, S ∈ εij , S is simple (see [16,22]), the following are also i-concepts:

⊥i|>i|A|¬C|C uD|C tD|∃P.Z|∀P.Z|>nS.Z|6nS.Z .

A combined TBox is a tuple K = {Ki}i∈I where each Ki is a finite set of i-
local GCI axioms of the form C v D, where C,D are i-concepts. A combined
ABox A = {Ai}i∈I ∪AE is a set of local ABoxes Ai, each comprising of a finite
number of i-local concept assertions C(a) and role assertions R(a, b), where C
is an i-concept, R ∈ εii, a, b ∈ NIi. AE is a finite set of object assertions, each
of the form a ·E · b, where E ∈ εij , a ∈ NIi, b ∈ NIi. A combined KB is a triple
Σ = 〈K,R,A〉, where each component ranges over the same index set I.

Now we focus on the semantics. Given some KB Σ = 〈K,R,A〉 with index
set I, a combined interpretation is a triple I = 〈{∆Ii}i∈I , {·Ii}i∈I , {·Iij}i,j∈I〉,
where ∆Ii 6= ∅, for i ∈ I, and ∆Ii∩∆Ij = ∅, for i, j ∈ I, i 6= j. The interpretation
functions provide denotation for i-concepts (·Ii) and for ij-properties (·Iij ).

Each ij-property P ∈ εij is interpreted by P Iij ⊆ ∆Ii ×∆Ij . I satisfies an
ij-property axiom P1 v P2, if P1

Iij ⊆ P2
Iij . Each i-concept C is interpreted by

CIi ⊂ ∆Ii ; >i = ∆Ii and ⊥i = ∅, and denotation of complex i-concepts must
satisfy the constraints as given in Table 1. I satisfies an i-local GCI C v D
(denoted by I |= C v D), if CIi ⊆ DIi . I satisfies an i-local concept assertion
C(a) (denoted I |= C(a)), if aIi ∈ CIi ; it satisfies an i-local role assertion R(a, b)
(denoted I |= R(a, b)), if

〈
aIi , bIi

〉 ∈ RIii ; I satisfies an object assertion a ·E · b
(denoted I |= a · E · b), a ∈ NIi, b ∈ NIj , E ∈ ρij , if

〈
aIi , bIj

〉 ∈ EIij .

X XIi

¬C ∆Ii \ CIi

C uD CIi ∩DIi

C tD CIi ∪DIi

∀P.Z {x ∈ ∆Ii | (∀y) (x, y) ∈ P Iij =⇒ y ∈ ZIj}
∃P.Z {x ∈ ∆Ii | (∃y) (x, y) ∈ P Iij ∧ y ∈ ZIj}
>nS.Z Ii = {x ∈ ∆Ii | ]{y | (x, y) ∈ SIij} ≥ n}
6nS.Z {x ∈ ∆Ii | ]{y | (x, y) ∈ SIij} ≤ n}

Table 1. Semantic constraints on complex i-concepts in E-connections.

Finally, a combined interpretation I is a model of Σ = 〈K,R,A〉 (denoted
by I |= Σ), if I satisfies every axiom in K, R and A. An i-concept is satisfiable
with respect to Σ, if Σ has a combined model I, such that CIi 6= ∅. We have
Σ |= C v D, for two i-concepts C and D, if in each combined model I of Σ,
CIi ⊆ DIi . Both reasoning tasks are inter-reducible, as usual.
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5 Relating DDL to P-DL

In this section, we present two reductions. First is from P-DL into DDL, and
later on also vice versa from DDL into P-DL. As we have learned, P-DL use
a rather strongly restricted semantics, hence we will use DDLε(F,I,RC,RP) in
order to make the reduction possible.

Theorem 1. Given a SHIQP ontology P = {Pi}i∈I , with the importing rela-
tion Pi

t→ Pj. Let us construct a DDL KB K = 〈T,R,A,B〉 over I:

– Ti := {φ | φ ∈ Pi is a GCI axiom} ∪ {>i ≡ >}, for each i ∈ I;
– Ri := {φ | φ ∈ Pi is a RIA axiom}, for each i ∈ I;
– Ai := {φ | φ ∈ Pi is an ABox assertion}, for each i ∈ I;
– Bij := {i : C ≡−→ j : C | Pi C→ Pj} ∪ {i : R ≡−→ j : R | Pi R→ Pj} ∪ {i : a 7−→
j : a | Pi a→ Pj}, for each i, j ∈ I.

Given any i ∈ I, P is i-consistent if and only if K is i-consistent under
DDLε(F,I,RC,RP).

It trivially follows that also the decision problems of satisfiability and sub-
sumption entailment are reducible, since they are reducible into i-consistence.

Corollary 1. Deciding satisfiability and subsumption entailment in P-DL re-
duces into deciding i-consistence in DDL under the semantics DDLε(F,I,RC,RP).

We will now show, that under this strong semantics of DDL, also a reduction
in the opposite direction is possible.

Theorem 2. Let K = 〈T,R,A,B〉 be a DDL KB over some index set I. We
construct a package-based ontology P = {Pi}i∈I . Each package Pj contains a
union of the following components:

1. Tj ∪ {C v G | i : C v−→ j : G ∈ B} ∪ {G v C | i : C w−→ j : G ∈ B};
2. Rj ∪ {R v S | i : R v−→ j : S ∈ B} ∪ {S v R | i : R w−→ j : S ∈ B};
3. Aj ∪ {a = b | i : a 7−→ j : b ∈ B}.

In addition, P uses the following imports:

– Pi
C→ Pj if either i : C v−→ j : G ∈ B or i : C w−→ j : G ∈ B, for any

i, j ∈ I, for any i-concept C and for any j-concept G;
– Pi

R→ Pj if either i : R v−→ j : S ∈ B or i : R w−→ j : S ∈ B, for any i, j ∈ I,
for any i-role R and for any j-role S;

– Pi
a→ Pj if i : a 7−→ j : b ∈ B for any i, j ∈ I, for any i-individual a and for

any j-individual b.

Given any i ∈ I, P is i-consistent if and only if K is i-consistent under
DDLε(F,I,RC,RP).

Also the remaining decision problems are reducible, because they are re-
ducible into i-consistence in DDL.
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Corollary 2. Deciding satisfiability of concepts and subsumption entailment
with respect in DDLε(F,I,RC,RP) reduces into deciding i-consistence in P-DL.

As we see, P-DL are closely related to DDLε(F,I,RC,RP). More precisely,
these results show, that it is possible to implement importing with bridge rules,
and vice versa, it is possible to simulate bridge rules with imports and additional
local axioms, if the requirements placed on domain relations are the same.

These results do not imply, however, that the two frameworks have the same
expressivity, for two reasons. First, in terms of expressive power, none of the
reductions is complete. DDL does not handle nominals, hence P-DL ontologies
with nominals cannot be reduced. On the other hand, we deal with simplified
version of DDL in this paper. We did not provide any reduction for DDL ontolo-
gies with heterogeneous bridge rules [15], and as these bridge rules essentially
require domain relations that are not functional, it is hard to imagine that any
reduction is possible.

The second reason is the fact that the DDL semantics used by the reductions
is considerably stronger than what is commonly understood as appropriate DDL
semantics. DDLε(RC), a weaker version of DDLε(F,I,RC,RP) has been studied
[18], and it has been showed that it does not satisfy all the desiderata commonly
placed on DDL [7,14]. More specifically, this semantics may behave unexpect-
edly, in the presence of an accidental inconsistency in one of the ontologies
that are combined [18]. The problem also occurs with the stronger semantics
DDLε(F,I,RC,RP), and we will show that it also occurs in P-DL.

Example 1. Consider a package-based ontology P consisting of three packages
P1, P2 and P3 with the following imports:

P1
C→ P2 , P2

D→ P3 , P1
E→ P3 .

This is a very basic P-DL setting, each of the three packages imports one concept.
Furthermore, let us assume that all tree packages are empty (i.e., P1 = P2 =
P3 = ∅). This means, that the three concepts C, D and E are unrelated. It is
easy to show, that if P2 becomes inconsistent, for some reason, then the imported
conceptD becomes unsatisfiable in P3. This is quite intuitive, sinceD is imported
from P2. However, as we will show, if P2 becomes inconsistent, also E becomes
unsatisfiable in P3 which we consider rather unintuitive, since this concept is
imported from P1 and is unrelated to D.

Let P2 be inconsistent. For simplicity, let us assign P2 :={> v ⊥}. Due to
the first two imports we get that P1

∗→ P2 and P2
∗→ P3, and so the semantics

implies that in any model of P, it must be the case that r13 = r12 ◦r23. However,
since P2 is inconsistent, ∆I2 = ∅ in every model, and hence r12 ◦ r23 = ∅, and
hence also r13 = ∅. And so, we also get EI3 = r13(EI1) = ∅.

The DDLε semantics does not exhibit this problem [14]. On the other hand,
DDLε has problems with transitive propagation of the effects of bridge rules,
which is not a problem for DDLε(RC), nor DDLε(F,I,RC,RP) [18]. In the P-
DL setting this reformulates as the problem of transitive propagation of the
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imported semantic relations, and due to correspondence between P-DL and
DDLε(F,I,RC,RP), we now have a formal proof that it never appears in P-DL.
This clearly marks the difference between the two approaches.

6 On Relation of DDL and E-connections

The relation of DDL and E-connections has been studied in the literature. It is
known, that under certain assumptions, it is possible to reduce a DDL KB into
E-connections and reason equivalently in the latter formalism. More specifically,
for a DDL KB with bridge rules between concepts and between individuals, the
reasoning problems associated with d-entailment are reducible [6,13].

Theorem 3 ([6,13]). Assume a DDL KB K = 〈T,R,A,B〉 with index set I and
alphabet NC = {NCi}i∈I , NR = {NRi}i∈I and NI = {NIi}i∈I which contains no
bridge rules between roles. Let NC

′ = NC, NI
′ = NI, ε′ii = NRi, for each i ∈ I.

Let ε′ij = {Eij}, for each i, j ∈ I, i 6= j, where Eij is a new symbol.
Let us construct Σ′ = 〈K′,R′,A′〉, a CE(SHIQ) KB built over the index set

I and the vocabulary NC
′, NI

′ and {ε′ij}i,j∈I , as follows:

– K′i := Ti ∪ {∃Eij .C v G | j : C v−→ i : G ∈ B} ∪ {H v ∃Eij .D | j : D w−→
i : H ∈ B}, for each i ∈ I;

– R′i := Ri, for each i ∈ I;
– A′i := Ai, for each i ∈ I;
– A′E := {a · Eij · b | i : a 7−→ j : b ∈ B}.

It follows, that K is globally consistent if and only if Σ′ is consistent.

As a straightforward consequence of the theorem, also the remaining reason-
ing tasks related to global consistency are reducible.

Corollary 3. Deciding d-satisfiability and d-entailment of subsumption with re-
spect to a DDL KB reduces into deciding the consistence of KB in E-connections.

This shows, that there is some similarity between bridge rules in DDL and
links in E-connections. The reduction especially shows, what is the exact relation
between bridge rules on one side, and links on the other one. However it cannot
be claimed that E-connections are more expressive than DDL based on this
result. This is for two reasons.

First, the reduction is for the DDLd semantics. In DDL, however, “the se-
mantics” is currently DDLε, which allows holes and satisfies a number of desired
properties [7,14]. In particular, DDLε offers effective means to deal with acci-
dental inconsistency, and hence it is possible to reason with a DDL KB, even if
some local ontologies are inconsistent. E-connections offer no such features.

Second, to our best knowledge it is not possible to reduce the richer flavours
of DDL that include either bridge rules between roles or heterogeneous bridge
rules between concepts and roles [15].

These findings are well in line with the different purpose for which each of
the formalisms was designed. E-connections work with carefully crafted local
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modules with non-overlapping modeling domains, while DDL allow to connect
overlapping ontologies in which part of the terminology is modeled on both sides
although possibly differently.

7 Conclusion

The novel results of this paper are the reductions between P-DL and DDL (with
a specifically adjusted semantics) and vice versa. This result suggests that these
two frameworks have many similarities, and under certain assumptions, imports
used in P-DL can be expressed by bridge rules used in DDL, and the other
way around. On the other hand, these results also point out, that the actual
difference between the two formalisms is in the fact that P-DL uses much stronger
semantics than DDL. These semantics significantly differ, and hence it cannot
be claimed that one of these frameworks is more expressive than the other.

Similarly, it cannot be claimed that E-connections are more expressive than
DDL, based on the reduction given by Kutz et al. [6,13]. This reduction is not
given for the DDL semantics with holes, which is currently considered the most
appropriate one, but for a simplified semantics instead. In addition, for some
more complex DDL constructs no reduction is known in the literature. What
the reduction does show, is how the concept of bridge rules and the concept of
links (used in E-connections) are related.

We conclude, that these results are well in line with the particular purpose for
which each of the formalisms has been designed and is suitable for. E-connections
are particular well suited for combining multiple ontologies with separated local
domains. This separation of domains, which has to be maintained, may also serve
as a reasonable guide during modular ontology development.

On the other hand, sometimes we wish to combine and integrate also ontolo-
gies with partially overlapping domains. Especially in heterogeneous distributed
knowledge environments, such as the Semantic Web, this is unavoidable. In such
applications, DDL seems to be the most suitable, offering a versatile apparatus of
ontology mapping, which allows concepts, roles and individuals to be associated
freely according to the need of the application. DDL is robust enough to deal
with accidental inconsistency and offers means to resolve possible heterogeneity
in the modeling approaches used by different ontologies.

Finally, P-DL offers an ontology importing paradigm, which is very familiar
to importing in software engineering. Thus P-DL is intuitive and easily under-
stood also by users without deep understanding of ontology integration issues.
Its strong semantics deals with many modeling issues, such as transitive propa-
gation of imported relations, however, as the reduction suggests, it may possibly
behave unexpectedly in the presence of accidental inconsistency in the system.
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Abstract. We develop a query algebra that supports efficient assertion
retrieval—a natural extension of instance retrieval. The algebra is based
on previously developed techniques for indexing concept descriptions.
We show how relational-style query processing, including the use of sec-
ondary indices, of multiple cascaded indices, and so on, can be used to
improve query performance, and also develop general conditions that
enable query reformulation.

1 Introduction

Instance retrieval is a well known problem in which individual names from an
ABox are retrieved in response to a query. The utility of a list of individual names
however, has limitations in the context of end user applications. For example,
displaying a list of individual identifiers may carry little useful information for a
user of a DL-based information system. In this work, we focus on a generaliza-
tion of the instance retrieval problem, concept assertion retrieval. In the concept
assertion retrieval problem, a concept describing ABox individuals is retrieved
in addition to the individual names. The concept is a least subsumer in a re-
stricted language syntax specified as a parameter to the query. This parameter,
a projection description, is used to specify the format of the returned concept
description for each individual retrieved.

Concept assertion retrieval enables new possibilities for DL-based informa-
tion systems as compared to tradition instance retrieval. Queries can now provide
syntactically formatted concept descriptions suitable for communicating infor-
mation about ABox individuals to end users. Also, concept-based ABox repre-
sentations can allow efficient evaluation of queries by using tree-based search
indices. In particular, query optimization may be performed in order to exploit
available indices, making query evaluation efficient by avoiding general TBox
reasoning in certain scenarios.

In our model, a query consists of a concept C describing individuals of inter-
est, and a projection description Pd describing the desired information about an
individual. The queries are processed over a knowledge base K = (T ,A), where
T is a TBox in a chosen DL dialect, and A is an ABox containing assertions on
individuals of interest. An evaluation of a query produces a set of assertions of
the form a : Ca such that K |= a : (C uCa) where Ca is a least subsumer in the
language defined by Pd.
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As a driving application for efficient concept assertion retrieval, we consider
the case of a collection of web objects with DL-based semantic annotations
as an ABox, in addition to a terminology encoding general axioms over the
concepts used to annotate web objects. In this scenario, a web application may
embed concept assertion queries in a dynamic web page. An end user supplies
search values for the queries through an interface. The evaluation of the query
takes place with the resulting ABox individual names and associated concept
descriptions inlined in the web page.

Example 1. Consider the case of an online dealer of photography equipment.
As part of a web presence, the dealer maintains (1) a knowledge base K with
a terminology for digital cameras and an ABox of assertions about particular
cameras available for purchase through the dealer, and (2) a collection of web
pages with embedded queries over this knowledge base. For example, one of the
web pages might have a query Q with a query concept C of the form

ProductCode = “digicam” u Price < 300
paired with a projection description Pd of the form

(Name? u ∃Supplier.(OnlineAddress? uRating?)). (1)
Consequently, when browsing this page, a user sees in place of Q a list of in-
expensive digital cameras, with each list element displaying the name of the
camera together with a sublist of supplier URL addresses and ratings for that
supplier.2

The example illustrates how assertions computed by our query language can
resemble nested relations. Note that this is beyond the scope of more general
conjunctive query languages. But also note that conjunctive queries can compute
joins which are not expressible in our language. However, we believe that this is
not really a requirement for browsing applications such as the above which focus
on finding particular information about “objects of interest”.

Our contributions are as follows:

1. We investigate the query optimization problem for a query algebra used in
concept assertion retrieval. We show how concept-based index structures can
be used to efficiently evaluate queries.

2. We show how query plans can be composed which eliminate the need for
general TBox reasoning, by making use of precomputed information stored
in indices.

Subsequent sections are organized as follows. Section 2 focuses on presenting
a formal definition of our concept assertion retrieval problem. In Section 3, we
show how basic operations for index scanning and projection can be extended
to an algebra for manipulating sets of descriptions, and consider index-based
query rewriting and index selection in this framework. Section 4 shows how
purely relational algebraic expressions can be derived. Our summary comments
then follow in Section 5. Note that all lemmas and the main theorem are stated
without proof, but that all are straightforward (but tedious) inductions on the
structure of various expressions.
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1.1 Related Work

Our notion of concept assertion retrieval derives from an earlier notion of instance
retrieval by Horrocks et al. [2] and of certain answer descriptions by ourselves
in which we introduced the idea of a projection description [6]. We have also
incorporated earlier work on an ordering language for DL concepts, introduced
in [4], that attempts to distill comparison based reasoning that happens during
search. Extensions to this language have also been explored, along with some
initial experimental validation of the approach [5, 3].

2 Definitions

We presume the DL dialect ALC(S) whenever we mention a knowledge base K,
concept C, and so on, for the remainder of the paper. However, our results apply
to any dialect that has the following definition of ALC(S) as a fragment. (This
requirement can be relaxed without harm: the dialect need not support concept
negation.)

Definition 1 (Description Logic ALC(S)). Let {A,A1, . . .}, {R,R1, . . .},
{f, g, f1, . . .} and {a, b, . . .} denote countably infinite and disjoint sets of con-
cept names, role names, concrete features and individual names, respectively. A
concept is defined by:

C,D ::= > | ⊥ | A | ¬C | C uD | ∃R.C
| f = k (equality over S)
| f < g (linear order over S)

where k is a finite string. A constraint C is an inclusion dependency, concept
assertion, or role assertion with the respective forms C v D, a : C and R(a, b).
A knowledge base K is a finite set of constraints. We write T to denote the
inclusion dependencies in K, called a terminology or TBox, and write A to
denote the assertions in K, called an ABox (where K is understood from context
in both cases).

The semantics of ALC(S) is defined in the standard way based on interpretations
of the form (4 ] S, ·I) where S is a totally ordered concrete domain of finite
strings that serves as range of concrete features. We use standard abbreviations
such as C t D for ¬(¬C u ¬D) and f ≤ k for (f = k) t ((f < g) u (g = k)).
Also, given a finite set S of ALC(S) concepts, we write uS to denote > if S is
empty and the concept D1 u · · · uDn otherwise, when S = {D1, ..., Dn}.

Recall from our introductory comments that a user query (C,Pd) consists of
a query concept C paired with a so-called projection description Pd. The syntax
for a Pd and the sublanguage of concepts in ALC(S) that are induced by a Pd
are defined as follows.

Definition 2 (Projection Description). Let f , R and C be a concrete fea-
ture, role and concept, respectively. A projection description Pd is defined by the
grammar:

Pd ::= C? | f? | Pd1 u Pd2 | ∃R.Pd (2)
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Definition 3 (Induced Concepts). Let Pd be a projection description. We
define the sets L|Pd and LTUP

|Pd , the L concepts generated by Pd and L tuple
concepts generated by Pd, respectively, as follows:

L|Pd = {uS | S ⊆fin LTUP
|Pd }, and

LTUP
|Pd =


{C,>} if Pd = “C?”;
{f = k | k ∈ S} ∪ {>} if Pd = “f?”;
{C1 u C2 | C1 ∈ LTUP

|Pd1
∧ C2 ∈ LTUP

|Pd2
} if Pd = “Pd1 u Pd2”; and

{∃R.C | C ∈ L|Pd1} if Pd = “∃R.Pd1”.

Thus, for a given Pd, any concept occurring in L|Pd satisfies a syntactic for-
mat conforming to Pd independently of any terminology T . Among all possible
elements of L|Pd are the most informative concepts for a given concept.

Definition 4 (Least Subsuming Concepts). Let C, S and K be a concept,
set of concepts and knowledge base, respectively. We write bScK(C) to denote
the set of concepts D ∈ S that are a least subsumer of C in S with respect to
K, that is, where K |= C v D, and for which there is no other concept D′ ∈ S
such that K |= C v D′, K |= D′ v D and K 6|= D v D′.

Lemma 1. Let K be an ALC(S) knowledge base and Pd a projection description.
Then the following hold for any concept C:

1. bL|PdcK(C) is non-empty;
2. K |= C1 ≡ C2, for any {C1, C2} ⊆ bL|PdcK(C); and
3. bbL|PdcK(C)c{ }(⊥) is singleton.

Parts 1 and 2 of Lemma 1 ensure that at least one least subsuming concept
exists in L|Pd and that they are are semantically equivalent with respect to a
given K. Note that some such L restriction of ALC(S) is essential to ensure part
1, e.g., that a more general fragment that simply excludes concept negation from
ALC(S) may not have this property [1]. Also note that, although L|Pd is infinite
in general, for any fixed and finite terminology T and concept C, the language
L|Pd restricted to the symbols used in T and C is necessarily finite.

Part 3 of Lemma 1 ensures that, among the least subsuming concepts in
L|Pd with respect to K, there is a unique least subsuming concept that is the
most informative when no knowledge of K is presumed. For example, let K =
{A v (f = 1)} and Pd = (A? u f?). Then bL|PdcK(A) = {A u (f = 1), A u >},
and b{A u (f = 1), A u >}c{ }(⊥) = {A u (f = 1)}.

To simplify notation in the remainder of the paper, we write πPd,K(C) as
shorthand for the concept C1 such that bbL|PdcK(C)c{ }(⊥) = {C1}. The formal
semantics of a user query now follows.

Definition 5 (Query Semantics). Let K be an ALC(S) knowledge base and
Q = (C,Pd) a user query over K. Then Q computes the ABox

{a : πPd,K(u{D | (a : D) ∈ A}) | a occurs in A and K |= a : C}. (3)
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This semantics ensures that concept assertion retrieval generalizes instance re-
trieval. In particular, an instance retrieval query C over K can be formulated
as query (C,>?) (effectively retrieving no further information about qualifying
individual names in K).

In this paper and in our current implementation, we make the simplifying
assumption that a knowledge base does not contain any role assertions, a con-
dition justified in, e.g., [2]. We also assume without loss of generality that a
knowledge base will have at most one concept assertion in its ABox for any in-
dividual name a. Considered together, these assumptions imply that (3) above
can be equivalently formulated as

{a : πPd,T (D) | (a : D) ∈ A and T |= D v C},
which suggests two key problems for computing the results of a concept assertion
query: computing least subsumers in L|Pd for an arbitrary projection description
Pd, and finding all concept assertions a : D from a potentially large set of
concepts assertions, e.g., comprising an ABox, that satisfy a selection condition
given by a query concept. We consider these problems in the next section.

3 Indices and Query Algebra

We now introduce a query algebra for manipulating sets of concept descriptions.
Concept assertions (and, in turn, ABoxes) are therefore encoded as concepts by
a simple protocol based on the use of the special concrete feature Oid that is
reserved for this purpose as follows (and we assume this correspondence for the
remainder of the paper):

(a : C) encodes as ((Oid = “a”) u C). (4)
The algebra is centered around the operations for index-based selection [4] and
for concept projection [6]; however, additional operators are included that al-
low basic boolean combinations of queries. We show how expressions in this
algebra can describe a variety of query plans for evaluating a user query that
can vary widely in the cost of their evaluation, and we outline how several stan-
dard relational-style query optimization techniques can be accommodated in this
framework.

3.1 Concept Assertions and the use of Indices

The basic leaf operator of our algebra is an index scan as introduced in [6]. This
assumes that all data, including the original ABox, are stored and organized
with the help of so-called concept trees [4]. These are search trees in which nodes
correspond to concepts and in which search order is defined by an ordering
description (or Od for short): an expression conforming to the grammar “Od ::=
Un | f : Od | D(Od1, Od2)”. Intuitively, the productions in this grammar have
the respective semantics: no explicit ordering, ordering by the value of a concrete
feature f , and partition by a description D. The nesting of these constructs
allows, e.g., for lexicographical ordering by several concrete features, etc. (again,
see [4] for further details).
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Definition 6 (Concept Index). Let A and Od be a finite set of concept as-
sertions and an ordering description, respectively. A concept index for A and
Od is a concept tree with a node for each element of A, encoded as a concept,
that is well-formed with respect to Od. Given a knowledge base K:

1. The primary index PK is a concept index for A and Oid : Un;
2. A secondary index SK is a concept index for the result of a user query

(C,Oid? u Pd) and some Od.

In the second case we write SK := (C,Oid? u Pd) :: Od to specify (or declare)
such a secondary index over K.

The primary index for a knowledge base always exists and is organized by the
names (i.e., by the Oid feature in our representation) of the individuals described
by the given ABox (hence the ordering description Oid : Un). Such an index
provides an efficient way to retrieve the description associated with an individual
in the ABox, given the individual’s name. Also, the above definition permits
the existence of any number (including zero) of secondary indices, that can be
organized in various ways to support user queries1. Note that secondary indices
are essential in our approach: they enable query evaluation to avoid (or reduce)
the amount of general DL reasoning during query evaluation.

Example 2 (Concept Indices for Digital Cameras). To continue with our run-
ning example: we assume three additional secondary indices, in addition to the
primary index P CM, are available:

SCM1 := (>, Oid? u ProductCode?) :: ProductCode : Oid : Un,
SCM2 := (Price < 1000, Oid? u Price?) :: Price : Oid : Un, and
SCM3 := (>, Oid?uName?u ∃Supplier.(OnlineAddress?uRating?)) :: Oid :

Un.

The first index, SCM1 , enables an efficient search for individuals by the value
of the feature ProductCode, the second by Price for products costing under
$1000, and the third index enables search by the individual’s name, and also
stores a more elaborate projection of the concept description associated with
that individual in the original ABox. 2

3.2 Query Algebra

Recall that users specify concept assertion retrieval queries as pairs (C,Pd)
where C is a concept that specifies a search condition and Pd is a projection
description that specifies the format of the assertions in the answer to the query.
To facilitate efficient evaluation of such requests we introduce a more complex
query algebra to manipulate sets of concepts (usually encoding concept asser-
tions). The algebra allows for the use of indices to speed-up search for qualifying
individuals and to retrieve appropriate concepts needed to construct answer con-
cept assertions.
1 Similar to relational systems, multiple specialized indices are typically defined to

support queries; this is in contrast to approaches that aspire to developing an “uni-
versal” search structure(s) to represent semantic data.
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Definition 7 (Query Algebra). The Query Algebra consists of the six opera-
tors below, called constant query, index scan, selection, projection, intersection,
union, and difference, respectively. Its syntax and semantics are as follows:

(semantics)
Q ::= C {C}
| ScanX(Q) {D1 ∈ X | ∃D2 ∈ Q : T |= D1 v D2}
| σC(Q) {D ∈ Q | T |= D v C}
| πPd(Q) {πPd,T (D) | D ∈ Q}
| Q1 ∩Q2 {D1 uD2 | D1 ∈ Q1, D2 ∈ Q2, T 6|= (D1 uD2) v ⊥}
| Q1 ∪Q2 {D1 uD2 | D1 ∈ Q1, D2 ∈ Q2, T 6|= (D1 uD2) v ⊥}

∪ {D1 u > | D1 ∈ Q1,∀D2 ∈ Q2 : T |= (D1 uD2) v ⊥}
∪ {> uD2 | D2 ∈ Q2,∀D1 ∈ Q1 : T |= (D1 uD2) v ⊥}

| Q1 −Q2 {D1 ∈ Q1 | ∀D2 ∈ Q2 : T |= (D1 uD2) v ⊥}
where C is a concept description and X is either a primary index or secondary
index. The semantics of the queries is defined the context of the primary index
PK and zero or more secondary indices {SK1 , . . . , SKn } and with respect to a given
knowledge base K with a TBox T .

We say that a query is pure if all occurrences of the C construct appear only
in the scope (i.e., as subexpressions) of the ScanX(Q) operator.

We use the notation Q[T ] in the remainder of the paper to make the particular
TBox used in the above definition of semantics explicit.

Intuitively, each of the operators maps sets of concepts to a set of concepts,
with ScanX(C) the only leaf operator that links the algebra to the underlying
concept indices. While not mandated by our definitions, the argument Q of
a given ScanX(Q) operator is expected to be related to the Od part of the
specification of the underlying concept indexX to facilitate efficient index search.
For example, the index SCM1 from Example 2 can only be efficiently searched with
descriptions of the form (ProductCode = k) for some string k.

3.3 Concept Assertion Queries as Algebraic Expressions

In this setting, a given user query (C,Pd) can always be expressed by the alge-
braic expression π(Oid?uPd)(σC(ScanPK(>))) in our algebra2. However, to ben-
efit from the performance gains made possible by secondary indices, the algebra
allows a richer space of expressions:

Lemma 2. Let (C,Pd) be a given query. Then the expression
π(Oid?uPd)(σC((ScanSK1

(C1) ∩ · · · ∩ ScanSKn (Cn)) ∩ (ScanPK(>))) (5)

is equivalent to the original query, provided that (i) SKi := (Di, (Oid? u Pdi)) ::
Odi, (ii) T |= C v (D1 u ... u Dn), and (iii) Ci = π(Oid?uPdi),T (C), for all
0 < i ≤ n.

2 Note the explicit request for retrieving the individual’s identifier by expanding the
original projection description to (Oid? u Pd).
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Conditions (i) and (ii) ensure that the combination (intersection) of the indices
SKi contains sufficient data to answer the original query. The last condition is
necessary to supply a sufficiently general search concept to each of the indices.
(Note that using the original search concept C instead would lead to loosing
answers since the concept assertions stored in the secondary indices are more
general than those in the ABox, in general.)

We can also check whether an index that satisfies the conditions in Lemma 2
is useful in pruning the search; it is easy to see, e.g., that indices for which T |=
> v Di and T |= > v Ci always return all ABox individuals and thus cannot be
useful in pruning answers to the original query. In practice, the above condition
can be refined to judge applicability of an index based, e.g., on selectivity (the
fraction of individuals retrieved using the particular selection condition Ci).

The general form of (5) can be further simplified using the analogues of
relational-style query rewrites that allow the use of secondary indices as follows:

Removing Redundant Selections: The selection operation σC(·) can be re-
moved from (5) to obtain the expression

π(Oid?uPd)((ScanSK1
(C1) ∩ · · · ∩ ScanSKn (Cn)) ∩ (ScanPK(>)), (6)

if T |= (C1 u . . . u Cn) v C. Since the primary index PK is sorted by the
names of the individuals (Un), the last intersection operation in the above
expression can be efficiently realized by an index nested loop join.

Index-Only Query Evaluation and Simplifying Projections: The expres-
sion (6) can be further simplified if one of the secondary indices provides
assertions that conform to the final projection description (Oid? u Pd):
π(Oid?uPd)(πOid?((ScanSK1

(C1) ∩ · · · ∩ ScanSKn−1
(Cn−1))) ∩ (ScanSKn (Cn)),

(7)
assuming the projection description in the declaration of SKn is the same
as (Oid? u Pd). Note that this rewriting completely avoids the use of the
primary index.

The rewriting coupled with the ability to store and search efficiently among
descriptions yields a path to defining appropriate physical data layout designs in
the form of concept indices and in turn to efficient plans for answering concept
assertion retrieval queries; we elaborate on this in Section 4.

Example 3. Recall the running example query (1). With the help of the sec-
ondary indices defined in Example 2, we can obtain the following equivalent
query expression in our algebra:

π(Oid?uPd)(πOid?(ScanSCM1
(ProductCode = “digicam”) ∩

ScanSCM2
(Price < 300)) ∩ ScanSCM3

(>)). (8)

The indices SCM1 and SCM2 fully qualify the individuals needed to answer the
query and can be efficiently accessed using the concepts (ProductCode = “digicam”)
and (Price < 300), respectively. The expression then uses the index SCM3 to form
the concept assertions for the answer since SCM3 stores the (most specific) de-
scriptions conforming to Pd. 2

Index only rewriting can be generalized to cases in which the final projection
description Pd is contained in the combination of the projection descriptions
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Pdi associated with the indices SKi , i.e, πPd,T (D) = πPd,T (π(uPdi),T (D)) for
all qualifying D 3. Similarly, general selections can in principle be replaced by
boolean combinations of index scans rather than by mere index intersections
(the algebra provides the union and set difference operations) and DL reasoning
can be used to test for soundness of such a rewrite. This arrangement can sup-
port, e.g., horizontal partitioning of indices and other advanced data partitioning
schemes.

Now observe that SCM3 is organized by the ordering description Oid : Un,
and therefore that the last intersection in the expression should reduce to an
efficient index look-up for each qualifying individual. Here we utilize the explicit
representation of the individual names in the descriptions manipulated by the
algebra: the name can now be used as a search condition for an index.

Example 4. The final algebraic version of our running example thus yields the
following expression:

ScanSCM3
(πOid?(ScanSCM2

(Price < 300 ∩
πOid?(ScanSCM1

(ProductCode = “digicam”))))) (9)
Note that all the selections are now performed through an appropriate index
scan operation, rather than by explicit set intersections.2

4 On Purely Structural Reasoning

There are a variety of cases in which the operators in our algebra can be evaluated
with simple structural subsumption testing in place of general TBox reasoning.
In this section, we characterize a general condition in which this holds for various
operators in a given concept assertion query Q. Recall from Definition 7 that this
happens, for example, when an evaluation of Q must correspond to an evaluation
of Q[{ }].

We begin by introducing a notion of typing for queries in terms of projec-
tion descriptions, and a normal form for projection descriptions that suffices
for characterizing the relationship between the information content of concept
projections and structural subsumption testing.

Definition 8 (Query Typing and Projection Normalization). Let Q and
Pd be a query in the concept assertion algebra and a projection description,
respectively. The type of Q, written α(Q), is a set of projection descriptions
defined as follows:

α(Q) =



{>} if Q = “ScanP (Q1)”;
{Pd} if Q = “ScanS :=(C,Pd)::Od(Q1)”;
α(Q1) if Q = “σC(Q1)” or , “Q1 −Q2”;
{Pd} if Q = “πPd(Q1)”;
{Pd1 u Pd2 | Pdi ∈ α(Qi)} if Q = “Q1 ∩Q2”;
α(Q1) ∪ α(Q2) if Q = “Q1 ∪Q2”;
{C?} if Q = “C” otherwise.

3 This condition is called projection description refinement ; the full exploration of its
properties is beyond the scope of this paper.
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Also, the normal form of Pd, written norm(Pd) is an exhaustive application of
the following rules to any subexpression.

1. (f = k)? ; f?,
2. (C1 u C2)? ; (C1? u C2?), and
3. ∃R.(Pd1 u Pd2) ; (∃R.Pd1) u (∃R.Pd2).

Note that α(Q) denotes a set of projection description. This is necessary to
adequately account for our union operator. Also note that norm(Pd) contains
conjunctions only at the top-level and thus can be treated as a set of conjunction-
free projection descriptions with component descriptions of the form C? or f?
at the end of a (possibly empty) existential role path. For example, norm(A? u
∃R.(B?u∃S.(f = 1)?)) denotes a conjunction of the set of projection descriptions
{A?,∃R.B?,∃R.∃S.f?}.

With query typing and projection normalization, we are now able to state
our main result of the paper:

Theorem 1. Let K and Q be a respective knowledge base and query in the con-
cept assertion algebra. Then Q = Q[{ }] if at least one of the following conditions
hold for any subquery Q1 of Q, where op is one of ∩, ∪ or −:

1. Q1 = “C”;
2. Q1 = “ScanS (Q2)” and norm(Pd1) ⊆ norm(Pd2) for any Pd1 ∈ α(Q2),

where S is defined by (C,Pd2) :: Od;
3. Q1 = “σC(Q2)” and norm(Pd1) ⊆ norm(Pd2) for any Pd2 ∈ α(Q2) and

Pd1 ∈ α(C);
4. Q1 = “πPd1(Q2)” and norm(Pd1) ⊆ norm(Pd2) for any Pd2 ∈ α(Q2);
5. Q1 = “(Q2 op Q3)” and both Q2 and Q3 are pure; and
6. Q1 = “Q2[K]”.

To see how the theorem applies, consider the following hypothetical query and its
evaluation over a knowledge base K = {A v B} consisting of a single inclusion
dependency.
(π(Oid?uB?)(π(Oid?uA?uB?)(((Oid = “a”) uA)︸ ︷︷ ︸

{a:A}

(1) ∪ ((Oid = “b”) uB)︸ ︷︷ ︸
{b:B}

(2)

︸ ︷︷ ︸
{a:A,b:B}

)(3)

︸ ︷︷ ︸
{a:(AuB),b:(>uB)}

)(4)

︸ ︷︷ ︸
{a:B,b:B}

)(5)

The reader can confirm from our definitions that the same evaluation ensues if
“[{ }]” is inserted at positions (1), (2), (3) and (5) and “[T ]” at position (4),
that is, that general TBox reasoning is required only for the π(Oid?uA?uB?)(·)
operator. We conclude with a more concrete example relating to our running
online digital camera case.

Example 5. Theorem 1 now allows a reformulation of query (9) to the form
ScanSCM3

(πid?(ScanSCM2
(Price < 300 ∩

πOid?(ScanSCM1
(ProductCode = “digicam”)))))[{ }] (10)

that completely avoids TBox reasoning.2
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5 Summary and Conclusions

The framework for concept assertion retrieval proposed in this paper provides
a basis to introducing efficient relational-style query processing to querying the
semantic web data. The main cornerstones of the approach are the ability to
compute projections of general concepts to make properties of individuals syntac-
tically explicit, to store such assertions in efficient tree-based search structures—
indices, and to use such data structures to efficiently evaluate queries, in partic-
ular to sidestep the need for general DL reasoning at query evaluation time.

Future research can use the proposed query algebra to develop additional
tools and techniques facilitating efficient query execution, for example:

– Optimization techniques that determine optimal (or nearly optimal reformu-
lations of user queries in the algebra or its extensions; and

– Tools that allow the users to determine what indices to create for a given
set of queries.

Another direction of research is whether more complex user queries, e.g., an
equivalent of conjunctive queries, can be accommodated by modest extensions
to the proposed framework.

A preliminary implementation of the proposed query algebra has been com-
pleted and an experimental evaluation of engineering feasibility is underway. The
full source code for this implementation, along with an evaluation workload and
test data is available online at http://projection-alcd.googlecode.com/.
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Abstract. A usage scenario of bio-ontologies is hypothesis testing, such as find-
ing relationships or new subconcepts in the data linked to the ontology. Whilst
validating the hypothesis, such knowledge is uncertain or vague and the data is
often incomplete, which DL knowledge bases do not take into account. In ad-
dition, it requires scalability with large amounts of data. To address these re-
quirements, we take the SROIQ(D) and DL-Lite family of languages and their
application infrastructures augmented with notions of rough sets. Although one
can represent only little of rough concepts in DL-Lite, useful aspects can be dealt
with in the mapping layer that links the concepts in the ontology to queries over
the data source. We discuss the trade-offs and demonstrate validation of the the-
oretical assessment with the HGT application ontology about horizontal gene
transfer and its 17GB database by taking advantage of the Ontology-Based Data
Access framework. However, the prospects for comprehensive and usable rough
DL knowledge bases are not good, and may require both sophisticated modular-
ization and scientific workflows to achieve systematic use of rough ontologies.

1 Introduction

Various extensions of DLs and integration of DLs with other formalisms have been
proposed, including to represent and reason over vague knowledge. To date, useful re-
sults have been obtained with fuzzy ontologies [1], but this is much less so for rough
ontologies that aim to combine a standard DL with one of the formalisations of rough
sets. In particular, [2–7] diverge in commitment as to which aspects of rough sets are
included in the ontology language and the authors are concerned with the theory in-
stead of demonstrating successful use of the rough DL in applications and ontology
engineering. However, it has been noted within the Semantic Web context that scientist
want to use ontologies together with data, such as hypothesizing that some subconcept
exists and subsequently to validate this either in the laboratory or against the instances
already represented in the knowledge base [8]. Such a hypothesised new concept is as-
sumed to have a set-extension in the knowledge base and one would want to be able
to match those instances with the right combination of object and data properties of
the putative concept, i.e., taking a ‘guessed’ collection of attributes that is subsequently
experimentally validated against the data and shown to be correct, or not; e.g., [9]. Such
guessing includes dealing with incomplete or otherwise vague data, hence, for which
some sort of rough ontology may be useful. Ideally, for all relevant individuals belong-
ing to the putative concept, each value of the selected properties is distinct, but this
may not be the case due to the limited data or insufficiency of the selected properties
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so that some individuals are indistinguishable from each other and therewith instan-
tiating a rough concept. Despite the vagueness, it still can be useful in the ontology
engineering process to include such a rough concept in the ontology. To support such
usage of ontologies, one needs a language with which one can represent, at least, rough
concepts as the intensional representation of the corresponding rough set and a way to
(persistently) relate the data to the rough concepts. As it turns out, there is no perfect
DL language, reasoner, and ontology development tool that does it all with respect to
the semantics of rough sets, nor will there be if one adheres to the hard requirement
of staying within the decidable fragment of FOL, let alone within the tractable zone.
Some results can be obtained, however: in addition to representing most of rough sets’
semantics with SROIQ using the TBox only, the linking to data and, moreover, as-
certaining if a concept is really a rough concept can be achieved within the framework
of Ontology-Based Data Access (OBDA) by exploiting the mapping layer [10]. While
this, arguably, may not be perceived as a great outcome, it is possible (and the remain-
der of the issues can be passed on to an application layer with scientific workflows and
refinements in the technologies). To demonstrate it is not merely theoretically possible
to have rough concepts and vague instances in one’s DL knowledge base, but that it is
indeed practically possible, we take the use case about horizontal gene transfer with a
hypothesized (rough) concept Promiscuous Bacterium, and demonstrate how this can be
modelled more precisely in an OWL 2 DL ontology and deployed in an OBDA system
using a DL-LiteA ontology stored as an owl file so that the instances from the 17GB
large HGT-DB database can be retrieved.

The remainder of the paper is structured as follows. We first introduce the basics
of rough sets and discuss identification of rough concepts in Section 2. Trade-offs to
include such roughness features in DLs will be discussed in Section 3. Results of the
experimentation with rough concepts and with vague instances will be presented in
Section 4, where we consider both the HGT ontology with the HGT-DB database and
[7]’s septic patients. We close with conclusions in section 5.

2 Identifying rough concepts

To be able to have a correspondence of a rough set with a rough concept in an ontology
and to represent its essential characteristics, we first outline the basics of rough sets
following the standard “Pawlak rough set model” (see for a recent overview [11, 12]).

2.1 Rough sets

The Pawlak rough set model is depicted informally in Fig. 1 and formally, it is as fol-
lows. I = (U,A) is called an information system, where U is a non-empty finite set of
objects and A a finite non-empty set of attributes and such that for every a ∈ A, we
have the function a : U 7→ Va where va is the set of values that attribute a can have.
For any subset of attributes P ⊆ A, one can define the equivalence relation IND(P ) as

IND(P ) = {(x, y) ∈ U × U | ∀a ∈ P, a(x) = a(y)} (1)
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IND(P ) generates a partition of U , which is denoted with U/IND(P ), or U/P for short.
If (x, y) ∈ IND(P ), then x and y are indistinguishable with respect to the attributes in
P , i.e, they are p-indistinguishable.

Given these basic notions, we can proceed to the definition of rough set. From the
objects in universe U , we want to represent set X such that X ⊆ U using the attribute
set P where P ⊆ A. X may not be represented in a crisp way—the set may include
and/or exclude objects which are indistinguishable on the basis of the attributes in P—
but it can be approximated by using lower and upper approximation, respectively:

PX = {x | [x]P ⊆ X} (2)
PX = {x | [x]P ∩X 6= ∅} (3)

where [x]P denotes the equivalence classes of the p-indistinguishability relation. The
lower approximation (2) is the set of objects that are positively classified as being mem-
bers of set X , i.e., it is the union of all equivalence classes in [x]P . The upper approx-
imation is the set of objects that are possibly in X; its complement, U − PX , is the
negative region with sets of objects that are definitely not in X (i.e., ¬X). Then, “with
every rough set we associate two crisp sets, called lower and upper approximation”
[11], which is commonly denoted as a tuple X = 〈X,X〉. The difference between the
lower and upper approximation, BPX = PX − PX , is the boundary region of which
its objects neither can be classified as to be member of X nor that they are not in X; if
BPX = ∅ then X is, in fact, a crisp set with respect to P and when BPX 6= ∅ then X
is rough w.r.t. P .

Set X Lower approximationUpper approximation

Universe U Granule with object(s)

Fig. 1. A rough set and associated notions (Source: based on [11]).

The accuracy of approximation provides a measure of how closely the rough set
is approximating the target set with respect to the attributes in P . There are several of
such measures, denoted with αPX , for instance αPX = |PX|

|PX| and αPX = 1− |BPX|
|U | .

Clearly, if αPX = 1, then the boundary region BPX is empty and thus X is crisp.
Useful for subsequent sections is also the following property of approximations:

PX ⊆ X ⊆ PX (4)

The rough set notions reduct and core can be considered to be the set of sufficient
conditions (attributes) and the set of necessary conditions, respectively, to maintain the
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equivalence class structure induced by P . Thus, we have CORE ⊆ RED ⊆ P such that
[x]RED = [x]P and RED is minimal for any a ∈ RED (i.e., [x]RED−{a} 6= [x]P ),
and for any reduct of P , RED1, . . . , REDn, the core is its intersection, i.e., CORE =
RED1∩. . .∩ REDn. That is, those attributes that are in P but not in RED are superfluous
with respect to the partitioning. On the other hand, no attribute in CORE can be removed
without destroying the equivalence structure (it is possible that CORE is an empty set).

2.2 Some ontological considerations

As a first step toward rough ontologies, it would be a severe under-usage of DL knowl-
edge bases if one only were to copy Pawlak’s ‘information system’ essentials, because
1. In a logic-based (formal) ontology we have more constructors and possible con-

straints at our disposal, most notably a set of roles, R, over objects and universal
and existential quantification;

2. There is more flexibility on how to represent ‘attributes’ of a concept C ∈ C: either
with one or more roles R ∈ R (i.e., object properties in OWL) or value attributions
D ∈ D (i.e., data properties in OWL), or both;

3. We need a complete and appropriate model-theoretic semantics for C and C, and,
as counterpart of the rough set, a rough concept, which we denote with “oC” for
presentation convenience to clearly distinguish it from a crisp concept;

4. Given that attributes are used to compute C and C, then those attributes must be
represented in the ontology, and with oC a tuple of the former two, then also it must
have the attributes recorded in the ontology.

Concerning item 3, the semantics of the approximations is fairly straightforward, with
E denoting the reflexive, symmetric and transitive indistinguishability (equivalence)
relation:

C = {x | ∀y : (x, y) ∈ E → y ∈ C} (5)
C = {x | ∃y : (x, y) ∈ E ∧ y ∈ C} (6)

Then there is rough sets’ tuple notation, X = 〈X,X〉, for which we may have an
analougous one for concepts, oC = 〈C,C〉. For oC, there are two issues: the notational
distinction between a crisp (C) and a rough (oC) concept, and the tuple notation. Re-
garding the first issue, there are two ontological commitments one can take regarding
the sets—either X is a special type of rough set where α = 1 or a rough set is a special
type of a crisp set because it is defined by the two crisp sets X and X—and, sub-
sequently, if a ‘rough ontology’ consists of only rough concepts or may contain both
rough concepts and crisp concepts. Because rough sets are defined in terms of crisp
sets, and, correspondingly, rough concepts in terms of a combination of two crisp con-
cepts, this means that the crisp set and concepts are the ‘primitive’ ones and that we
end up with a rough ontology that has both rough and crisp concepts to be able to have
rough concepts properly defined in an ontology. For this reason, we maintain the, thus
far, syntactic distinction between a crisp concept C and a rough concept oC. Regarding
the second point, and, in fact, the semantics of oC, using a tuple notation is not ideal
for discussing ontological commitments of rough sets and rough concepts and so it is
useful to flatten it out. One can commit to the subsumption relation between the sets
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as in (4) and their corresponding concepts as pursued by [5, 7] or take a more flexible
approach that subsumes the former by introducing two binary relationships, lapr and
uapr, to relate any rough concept and its associated approximations, which are typed
as follows:

∀φ, ψ.lapr(φ, ψ)→ oC(φ) ∧ C(ψ) (7)
∀φ, ψ.uapr(φ, ψ)→ oC(φ) ∧ C(ψ) (8)

Observe that here we are quantifying over sets, not objects that are member of the re-
spective sets; i.e., we make explicit the knowledge about the three sets and how they
relate, not about the instances in those sets. With these relations we can make explicit
that oC is identified by the combination of its C and C, which is achieved by the fol-
lowing set of constraints:

∀φ. o C(φ)→ ∃ψ.lapr(φ, ψ),
∀φ. o C(φ)→ ∃ψ.uapr(φ, ψ),
∀φ, ψ, ϕ.lapr(φ, ψ) ∧ lapr(φ, ϕ)→ ψ = ϕ, (9)
∀φ, ψ, ϕ.uapr(φ, ψ) ∧ uapr(φ, ϕ)→ ψ = ϕ,

∀φ1, φ2, ψ1, ψ2.lapr(φ1, ψ1) ∧ uapr(φ1, ψ2) ∧
lapr(φ2, ψ1) ∧ uapr(φ2, ψ2)→ φ1 = φ2.

The axioms in (9) say that for each rough concept, there must be exactly one lower ap-
proximation and one upper approximation and for each combination of lower and upper
approximation, there is one rough concept, i.e., if either one of the approximations dif-
fer, we have a different rough concept.

Last, because a partitioning of the universe of objects is done by means of selecting
a specific subset P of A of rough sets’ information system, we have in the DL notion
of ontology that the set of ‘attributes’ amounts toR∪D. Moreover, one has to impose
at the knowledge layer that those attributes P taken fromR∪D must be represented in
the ontology with oC as its domain so as to represent explicitly and persistently which
properties were used to obtain the rough set as extension of oC.

Overall, we thus have a more precise notion of oC cf. the tuple notation in [5], use
both R and D for the ‘attributes’ (properties) of the concepts (cf. R only in [4, 7]), in-
clude the properties of the indistinguishability/equivalence relation (cf. their omission
in [6] or using the properties of the similarity relation [2]), and adhere to proper decla-
ration ofC,C, and oC in that they all have the same collection of properties fromR∪D
(cf. giving the ‘approximations’ different sets of attributes in [7]).

3 Considerations regarding rough DL knowledge bases

The previous section introduced two essential aspects for a rough ontology language:
the necessity to represent the indistinguishability relation E and declare it reflexive,
symmetric, and transitive, and the identity of a rough concept by its lower and upper
approximation by means of identification constraints involving DL roles. Currently,
there is no DL language with corresponding complexity results that has both features.

318 Description Logics with rough concepts and vague instances



On the one hand, one could decide to invent a new language that includes both fea-
tures and that is hopefully still tractable in the light of abundant data. However, if one
were to be faithful to (7-9), then a second order logic is required, which is out of scope.
Alternatively, identification constraints (ids) have to be added in the ontology for each
rough concept (perhaps guided with an outside-the-langauge ontology design pattern),
hence the requirement to have the more common id constraint in the language. On the
other hand, one can decide to push the envelope of extant languages and tools and make
concessions. From a KR perspective, the former may be more interesting, but with an
eye on applicability and demands from the most active user-base of ontologies—the
life sciences and health care—it is worthwhile to push extant languages and its related
tools as far as possible to gain better insight if development of a new language and
corresponding tools are worth the effort. Give the extant languages, SROIQ(D) [13]
suffices for representing E, but not id and it does not behave well in the light of large
ABoxes, whereas the languages in the DL-lite family [10] are well-suited to handle
large ABoxes, but then we cannot represent E’s relational properties and the id can
be represented only in DL-LiteA,id. Some other DL languages, such as DLRifd and
DLRµ, also have either one or the other feature, but not both.

For practical reasons, we narrow down the DL knowledge base further to the DL-
based OWL species, because they are W3C standardised languages, there are ontology
development tools for them, they have automated reasoners, and they are the DL of
choice among the bio-ontologists. If we represent the reflexivity, symmetry and transi-
tivity of E, then we are confined to the new OWL 2 DL, for this is the only one where
one can assert all three object properties [14, 15]. For oC, there are two principal op-
tions: either define its semantics outside the language, or declare a “RoughC” in the
ontology and let all rough concepts also be subsumed by it. In the latter option and
considering the ontology languages and tools such as Protégé and Racer, we cannot
represent the identification constraint anyway (nor the tuple notation oC = 〈C,C〉 pro-
posed by [5]), and for the former option the applications would have to be adjusted to
include a check if the rough concepts are declared correctly. Moreover, one should ask
oneself what can be gained from including C and C in the ontology, besides deducing
C v C v C based on the declared knowledge in the TBox (thanks to (5) and (6)).
Jiang and co-authors identify the specific TBox reasoning services for theirRDLAC as
definitely satisfiable, possibly satisfiable, and rough subsumption [5]. However, consid-
ering rough sets’ usage, it is the interplay with the actual instances that is crucial: after
all, it is only based on the fact that, given a non-empty ABox, the boundary region is not
empty that makes a concept a rough concept, and if we do not even test it against the
actual instances in the knowledge base, then there is no point in bothering oneself to
include a merely hypothetical rough concept in the ontology that cannot be examined
either way if it really is a rough concept.

Thus, another hurdle is the data, which can be loaded into the ABox proper or stored
and dealt with in secondary storage. Considering the most widely used ontology devel-
opment tool Protégé, it loads the ABox in main memory, which is doable for small data
sets but not for the medium to large size biological databases that easily exceed several
GB. Setting aside supercomputers and the obstacle to wait a while on a query answer,
this, then, forces one to take the second option of secondary storage, which, in turn
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and at the time of writing, locks one into DL-Lite (and for the bio-ontologist, OWL 2
QL) that can represent even less of rough set’s semantics (and of the subject domain)
than OWL 2 DL. With the latter option, and, realistically, the Ontology-Based Data Ac-
cess framework with QUONTO [10], the lack of expressiveness of the language can be
counterbalanced by putting some of the subject domain semantics in the mapping layer.
This is not ideal because it is not as maintainable as when it would be represented in
the ontology, and it is not transparent for the domain expert who ideally should query
just the ontology and not bother with the knowledge squeezed into the mapping layer,
but we can get the data out of the database and have our rough concepts.

4 Experimentation with a rough ontology and vague instances

Given these trade-offs, we will demonstrate how one can have either an ontology with
rough concepts represented fairly comprehensively regarding the semantics (in Exper-
iment 1) or have it with more limited semantics but linked to the data and be able to
perform the actual hypothesis testing against the data (Experiment 2) using the HGT as
use case. To be fair to the latest technologies for expressive DLs, we also experimented
with a more expressive ontology than the HGT ontology and then using much less data,
by revisiting the definitions of septic of [7] and data of just 17 patients. Additional files
(ontologies, mappings, queries, and data) are available online as supplementary ma-
terial at http://obda.inf.unibz.it/obdahgtdb/obdahgtdb.html. The results
will be discussed in Section 4.2.

4.1 Results

The background for Experiment 1 and 2 is as follows. A geneticist has an idea about
what a “promiscuous bacterium” is because some bacteria transfer and receive much
more genes from other bacteria than others do. It is not fully understood who they are
and why this is the case, hence, the first step is to analyse the data—in casu, stored in the
17GB HGT-DB database—using properties that indicate a certain promiscuity so as to
find bacteria with comparatively many anomalous (foreign) DNA in their chromosome.

Experiment 1 (Promiscuous bacteria in OWL 2 DL) We specify a first attempt for
representing the promiscuous bacterium (PromBact) as a subtype of Bacterium in
the HGT ontology with an additional object- and a data property, so that it must have
more than 5 so-called flexible hgt-gene clusters (FlexCl, which are sets of adjacent
or nearby genes that are horizontally transferred) and the percentage of genes on the
chromosome that are predicted to be horizontally acquired, hgtPerctg, as > 10:

PromBact ≡ Bact u ∃ hgtPerctg.real>10 u ≥ 6 hasHGTCluster.F lexCl (10)

In addition, we can add the assertions regarding the equivalence relation (relational
properties omitted for brevity) and that PromBact has exactly one lower and one upper
approximation, PromBactLapr and PromBactUapr, as follows:
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PromBact v = 1 lapr.PromBactLapr (11)
PromBact v = 1 uapr.PromBactUapr (12)

PromBactLapr ≡ ∀E.PromBact (13)
PromBactUapr ≡ ∃E.PromBact (14)

Running ahead of the data we retrieve with OBDA, PromBact is indeed a rough con-
cept, so we also have specified a refinement, PromBact′ to investigate if we now have
included enough properties to have an empty boundary, hence a crisp concept:

PromBact′ ≡ PromBact u ∃ hgtPerctg.real>10 u
≥ 11 hasHGTCluster.F lexCl u nrHGTgenes.integer>150

(15)

Querying or instance classification with this OWL 2 DL version and the HGT data is
currently not feasible. ♦
Experiment 2 (Promiscuous bacteria in OBDA) As in Experiment 1, our first attempt
is to represent PromBact in DL-LiteA (roughly OWL 2 QL), where we do not have
existential quantification in the subclass position, no cardinality restrictions, limited ob-
ject property assertions, no class equivalence, and no data property restrictions. To not
have the intended meaning of PromBact as in (10) all over the place, we chose to put
it in the OBDA mapping layer; that is, we have PromBact v Bact in the DL-LiteA
ontology, and then make a mapping between PromBact in the ontology and a SQL
query over the relational database (for technical details about the OBDA framework
used, the reader is referred to [10]). The head of the mapping is:
PromBact(getPromBact($abbrev,$ccount,$percentage))

and the body, i.e. the SQL query over the database where the WHERE clause has the
set of interesting properties for PromBact (which were modelled as object and data
properties in the TBox in the previous experiment):

SELECT organisme.abbrev, ccount, organisme.percentage
FROM ( SELECT idorganisme, COUNT(distinct cstart)

as ccount FROM COMCLUSTG2 GROUP BY idorganisme
) flexcount, organisme

WHERE organisme.abbrev = flexcount.idorganisme AND
organisme.percentage > 10 AND flexcount.ccount > 5

Querying the database through the ontology with a SPARQL query using the OBDA
Plugin for Protégé and answered using DIG-QUONTO, 98 objects are retrieved where
Dehalococcoides CBDB1 and Thermotoga maritima are truly indistinguishable bacte-
ria, i.e. they have the same values for all the selected and constrained attributes, and
a few others are very close to being so, such as Pelodictyon luteolum DSM273 and
Synechocystis PCC6803 who have both 6 clusters and 10.1% and 10.2%, respectively,
(which, practically, still lie within the error-margin of genomics data and its statistics);
see online material for details. Hence, PromBact is actually a rough concept.

To improve the accuracy and examine if we can turn a subconcept of PromBact
into a crisp concept, a new data property—NrOfHGTgenes with integer values, set
to >150—is added and the second attribute set at >10 gene clusters, which thus revises
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the assumption of what a promiscuous bacterium really is, i.e., we have PromBact′ in
the ontology such that PromBact′ v PromBact. The head of the mapping is:
PromBactPrime(getPromBactPrime($abbrev,$ccount,$percentage,$hgt))

and the body:

SELECT organisme.abbrev,ccount,organisme.percentage,organisme.hgt
FROM ...

WHERE organisme.abbrev = flexcount.idorganisme AND
organisme.percentage > 10 AND flexcount.ccount > 10 AND
organisme.hgt > 150

The query answer has only 89 objects and this change even eliminates the boundary
region, hence PromBact′ is a crisp concept with respect to the database. ♦

Experiment 3 (Revisiting septic patients) Patients may be septic or are certainly sep-
tic, according to the so-called Bone criteria and Bone criteria together with three out of
another five criteria, respectively. For instance, the Bone criteria are (from [7]):

– Has infection;
– At least two out of four criteria of the Systemic Inflammatory Response Syndrome:
• temperature > 38◦C OR temperature < 36◦C;
• respiratory rate > 20 breaths/minute OR PaCO2 < 32 mmHg;
• heart rate > 90 beats/minute;
• leukocyte count < 4000 mm3 OR leukocyte count > 12000 mm3;

– Organ dysfunction, hypoperfusion, or hypotension.
The respective encodings in Protégé 4.0 and RacerPro 2.0 preview are available online
as supplementary material, as well as data of 17 ‘patients’ such that the boundary region
of each concept is not empty. The experiments were carried out on a Macbook Pro with
Mac OS X v 10.5.8 with 2.93 GHz Intel core 2 Duo and 4 GB memory. Protégé 4.0 with
Pellet 2.0 did not work at all. Protégé 4.0 with FaCT++ works well with a few dummy
concepts and a few instances, but the esoteric definitions for septic appeared to be more
challenging: it crashed with an encoding including the indistinguishability relation E
and (with or without E), upon saving and reopening the owl file it had reordered the
braces in the definition in such a way as to change its meaning so that it does not
classify all 17 individuals correctly. These observations may be due to the fact that the
software used is still in the early stages. RacerPro 2.0 preview never crashed during
exerimentation and did return the correct classifications within about 2 hours. While
the latter is an encouraging result because it works with the real definitions and a small
data set, the automated reasoning clearly does not scale to [7]’s thousands of patients.
(The authors did not respond on a request for details of their experimental set-up.) ♦

4.2 Discussion

While a rough ontology such as the amended HGT ontology in OWL 2 DL can provide
a better way of representing the declarative knowledge of putative and actual rough
concepts, it is only with the less expressive DL-Lite-based OBDA system that it could be
experimentally validated against the data. The ontologies and OBDA provide a means
to represent the steps of successive de-vaguening during experimentation, they make
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the selected properties explicit, and, if desired, one can keep both oPromBact and
PromBact′ in the ontologies without generating inconsistencies.

However, TBox rough subsumption and possible and definite satisfiability reasoning
might be useful during engineering of rough ontologies. To improve outcomes for the
expressive ontology setting, one could split up the database and import into the ABox
all the data of only one organism at a time, do the instance classification, export the
results, merge the results after each classification step, and then manually assess them.
However, there are currently about 500 organisms in the database (which are soon to
be extended to about 1000) and, ideally, this should not be done with one-off scripting.
Alternatively, one may be able to design sophisticated modularization of both the on-
tology and the data(base) so as to execute the reasoning only on small sections of the
ontology and database, in the direction of, e.g., [16, 17].

Although a rough DL knowledge base works as proof-of-concept, the procedure
to carry it out is not perceived to be an ideal one. One might be able to turn into a
feature the cumbersome interaction between the more precise representation of rough
concepts in OWL 2 DL and the linking to data with OWL 2 QL (or a similar tractable
language) by upgrading it to a named scientific workflow. This guides the developer to
carry out in a structured, traceable, and repeatable manner the tasks to (i) develop a
basic ontology in OWL 2 QL or DL-LiteA, (ii) get the database, (iii) set up the OBDA
system, (iv) declare the mappings between the concepts and roles in the ontology and
SQL queries over the database, (v) find all rough concepts with respect to the data
and add them to the ontology, (vi) migrate this ontology to OWL 2 DL, (vii) add the
semantics from the WHERE clause in the SQL query of the mapping layer as object
and data properties in the ontology, (viii) add upper and lower approximations of each
rough concept, (ix) add the equivalence relation with its properties, (x) add the axioms
relating the approximations to the rough concepts and vice versa, and (xi) when the
rough reasoning services are implemented, run the reasoner with the enhanced ontology.
It will also be useful to go in the reverse direction in the light of updates to the database
and in case the ontology was inconsistent or a had an unsatisfiable concept.

5 Conclusions

Extension of standard Description Logics knowledge bases with the essential notions of
rough sets revealed both theoretical and practical challenges. Given rough sets’ seman-
tics, there is no, nor will there be, a DL that represents all essential aspects precisely,
although expressive languages, such as SROIQ(D), come close and some tools, such
as RacerPro, can handle complex rough concept descriptions with a small amount of
data. On the other hand, it is the interaction with large amounts of data that makes any
extension with roughness interesting and useful. This can be addressed with a tractable
Ontology-Based Data Access framework by exploiting the mapping layer that links the
concepts in the ontology over queries to the database. To validate the theoretical assess-
ment, we have experimented with rough concepts and vague instances using the HGT
case study and the recurring example of septic patients. The experimentation showed
it is possible to have rough knowledge bases. However, more work in the direction of
streamlining the rather elaborate procedure into a scientific workflow or developing im-
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plementations of sophisticated ontology and data modularization, or both, is advisable
in order to achieve a platform for hypothesis-driven usage of rough ontologies that will
reap the greatest benefits to meet the users’ requirements.

Acknowledgements I thank Umberto Straccia, Ferdinando Bobillo, and Mariano
Rodrı́guez-Muro for feedback during the experimentation.
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Abstract. ABox Reasoning in large scale description logic (DL) knowledge bases,
e.g. ontologies, is important for the success of many semantic-enriched systems.
Performance of existing approaches, such as the tableau-based approach, and the
disjunctive datalog approach, is restricted by their theoretical worst case com-
plexity bound. In this paper, we propose a soundness-preserving approximate
reasoning approach to address this issue. We first approximate an ontology in DL
RO, a major fragment of OWL2-DL, to DL EL++, the underpin of OWL2-EL,
plus an additional table maintaining the complementary relations between con-
cept names. Then we can perform ABox reasoning either internally, or externally
of the TBox with additional completion rules. The approximation and reasoning
can be performed in PTIME. Our preliminary evaluation shows that our approach
can outperform existing DL reasoners on real world and benchmark ontologies.

1 Introduction

With the fast development of the semantic web and knowledge intensive systems, the
representation and reasoning over large-scale ontologies have become important topics
for research community. Web Ontology Language (OWL), the de facto standard ontol-
ogy language, is based on the family of Description Logics (DLs). In the last decades,
many research attentions have been paid to complexity and reasoning algorithms of
various dialects of the DLs such as SROIQ, the underpinning of the OWL2-DL, and
EL++, the underpinning of the OWL2-EL [9].

Most of these works focus on TBox reasoning such as deciding subsumption be-
tween concept expressions, or checking whether a particular concept is satisfiable.
ABox reasoning such as deciding to which concepts a particular individual belongs
is usually realised by extensions of TBox algorithms [6], or by being reduced to TBox
reasoning [12]. Other works [7] reduces ontologies into disjunctive datalog to provide
dedicated ABox reasoning. In either case, the reasoning complexity is high for expres-
sive DL fragments. However, ABox can be encoded in very expressive DLs, rather
large and changing frequently for which traditional solutions can not provide efficient
answers.

To solve this problem, the approximation approaches have been studied and evalu-
ated [10, 14, 3, 13, 14]. However, most of these works still replying on reasoners of ex-
pressive DLs. For example, [10] achieves efficient query answering by pre-computing
the materialization of the original ontology with an OWL DL reasoner. [3, 13] are based
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on a specific reasoner KAON2 [8], which supports DL SHIQ. The applicability of
these approaches are restricted by the capability of the heavy-weight reasoner and hence
the reasoning complexity can not be substantially reduced.

In our early work [11] we presented an approximate reasoning approach to reduce
TBox reasoning in DL R to that in DL EL+. The reasoning complexity is reduced
from 2EXPTIME-hard to PTIME and the soundness of results is preserved. In this pa-
per, we extend this approach to support ABox reasoning in DL RO, i.e. DL SHO
plus role chains. Given an RO ontology, we first approximate it into an EL++ ontol-
ogy with a complement table (CT) maintaining the complementary relations between
named concepts, then extend the EL++ reasoning with additional completion rules to
entail logical consequence, for both TBox and ABox. This approach is tractable and
soundness-preserving.

The rest of this paper is organised as follows: in Sec. 2 we briefly introduce the DL
RO and EL++, and discuss the technical challenge of existing approximate reasoning
approaches. In Sec. 3 we present our approach for approximate ABox reasoning, par-
ticularly, we show how the ABox approximate reasoning should be combined with the
TBox approximate reasoning. In Sec. 4 we present some preliminary evaluation of our
approach and Sec. 5 concludes the paper.

2 Technical Motivations

In [11] we presented an approach to approximating R TBox to EL+ TBox with an
additional complement table. We note that EL++, an extension of EL+ that supports
singletons, is also tractable. Thus it is natural to allow the using of nominals in the
original ontology. This leads to the DLRO.

In order to motivate our investigation on syntactic approximation of RO ontolo-
gies to EL++ ontologies, this section first briefly introduces RO and EL++ and then
illustrates the technical challenges in their ABox reasoning and approximation.

InRO, concepts C, D can be inductively composed with the following constructs:

> | ⊥ | A | C uD | ∃r.C | {a} | ¬C

where > is the top concept, ⊥ the bottom concept, A atomic concept, n an integer
number, a an individual and r an atomic role. Conventionally, C t D and ∀R.C are
used to abbreviate ¬(¬C u¬D) and ¬∃R.¬C, respectively. Note that {a1, a2, . . . , an}
can be regarded as abbreviation of {a1}t{a2}t . . .t{an}. Without loss of generality,
in what follows, we assume all the concepts to be in their negation normal forms (NNF)1

and use ~C to denote the NNF of ¬C. We also call>,⊥, A, {a} basic concepts because
they are not composed by other concepts or roles. Given a KB Σ, we use CNΣ (RNΣ ,
INΣ) to denote the set of basic concepts (atomic roles, individuals) in Σ.

Target language EL++ supports

> | ⊥ | A | C uD | ∃r.C | {a}.
1 AnRO concept is in NNF iff negation is applied only to atomic concepts and singletons. NNF

of a given concept can be computed in linear time[4].
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Both RO and EL++ support concept inclusions (CIs, e.g. C v D), role inclu-
sions (RIs, e.g. r v s, r1 ◦ . . . ◦ rn v s), class assertions (e.g. a : C) and role asser-
tions (e.g. (a, b) : r). If C v D and D v C, we write C ≡ D. If C is non-atomic,
C v D is a general concept inclusion (GCI). For more details about syntax and seman-
tics of DLs, we refer the readers to [2]. Given a set of axioms Σ (a single axiom α), its
signature, denoted by Sig(Σ) (Sig(α)) is the set of all the concept names (including>
and ⊥), role names and individual names appearing in Σ (α).

Traditionally in expressive and very expressive DLs, ABox reasoning is performed
together with the TBox by the tableau algorithm [6]. The tableau algorithm [5] con-
structs a tableau (as a witness of a model of the ontology) as a graph in which each
node x represents an individual and is labeled with a set of concepts it must satisfy,
each edge 〈x, y〉 represents a pair of individuals satisfying a role that labels the edge.

Instance checking Σ |= a : C is reduced to knowledge base consistence for the
extended knowledge base Σ′ = Σ ∪ {a : ¬C} [12]. To test this, a tableau is initialised
with the concept and role assertions in Σ′ and is then expanded by repeatedly apply-
ing the completion rules. Similar to other reasoning services, tableau-based instance
checking has to deal with the non-determinism of GCI, which results in an exponential
blowup of the search space.

Reasoning with EL++ is more efficient. [1] presents a set of TBox completion
rules (Table 1) 2 to compute, given a normalised EL++ TBox T , for each A ∈ CNT ,
a subsumer set S(A) ⊆ CNT in which for each B ∈ S(A), T |= A v B, and for
each r ∈ RNT , a relation set R(r) ⊆ CNT ×CNT in which for each (A,B) ∈ R(r),
T |= A v ∃r.B. These sets are initialised as: for each A ∈ CNT , S(A) = {A,>} and
for each r ∈ RNT , R(r) = ∅. Reasoning with rules R1-R8 is tractable.

Table 1. EL++ completion rules (no datatypes)

R1 If A ∈ S(X), A v B ∈ T and B /∈ S(X)
then S(X) := S(X) ∪ {B}

R2 If A1, A2, . . . , An ∈ S(X), A1 uA2 u . . . uAn v B ∈ T and B /∈ S(X)
then S(X) := S(X) ∪ {B}

R3 If A ∈ S(X), A v ∃r.B ∈ T and (X,B) /∈ R(r)
then R(r) := R(r) ∪ {(X,B)}

R4 If (X,A) ∈ R(r) A′ ∈ S(A), ∃r.A′ v B ∈ T and B /∈ S(X)
then S(X) := S(X) ∪ {B}

R5 If (X,A) ∈ R(r), ⊥ ∈ S(A) and ⊥ /∈ S(X)
then S(X) := S(X) ∪ {⊥}

R6 If {a} ∈ S(X) ∩ S(A), X  R A and S(A) 6⊆ S(X)
then S(X) := S(X) ∪ S(A)

R7 If (X,A) ∈ R(r), r v s ∈ T and (X,A) 6∈ R(s)
then R(s) := R(s) ∪ {(X,A)}

R8 If (X,A) ∈ R(r1), (A,B) ∈ R(r2), r1 ◦ r2 v r3 ∈ T , and (X,B) 6∈ R(r3)
then R(r3) := R(r3) ∪ {(X,B)}

2 in R6 X  R A iff there exists C1, . . . , Ck ∈ CNT s.t. C1 = X or C1 = {b}, (Cj , Cj+1) ∈
R(rj) for some rj ∈ RNT (1 ≤ j ≤ k) and Ck = A
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When ABox A presents, an additional concept CA :=
d
a:C∈A ∃u.({a} u C) ud

(a,b):r∈A ∃u.({a} u ∃r.{b}), where u is a fresh role name, is introduced. To this end,
instance checking a : C can be reduced to subsumption checking {a}uCA v C, which
can be realised by R1-R8. However, this approach can not be directly applied on more
expressive DLs.

To provide more scalable and efficient ABox reasoning service in expressive DLs,
approximation approaches have been studied. However, most of these approaches heav-
ily rely on existing reasoners. [14] presented approaches based on the idea of simpli-
fying concept expressions in an ontology or a query to speed up the instance retrieval.
The simplified ontology and query still needs to be processed by a heavy-weight rea-
soner, and the evaluation results showed that the number of subsumption tests can not
always be reduced. Semantic Approximation [10] uses a heavy weighted reasoner to
materialize the ontology and store in a database to speed up online query answering.
But once the ABox changed, the entire procedure has to be performed again. [3, 13]
present the SCREECH approach. It utilizes the KAON2 algorithm, which translates a
SHIQ TBox into disjunctive datalog, and executes the rules together with a SHIQ
ABox and a query by a datalog reasoning engine. By rewriting or eliminating all the
disjunctive rules the data complexity can be reduced from coNP-complete of OWL DL
to polynomial time. However this still relies on KAON2 to pre-translate the TBox. If the
ontology is in a language beyond the capability of KAON2, e.g.RO, this approach can
not handle. Also, when the ABox contains complex concept expressions, this approach
can not directly execute.

To sum up, tableau algorithms have difficulties to handle complex structured ax-
ioms; tractable DL algorithms can not support more expressive languages; while tradi-
tional approximation approaches still rely on existing DL reasoners. In what follows,
we presented our approach which is motivated and inspired by these works, and show
that it overcomes these difficulties.

3 The Approach

In this section, we first recall and extend the TBox approximation in [11] to support
ontology approximation from RO to EL++. Then we discuss how the ABox can be
reasoned internally and externally of the TBox. At the end, we discuss how the internal
and external reasoning of ABox can possibly be integrated.

3.1 Approximate RO Ontologies to EL++

In approximation, we only consider concepts corresponding to the particular ontology
in question. We use the notion term to refer to these “interesting” concept expressions.
More precisely, a term is: (i) a concept expression in any axiom, or (ii) a singleton of
any individual, or (iii) the complement of a term, or (iv) the syntactic sub-expression
of a term. In order to represent terms that will be used in EL++ reasoning, we assign
names to them.
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Definition 1. (Name Assignment) Given S a set of concept expressions, a name as-
signment fn is a function as for each C ∈ S, fn(C) = C if C is a basic concept;
otherwise, fn(C) is a fresh name.

Now we approximate an RO ontology to EL++ plus a complement table (CT). Its
basic idea is to represent (non-EL++) terms with its name assignment:

Definition 2. (EL++
C Transformation) Given an RO Ontology O = (TO,AO) and a

name assignment fn, its EL++
C transformation Afn,EL++

C
(O) is a triple (T ,A, CT )

constructed as follows:

1. T ,A and CT are all initialised as ∅.
2. for eachC v D (C ≡ D) in T , T = T ∪{fn(C) v fn(D)} (T = T ∪{fn(C) ≡
fn(D)}).

3. for each β ∈ RIT , add β into T .
4. for each a : C ∈ A, A = A ∪ {a : fn(C)}.
5. for each (a, b) : r ∈ A, A = A ∪ {(a, b) : r}.
6. for each term C in O, CT = CT ∪ {(fn(C), fn(~C))}, and

(a) ifC is the formC1u. . .uCn, then T = T ∪{fn(C) ≡ fn(C1)u. . .ufn(Cn)},
(b) if C is the form ∃r.D, then T = T ∪ {fn(C) ≡ ∃r.fn(D)},
(c) otherwise T = T ∪ {fn(C) v >}.

Step 2 rewrites all the concept axioms; Step 3 preserves all the EL++ role axioms;
Step 4 and 5 rewrite all the ABox axioms; Step 6 defines all the EL++ terms and con-
structs the complement table CT . We call this procedure an EL++

C approximation.The
EL++
C approximation approximates an RO ontology into an EL++ ontology with a

table maintaining the complements of all the basic concepts in linear time:

Proposition 1. (EL++
C Approximation) For an OntologyO, letAfn,EL++

C
(O) = (T ,A, CT ),

we have: (1)(T ,A) is an EL++ ontology; (2) A only contains basic concepts of T ; (3)
for each A ∈ CNT , there exists (A,B) ∈ CT ; (4) if (A,B) ∈ CT then A,B ∈ CNT
and (B,A) ∈ CT .

Proposition 2. For any Ontology O = (TO,AO) and (T ,A, CT ) its EL++
C transfor-

mation, if O contains nO terms, then |T | ≤ nO + |TO|, |A| = |AO| and |CT | = nO,
where |T |(|A|, |TO|, |AO|) is the number of axioms in T (A, TO,AO) and |CT | is the
number of pairs in CT .

Given an EL++
C transformation (T ,A, CT ), we normalise axioms of form C v

D1 u . . . u Dn into C v D1, . . . , C v Dn, and recursively normalise role chain
r1 ◦ . . . ◦ rn v s with n > 2 into r1 ◦ . . . ◦ rn−1 v u and u v s. This procedure
can be done in linear time. In the following, we assume T to be always normalised.
For convenience, we use a complement function fc : CNT 7→ CNT as: for each
A ∈ CNT , fc(A) = B such that (A,B) ∈ CT .

Yuan Ren, Jeff Z. Pan and Yuting Zhao. 329



3.2 ABox Internalisation and Reasoning

Once we are able to approximate an RO ontology into EL++, it is straightforward to
perform ABox reasoning by internalising the ABox into TBox. This can be done as in
classical EL++ (cf. Sec. 2) by encoding the ABox as a concept. However this approach
will introduce additional concept names in the normalisation phase, thus complicates
the reasoning. Alternatively, we can do the following internalisation:

Definition 3. (EL++
C ABox Internalisation) Given anRO ontologyO, letAfn,EL++

C
(O) =

(T ′,A′, CT ′), its EL++
C ABox internalisationAI(Afn,EL++

C
(O)) is a triple (T , ∅, CT )

constructed as follows:

1. T is initialised as T ′.
2. CT = CT ′.
3. for each a : C ∈ A′, T = T ∪ {{a} v C}.
4. for each (a, b) : r ∈ A′, T = T ∪ {{a} v ∃r.{b}}.

It’s easy to show that such internalisation can be constructed in linear time and the
triple (T , ∅, CT ) still satisfy Proposition 1. Also, T is normalised if T ′ normalised. To
this end, we reduce ABox reasoning to TBox reasoning on T . To utilize the comple-
mentary relations in CT , we propose additional completion rules (Table 2) to EL++.

Table 2. Complement completion rules

R9 If A,B ∈ S(X), A = fc(B) and ⊥ /∈ S(X)
then S(X) := S(X) ∪ {⊥}

R10 If A ∈ S(B) and fc(B) /∈ S(fc(A))
then S(fc(A)) := S(fc(A)) ∪ {fc(B)}

R11 If A1 u . . . uAi u . . . uAn v ⊥, A1, . . . , Ai−1, Ai+1, . . . , An ∈ S(X) and fc(Ai) /∈ S(X)
then S(X) := S(X) ∪ {fc(Ai)}

R9 realises axiom Au~A v ⊥. R10 realises A v B →~A v~B. R11 builds up
the relations between conjuncts of a conjunction, e.g. AuB v ⊥ implies A v~B. The
reasoning is tractable and soundness-preserving:

Theorem 1. (Complexity) For any EL++
C internalisation (T , ∅, CT ) (T normalised),

TBox reasoning by R1-R11 will terminate in polynomial time w.r.t. |CNT |+|RNT |.
Theorem 2. (Concept Subsumption Checking) Given anRO ontologyO = (TO,AO),
its vocabulary VO and AI(Afn,EL++

C
(O)) = (T , ∅, CT ), for any two concepts C

and D constructed from VO, if AI(Afn,EL++
C

({C v >, D v >})) = (T ′, ∅, CT ′),
then O |= C v D if fn(D) ∈ S(fn(C)) can be computed by rules R1-R11 on
(T ∪ T ′, ∅, CT ∪ CT ′).

Concering ABox reasoning, this indicates that, O |= a : C if fn(C) ∈ S({a}) can
be computed. And O |= (a, b) : r if fn(∃r.{b}) ∈ S({a}) can be computed. When C
is a term of O, such computation can be performed directly on (T , ∅, CT ).
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3.3 TBox-irrelevant ABox Completion

The ABox internalisation absorbs the entire ABox into the TBox and reduce ABox
reasoning to TBox reasoning. However, this approach has its limitation: (i) according to
Theorem 1 when a large amount of individuals present, more computations are needed
(individuals are converted into singletons); (ii) it yields some results useless in TBox
and ABox reasoning. For example, A v ∃r.B, x : A will yield ({x}, B) ∈ R(r) by
R3. To optimize the performance we separate the reasoning of TBox and ABox.

We start from a simpler case, in which the approximated TBox contains no nominal.
In this case, the ABox reasoning has no effect on the TBox reasoning, which can thus
be pre-computed.

Given Afn,EL++
C

(O) = (T ,A, CT ), after TBox reasoning of R1-R11, we present
ABox completion rules (Table 3) to compute, for each a ∈ INA, a class set C(a) ⊆
CNT ∪ CNA in which for each A ∈ C(a), T ,A |= a : C, and for each r ∈ RNT ∪
RNA, a role set RO(r) ⊆ INA × INA in which for each (a, b) ∈ RO(r), T ,A |=
(a, b) : r. These sets are initialised as: A ∈ C(a) if a : A ∈ A, (a, b) ∈ RO(r) if
(a, b) : r ∈ A.

Table 3. TBox-independent EL++
C ABox completion rules (no datatypes)

AR1 If A ∈ C(x), B ∈ S(A) and B /∈ C(x)
then C(x) := C(x) ∪ {B}

AR2 If A1, A2, . . . , An ∈ C(x), A1 uA2 u . . . uAn v B ∈ T and B /∈ C(x)
then C(x) := C(x) ∪ {B}

AR3 If (x, y) ∈ RO(r) A ∈ C(y), ∃r.A v B ∈ T and B /∈ C(x)
then C(x) := C(x) ∪ {B}

AR4 If (x, y) ∈ RO(r), ⊥ ∈ C(y) and ⊥ /∈ C(x)
then C(x) := C(x) ∪ {⊥}

AR5 If (x, y) ∈ RO(r), r v s ∈ T and (x, y) 6∈ RO(s)
then RO(s) := RO(s) ∪ {(x, y)}

AR6 If (x, y) ∈ RO(r1), (y, z) ∈ RO(r2), r1 ◦ r2 v r3 ∈ T , and (x, y) 6∈ RO(r3)
then RO(r3) := RO(r3) ∪ {(x, z)}

AR7 If A,B ∈ C(x), A = fc(B) and ⊥ /∈ C(x)
then C(x) := C(x) ∪ {⊥}

AR8 If A ∈ C(x), fc(A) ∈ S(fc(B)) and B /∈ C(x)
then C(x) := C(x) ∪ {B}

AR9 If A1 u . . . uAi u . . . uAn v ⊥, A1, . . . , Ai−1, Ai+1, . . . , An ∈ C(x) and fc(Ai) /∈ C(x)
then C(x) := C(x) ∪ {fc(Ai)}

It’s easy to see that AR1-AR6 are for EL++ while AR7-AR9 are for EL++
C trans-

formation. More precisely, AR1-AR2 are analogues to R1-R2, AR3-AR4 analogues
to R4-R5, AR5-AR6 analogues to R7-R8, AR7-AR9 analogues to R9-R11. This in-
dicates that similar algorithms can be applied and tractability and soundness are pre-
served. The fewer completion rules shall result in more efficient inference. Further-
more, AR5-AR6 can be processed ahead of the other rules because other rules will not
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generate any RO sets elements. This should further improve the efficiency and scala-
bility. This TBox-ABox-separated approach should have the same results as the ABox-
internalised approach.

3.4 Integrated ABox Approximation

ABox completion presented in Sec.3.3 has a restriction that the approximated TBox
should contain no nominal. For example, a : A, a : B,B v {b}, with internalisation
we will infer b : A, which can not be computed by AR1-AR9. The question arises that
whether the internalisation and ABox completion approach can be combined. In this
section we discuss the possibility of relaxing the nominal-free restriction.

Our basic idea is to partition the approximated ABox A into two disjoint-union
subsetsAI and AE so thatAI should be internalised into the approximated TBox T to
obtain an extended TBox TI that can be classified by R1-R11, while AE can be com-
pleted by AR1-AR9 after TBox reasoning over TI . There can be different partitioning
strategies. In what follows, we present a reachability-based partitioning. In general,
any ABox axiom that contains concept or individual name that is directly or indirectly
reachable to some nominal, should be internalised.

Definition 4. (Nominal-reachable Signature) Let Afn,EL++
C

(O) = (T ,A, CT ), its
nominal-reachable signature SigNR(Afn,EL++

C
(O)) (SigNR(O) for short) is a mini-

mal subset of Sig(T ) ∪ Sig(A) having the following properties:

1. for any a ∈ INT , we have a ∈ SigNR(O).
2. for any A ∈ CNT , we have A, fc(A) ∈ SigNR(O) if there exists C v D ∈ T s.t.
A ∈ Sig(C) and Sig(D) ∩ SigNR(O) 6= ∅.

3. for any a ∈ INT , we have a ∈ SigNR(O) if there exists a : A ∈ A ((a, b) : r ∈ A)
s.t. A ∈ SigNR(O) (b ∈ SigNR(O)).

4. for any A ∈ CNA, A, fc(A) ∈ SigNR(O) if there exists a : A ∈ A s.t. a ∈
SigNR(O).

Then the ABox can be partitioned into two parts, one’s signature is nominal-reachable,
the other’s not. The nominal-reachable part of the ABox should be internalised into the
TBox:

Definition 5. (Reachability-based Internalisation) Given anRO ontology O and
Afn,EL++

C
(O) = (T ′,A′, CT ′), its reachability-based internalisationRbI(Afn,EL++

C
(O))

is a triple (T ,A, CT ) constructed as follows:

1. CT = CT ′.
2. letAI = {α ∈ A′|Sig(α)∩SigNR(O) 6= ∅}, andAI((T ′,AI , CT )) = (TI , ∅, CT ),

then
– A = A′ \ AI .
– T = TI .
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For example, let T1 = {B v {b}} and A2 = {a : A, a : B}, then both of the
ABox axioms should be internalised. Similarly, let T2 = {A v {a},∃r.B v C} and
A2 = {b : B, (a, b) : r}, then the entire ABox should be internalised as well so that
A v C can be inferred. Given RbI(Afn,EL++

C
(O)) = (T ,A, CT ), the reasoning can

be performed as follows:

1. classify (T , ∅, CT ) by R1-R11.
2. extend A as A = A ∪ {a : A|A ∈ S({a})} ∪ {(a, b) : r|({a}, {b}) ∈ R(r)}.
3. reason (T ,A, CT ) by AR1-AR9.

This integration approach of internalisation and ABox completion should have the
same results as the the internalisation approach. The tractability of the reasoning is also
preserved.

There could be other way of partitioning the ABox. The advantage of our proposal
is that it is purely syntactic thus can be performed efficiently.

4 Evaluation

We implemented the internalisation approach (cf. Sec.3.2) and the ABox completion ap-
proach (cf. Sec.3.3) separately in our REL reasoner. In our experiments, REL int sys-
tem implemented the approximation (Sec.3.1) and the internalisation approach; REL ext
implements the approximation and the ABox completion approach. To evaluate their
performance in practice, we compared with mainstream reasoners Pellet 2.0.1 and FaCT++
1.3.0.1. All experiments were conducted in an environment of Windows XP SP3 with
2.66 GHz CPU and 1G RAM allocated to JVM 1.6.0.07.

Our test suite consists of several real world or benchmark ontologies with various
size and expressivity of TBox and ABox. The VICODI 3 ontology is developed to rep-
resent the history of Europe. SEMINTEC 4 ontology is developed for semantic web
mining. WINE 5 ontology is an OWL-DL show case ontology, designed to exploit the
expressive power of OWL-DL. LUBM (Lehigh University Benchmark) 6 is a bench-
mark for OWL-Lite query answering. VICODI and SEMINTEC have relatively simple
TBox but large ABox. WINE has a rather complex TBox and a moderate ABox. LUBM
contains a moderately complex TBox and its ABox can be generated as large as needed.
In our evaluation, we generated 1 university. Only WINE has nominals. We also con-
verted datatype properties into object properties. As for WINE ontology, the expres-
sivity is beyond RO, but REL directly approximate those constructs, e.g. cardinality
restrictions, inverse roles, with names.

For each ontology, we retrieve the types of all the individuals and the relations
between all pairs of individuals. Each reasoner was given 10 minutes on each task.
Recall of REL is calculated against the others. Thus the time shown in our evaluation
includes approximation time (for REL), reasoning time, type and relation retrieval and

3 http://www.vicodi.org/about.htm
4 http://www.cs.put.poznan.pl/alawrynowicz/semintec.htm
5 http://www.w3.org/TR/owl-guide/wine.rdf
6 http://swat.cse.lehigh.edu/projects/lubm/
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counting time. Time unit is second. REL ext is tested for all the ontologies. REL int
is tested only for WINE ontology as the others contain no nominal. The results are
presented in Table 4, in which “e/o” indicates that the reasoner exited with an error;
“t/o”indicates that the reasoner failed to finish the task in 10 minutes.

Table 4. Evaluation Results

Ontology retrieval Pellet FaCT++
REL ext REL int

time recall time recall

VICODI
concept 7.828 17.515 3.86 100% - -

role 9.656 t/o 3.828 100% - -

SEMINTEC
concept 4.5 4.422 2.484 100% - -

role 7.062 t/o 2.485 100% - -

WINE
concept 17.813 e/o 1.266 85.1% 1.641 98.2%

role 26.9 e/o 1.266 40.0% 1.453 91.5%

LUBM×1
concept 10.937 17.359 8.531 100% - -

role 26.891 t/o 8.625 100% - -

As we can see from Tabel 4. REL is (2 times to more than 20 times) faster than all the
other reasoners on all the ontologies, which indicates an improvement on the efficiency
of reasoning. For simple ontologies such as VICODI, SEMINTEC and LUBM, the
advantage of REL is not significant. While when the ontology has a relatively complex
TBox, especially when the TBox and ABox are connected, the benefits of approximate
reasoning become substantial. Note that for these two tasks, the time of REL was almost
the same: because our completion rules compute the instances of all the atomic concepts
and atomic roles together.

Concerning the completeness, when the ontology is simple, the recall of REL ext
is 100%. When the ontology TBox gets complex and contains nominals. Separate rea-
soning of TBox and ABox becomes not satisfying. By internalising the ABox into TBox
the recall was significantly improved. It’s interesting to see that the time of REL int
was not much longer than REL ext on the WINE. That is because WINE ontology
contains about 208 individuals, which is not a large number. It will be necessary to im-
plement the integrated solution as we discussed in Sec.3.4, when the ABox goes large
and TBox contains nominals.

To sum up, the evaluation showed that even naive implementations of our approach
can provide efficient and rather complete ABox reasoning services. Particularly, when
the ontology is complex and large, the efficiency can still be retained while the com-
pleteness is not sacrificed too much.

5 Conclusion & Future Work

In this paper, we presented an approximate reasoning approach to address the issue
of ABox reasoning over ontologies of expressive DL RO, a fragment of OWL2-DL
supporting ALC GCIs, nominals and role chains. Our approach first approximates an
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RO ontology to an EL++ ontology plus a complement table (CT) maintaining the
complementary relations between named concepts (including > and ⊥) and singletons.
Then we presented an internalisation approach to reducing ABox reasoning into TBox
reasoning, and presented additional completion rules to utilize the CT. For ontology
with no nominal in TBox, we presented an optimized ABox Completion approach. We
further discussed the possibility of combining the two approaches and presented one of
the possible solution.

Our approximate reasoning strategy is soundness-preserving and can be realised in
PTIME. Although we don’t guarantee completeness, our preliminary evaluation showed
that naive implementations of our approach can improve the efficiency of reasoning over
real world and benchmark ontologies, while maintaining a high recall.

In the future, we would like to further improve the completeness by exploiting
more reasoning patterns, to future improve the scalability by combining with relational
databases, to further improve the efficiency by optimising the implementations. The
lack of expressive benchmark in our evaluation also motivates us creating our own
benchmarks.
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Abstract. One of the most frequently used inference services of descrip-
tion logic reasoners classifies all named classes of OWL ontologies into a
subsumption hierarchy. Due to emerging OWL ontologies from the web
community consisting of up to hundreds of thousand of named classes
and the increasing availability of multi-processor and multi- or many-
core computers, we extend the work on parallel TBox classification and
propose a new algorithm that is sound and complete and demonstrates
in a first experimental evaluation a low overhead in the number of sub-
sumption tests due to parallel execution.

1 Motivation

Due to the recent popularity of OWL ontologies in the web one can observe a
trend toward the development of very large or huge OWL-DL ontologies. For in-
stance, well known examples from the bioinformatics or medical community are
UMLS, GALEN or even ontologies with more concepts. Some (versions) of the
ontologies consist of more than hundreds of thousands of named concepts/classes
and have become challenging even for the most advanced and optimized descrip-
tion logic (DL) reasoners. Although specialized DL reasoners for certain sublogics
(e.g., CEL for EL++) and OWL-DL reasoners such as FaCT++, Pellet, HermiT,
or RacerPro could demonstrate impressive speed enhancements due to newly
designed optimization techniques, one can expect the need for parallelizing de-
scription logic inference services in the near future in order to achieve a web-like
scalability. Our research is also strongly motivated by recent trends in computer
hardware where processors feature multi-cores (2 to 8 cores) or many-cores (tens
or even hundreds of cores). These processors promise significant speed-ups for
algorithms exploiting so-called thread-level parallelism. This type of parallelism
is very promising for DL reasoning algorithms that can be executed in paral-
lel but might share common data structures (e.g., and/or parallelism in proofs,
classification of TBoxes, ABox realization or query answering).

First approaches on more scalable reasoning algorithms for ABoxes (sets of
declarations about individuals) were investigated with the Racer architecture [11]
where novel instance retrieval algorithms were developed and analyzed, which
exploit a variety of techniques such as index maintenance, dependency analysis,
precompletion generation, etc. Other research focused on scalable ABox reason-
ing with optimization techniques to partition ABoxes into independent parts
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and/or creating condensed (summary) ABoxes [8, 9, 6]. These approaches rely
on the observation that the structure of particular ABoxes is often redundant
and these ABoxes contain assertions not needed for ABox consistency checking
or query answering.

Parallel algorithms for description logic reasoning were first explored in the
FLEX system [3] where various distributed message-passing schemes for rule
execution were evaluated. The only other approach on parallelizing core descrip-
tion logic reasoning [13] reported promising results using multi-core/processor
hardware, where the parallel treatment of disjunctions and individual merging
(due to number restrictions) is explored. While there exists some work on par-
allel DL algorithms, on parallel reasoning for first-order theorem proving (with
completely different proof techniques based on resolution), and on parallel dis-
tributed RDF inferencing (e.g., [16]), parallel TBox classification has only been
addressed in [1]. There has also been substantial work on reasoning through mod-
ularity and partitioning knowledge bases (e.g., [7, 5, 4]) that might be applicable
to our work.

In the following we extend the work on parallel TBox classification [1] and
propose a new algorithm that is sound and complete although it runs in parallel.
The implemented prototype system simulates parallel TBox classification with
various parameters such as number of threads, size of partitions assigned to
threads, etc. First results from a preliminary evaluation look very promising and
indicate a very low overhead in the number of subsumption tests due to parallel
execution.

2 The New Parallel TBox Classifier

This section describes the architecture of the implemented system and its under-
lying sound and complete algorithm for parallel classification of DL ontologies.
To compute the hierarchy in parallel, we developed a simulator using a multi-
threaded architecture providing control parameters such as number of threads,
number of concepts (also called partition size) to be inserted per thread, and
strategies used to partition a given set of concepts. The simulator reads an in-
put file containing a list of concept names to be classified and information about
them. The per-concept information available in the file includes its name, par-
ents (in the complete taxonomy), told subsumers, told disjoints, and pseudo
model information. The information about parents is used to compute the set of
ancestors and descendants of a concept. Told information consists of subsumers
and disjoints that can be easily extracted from axioms without requiring proof
procedures, e.g. the axiom A v B u¬C would result in information asserting B
as told subsumer of A and C as told disjoint of A. With the exception of told
subsumers this information is only used for (i) emulating a tableau subsump-
tion test, i.e., by checking whether a possible subsumer (subsumee) is in the
list of ancestors (descendants) of given concept, and (ii) in order to verify the
completeness of the taxonomy computed by the parallel classifier. The input in-
formation substitutes for an implemented tableaux reasoning procedure, hence
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makes the parallel classifier independent of a particular DL logic or reasoner.
Currently, Racer is used to generate this file for a given OWL-DL ontology after
performing TBox classification.

The told subsumer information is passed to a preprocessing algorithm which
creates a taxonomy skeleton based on the already known (i.e. told) subsump-
tions and generates a topological-order list (e.g. depth-first traversal). Using a
topological sorting algorithm, the partial order can be serialized such that a total
order between concept names (or sets of concept names) is defined. During clas-
sification, the concept names are processed in the order of the topological order.
In our topological order list, from left to right, parent concepts precede child
concepts. To manage concurrency in our system, at least two shared-memory
approaches could be taken into account by using either (i) sets of local trees (so-
called ParTree approach) or (ii) one global tree. In the ParTree algorithm [14] a
local tree would be assigned to each thread, and after all the threads have fin-
ished the construction of their local hierarchy, the local trees need to be merged
into one global tree. TBox classification through a local tree algorithm would
not need any communication or synchronization between the threads. ParTree
is well suited for distributed systems which do not have shared memory. The
global tree approach was chosen because it implements a shared space which
is accessible to different threads running in parallel and avoids the large scale
overhead of ParTree on synchronizing local trees. To ensure data integrity a lock
mechanism for single nodes is used. This allows a proper lock granularity and
helps to increase the number of simultaneous write accesses to the subsumption
hierarchy under construction.

Most TBox classification algorithms are based on two (symmetric) tasks (e.g.,
see [2]). The first phase (top search) determines the parents of a given concept
to be inserted into the subsumption tree. It starts with the top concept (>)
and tries to push the given concept below the children of the current concept
and repeats this process with the goal to push the given concept as much to
the bottom of the subsumption tree as possible. Whenever a concept in the tree
subsumes the given concept, it is pushed below this subsumer. The second phase
(bottom search) determines the children of a given concept. It starts with the
bottom concept (⊥) and tries to move the given concept above the parents of
the current concept and repeats this process with the goal to move the current
concept up in the tree as much as possible. Whenever a concept in the tree is
subsumed by the given concept, it is moved above of this subsumee. Eventually,
the given concept is correctly positioned in the current subsumption hierarchy.
Both phases tag nodes of the tree (‘visited’, ‘positive’, ‘negative’) to prune the
search and avoid visiting already processed nodes. For instance, ‘positive’ is used
to tag nodes already known as (told) subsumers and ‘negative’ for already known
as (told) disjoints.

The work in [2] is an example for algorithms that incrementally construct a
subsumption tree and are highly optimized for sequential execution. In [10] some
of these techniques were extended to better deal with huge TBox hierarchies but
these algorithms are still based on a sequential execution. A recent approach
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Fig. 1. Complete subsumption hierarchy for yaya-1
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Fig. 2. Told subsumer hierarchy for yaya-1

[15] on TBox classification exploits partial information about OWL subclass
relationships to reduce the number of subsumption tests and, thus, improves the
algorithms presented in [2].

2.1 Example Scenario

In [1] the degree of incompleteness caused by classifying partitions of concepts in
parallel was tested. For a variety of ontologies it turned out that a surprisingly
few number of subsumptions were missed. This motivated the work in this paper.
In the following we illustrate two scenarios which may cause that a concept is
misplaced in the taxonomy due to parallel classification. We use a very small
ontology named yaya-1 with 16 concepts (see Fig. 1 and 2).

For this example, we configured our system so that it runs with 4 threads and
3 number-of-tasks-per-thread. As explained previously, in parallel classification
the topological sort order divides concept partitions between the threads (e.g.
round-robin). For instance, in Fig. 3 a list of concepts allocated to each thread is

thread#1 −→ (female not-male), girl, parent
thread#2 −→ woman, mother, (male not-female)
thread#3 −→ man, boy, father
thread#4 −→ not-boy, not-father, not-girl
thread#1 −→ not-man, not-mother, not-parent, not-woman

Fig. 3. Concept assignments to each thread for classifying yaya-1
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shown. The two possible scenarios that may lead to a situation where the correct
place of a concept in the hierarchy is overlooked are described as follows.

Scenario I: In top search, as the new concept is pushed downward, right after
the children of the current concept have been processed, at least one new child
is added by another thread. In this scenario, the top search for the new concept
is not aware of the recent change and this might cause missing subsumptions if
there is any interaction between the new concept and the added children. The
same might happen in bottom search if the bottom search for the new concept
is not informed of the recent change to the list of parents of the current node.

Scenario II: Between the time that top search has been started to find the
location of a new concept in the taxonomy and the time that its location has
been decided, another thread has placed at least one concept into the hierarchy
which the new concept has an interaction with. Again, this might cause missing
subsumptions and is analogously also applicable to bottom search.

In our example (yaya-1), due to the small size of the taxonomy, scenario I
was not encountered, however, scenario II occurred in our experiments because
thread#1 inserted (female not-male)1 and thread#2 added woman independently
into the taxonomy and due to the parallelism each thread did not have any
information regarding the latest concept insertion by other threads (see also
Fig. 3). Hence, both (female not-male) and woman were initially placed under
the top concept although woman should be a child of (female not-male) (see Fig.
1). This was discovered and corrected by executing lines 6-7, 16-17, and 25-36
in Algorithm 2 as shown below.

2.2 Algorithms for Parallel Classification

The procedure parallel tbox classification is sketched in Algorithm 1. It is called
with a list of named concepts and sorts them in topological order w.r.t. to the
initial taxonomy created from the already known told ancestors and descendants
of each concept (using the told subsumer information). The classifier assigns
in a round-robin manner partitions with a fixed size from the concept list to
idle threads and activates these threads with their assigned partition using the
procedure insert partition outlined in Algorithm 2. All threads work in parallel
with the goal to construct a global subsumption tree (taxonomy). They also
share a global array inserted concepts indexed by thread identifications. Nodes
in the global tree as well as entries in the array will be locked for modification.

The procedure insert partition inserts all concepts of a given partition into
the global taxonomy. For updating a concept or its parents or children, it locks
the corresponding nodes. It first performs for each concept new the top-search
phase (starting from the top concept) and possibly repeats the top-search phase
for new if other threads updated the list of children of its parents. Then, it sets
the parents of new and adds new for each parent to its list of children. After-
wards the bottom-search phase (starting from the bottom concept) is performed.

1 This notation indicates that the concepts female and not-male are synonyms for each
other.
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Algorithm 1: parallel tbox classification(concept list)
topological-order-list ← topological order(concept list)
repeat

wait until an idle thread ti becomes available
select a partition pi from topological-order-list
run thread ti with insert partition(pi, ti)

until all concepts in topological-order-list are inserted
compute ratio and overhead
print statistics

Algorithm 2: insert partition(partition,id)
1: lock(inserted concepts(id))
2: inserted concepts(id)← ∅
3: unlock(inserted concepts(id))
4: for all new ∈ partition do
5: parents ← top search(new,>)
6: while ¬ consistent in top search(parents,new) do
7: parents ← top search(new,>)
8: lock(new)
9: predecessors(new) ← parents

10: unlock(new)
11: for all pred ∈ parents do
12: lock(pred)
13: successors(pred) ← successors(pred) ∪ {new}
14: unlock(pred)
15: children ← bottom search(new,⊥)
16: while ¬ consistent in bottom search(children,new) do
17: children ← bottom search(new,⊥)
18: lock(new)
19: successors(new) ← children
20: unlock(new)
21: for all succ ∈ children do
22: lock(succ)
23: predecessors(succ) ← predecessors(succ) ∪ {new}
24: unlock(succ)
25: check ← check if concept inserted(new , inserted concepts(id))
26: if check 6= 0 then
27: if check = 1 ∨ check = 3 then
28: new predecessors ← top search(new,>)
29: lock(new)
30: predecessors(new) ← new predecessors
31: unlock(new)
32: if check = 2 ∨ check = 3 then
33: new successors ← bottom search(new,⊥)
34: lock(new)
35: successors(new) ← new successors
36: unlock(new)
37: for all busy threads ti 6= id do
38: lock(inserted concepts(ti))
39: inserted concepts(ti)← inserted concepts(ti) ∪ {new}
40: unlock(inserted concepts(ti))

Mina Aslani and Volker Haarslev. 341



Analogously to the top-search phase the bottom search is possibly repeated and
sets the children of new and updates the parents of the children of new. After
finishing the top and bottom search for new it is checked again whether other
threads updated its entry in inserted concepts and the top and/or bottom search
needs to be repeated. This step needs to be done only once. Finally, new is added
to the entries in inserted concepts of all other busy threads.

In order to avoid unnecessary tree traversals and tableau subsumption tests
when computing the subsumption hierarchy, the parallel classifier adapted the
enhanced traversal method [2], which is an algorithm that was designed for
sequential execution. Algorithm 3 and 4 outline the traversal procedures for the
top-search phase.

Algorithm 3: top search(new,current)
mark(current,‘visited’)
pos-succ ← ∅
captured successors(new)(current) ← successors(current)
for all y ∈ successors(current) do

if enhanced top subs(y,new) then
pos-succ ← pos-succ ∪ {y}

if pos-succ = ∅ then
return {current}

else
result ← ∅
for all y ∈ pos-succ do

if y not marked as ‘visited’ then
result ← result ∪ top search(new,y)

return result

The procedure top search outlined in Algorithm 3 recursively traverses the
taxonomy top-down from a current concept and tries to push the new concept
down the taxonomy as far as possible by traversing the children of the current
concept. It uses an auxiliary procedure enhanced top subs (outlined in Algo-
rithm 4) which itself uses an auxiliary procedure subsumes (not specified here)
that implements a subsumption test.

In a symmetric manner the procedure bottom search traverses the taxonomy
bottom-up from a current concept and tries to push the new concept up the tax-
onomy as far as possible. It uses an auxiliary procedure enhanced bottom subs.
Both procedures are omitted for ease of presentation.

To resolve the possible incompleteness caused by parallel classification, we
utilize Algorithms 5, 6 and 7. The procedure consistent in bottom search is not
shown here because it mirrors consistent in top search.

Algorithms 5 and 6 illustrate the solution for scenario I described in Section
2.1. As already described, in top search we start traversing from the top concept
to locate the concept new in the taxonomy. At time t1, when top search is
called, we capture the children information “captured successors” of the concept
current; the children information is stored relative2 to the concept new being
2 Otherwise a different thread could overwrite captured successors for node current.

This is now prevented because each concept (new) is inserted by only one thread.
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Algorithm 4: enhanced top subs(current,new)
if current marked as ‘positive’ then

return true
else if current marked as ‘negative’ then

return false
else if for all z ∈ predecessors(current)

enhanced top subs(z,new)
and subsumes(current,new) then

mark(current,‘positive’)
return true

else
mark(current,‘negative’)
return false

Algorithm 5: consistent in top search(parents,new)
for all pred ∈ parents do

if successors(pred) 6= captured successors(new)(pred) then
diff children ← successors(pred) \ captured successors(new)(pred)
for all diff ∈ diff children do

if check interactions(diff,new) then
return false

return true

inserted (we use an array of arrays) and captures the successors of the concept
current (see Algorithm 3). As soon as top search is finished at time t2, and the
parents of the concept new have been determined, we check if there has been
any update on the children list of the computed parents for new between t1 and
t2 (e.g., see Algorithm 5 on how this is discovered). If there is any inconsistency
and also if there is a subsumption possible3 between new and any concept newly
added to the children list, we rerun top search until there is no inconsistency
(see line 6 in Algorithm 2).

The same process as illustrated in Algorithm 5 happens in bottom search.
The only difference is that parents information is captured when bottom search
starts; and when bottom search finishes, the inconsistency and interaction is
checked between the parents list of the computed children for new and the “cap-
tured predecessors”.

Algorithms 6 and 7 describe the solution for scenario II; every time a thread
inserts a concept in the taxonomy, it notifies the other threads by adding the
concept name to their “inserted concepts” list. Therefore, as soon as a thread
finds the parents and children of the new concept by running top search and
bottom search; it checks if there is any interaction between new concept and

3 This is checked by subsumption possible using pseudo model merging [12], where a
sound but incomplete test for non-subsumption on cached pseudo models of named
concepts and their negation is utilized.
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Algorithm 6: check interactions(diff,new)
return subsumption possible(diff,new)

Algorithm 7: check if concept inserted(new,inserted concepts)
if inserted concepts = ∅ then

return 0
else

for all concept ∈ inserted concepts do
if check interactions(concept,new) then

if check interactions(new,concept) then
return 3

else
return 1

else if check interactions(new,concept) then
if check interactions(concept,new) then

return 3
else

return 2
return 0

the concepts located in the “inserted concepts” list. Based on the interaction,
top search and/or bottom search need to be repeated accordingly.

Proposition 1 (Completeness of Parallel TBox Classifier) The proposed
algorithms are complete for TBox classification.

TBox classification based on top search and bottom search is complete in
the sequential case. This means that the subsumption algorithms will find all
subsumption relationships between concepts of a partition assigned to a single
thread. The threads lock and unlock nodes whenever they are updating the
information about a node in the global subsumption tree. Thus, we need to
consider only the scenarios where two concepts C and D are inserted in parallel
by different threads (e.g., thread#1 inserts concept C while thread#2 inserts
concept D). In principle, if top (bottom) search pushed a new concept down
(up), the information about children (parents) of a traversed node E could be
incomplete because another thread might later add more nodes to the parents or
children of E that were not considered when determining whether the concept
being inserted subsumes or is subsumed by any of these newly added nodes. This
leads to two scenarios that need to be examined for incompleteness.

W.l.o.g. we restrict our analysis to the case where a concept C is a parent
of a concept D in the complete subsumption tree (CT ). Let us assume that
our algorithms would not determine this subsumption, i.e., in the computed
(incomplete) tree (IT ) the concept C is not a parent of D.

Case I: top search incomplete for D: After D has been pushed down the
tree IT as far as possible by top search (executed by thread#2) and top search
has traversed the children of a concept E and E has become the parent of D, C
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Table 1. Characteristics of the used test ontologies.
Ontology DL language No. of named concepts

Embassi-2 ALCHN 657
Embassi-3 ALCHN 1,121

Galen SHN 2,730
Galen1 ALCH 2,730
Galen2 ELH 3,928

FungalWeb ALCHIN (D) 3,603
Umls-2 ALCHIN (D) 9,479

Tambis-2a ELH 10,116

is inserted by thread#1 as a new child of E. In line 6 of Algorithm 2 top search is
iteratively repeated for the concept new as long as consistent in top search finds
a discrepancy between the captured and current successors of the parents of the
newly inserted concept new. After finishing top and bottom search, Algorithm
2 checks again in lines 27-28 whether top search needs to be repeated due to
newly added nodes. If any of the newly added children of D would subsume C
and become a parent of C, the repeated execution of top search would find this
subsumption. This contradicts our assumption.

Case II: bottom search incomplete for C: After C has been pushed
up the tree IT as far as possible by bottom search (executed by thread#1)
and bottom search has traversed the parents of a concept E and E has become
a child of C, D is inserted by thread#2 as a new parent of E. In line 16 of
Algorithm 2 bottom search is iteratively repeated for the concept new as long
as consistent in bottom search finds a discrepancy between the captured and
current predecessors of the children of the newly inserted concept new. After
finishing top and bottom search, Algorithm 2 checks again in lines 32-33 whether
bottom search needs to be repeated due to newly added nodes. If C would
subsume any of the newly added parents of D and it would become a child of
C, the repeated execution of bottom search would find this subsumption. This
contradicts our assumption.

3 Evaluation

The Parallel TBox Classifier has been developed to speed up the classification
time especially for large ontologies by utilizing parallel threads sharing the same
memory. The benchmarking can be configured so that it runs various experiments
over ontologies. We evaluated it with a collection of 8 mostly publicly available
ontologies. Their name, size in number of named concepts, and used DL is shown
in Table 1. As mentioned in the previous section, two parameters influence the
parallel TBox classification, namely number of tasks/concepts per thread and
number of threads; the number of tasks/concepts per thread was set to 5 and
number of threads to 2 in our empirical experiments.

To better compare the performance between the sequential and parallel case,
we assume that every subsumption test runs in time t1 and in the sequential and
parallel case the same amount of time is used for an executed subsumption test.
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Table 2. Subsumptions tests and their ratio for the test ontologies.
Embassi-2 Embassi-3 Galen Galen1

Subs. Tests in sequent. 154,034 420,912 2,706,412 2,688,107
Subs. Tests in thread#1 76,267 217,324 1,363,321 1,367,302
Subs. Tests in thread#2 77,767 214,633 1,354,297 1,348,281

Worst Case Ratio 50.48% 51.63% 50.37% 50.86%

Overhead 1.64% 2.62% 0.41% 1.02%

Galen2 FungalWeb Umls-2 Tambis-2a

Subs. Tests in sequent. 5,734,976 4,996,932 87,423,341 36,555,225
Subs. Tests in thread#1 2,929,276 2,518,676 44,042,203 18,342,944
Subs. Tests in thread#2 2,893,716 2,490,329 44,025,988 18,261,532

Worst Case Ratio 51.07% 50.40% 50.37% 50.17%

Overhead 1.53% 0.24% 0.73% 0.13%

Subsumption tests can be expensive and, hence, are preferred to be avoided by
optimization techniques such as pseudo model merging [12].

Ratio =
MaxOfSubsTests

TSTs
(1) Overhead =

TSTp − TSTs

TSTs
(2)

The ratio illustrated in Equation 1 uses TSTs, the number of times a sub-
sumption test was computed in the sequential case, and MaxOfSubsTests, the
maximum number of subsumption tests performed in all threads. Similarly,
Equation 2 defines the overhead (where the index p refers to the parallel case).

Table 2 shows an excellent performance increase and a surprisingly small
overhead when using the Parallel TBox Classifier. Using two threads the maxi-
mum number of subsumption test for all ontologies could be reduced to roughly
one half compared to the sequential case. The overhead as defined in Equation
2 varies between 0.13% and 2.62%. The overhead is mostly determined by the
quality of the told subsumers and disjoints information, the imposed order of
traversal within a partitioning, and the division of the ordered concept list into
partitions. In general, one should try to insert nodes as close as possible to their
final order in the tree using a top to bottom strategy.

4 Conclusion

In this paper, we described an architecture for parallelizing well-known algo-
rithms for TBox classification. Our work is targeted for ontologies where inde-
pendent partitions cannot be easily constructed; therefore we did not use the
previously mentioned modularity approaches in our system. The first experi-
mental evaluation of our techniques shows very promising results because the
overhead for ensuring completeness is surprisingly small. In our next steps we
plan to extend our tests with different configurations of threads and partition
sizes and a larger variety of test ontologies. We intend to feed recorded runtimes
for performing single subsumption tests into our simulator in order to make the
computation of the overhead more accurate. We also plan to implement and test
our approach in a multi-core and multi-processor environment.
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Abstract. Ontologies undergo changes for reasons such as changes in knowl-
edge, meeting varying application requirements. Thus, for different versions of
a considered ontology, it is important to clarify the difference between them.
The difference above refers to the logical difference, not syntactic one. Exam-
ples of the logical difference include the difference in taxonomy, concept sub-
sumption difference and query difference. These has been well investigated for
the lightweight description logic EL because of its tractability and successful
application in bio-medical ontologies.
Fuzzy EL+ has been put forward and applied in view-based searching in Seman-
tic portals. Thus comes the problem of comparing fuzzy ontologies of different
versions and clarifying the difference. In this paper, we define the logical differ-
ence of two fuzzy EL+ ontologies. For fuzzy EL+ ontologies of different versions
we investigate how to compute the difference in taxonomy and concept subsump-
tion difference. We also explore how to compute approximation of the logical
difference of two EL terminologies. Our work can be applied in the scenario of
EL+ ontologies with access control if the set of all access rights is a linear order.

1 Introduction

Ontologies undergo changes for reasons such as changes in knowledge, meeting varying
application requirements [1]. Thus, for different versions of a considered ontology, it is
important to clarify the difference between them. The difference hereinabove refers
to the logical difference of two ontologies, that is, the set of entailments implied by
one ontology, but not by the other [2, 3]. For example, if a general concept inclusion
(GCI) C v D is implied by one ontology, but not the other, then it is in the set of the
logical difference, which is the difference in concept subsumption. In the above case, if
C and D are simple concept names, then this kind of difference is called the difference
in taxonomy. Query answering difference refers to the difference in query answering
by two ontologies [3]. These has been well investigated for the lightweight description
logic EL because of its tractability and successful application in bio-medical ontologies
[2, 4, 5].

Fuzzy EL+ [6] has been put forward and applied in ontology alignment [7] and
view-based searching in Semantic portals [8]. The fuzzy description logic allows fuzzy
subsumption, and has scalable classification algorithm. Thus comes the problem of
comparing fuzzy ontologies of different versions, as done in classic DL ontologies.
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In this paper, we investigate how to clarify the difference between two fuzzy EL+ on-
tologies. First, we define the logical difference in fuzzy EL+. Then we investigate how
to compute the difference in taxonomy and concept subsumption difference, and dis-
cuss how to compute approximation of the logical difference. Some of our investigation
is about the following case. The second fuzzy ontology is obtained by modifying the
degrees of truth of some axioms in the first fuzzy ontology. Thus, for some given en-
tailments of interest, we want to compute the change of their degrees of truth.

As shown in [9, 10], there are some shared principles between reasoning in fuzzy
EL+ and ontologies with access control. Thus, our results can be applied in the sce-
narios of EL+ ontologies with access control. More concretely, if the set of all access
rights is a linear order, we can treat the access right of an axiom (or entailment) as its
degree of truth. Thus, after modifications on some axioms’ access right, the problem
of computing the access right of the entailment is the same as the logical difference
problem described in last paragraph.

This paper is structured as follows. In the next section, we introduce the preliminary
about fuzzy EL+ and its reasoning methods. In section 3, we define the logical differ-
ence of two fuzzy ontologies. Then, in section 4, we investigate how to compute the
difference in taxonomy, the concept subsumption difference, and approximation of the
difference. At last, in section 5, we conclude the paper and discuss future work related
to the logical difference.

2 Preliminary

2.1 Fuzzy EL+

Fuzzy set theory has been well applied in representing knowledge with vagueness [11].
Let X be a set of elements. A fuzzy subset A of X, is defined by a membership function
µA(x), or simply A(x), of the form µA(x) : X → [0, 1] [11]. This function assigns
each x ∈ X a value n ∈ [0, 1] that represents the degree of x belongs to X. Then,
under this assumption, the classical set operators and logical operators are performed
by mathematical functions. For example, fuzzy complement is a unary function of the
form c : [0, 1] → [0, 1], fuzzy intersection and union are two binary functions of the
form t : [0, 1] × [0, 1] → [0, 1], and u : [0, 1] × [0, 1] → [0, 1], called t-norm and
t-conorm operations, respectively, and fuzzy implication also by a binary function T :
[0, 1] × [0, 1] → [0, 1] [11]. Certainly, the definitions of these functions have to satisfy
some properties to make sense. There are difference semantics according to the choices
of these functins. We only introduce Gödel semantics, which is also the base of fuzzy
EL+ introduced hereinbelow. As for other semantics, we refer to [11]. The t-norm is
tG(a, b) = min(a, b) , t-conorm uG(a, b) = max(a, b), and implication TG(a, b) = b if
a > b, TG(a, b) = 1 otherwise.

Then let us illustrate fuzzy EL+, denoted by fG - EL+ [6]. Suppose NC is a set of
concept names, and NR a set of role names. Then, > and elements in NC are concept
descriptions. If C and D are concept descriptions, then C uD and ∃r.C are also concept
descriptions, where r ∈ NR. The fG - EL+ ontology consists of finite general concept
inclusions 〈C v D, n 〉and role inclusions axioms (RIA) r ⊆ s, where n ∈ (0, 1] and
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r, s ∈ NR. That is, in the fG - EL+ ontology, fuzzy concept inclusions (f-GCI) are
permitted, and 〈C v D, n 〉means that the degree of C is a subset of D is n. However,
there is no fuzzy role inclusion permitted. The language is fG - EL if there is no RIA
in the ontology. In the later parts of the paper, we use crisp DL ontology to denote the
ontology resulting from eliminating all the degrees of truth from the axioms.

The semantics of fuzzy DLs are defined through a fuzzy interpretation. A fuzzy
interpretation consists of (∆I, .I), where ∆I is a non-empty set of elements, and .I is a
fuzzy interpretation function, which maps,

– an individual name a to an element aI in ∆I,
– a concept name A to a membership function AI : ∆I → [0, 1], and
– a role name r to a membership function rI : ∆I × ∆I → [0, 1].

Then, the interpretation is extended as shown in Table 1.

Table 1. Syntax and Semantics of the fuzzy description logic EL+

Constructor DL Syntax Semantics
top > >I(a) = 1

conjunction C u D (C u D)I(a) = min(CI(a),DI(a))
existential restriction ∃r.C (∃r.C)I(a) = supb∈∆I {min(rI(a, b),CI(b))}

fuzzy GCIs 〈C v D, n 〉 in f a∈∆I {TG(CI(a),DI(a))} ≥ n
RIAs r1 ◦ . . . ◦ rk v s [rI1 ◦t . . . ◦t rIk ](a, b) ≤ sI(a, b)

2.2 Reasoning in Fuzzy EL+

The reasoning problem in fuzzy EL+ ontology is to decide whether 〈α, n 〉is implied
by the ontology or not. That is, we have to determine the degree of truth n here, com-
pared with the reasoning problem in standard EL+ ontology. Currently, there exist two
methods as follows.

One reasoning method is to develop a calculus which deals with the degrees of
truth in every inference step, as shown in the paper by Stoilos et al [6]. The method
is a modification of the classification algorithm of EL+ ontology. For each entry in
the completion process, a value n is affiliated to reflect its degree of truth (considering
this entry locally). For newly generated entry by the completion rule, it will get its
affiliated value k ∈ (0, 1] according to the input entries and their affiliated values. The
completion rules will be repeatedly applied until there is no new binary tuple (entry,
affiliated value) generated. For the resulting entries, their degrees of truth are the biggest
ones among their affiliated values. Actually, this method is a classification algorithm,
that is, it will return the degree of truth of any concept name subsumption. The method
is similar to the axiom pinpointing algorithm based on monotone Boolean function
[12], but much simpler. That is because in deciding whether to apply a completion
rule, this method employs comparison between numerial values, in contrast with logical
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implication checking between formulae in pinpointing algorithm. Thus, with respect to
complexity, this method sits strictly between classification algorithm and the axiom
pinpointing algorithm.

From above reasoning method, we explore the property of the degree of truth of an
entailment. An entailment has one or many MinAs, which is the minimal subset of the
ontology implying that entailment [12]. From above inference steps, we know that the
entailment has a temporary degree of truth from one MinA, called that MinA’s degree,
which is the minimal degree of truth of all the axioms in that MinA. The entailment’s
final degree of truth is the maximal among its temporary degrees of truth. Theorem 1
describes this formally.

Theorem 1. Suppose that O is a fuzzy EL+ ontology, and O � 〈α, n 〉. Obtain a clas-
sic Ocrisp by deleting all the degrees of truth in O. Let A1 = {β11, . . . , β1 j1 }, . . . , Ak =

{βk1, . . . , βk jk } be all the MinAs of α in Ocrisp. Then let n11, . . . , n1 j1 , . . . , nk1, . . . , nk jk
be degrees of truth for β11, . . . , β1 j1 , . . . , βk1, . . . , βk jk in O respectively. Let d(Ai) be
min1≤h≤ ji {nih}, for 1 ≤ i ≤ k. Then, we have n = max1≤i≤k{d(Ai)}.

The other reasoning method treats the standard DL reasoner as an oracle in the
computation of the degree of truth n of α, which is justified by the following result.

Theorem 2. (from [10]) Suppose that O is a fG - EL+ ontology. Then, O � 〈C1 v C2, n
〉if and only if On � C1 v C2, where On = {C v D| 〈C v D,m 〉∈ O, n ≤ m}.

Then, we can use binary search to compute degree of truth n [10]. This method
enjoys the fast converging speed of binary search, as well as sophisticated existing EL+
reasoner [13].

Moreover, Theorem 2 shows that for an entailment with degree of truth n, only
axioms of higher degree of truth contribute to its correctness. This property will be
further used in subsection 4.2.

3 Logical Difference for Fuzzy DLs

We extend the logical difference to fuzzy DLs after listing that definition in classic DLs.

Definition 1. (logical difference in classic DLs, from [2]) Suppose that O1 and O2 are
two DL ontologies, and S is a signature, then their logical difference with respect to S
is defined as diffS (O1,O2) = {Cv D|O1 � C v D,O2 2 C v D , symbols in C v D are
from S .}.
Definition 2. (logical difference for fuzzy DL ontologies) Suppose that O1 and O2 are
two fuzzy DL ontologies, and S is a signature, then their logical difference is defined as
f-diffS (O1,O2) = {hα, n 〉 |O1 � 〈 α, n 〉and O2 2 〈α, n 〉, symbols in α are from S .}

In the above two definitions, when the signature S is clear from context, we will
drop it when mentioning the difference.

It is easy to verify that the logical difference on fuzzy DLs is the same as that on
classic DLs if the underlying fuzzy DLs has only degrees of truth of 0 and 1. From
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the definition, we find that an element in the logical difference consists of a normal
entailment, and its degree of truth. Thus, there are two sources to the contribution of the
elements. One is the difference in normal entailments, which is the logical difference of
two crisp DL ontologies. The other is the difference in degrees of truth, which illustrates
the following situation. Two crisp DL ontologies imply the same set of entailments, but
differ on the degrees of truth of some entailments.

Since we care more about the difference caused by modifications on some degrees
of truth, the crisp parts of two DL ontologies are the same. Thus, the only source of
difference is the degrees of truth of the entailments.

4 Compute the Logical Difference

In this section, we will discuss how to compute the logical difference of two fuzzy DL
ontologies. If modelers of ontology are interested at the subsumption relationship be-
tween two concept names, which actually is the difference in taxonomy, we recommend
the method in subsection 4.1. If modelers focus on the subsumption between concept
descriptions, subsection 4.2 provides guidelines. If modelers expect more information
in the difference, an approximation is proposed for fuzzy EL terminologies in subsec-
tion 4.3. Thus, we provide a range of methods for the choice of modelers according to
requirements of application.

4.1 Difference in Taxonomy

In this subsection, we focus on computing the entailments of the form 〈A v B, n 〉in the
difference of two fuzzy ontologies, where A and B are concept names. The method we
propose in this subsection is an adaption of the method successfully applied in classic
DL ontologies [14].

First, we recall some results in classic DL ontologies. In classic DL ontologies,
module w.r.t a signature is a subset of an ontology which is indistinguishable with the
ontology w.r.t that signature [15]. Thus, when reasoning on that signature, it is safe
to use the module instead of the original ontology, which can speed up the reasoning
when the module and the ontology are of different scales. For a concept name A, any
entailment of the form A v C, where C is concept description, can be implied from the
locality-based module w.r.t {A} [14].

Then, for a fuzzy EL+ ontology, we define its module with respect to a signature.

Definition 3. (module for fuzzy ontology) For a fuzzy ontology O f , its module with
respect to signature S , denoted by M f S , is its subset which is indistinguishable with
O with respect to S . That is, for any α which consists of symbols only from S and
n ∈ (0, 1], we always have O f � 〈n 〉if and only ifM f S � 〈n 〉.

Moreover, for a fuzzy DL ontology O f , its locality-based module M f consists of
all the axioms which also appear in locality-based module when their degree of truth
discarded. That is,M f = { 〈α, n 〉|α ∈ Mcrisp,Mcrisp is a locality-based module of
Ocrisp = {β| 〈β,m 〉∈ O f } }.

Theorem 3 shows that the locality-based module is a module for fuzzy EL+ ontol-
ogy.
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Theorem 3. For a fuzzy DL ontology O f , its locality-based moduleM f (with respect
to Signature S ) is a module (with respect to Signature S ).

Sketch of proof. For any entailment 〈α, n 〉implied by O f , we have that α is implied
by Ocrisp, also by Mcrisp. It means that, any mininal explanation of α is contained
in M. Since M is generated under the direction of Mcrisp, we say that any minimal
explanation of 〈α, n 〉is contained inM f . Thus, 〈α, n 〉is implied byM f . That is,M f is
a module of O f . Q.E.D.

Lemma 1. (from [15]) For a classic DL ontology O, A is a concept name in it. Then
any entailment of the form A v C implied by O can be implied from O’s locality-based
module with respect to {A}, where C is a concept description.

Theorem 4. For a fuzzy DL ontologyO f , A is a concept name in it. Then any entailment
of the form 〈A v C, n 〉implied by O f can be implied from O f ’s locality-based module
with respect to {A}, where C is a concept description.

With these results at hand, our strategy (as in [14]) is for every concept name A,
we keep a record of the module with respect to A. Then for two versions of fuzzy
EL+ ontologies, we check whether the related module is changed or not for every A. If
unchanged, it means that all the subsumptionhoods between A and other concept names
are unchanged. If changed, it is enough to perform the fuzzy classification algorithm
only on the module, which is much smaller, to find the new related subsumptionhoods.
Thus our strategy, like the corresponding method in classic DLs, is especially suitable
for large scale ontologies.

If we only care about the subsumptionhood between A and a specific concept name,
we might be able to avoid the fuzzy classification algorithm in some cases. We will
explain this in the next subsection.

4.2 Concept Subsumption Difference

In this subsection, we focus on the entailment of the form C v D in the logical differ-
ence, where C and D are concept descriptions. We consider the simplest case: When
the degree of truth of an axiom in the first ontology is increased, we want to know the
new degree of truth of one entailment of the form C v D. Formally, suppose that O is
a fuzzy EL+ ontology, 〈α, n 〉is an axiom in its TBox, and 〈β, d 〉is one of entailments
of O of interest. Let O′ be obtained by replacing 〈α, n 〉with 〈α,m 〉, where m ∈ (n, 1].
Then we want to calculate the value of d′ such that O′ implies 〈β, d′ 〉. We discuss the
problem according to the degree of truth d.

Theorem 5. If d < n, then d′ = d.

The theorem says that, for entailment whose degree of truth is less than n, then its
uncertainty degree in the new ontology is the same as that in the previous ontology.

Proof of sketch. From Theorem 1, we know that the degree of truth of α contributes
to β’s degree of truth, if and only if α is in one of β’s MinA, and α’s degree is the small-
est compared with other axioms’ in that MinA. Moreover, α’s degree is the biggest
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compared with the degrees returned by other MinAs. The statement dn in the precondi-
tion shows that, even α is in one of β’s MinA, there exists another axiom with degree of
truth d < n. That axiom decides the degree of β to be d. That is, the degree of α has no
effection on β’s degree. Thus, increase on α’s degree will leave β’s degree unchanged.
Q.E.D.

Theorem 6. If n ≤ d < m, then let O>d be {γ| 〈γ, k 〉∈ O′andk > d}.
1. if O′>d � β, then β’s degree of truth d′ ∈ (d,m].
2. otherwise, β’s degree of truth stays unchanged, i.e. d′ = d.

In this case, we can first perform some reasoning in classic EL+ ontologies, then
we know whether β’s degree of truth has to be recomputed or not. Even the degree has
to be recomputed, we know the range of its new value.

Proof of sketch. In the first case, d′ > d can be derived from Theorem 2. If α is in
one MinA, and its degree m is the smallest in that MinA, then d′ possibly equals m. It
is not possible that d′ is bigger than m, which means that there exists a MinA A, the
smallest degree in A is bigger than m. Thus, αmust not be in A. Since 〈α,m 〉is the only
difference between two ontologies, the MinA A is also in the first ontology O. Then the
degree of β in O is bigger than m. Conflict.

For the second case, we know that O′≥d = O≥d. From Theorem 2 we have O≥d � β.
Thus O′≥d � β. With O′>d 2 β from the precondition, we conclude that β’s degree of truth
is d. Q.E.D.

Theorem 7. If d ≥ m, then d′ = d.

That is, for entailment whose degree of truth is not less than m, then that degree in
the new ontology is the same as in the previous ontology.

Proof of Sketch. Suppose that α is in a MinA of β, and its new degree m is the
smallest in that MinA. Since d ≥ m, it means that there exists another axiom with
degree of d. Thus, β’s degree will stay at d. Q.E.D.

From above analysis, when the degree of truth of one axiom is increased, for an
entailment of interest, we know the new range of its degree of truth before performing
concrete computation. Sometimes, the new range might be enough for requirements of
users, then the effort in performing concrete computation will be saved.

Similarly, we give the following results when the degree of truth of one axiom is
decreased. The problem is described the same as in the beginning of this subsection.
The only exception is that when 〈α, n 〉is replaced by 〈α,m 〉, we require that m ∈ [0, n).
Thus, for 〈β, d 〉implied in the previous ontology O, if d ∈ (0,m]∪ (n, 1], then β’s degree
of truth in the new ontology O′ is still d. When the range of d is (m, n], if O′≥d � β, then
β’s degree in O′ is still d. Otherwise, its degree will be in [m, d).

Now, we relax the conditions in our discussion a bit. We allow that in the first
ontology, several axioms have their degrees of truth increased. For an entailment of
interest, to know its degree of truth in the modified ontology, we can first apply Theorem
5 and Theorem 7, to eliminate the modifications having no effect on the entailment of
interest. For the modifications falling in the category of Theorem 6, we can get an
estimation of the resulting degree before complete computation. Similar methods can
deal with the case when some axioms have their degrees decreased, or even increased
and decreased modifications co-exist.
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4.3 More Difference

What we have done in the previous subsections is: first, set some entailments (either
elements from taxonomy or concept subsumptions of interest), then perform reasoning
to find the change of their degrees of truth. The results obtained therefore are only part
of the logical difference between ontologies. In this subsection, we try to compute as
much information as possible of the logical difference, instead of focusing on some
pre-fixed entailments.

Before coming to our solution, we briefly go through the related work in classic EL
[4, 2]. Given two EL terminologies, any entailment in their logical difference, which is
of form C v D, can be derived from either E v A or B v E, where C,D, E are concept
descriptions and A and B are concept names. Thus, the lists of such As and Bs form a
reasonable approximation of the logical difference. There exist polynomial algorithms
respectively to return the above two lists. However, this kind of approximation in EL+
remains an open problem due to some role inclusion axioms. Thus, our work described
below is only for EL terminologies, not ontologies, nor EL+. Terminologies are special
kind of ontologies, where every concept is defined (when it occurs, as the only concept,
on the left side of an axiom) at most once, and does not refers to itself directly or
indirectly in the definition.

Theorem 8 describes the composition of fuzzy logical difference, thus points out
one way of computation.

Theorem 8. Suppose that O andO′ are two fuzzy DL ontologies, and f-diff(O,O′) is the
logical difference between them. Let n ∈ (0, 1]. Then f-diff≥n(O,O′) = diff(O≥n,O′≥n).

Proof of sketch. Use Theorem 2 and Definition 1 and 2. Q.E.D.
Theorem 8 points out that, the cut set of the fuzzy logical difference by n, equals

to the classic logical difference between cut sets of the fuzzy ontologies. Since we can
compute approximation for the classic logical difference, then the result can be used as
approximation of the cut set of the fuzzy logical difference by n. Thus, with Theorem
8, we can build approximation of the logical difference of two fuzzy EL terminologies
gradually.

This result can be further strengthened in the following case. Suppose that two fuzzy
EL terminologies only differ on degrees of some axioms. Let n be the maximal value
among the degrees on which two terminologies differ. Then, from Theorem 2, we know
that the cut set of the fuzzy logical difference by n is empty. That is, two terminologies
imply, to the degree of n, the same entailments.

5 Conclusion and Future Work

Because of the applications of fuzzy EL+ and its similarly to ontology with access con-
trol, we investigate the logical difference problem in fuzzy EL+. We define the logical
difference of two fuzzy EL+ ontologies. We investigate strategies of computing some
forms of the difference, from the simplest one of taxonomy difference to the approxi-
mation. Thus, modellers of fuzzy ontologies can choose a suitable solution according
to requirements.
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We discuss two interesting problems for future investigation. The first one is in
computing concept subsumption difference. In subsection 4.2, our discussion is under
the assumption that two fuzzy ontologies share the same set of axioms, and only differ
on the degrees of truth of some axioms. If we drop this assumption, and let the two fuzzy
ontologies be arbitrary, can we still find similar heuristics to avoid fuzzy classification?

The second problem is about deciding conservative extensions between two fuzzy
ontologies. We can try the method described in subsection 4.3. However, it is interesting
to develop algorithms which deal with degrees of truth on inference step level, instead
of converting to classic DLs.
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Abstract. Abductive reasoning has been recognized as a valuable com-
plement to deductive inference for tasks such as diagnosis and integration
of incomplete information despite its inherent computational complex-
ity. This paper presents a novel, tractable abduction procedure for the
lightweight description logic EL. The proposed approach extends recent
research on automata-based axiom pinpointing (which is in some sense
dual to our problem) by assuming information from a predefined ab-
ducible part of the domain model if necessary, while the remainder of the
domain is considered to be fixed. Our research is motivated by the need
for efficient diagnostic reasoning for large-scale industrial systems where
observations are partially incomplete and often sparse, but nevertheless
the largest part of the domain such as physical structures is known. Tech-
nically, we introduce a novel pattern-based definition of abducibles and
show how to construct a weighted automaton that commonly encodes
the definite and abducible part of the domain model. We prove that its
behavior provides a compact representation of all possible hypotheses
explaining an observation, and is in fact computable in PTime.

1 Introduction

Abductive reasoning is a method for generating hypotheses that explain an obser-
vation based on a model of the domain, typically in the presence of incomplete
data. Its non-monotonicity and explorative nature make abduction a promis-
ing candidate for the interpretation of potentially incomplete information – a
task which is much harder to accomplish using established monotonic inference
methods such as deduction or the more elaborate axiom pinpointing. The appli-
cations of abductive inference are diverse, ranging from text interpretation [1] to
plan generation and analysis [2], and interpretation of sensor [3] or multimedia
data [4]. Our research on abductive inference is motivated by industrial applica-
tions in Ambient Assisted Living and assistive diagnosis for complex technical
devices. In these scenarios we found the underlying models being typically large,
though not overly complex in their structure. The main consideration is therefore
scalability with respect to the size of the domain model; to effectively support
humans or to avoid consequential damage to machinery, information processing
is subject to soft realtime constraints.
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Our proposed solution to this challenge is based upon logic-based abduc-
tion which is not the only, but probably the best-studied notion of this type
of inference (see [5] for a survey). In logic-based reasoning, model, observations
and hypotheses are represented and manipulated using formal logics; description
logics were chosen here as a representation language due to their decidability.
Since logic-based abduction is known to be at least as hard as deduction [6],
the underlying description logic obviously has to be polynomial for subsumption
checking. As we found existential quantification to be of greater importance than
universal quantification in both scenarios considered so far, we decided to base
our approach on the lightweight description logic EL. Choosing a lightweight de-
scription logic, however, does not necessarily guarantee tractability of abduction
since the so-called support selection task common to all forms of goal-directed
reasoning renders hypotheses generation NP-hard even for Horn-theories [7]. It
was shown in [8] that this hardness result can only be alleviated if the number
of hypotheses is bounded polynomially, allowing (under certain conditions) to
generate a single preferred hypothesis in PTime for EL and EL+ knowledge
bases [9].

The remainder of this paper is structured as follows: We first recall some
basics on description logics and abduction, relating the proposed approach to
existing work in this field. Sect. 3 introduces the formalism and justifies its
tractability, followed by Sect. 4 where we show how it can be applied to elegantly
solve a diagnosis problem. We conclude by summing up the results and giving
an outlook on ongoing work.

2 Preliminaries

Description logics are a family of logic-based knowledge representation formalisms
designed to ensure decidability of standard reasoning tasks. A concrete descrip-
tion logic is characterized by its admissible concept constructors and axiom
types, typically constituting a tradeoff between expressivity and computational
complexity. The EL family of lightweight description logics [10] was tailored
specifically to tractability, resulting in a language combining PTime decidabil-
ity of standard reasoning tasks with adequate expressivity for modeling e. g. the
biomedical ontology SNOMED CT. Table 1 summarizes the constructs avail-
able in EL for defining concepts and axioms based on the sets NC and NR of
concept names and role names, respectively. To simplify presentation we will
assume for the remainder of this paper that the knowledge base T is in normal
form, containing only general concept inclusion axioms of the form A1uA2 v B,
A1 v ∃r.B and ∃r.A1 v B, where r ∈ NR, A1, A2, B ∈ NC ∪ {>}. For the com-
plete EL family, normalization of an axiom set is linear in the number of axioms
both concerning the time required and the number of new axioms generated [11].

Axiom pinpointing, which provides a basis for the approach presented in
this paper, can be seen to extend subsumption checking by determining sets
S v T of axioms from such that the axioms in each set provide a justification
for a given subsumption C v D (i. e. S |= C v D). While this non-standard
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Table 1. EL syntax & semantics

Syntax Semantics

> ∆I

C uD CI ∩DI

∃r.C {x ∈ ∆I | ∃y ∈ ∆I : (x, y) ∈ rI ∧ y ∈ CI}
C v D CI ⊆ DI

C ≡ D CI = DI

inference task provides useful information in case T |= C v D, it necessarily fails
if T 6|= C v D. In this latter situation, abductive inference offers a solution by
determining sets of hypotheses H compatible with T that justify the observation
if added to the knowledge base (formally, T ∪H 6|= ⊥ and T ∪H |= C v D). Due
to the restriction of EL to terminological information we focus our attention on
TBox abduction, where both observations and hypotheses are represented by
concept inclusion axioms.

In this respect, our work is closely related to the framework of concept abduc-
tion [12] which determines, given a knowledge base T and two concepts C and D,
a concept H such that T 6|= C uH ≡ ⊥ and T |= C uH v D. This approach as
well as the more elaborate notion of structural abduction [13] employ a tableaux-
based calculus for finding a single, v-optimal explanation. The authors do not
address computational complexity; due to the underlying description logic and
the tableau-based approach, we presume that their approach is at least Exp-
Time-hard. Regarding ABox abduction, [4] presents an approach for SHIQ
knowledge bases extended with non-recursive DL-safe rules. Abduction is im-
plemented as an iterative query answering process that returns a single optimal
solution subject to a quality criterion which rewards using asserted information
while penalizing assumptions. The approach was successfully implemented in a
media interpretation framework, its ExpTime worst-case complexity however
is prohibitive in the scenario under consideration. Various aspects of abductive
inference have also been studied in the context of logic programming, where
resolution is most commonly employed for hypotheses generation. This inte-
grates abductive reasoning tightly with the general setting of logic programming
but also poses new questions, for example regarding the interaction of abduction
with negation as failure used in most logic programming systems. The interested
reader is referred to [14] for a thorough introduction to the field of abductive
logic programming. [15] examines the relationships between abductive inference
and filtering, a process of model selection similar to conditioning in Bayesian
networks. Filtering has successfully been applied in performance-critical appli-
cations, proving that it can be implemented efficiently. Under certain conditions
abduction can indeed be implemented as a process of filtering, yet in in the gen-
eral case (and especially for unrestricted propositional and first-order theories)
filtering is equivalent only to so-called weak abduction.

362 Automata-Based Abduction for Tractable Diagnosis



In order to obtain a tractable algorithm for abductive reasoning within de-
scription logics, we resort to recent work on automata-based axiom pinpointing
for EL [16, 17]. The proposed method is based on encoding the model into a
weighted Büchi automaton whose accepting runs (called behavior) represent all
derivations of the observation from domain knowledge and abducible informa-
tion, the latter of which is defined compactly using patterns. A hypothesis for-
mula encoding this set of explanations can be determined in PTime with respect
to the size of the knowledge base. The upcoming section presents the details of
our approach.

3 Automata-Based Abduction for EL

We start by introducing the abductive framework this paper builds on. It differs
from other approaches presented above in that both the observation we want
to explain and the abducibles are general concept inclusion axioms, which is
actually the only way to express relationships between domain elements in EL
due to the absence of individuals. As mentioned before, we assume that the
knowledge base T is in normal form.

Definition 1 (Axiom pattern; instantiation). Let T be an EL TBox over
concept names NC and role names NR, VC a set of concept variables V C

i , and
rng : VC → P(NC ∪ {>}) a complete function mapping each concept variable
to a set of concept names (possibly including >), called its range. The range
extends by subsumption to rng∗(V C

i ) = {C ∈ NC ∪ {>} | ∃D ∈ rng(V C
i ) :

T |= C v D)} (with rng(V C
i ) ⊆ rng∗(V C

i ) since T |= C v C trivially holds).
An axiom pattern is an axiom as defined in Table 1 (not necessarily in normal
form), where concept descriptions may contain concept variables from VC. An
instantiation of a pattern is an axiom derived from the pattern by replacing each
of its concept variables V C

i with an element of rng∗(V C
i ).

Definition 2 (Abduction problem). Let T be an EL TBox over concept
names NC and role names NR, A0 v B0 a general concept inclusion in normal
form such that A0, B0 ∈ NC (called the observation), and Pat a set of axiom pat-
terns over VC whose size is bounded polynomially by the number of concept names
in NC, and rng a range function. The tuple AP = (T , A0 v B0, Pat,VC, rng)
is called an abduction problem.

Concept patterns and range function allow for a very fine-grained definition
of the parts of the domain which may be assumed. This proves valuable in
large-scale applications where typically most of the domain is considered to be
fixed (and assumptions most presumably contradict reality), while only certain
types of axioms are likely to represent missing information. As an example,
compositional (partOf) hierarchies of technical systems are completely known
to the constructor, whereas the set of observations about such a system is much
more likely to be incomplete. Furthermore, explanations are typically required to
be non-trivial [5], in particular a piece of information must not be explained by
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itself. This can be achieved easily here by selecting appropriate axiom patterns
and concept variable ranges. As a side-effect, restricting the set of abducibles
cuts the search space and the number of hypotheses generated and may therefore
increase efficiency. Note that the limitation of the size of Pat in Definition 2 is
required to ensure a polynomial worst-case complexity of the algorithm, yet it
never posed a severe limitation for domain experts in practice.

Definition 3 (Abducible). Given AP = (T , A0 v B0, Pat,VC, rng), the set
of abducibles AbdAP contains all axioms generated by normalizing the elements
of Pat and instantiating them with concept names from rng, omitting axioms
already contained in T . Let NC′ denote the set of concept names NC extended
with the new concept names introduced during normalization.

Definition 4 (Labeling function). Let AP = (T , A0 v B0, Pat,VC, rng) be
an abduction problem. Assume that each axiom ax in T and each abducible abd
in AbdAP is labeled with a unique propositional variable lax and labd , respec-
tively, such that the sets of axiom labels and abducible labels are disjoint. The
labeling function lab then assigns a label to each general concept inclusion gci
as follows: If gci is an axiom (abducible), then lab(gci) is the predefined proposi-
tional variable lax (labd). Otherwise, if gci is a tautology of the form AuA v A
or A u A v >, we set lab(gci) = >; in all other cases lab(gci) = ⊥. We finally
denote by lab(AP) the set of all labels occurring in the abduction problem.

To simplify notation we identify a propositional valuation V with the set of
variables it assigns to be true, and let A|V = {ax ∈ A | lab(ax) ∈ V} denote
the restriction of an axiom set A to the axioms made true by V. We extend this
definition to axiom problems by letting AP |V = (T ∪AbdAP)|V .

Definition 5 (Hypotheses formula). A hypotheses formula for an abduc-
tion problem AP = (T , A0 v B0, Pat,VC, rng) is a monotone Boolean for-
mula ηAP over lab(AP) such that for all valuations V ⊆ lab(AP) it holds that
V |= ηAP iff AP |V |= A0 v B0.

Abductive inference on the original knowledge base T can now be expressed
as a pinpointing problem in the extended problem space T ∪AbdAP . To this end,
we define an abductive automaton employing the approach proposed in [17].

Definition 6 (Abductive automaton; behavior). An abductive automaton
for an abduction problem AP = (T , A0 v B0, Pat,VC, rng) is a weighted Büchi
automaton AAP = {Q,wt, in, F} over binary trees with

– Q = {(A,B), (A, r,B) | A,B ∈ NC′ ∪ {>}, r ∈ NR} ,
– ∀A,B,B1, B2 ∈ NC′ ∪ {>},∀r ∈ NR

• wt((A,B), (A,B1), (A,B2)) = lab(B1 uB2 v B) ,
• wt((A, r,B), (A,B1), (A,A)) = lab(B1 v ∃r.B) ,
• wt((A,B), (A, r,B1), (B1, B2)) = lab(∃r.B2 v B) ,
• wt(q1, q2, q3) = ⊥ for all other q1, q2, q3 ∈ Q ,

– in(q) = > iff q = (A0, B0), otherwise in(q) = ⊥ , and
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– F = {(A,A) | A ∈ NC′ ∪ {>}} ,

where Q denotes the set of states, F ⊆ Q the set of terminal states, in the initial
distribution, and wt the transition weights of AAP .

We extend the definition of wt to a complete run −→r = q1 · · · qn as wt(−→r ) =
wt(q1)∧· · ·∧wt(qn), and let succ(q) be the set of all successful runs of AAP start-
ing in q. The behavior of AAP is defined by

∧
q∈Q(in(q) ∧∨−→r ∈succ(q)

wt(−→r )).

As there is exactly one state q having in(q) 6= ⊥, namely (A0, B0), the be-
havior of AAP is the disjunction of the weights of all its successful runs starting
in (A0, B0). Due to the specification of the transition weights, each run corre-
sponds to a derivation of A0 v B0. Intuitively, wt attributes triples (q1, q2, q3) of
states with provenance information regarding the derivation of q1 from q2 and
q3: Trivial derivation steps (such as q1 = (A,>) or q1 = q2 = q3) are labeled
with the symbol > due to Definition 4; the weight of a non-trivial step is the
label of an axiom / abducible such that q1 can be deduced from q2 and q3
using this axiom / abducible (or ⊥ if none exists). As an example, the definition
wt((A,B), (A,B1), (A,B2)) = lab(B1 u B2 v B) expresses that, given A v B1

and A v B2, we can derive A v B if we know B1 uB2 v B.

Theorem 1. Given an abduction problem AP = (T , A0 v B0, Pat,VC, rng),
the behavior of the abductive automaton AAP is a hypotheses formula for the
observation A0 v B0.

This result carries over from [17]. In fact, if we set Pat = ∅, the abductive
automaton and hypotheses formula defined before coincide with the notions
of pinpointing automaton and pinpointing formula due to the empty space of
abducibles. If AbdAP is nonempty, the automaton AAP can be interpreted as a
pinpointing automaton for TBox T ′ = T ∪AbdAP as noted before. Due to space
limitations the reader is referred to [16, 18] for details on how to compute the
behavior of such an automaton effectively. In the setting introduced above this
can even be done efficiently, as the following theorem claims.

Theorem 2. Given an abduction problem AP = (T , A0 v B0, Pat,VC, rng),
computing the hypotheses formula ηAP takes polynomial time in the size of T .

Proof. Given AP = (T , A0 v B0, Pat,VC, rng), we denote by NC and NR the
sets of concept and role names in T , and by NC′ the extended set of concept
names including the new names generated during normalization of the axiom
patterns in Pat. As motivated before we can regard AAP as a pinpointing au-
tomaton for the extended problem space T ∪ AbdAP , whose behavior can be
computed with an algorithm that is polynomial in the number of states of the
automaton as shown in [17]. Following the construction given in Definition 6,
AAP has

(|NC′|+1
2

)
states of type (A,B) plus

(|NC′|+1
2

) ∗ (|NR|
1

)
states of type

(A, r,B), which is polynomial in NC′ and NR. To complete the proof, we there-
fore have to show that NC does not grow too fast during normalization of Pat,
more concretely we require that |NC′| = poly(|NC|) (normalization of EL axiom
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patterns introduces no new role names at all). To this end, observe that the num-
ber of new concept names introduced by normalizing a set of axioms is linear in
the number of axioms in the set [11]. Therefore, |NC′| ≤ |NC|+c∗|Pat| for some
constant c which can be chosen independently of NC. Since the number of axiom
patters is bounded polynomially by the size of NC in Definition 2, this proves
the polynomial bound on the size of NC′ and therefore also on the size of AAP .
Also note that the size of the abductive automaton and thus the complexity of
the proposed approach are independent of the number of concept variables used
since variables cannot induce new states in AAP . ut

In assistive diagnosis, it is often convenient to be able to compare explana-
tions of different, competing diagnoses (called a differential diagnosis in medicine).
The abduction method proposed here naturally meets this demand, as the only
part of the automaton that depends on the observation A0 v B0 is the ini-
tial distribution in. To derive the hypotheses formula for a different observation
A1 v B1, the complete automaton AAP can be re-used without any modification
to determine the successful runs starting in (A1, B1).

To conclude this section, we give an intuition of how the hypotheses for-
mula generated by AAP can be interpreted. ηAP compactly encodes all possible
derivations of A0 v B0 w. r. t. T and AbdAP . An explicit representation of the
set of hypotheses can be derived in a straightforward manner by transforming
it ηAP into disjunctive normal form, each clause representing a single hypothe-
sis. This approach is obviously not optimal since it may lead to an exponential
blowup [16], a real-world system should therefore directly present, interpret and
manipulate the compact representation ηAP whenever possible. Note that the
hypotheses formula carries information on both necessary assumptions and ax-
ioms required to justify A0 v B0. The proposed approach can therefore be seen
to integrate and complement axiom pinpointing by allowing to infer reasons
for unwanted entailments to hold as well as for expected subsumptions not to
hold. This provides additional capabilities which may be useful among others
for ontology debugging and refactoring. If one is only interested in determining
necessary assumptions but not in their interactions with the axioms from the
domain model, the approach can easily be adapted by adding only labels for
abducibles to the hypotheses formula, leading to a much more compact ηAP .

4 Industrial Scenario

This section illustrates the proposed approach by applying it to a use case in
industrial diagnosis. Real-world models in this scenario typically consist of thou-
sands of components and subcomponents, for most of which one can observe cer-
tain symptoms indicating possible failure states of the system. More often than
not, the causal structure of the domain is at least partially unknown, models
for diagnosis therefore have to be built on experience, relating sets of symp-
toms to diagnoses determined by a technician checking the system. We focus on
assistive diagnosis, where sensor data and observations made by maintenance
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personnel are used to interactively diagnose the system by actively requesting
missing observations.

For our necessarily simplified scenario, we consider a CNC lathe with two
components surveyed by sensors: the axle motor, and the oil pump of the motor
cooling system. Sensors mounted at the axle motor can recognize vibrations and
increased temperature, the monotored parameters for the oil pump include the
current voltage. We assume that the measurements of these sensors are enough
to recognize two different failure states, namely an untrue axle (characterized
by vibrations and high axle motor temperature) and a power failure in the axle
cooling system (defined by an overheating motor and low oil pump voltage). A
system having an axle cooling failure, for example, can be represented by the
following EL axiom:

∃hasComp.(AxleMotor u ∃hasSymp.HiTemp) u
∃hasComp.(OilPump u ∃hasSymp.LowV oltage) v

∃hasDiag.AxleCoolFail

Normalizing the axiom results in the normal form axioms

HasComp
HotAM uHasComp

DeadOP v SystemACF (1)

∃hasComp.HotAM v HasComp
HotAM (2)

AxleMotor uHasSymp
HiTemp v HotAM (3)

∃hasSymp.HiTemp v HasSymp
HiTemp (4)

∃hasComp.DeadOP v HasComp
DeadOP (5)

OilPump uHasSymp
LowVoltage v DeadOP (6)

∃hasSymp.LowV oltage v HasSymp
LowVoltage (7)

where SystemACF is a new concept name defined by

SystemACF ≡ ∃hasDiag.AxleCoolFail

An untrue axle, the second diagnosis considered in this example, can defined
and normalized analogously, leading to the following additional EL axioms in
normal form:

HasComp
HotAM uHasComp

VibratAM v SystemUA (8)

∃hasComp.V ibratAM v HasComp
VibratAM (9)

AxleMotor uHasSymp
Vibrations v V ibratAM (10)

∃hasSymp.V ibrations v HasSymp
Vibrations (11)

Having specified general (terminological) knowledge about the dependencies
of certain symptoms and diagnoses, we now formalize the concrete system un-
der consideration denoted by SystemObs, for which we have measured both an
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increased axle temperature and low voltage in the system for pumping the oil
used to cool the axle motor:

SystemObs v ∃hasComp.AxleMotorObs (12)
SystemObs v ∃hasComp.OilPumpObs (13)

AxleMotorObs v AxleMotor (14)
AxleMotorObs v ∃hasSymp.HiTemp (15)
OilPumpObs v OilPump (16)
OilPumpObs v ∃hasSymp.LowV oltage (17)

Assume that the maintenance personnel wants to compare explanations for
the diagnoses untrue axle and axle cooling failure to decide on further diagnostic
or corrective steps. We then have two target states q0 = (SystemObs, SystemACF)
and q1 = (SystemObs, SystemUA) for which the hypotheses formula may be
determined independently using the same abductive automaton AAP (with a
modified definition of in). Regarding the space of abducibles, we regard the
physical structure of the system as fixed and only allow for symptoms to be
assumed. This can be done by defining Pat = {VComp v ∃hasSymp.VSymp},
where rng(VComp) = Component and rng(VSymp) = Symptom. The number of
concept inclusions in AbdAP is too large for an extensive listing even in this
simple case, so we limit our presentation to one axiom in AbdAP required to
form a hypothesis for the diagnosis of an untrue axle:

AxleMotorObs v ∃hasSymp.V ibrations (18)

For the same reason, we cannot present the complete automaton AAP here.
Figure 1 depicts an excerpt containing one successful run for each diagnosis
under consideration. These two runs actually correspond to the most natural
hypotheses in terms of requiring the least number of assumptions to be made.
Regular/ input/ terminal states are drawn as light/ medium/ dark rectangles,
and light/ medium/ dark circles represent axiom labels, the tautology label >,
or the labels of abducibles, respectively. To keep the representation compact, we
merge identical subtrees.

The weights of the runs from the two input nodes (SystemObs, SystemACF)
and (SystemObs, SystemUA) to the terminal (leaf) nodes represent two partial
hypotheses formulas for the diagnoses AxleCoolingFailure and UntrueAxle:

ηpart
ACF = 1 ∧ (5 ∧ 13 ∧ (6 ∧ (16 ∧ >) ∧ (7 ∧ 17)))

∧ (2 ∧ 12 ∧ (3 ∧ (14 ∧ >) ∧ (4 ∧ 15)))
ηpart
UA = 8 ∧ (2 ∧ 12 ∧ (3 ∧ (14 ∧ >) ∧ (4 ∧ 15)))

∧ (9 ∧ 12 ∧ (10 ∧ (14 ∧ >) ∧ (11 ∧ 18)))

Comparing the two hypotheses, it shows that neither of them is clearly better
than the other: On the one hand, an axle cooling failure is justified by the
observations alone (requiring no assumptions to be made), yet it postulates faults
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Fig. 1. Automaton for the diagnosis example (compacted excerpt)
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in two distinct components. On the other hand, an untrue axle can be diagnosed
locally for one component, it however requires the assumption of general concept
inclusion axiom 18.

5 Conclusions and Future Work

We have presented a PTime procedure for TBox abduction in the lightweight de-
scription logic EL based on a novel reduction to axiom pinpointing, and demon-
strated its applicability in an industrial diagnosis scenario. Given a knowledge
base and a concept inclusion representing the observation to be explained, the
procedure determines a hypotheses formula that compactly encodes all explana-
tions with respect to a pattern-based representation of the abducible part of the
domain model; the remainder of the model is considered to be fixed in accor-
dance with our scenario. The proposed reduction of abductive inference to axiom
pinpointing exploits the duality of the two tasks: whereas the latter addresses
the problem of explaining why a certain unwanted subsumption is entailed by
the ontology, our method determines the reason for an expected subsumption
not to hold, expressed in terms of additions to the domain model necessary to
actually make it hold.

We are currently working on extending the approach presented in this paper
in several ways: Since role inclusion axioms and nominals are frequently used
in diagnostic models, it is favorable to extend the logical expressivity as much
as possible without sacrificing tractability. Additionally, including quantitative
information into the model allows for weighting hypotheses and can eventually
be used as a criterion for guiding hypothesis generation. Finally, extending mini-
mality criteria for single hypotheses to sets of hypotheses compactly represented
by a hypothesis formula will allow us to efficiently infer common effects (as
proposed e. g. in [15]).
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Abstract. This paper investigates Description Logics which allow transitive clo-
sure of roles to occur not only in concept inclusion axioms but also in role in-
clusion axioms. First, we propose a decision procedure for the description logic
SHIO+, which is obtained from SHIO by adding transitive closure of roles.
Next, we show that SHIO+ has the finite model property by providing a up-
per bound on the size of models of satisfiable SHIO+-concepts with respect to
sets of concept and role inclusion axioms. Additionally, we prove that if we add
number restrictions to SHI+ then the satisfiability problem is undecidable.

Introduction

The ontology language OWL-DL is widely used to formalize resources on the Semantic
Web. This language is mainly based on the description logic SHOIN which is known
to be decidable [1]. Although SHOIN is expressive and provides transitive roles to
model transitivity of relations, we can find several applications in which the transitive
closure of roles, that is more expressive than transitive roles, is necessary. An example in
[2] describes two categories of devices as follows: (1) Devices have as their direct part a
battery: Deviceu∃hasPart.Battery, (2) Devices have at some level of decomposition a
battery: Deviceu∃hasPart+.Battery. However, if we now define hasPart as a transitive
role, the concept Deviceu∃hasPart.Battery does not represent the devices as described
above since it does not allow one to describe these categories of devices as two different
sets of devices. We now consider another example in which we need to use the transitive
closure of roles in role inclusion axioms.
Example 1. A process accepts a set S of possible states where start ∈ S is an initial
state. The process can reach two disjoint phases A,B ⊆ S, considered as two sets of
states. To go from a state to another one, the process has to perform an action next.
Sometimes, it can execute a jump that implies a sequence of actions next.

To specify the behavior of the process as described, we might need a role name next
to express the fact that a state follows another one, a nominal o for start, a role name
jump for jumps, concept names A,B for the phases and the following axioms:
(1) o v ¬A u ¬B, A u B v ⊥, o v ∀next−.⊥
(2) > v ∃next.>, jump v next+

Since jumps are arbitrarily executed over S and they form (non-directed) cycles with
next instances, we cannot use concept axioms to express them. In addition, if a transitive
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role is used instead of transitive closure, we cannot express the property : an execution
of jump implies a sequence of actions next. Therefore, the axiom jump v next+ is
necessary.
Such examples motivate the study of Description Logics (DL) that allow the transitive
closure of roles to occur in both concept and role inclusion axioms. We introduce in this
work a DL that can express the process as described in Ex.1 and propose a decision pro-
cedure for concept satisfiability problem in this DL. To the best of our knowledge, the
decidability of SHIO+, which is obtained from SHIO by adding transitive closure of
roles, is unknown. [3] has established a decision procedure for concept satisfiability in
SHI+ by using neighborhoods to build completion graphs. In the literature, many de-
cidability results in DLs can be obtained from their counterparts in modal logics [4], [5].
However, these counterparts do not take into account expressive role inclusion axioms.
In particular, [5] has shown the decidability of a very expressive DL, so-called CAT S,
including SHIQ with the transitive closure of roles but not allowing it to occur in role
inclusion axioms. [5] has pointed out that the complexity of concept subsumption in
CAT S is EXPTIME-complete by translating CAT S into the logic Converse PDL in
which inference problems are well studied.
Recently, there have been some works (e.g. in [6]) which have attempted to augment the
expressiveness of role inclusion axioms. A decidable logic, namely SROIQ, resulting
from these efforts allows for new role constructors such as composition, disjointness
and negation. In addition, [7] has introduced a DL, so-called ALCQIb+reg , which can
capture SRIQ, and obtained the worst-case complexity (EXPTIME-complete) of the
satisfiability problem by using automata-based technique. ALCQIb+reg allows for a
rich set of operators on roles by which one can simulate role inclusion axioms. How-
ever, transitive closures in role inclusion axioms are expressible neither in SROIQ nor
in ALCQIb+reg.
Tableaux-based algorithms for expressive DLs like SHIQ [8] and SROIQ [6] result
in efficient implementations. This kind of algorithms relies on two structures, the so-
called tableau and completion graph. Roughly speaking, a tableau for a concept repre-
sents a model for the concept and it is possibly infinite. A tableau translates satisfiability
of all given concept and role inclusion axioms into the satisfiability of semantic con-
straints imposed locally on each individual of the tableau. This feature of tableaux will
be called local satisfiability property. The algorithm in [9] for satisfiability in ALCreg

(including the transitive closure of roles and other role operators) introduced a method
to deal with loops which can hide unsatisfiable nodes.
To check satisfiability of a concept, tableaux-based algorithms try to build a completion
graph whose finiteness is ensured by a technique, the so-called blocking technique. It
provides a termination condition and guarantees soundness and completeness. The un-
derlying idea of the blocking mechanism is to detect “loops” which are repeated pieces
of a completion graph.
The contribution of the present paper consists of (i) proving that SHIO+ is decidable
and it has the finite model property by providing a upper bound on the size of models of
satisfiable SHIO+-concepts with respect to (w.r.t.) sets of concept and role inclusion
axioms, (ii) establishing a reduction of the domino problem to the concept satisfiability
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problem in the logic SHIN+ that is obtained from SHI+ by adding number restric-
tions on simple roles. This reduction shows that SHIN+ is undecidable.

The Description Logic SHIO+

The logic SHIO+ is an extension of SHIO by allowing for transitive closure of roles.
In this section, we present the syntax and semantics of SHIO+. The definitions reuse
notation introduced in [8].

Definition 1. Let R be a non-empty set of role names. We denote RI = {P− | P ∈
R}, R+ = {Q+ | Q ∈ R ∪ RI}. The set of SHIO+-roles is R ∪ RI ∪ R+. A role
inclusion axiom is of the form R v S for two SHIO+-roles R and S. A role hierarchy
R is a finite set of role inclusion axioms.
∗ An interpretation I = (∆I , ·I) consists of a non-empty set ∆I (domain) and a func-
tion ·I which maps each role name to a subset of ∆I × ∆I such that, for R ∈ RI,
Q+ ∈ R+,
R−I = {〈x, y〉 ∈ (∆I)2 | 〈y, x〉 ∈ RI}, and Q+I =

⋃
n>0

(Qn)I with (Q1)I = QI ,

(Qn)I = {〈x, y〉 ∈ (∆I)2 | ∃z ∈ ∆I , 〈x, z〉 ∈ (Qn−1)I , 〈z, y〉 ∈ QI}.
An interpretation I satisfies a role hierarchyR if RI ⊆ SI for each R v S ∈ R. Such
an interpretation is called a model ofR, denoted by I |= R.
∗ Function Inv returns the inverse of a role as follows:

Inv(R):=


R− if R ∈ R,
S if R = S− where S ∈ R,
(Q−)+ if R = Q+ where Q ∈ R,
Q+ if R = (Q−)+ where Q ∈ R

∗ A relation ∗v is defined as the transitive-reflexive closure of v on R ∪ {Inv(R) v
Inv(S) | R v S ∈ R} ∪ {Q v Q+ | Q ∈ R ∪RI}. We denote S ≡ R iff R∗vS and
S ∗vR. We may abuse the notation by saying R∗vS ∈ R.

Notice that we introduce into role hierarchies axioms Q v Q+ which allows us (i) to
propagate (∀Q+.A) correctly, and (ii) to take into account the fact that R v S implies
R+ v S+.

Definition 2. Let C′ = C ∪Co be a non-empty set of concept names where C is a set
of normal concept names and Co is a set of nominals.
∗ The set of SHIO+-concepts is inductively defined as the smallest set containing all
C in C′, >, C uD, C tD, ¬C, ∃R.C, ∀R.C where C and D are SHIO+-concepts,
R is an SHIO+-role, S is a simple role and n ∈ N. We denote ⊥ for ¬>.
∗ An interpretation I = (∆I , ·I) consists of a non-empty set ∆I (domain) and a func-
tion ·I which maps each concept to a subset of ∆I such that card{oI} = 1 for all
o ∈ Co where card{·} is denoted for the cardinality of a set {·},
>I = ∆I , (C uD)I = CI ∩DI , (C tD)I = CI ∪DI , (¬C)I = ∆I\CI ,
(∃R.C)I = {x ∈ ∆I | ∃y ∈ ∆I , 〈x, y〉 ∈ RI ∧ y ∈ CI},
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(∀R.C)I = {x ∈ ∆I | ∀y ∈ ∆I , 〈x, y〉 ∈ RI ⇒ y ∈ CI}
∗ C v D is called a general concept inclusion (GCI) where C,D are SHIO+-
concepts (possibly complex), and a finite set of GCIs is called a terminology T . An
interpretation I satisfies a GCI C v D if CI ⊆ DI and I satisfies a terminology T
if I satisfies each GCI in T . Such an interpretation is called a model of T , denoted by
I |= T .
∗ A conceptC is called satisfiable w.r.t. a role hierarchyR and a terminology T iff there
is some interpretation I such that I |= R, I |= T and CI 6= ∅. Such an interpretation
is called a model of C w.r.t. R and T . A pair (T ,R) is called an SHIO+ ontology
and said to be consistent if there is a model of (T ,R). A conceptD subsumes a concept
C w.r.t.R and T , denoted by C v D, if CI ⊆ DI holds in each model I of (T ,R).

Notice that a transitive role S can be expressed by using a role axiom S+ v S.
Since negation is allowed in the logic SHIO+, unsatisfiability and subsumption w.r.t.
(T ,R) can be reduced each other: C v D iff C u ¬D is unsatisfiable. In addition, we
can reduce ontology consistency to concept satisfiability w.r.t. an ontology: (T ,R) is
consistent if A t ¬A is satisfiable w.r.t. (T ,R) for some concept name A.

For the ease of construction, we assume all concepts to be in negation normal form
(NNF) i.e. negation occurs only in front of concept names. Any SHIO+-concept can
be transformed to an equivalent one in NNF by using DeMorgan’s laws and some equiv-
alences as presented in [8]. For a concept C, we denote the nnf of C by nnf(C) and the
nnf of ¬C by .¬C.
Let D be an SHIO+-concept in NNF. We define sub(D) to be the smallest set that
contains all sub-concepts of D including D. For an ontology (T ,R), we define the set
of all sub-concepts sub(T ,R) as follows:
sub(T ,R) :=

⋃
CvD∈T

sub(nnf(¬C tD),R)

sub(E,R) := sub(E) ∪ { .¬C | ¬C ∈ sub(E)} ∪ {∀S.C | (∀R.C ∈ sub(E), S ∗vR)∨
( .¬∀R.C ∈ sub(E), S ∗vR) and S occurs in T orR}

For the sake of simplicity, for each concept D w.r.t. (T ,R) we denote sub(T ,R, D)
for sub(T ,R) ∪ sub(D), and R(T ,R,D) for the set of roles R occurring in T ,R, D
with the inverse and transitive closure of each R. If it is clear from the context we will
use R instead of R(T ,R,D).

A decision procedure for SHIO+

In our approach, we define a sub-structure of graphs, called neighborhood, which con-
sists of a node together with its neighbors. Such a neighborhood captures all semantic
constraints imposed by the logic constructors of SHIO. A graph obtained by “tiling”
neighborhoods together allows us to represent in some way a model for a concept in
SHIO+. In fact, we embed in this graph another structure, called cyclic path, to ex-
press transitive closure of roles. Since all expansion rules for SHIO can be translated
into construction of neighborhoods, the algorithm presented in this paper focuses on
defining cyclic paths over such a graph. In this way, the non-determinism resulting
from satisfying the transitive closure of roles can be translated into the search in a space
of all possible graphs obtained from tiling neighborhoods.
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Neighborhood for SHIO+

Tableau-based algorithms, as presented in [8], use expansion rules representing tableau
properties to build a completion graph. Applying expansion rules makes all nodes of
a completion graph satisfy semantic constraints imposed by concept definitions in the
label associated with each node. This means that local satisfiability in such comple-
tion graphs is sufficient to ensure global satisfiability. The notion of neighborhood
introduced in Def. 3 expresses exactly the expansion rules for SHIO, consequently,
guarantees local satisfiability. Therefore, a completion graph built by a tableau-based
algorithm can be considered as set of neighborhoods which are tiled together. In other
terms, building a completion tree by applying expansion rules is equivalent to the search
of a tiling of neighborhoods.

Definition 3 (Neighborhood). Let D be an SHIO+ concept with a terminology T
and role hierarchy R. We denote R for the set of roles R occurring in D and T ,R
with the inverse of each R. A neighborhood, denoted (vB , NB , l), for D w.r.t. (T ,R) is
formed from a core node vB , a set of neighbor nodes NB , edges 〈vB , v〉 with v ∈ NB

and a labelling function l such that l(u) ∈ 2sub(T ,R,D) with u ∈ {vB} ∪ NB and
l〈vB , v〉 ∈ 2R with v ∈ NB .

1. A node v ∈ {vB}∪NB is nominal if there is o ∈ Co such that o ∈ l(v). Otherwise,
v is a non-nominal node;

2. A node v ∈ {vB} ∪NB is valid w.r.t. D and (T ,R) iff
(a) If C v D ∈ T then nnf(¬C tD) ∈ l(v), and
(b) {A,¬A} 6⊆ l(v) with each concept name A, and
(c) If C1 u C2 ∈ l(v) then {C1, C2} ⊆ l(v), and
(d) If C1 t C2 ∈ l(v) then {C1, C2} ∩ l(v) 6= ∅.

3. A neighborhood B = (vB , NB , l) is valid iff all nodes {vB} ∪ NB are valid and
the following conditions are satisfied:
(a) If ∃R.C ∈ l(vB) then there is a neighbor v ∈ NB such that C ∈ lB(v) and

R ∈ l〈vB , v〉;
(b) For each v ∈ NB , if R ∈ l〈vB , v〉 and R∗vS then S ∈ l〈vB , v〉;
(c) For each v ∈ NB , ifR ∈ l〈vB , v〉 (resp.R ∈ Inv(l〈vB , v〉)) and ∀R.C ∈ l(vB)

(resp. ∀R.C ∈ l(v)) then C ∈ l(v) (resp. C ∈ l(vB));
(d) For each v ∈ NB , if Q+ ∈ l〈vB , v〉 (resp. Q+ ∈ Inv(l〈vB , v〉)), Q+ ∗vR ∈ R

and ∀R.D ∈ l(vB) (resp. ∀Inv(R).D ∈ l(v)) then ∀Q+.D ∈ l(v) (resp.
∀Inv(Q+).D ∈ l(vB));

(e) For each o ∈ Co, if o ∈ l(u)∩l(v) with {u, v} ⊆ {vB}∪NB then l(u) = l(v);
(f) There is at most one node v ∈ NB such that l(v) = C and l〈vB , v〉 = R for

each C ∈ 2sub(T ,R,D),R ∈ 2R.

We denote B(T ,R,D) for a set of all valid neighborhoods for D w.r.t. (T ,R). When it is
clear from the context we will use B instead of B(T ,R,D).

The condition 3f in Def. 3 ensures that any neighborhood has a finite number of neigh-
bors. As mentioned, a valid neighborhood as presented in Def. 3 satisfies all concept
definitions in the label associated with the core node. For this reason, neighborhoods
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can be still used to tile a completion tree for SHIO+ without taking care of expansion
rules for SHIO. In other terms, the neighborhood notion expresses the local satisfia-
bility property in a sufficient way for being used in a global context.

Lemma 1. Let D be an SHIO+ concept with a terminology T and role hierarchy
R. Let (vB , NB , l), (vB′ , NB′ , l) be two valid neighborhoods with l(vB) = l(vB′). If
there is v ∈ NB such that there does not exist any v′ ∈ NB′ satisfying l(v′) = l(v)
and l〈vB , v〉 = l〈vB′ , v

′〉 then the neighborhood (vB′ , NB′ ∪ {u}, l) is valid where
l(u) = l(v) and l〈vB′ , u〉 = l〈vB , v〉.
This lemma holds due to the facts that (i) a valid neighbor in a valid neighborhood B is
also a valid neighbor in another valid neighborhood B′ if the labels of two core nodes
of B and B′ are identical, (ii) since SHIO+ does not allow for number restrictions
hence Def. 3 has no restriction on the number of neighbors of a core node.

Completion Tree with Cyclic Paths

As discussed in works related to tableau-based technique, the blocking technique fails
in treating DLs with the transitive closure of roles. It works correctly only if the satisfia-
bility of a node in completion tree can be decided from its neighbors and itself i.e. local
satisfiability must be sufficient for such completion trees. However, the presence of the
transitive closure of roles makes satisfiability of a node depend on further nodes which
can be arbitrarily far from it. The problem becomes harder when we add the transitive
closure of roles to role hierarchies. For instance, if P v Q+, Q v S+ are axioms in a
role hierarchy then each Q-edge generated for satisfying Q+ may lead to generate an
arbitrary number of S-edges for satisfying S+.
More precisely, satisfying the transitive closureP+ in an edge 〈x, y〉 (i.e.P+ ∈ L〈x, y〉)
is related to a set of nodes on a path rather than a node with its neighbors i.e. it imposes
a semantic constraint on a set of nodes x, x1, · · · , xn, y such that they are connected to-
gether by P -edges. In general, satisfying the transitive closure is quite nondeterministic
since the semantic constraint can lead to be applied to an arbitrary number of nodes.
In addition, the presence of transitive closure of roles in a role hierarchy makes this
difficulty worse. For instance, if P v Q+, Q v S+ are axioms in a role hierarchy then
each Q-edge generated for satisfying Q+ may lead to generate an arbitrary number of
S-edges for satisfying S+.
The most common way for dealing with a new logic constructor is to add a new expan-
sion rule for satisfying the semantic constraint imposed by the new constructor. Such
an expansion rule for the transitive closure of roles must: (i) find or create a set of P -
edges forming a path for each occurrence of P+ in the label of edges; (ii) deal with
non-deterministic behaviours of the expansion rule resulting from the semantics of the
transitive closure of roles; and (iii) enable to control the expansion of completion trees
by a new blocking technique which has to take into account the fact that satisfying the
transitive closure of a role may add an arbitrary number of new transitive closures to be
satisfied. To avoid these difficulties, our approach does not aim to directly extend the
construction of completion trees by using a new expansion rule, but to translate this con-
struction into selecting a “good” completion tree, namely completion tree with cyclic
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paths, from a finite set of trees without taking into account the semantic constraint im-
posed by the transitive closure of roles. The process of selecting a “good” completion
tree is guided by finding in a completion tree (which is well built in advance) a cyclic
path for each occurrence of the transitive closure of a role.
Summing up, a completion tree with cyclic paths will be built in two stages. The first
one which yields a tree consists of tiling valid neighborhoods together such that two
neighborhoods are tiled if they have compatible neighbors. The second stage deals with
the transitive closure of roles by defining cyclic paths over the tree obtained from the
first stage. Both of them are presented in Def. 4.

Definition 4 (Completion Tree with Cyclic Paths). LetD be a SHIO+ concept with
a terminology T and role hierarchy R. Let B be the set of all valid neighborhoods for
D w.r.t. (T ,R). A tree T = (V,E,L) for D w.r.t. (T ,R) is defined from B as follows.

1. If there is a valid neighborhood (v0, N0, l) ∈ B withD ∈ l(v0) then a root node x0

and successors x of x0 are added to V such that L(x0) = l(v0), and L(x) = l(v),
L〈x0, x〉 = l〈v0, v〉 for each v ∈ N0.

2. For each node x ∈ V with its predecessor x′,
(a) If there is an ancestor y of x such that L(y) = L(x) then x is blocked by y. In

this case, x is a leaf node;
(b) Otherwise, if we find a valid neighborhood (vB , NB , l) from B such that

i. l(vB) = L(x), l(v) = L(x′), Inv( l〈vB , v〉 ) = L〈x′, x〉 for some v ∈ NB ,
and

ii. if there is some nominal o ∈ Co such that o ∈ l(u) ∩ L(w) with u ∈
NB \ {v}, w ∈ V then l(u) = L(w)

then we add a successor y of x for each u ∈ NB \ {v} such that L(y) = l(u)
and L(〈x, y〉) = l(〈vB , u〉).

We say a node x is an R-successor of x′ ∈ V if R ∈ L〈x′, x〉. A node x is called
an R-neighbor of x′ if x is an R-successor of x′ or x′ is a Inv(R)-successor of x. In
addition, a node x is called an R-block of x′ if x blocks an R-successor of x′ or x′

blocks a Inv(R)-successor of x.
T = (V,E,L) is called a completion tree with cyclic paths if for each 〈u, v〉 ∈ E such
that Q+ ∈ L〈u, v〉 and Q /∈ L〈u, v〉 there exists a cyclic path ϕ = 〈x0, · · · , xn〉 which
is formed from nodes vi ∈ V and satisfies the following conditions:

– x0 = u and xi is not blocked for all i ∈ {0, · · · , n};
– There do not exist i, j ∈ {1, · · · , n− 1} with j > i such that L(xi) = L(xj);
– L(xn) = L(v) and xi is a Q-neighbor or Q-block of xi+1 for all 0 ≤ i ≤ n− 1.

In this case, ϕ is called a cyclic path and denoted by ϕ〈u,v〉.

At this point we have gathered all necessary elements to introduce a decision procedure
for the concept satisfiability in SHIO+. However, in order to provide a upper bound on
the size of models of satisfiable SHIO+-concepts we need an extra structure, namely
reduced tableau.
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Definition 5 (Reduced Tableau). Let T = (V,E, L) be a completion tree with cyclic
paths for a SHIO+-concept D w.r.t. (T ,R). An equivalence relation ∼ over V is
defined as follows: x ∼ y iff L(x) = L(y).
Let V/ ∼:= {[x] | x ∈ V } be the set of all equivalence classes of V by ∼. A graph
G = (V/∼, E′, L) is called reduced tableau for D w.r.t. (T ,R) if:

– L([x]) = L(x′) for any x′ ∈ [x];
– 〈[x], [y]〉 ∈ E′ iff there are x′ ∈ [x], y′ ∈ [y] such that 〈x′, y′〉 ∈ E;
– L(〈[x], [y]〉) =

⋃
x′∈[x],y′∈[y],〈x′,y′〉∈E

L(〈x′, y′〉)∪
⋃

x′∈[x],y′∈[y],〈y′,x′〉∈E

Inv(L〈y′, x′〉)

where Inv(L〈x, y〉) = {Inv(R) | R ∈ L〈y, x〉}
A reduced tableau as defined in Def. 5 identifies nodes whose labels are the same.

The following lemma states an important property of reduced tableaux.

Lemma 2. Let D be a SHIO+-concept with a terminology T and role hierarchy R.
Let G = (V/∼, E′, L) be a reduced tableau for D w.r.t. (T ,R). We define ∆I = V/∼
and a function ·I that maps:

– each concept name A occurring in D, T andR to AI ⊆ V/∼ such that
AI = {[x] | A ∈ L([x])};

– each role name R occurring in D, T andR to RI ⊆ (V/∼)2 such that
RI = {〈[x], [y]〉 | R ∈ L〈[x], [y]〉} ∪ {〈[y], [x]〉 | Inv(R) ∈ L〈[x], [y]〉}

If D has a reduced tableau G then I = (∆I , ·I) is a model of D w.r.t. (T ,R).

Lem. 2 affirms that a reduced tableau of a concept D can represent a model of D. The
construction of reduced tableaux as presented in Def. 5 preserves not only the validity of
neighborhoods but also cyclic paths. The following result is an immediate consequence
of Lem. 2.

Proposition 1. Let D be a SHIO+-concept with a terminology T and role hierarchy
R. If there is a completion tree with cyclic paths T for D w.r.t. (T ,R) then D has a
finite model whose size is bounded by an exponential function in the size of D, T ,R.

Indeed, by the construction of the reduced tableau G = (V/∼, E′, L), the number of
nodes of G is bounded by 2K where K = card{sub(T ,R, D)} and K is a polynomial
function in the size of D, T andR.

Lemma 3. Let D be a SHIO+-concept with a terminology T and role hierarchy R.
If D has a model w.r.t. (T ,R) then there exists a completion tree with cyclic paths.

A proof of Lem. 3 can be performed in three steps. First, we define directly valid neigh-
borhoods from individuals of a model. Next, a completion tree can be built by tiling
valid neighborhoods with help of role relationships between individuals of the model.
Finally, cyclic paths are embedded into the obtained tree by devising paths from finite
cycles for the transitive closure of roles in the model. Lem. 1 makes possible adding a
new node to a given neighborhood as neighbor if the new node is a neighbor of a node
whose label equals to that of the core node of the neighborhood.

From the construction of completion trees with cyclic paths according to Def. 4 and
Lem. 2 and 3, we can devise immediately Algorithm 1 for the concept satisfiability in
SHIO+.
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Algorithm 1: Decision procedure for concept satisfiability in SHIO+

Input : Concept D, terminology T and role hierarchyR
Output: IsSatisfiable(D)

foreach Tree T = (V,E, L) obtained from tiling valid neighborhoods do
if For each 〈x, y〉 ∈ E with Q+ ∈ L〈x, y〉, Q /∈ L〈x, y〉, T has a ϕ〈x,y〉 then

return true;

return false;

Lemma 4 (Termination). Alg. 1 for SHIO+ terminates and the size of completion
trees is bounded by a double exponential function in the size of inputs.

Termination of Alg. 1 is a consequence of the following facts: (i) the number of valid
neighborhoods is bounded, (ii) the size of completion trees which are tiled from valid

neighborhoods is bounded by (2m×n)2
n×(m+1)

where m = card{sub(T ,R, D)}, n =
card{R}.
Alg. 1 is highly complex since it is not a goal-directed procedure. Such an exhaustive
behavior is very different from that of tableau-based algorithms in which the construc-
tion of a completion tree is inherited from step to step. In Alg. 1, when a tree obtained
from tiling neighborhoods cannot satisfy an occurrence of the transitive closure of a role
(after satisfying others), the construction of tree has to restart. The following theorem
is a direct consequence of Lem.3 and 4.

Theorem 1. Alg. 1 is a decision procedure for the satisfiability of SHIO+-concepts
w.r.t. a terminology and role hierarchy, and it runs in deterministic 3-EXPTIME and
nondeterministic 2-EXPTIME.

Thm. 1 is a consequence of the following facts: (i) the size of completion trees is
bounded by a double exponential function in the size of inputs , and (ii) the number
of of completion trees is bounded by a triple exponential function in the size of inputs.

Remark 1. From the construction of reduced tableaux in Def. 5, we can devise an al-
gorithm for deciding the satisfiability in SHIO+ which runs in nondeterministic EX-
PTIME. In fact, such an algorithm can check the validity of neighborhoods and cycles
for transitive closures in a graph whose size is bounded by an exponential function in
the size of inputs.

Adding number restrictions to SHI+

The logic SHIN+ is obtained from SHI+ (SHIO+ without nominals) by allowing,
additionally, for number restrictions as follows:

Definition 6. Let R,C be sets of role and concept names. The set of SHIN+-roles,
role hierarchyR and model I ofR are defined similarly to those in Def. 1.
∗ A role R is called simple w.r.t.R iff (Q+ ∗vR) /∈ R for any Q+ ∈ R+.
∗ The set of SHIN+-concepts is inductively defined as the smallest set containing all
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C ∈ C, >, C uD, C tD, ¬C, ∃R.C, ∀R.C, (≤nS) and (≥nS) where C and D are
SHIN+-concepts, R is a SHIN+-role and S is a simple role. We denote ⊥ for ¬>.
∗ An interpretation I = (∆I , ·I) consists of a non empty set ∆I (domain) and a
function ·I which maps each concept name to a subset of ∆I . In addition, the function
·I satisfies the conditions for the logic constructors in SHI+ (as introduced in Def. 2
without nominal), and
(≥nR)I = {x ∈ ∆I | card{y ∈ ∆I | 〈x, y〉 ∈ RI} ≥ n},
(≤nR)I ={x ∈ ∆I | card{y ∈ ∆I | 〈x, y〉 ∈ RI)} ≤ n}
∗ Satisfiability of a SHIN+-concept C w.r.t. a role hierarchy R and a terminology T
is defined similarly to that in Def. 2.

A definition for neighborhoods in SHIN+ would be provided if we adopt that
there may be two neighborhoods such that the labels of their core nodes are identical
but they cannot be merged together i.e. a property being similar to Lem. 1 no longer
holds for SHIN+. In such a situation, the local information related to the labels of
the ending nodes of a path would be not sufficient to form a cycle. This prevents us
from embedding cyclic paths to a completion tree in guaranteeing the soundness and
completeness. Note that for the logics SHI+ and SHIO+ we can transform a reduced
tableau to a tableau (e.g. as described in [8]) such that if any two nodes x, y having the
same label then there is an isomorphism between the two neighborhoods (x,Nx, l) and
(y,Ny, l). This means that if we know the label of a node in such a tableau it is possible
to determine all nodes which are arbitrarily far from this node. This property does not
hold for SHIN+ tableaux.

In the sequel, we show that the difficulty mentioned is insurmountable i.e. the con-
cept satisfiability problem in SHIN+ is undecidable. The undecidability proof uses a
reduction of the domino problem [10]. The following definition, which is taken from
[8], reformulates the problem in a more precise way.

Definition 7. A domino system D = (D,H,V) consists of a non-empty set of domino
types D = {D1, · · · , Dl} and of sets of horizontally and vertically matching pairs
H ⊆ D × D and V ⊆ D × D. The problem is to determine if, for a given D, there
exists a tiling of an N × N grid such that each point of the grid is covered with a
domino type inD and all horizontally and vertically adjacent pairs of domino types are
in H and V respectively, i.e., a mapping t : N × N → D such that for all m,n ∈ N,
〈t(m,n), t(m+ 1, n)〉 ∈ H and 〈t(m,n), t(m,n+ 1)〉 ∈ V .

The reduction of the domino problem to the satisfiability of SHIN+-concepts will
be carried out by (i) constructing a concept, namely A, and two sets of concept and
role inclusion axioms, namely TD and RD, and (ii) showing that the domino problem
is equivalent to the satisfiability of A w.r.t. TD andRD. Axioms in Def. 8 specify a grid
that represents such a domino system. Globally, given a domino setD = {D1, · · · , Dl},
we need axioms that impose that each point of the plane is covered by exactly one DIi
(axiom 8 in Def. 8) and ensure that each Di is compatibly placed in the horizontal and
vertical lines (axiom 9). Locally, the key idea is to use SHIN+ axioms 3, 5, 10, 11, 12
and 13 in Def. 8 for describing the grid as illustrated in Fig. 1.
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A

xA

εAD

X, X1
1 , P 11

12

Y, Y 1
1 , P 11

21

C

xC X, X1
2 , P 11

21

B

xB

Y, Y 1
2 , P 11

12

DxD

εDA

X, X2
1 , P 22

12

Y, Y 2
1 , P 22

21

B

X, X2
2 , P 22

21

C

Y, Y 2
2 , P 22

12

A

Fig. 1. How each square can be formed from a diagonal represented by an ε

Definition 8. Let D = (D,H,V) be a domino system with D = {D1, · · · , Dl}. Let
NC and NR be sets of concept and role names such that NC = {A,B,C,D} ∪
D, NR = {Xi

j | i, j ∈ {1, 2}} ∪ {X,Y } ∪ {P ij
rs | i, j, r, s ∈ {1, 2}, r 6= s} ∪

{εAD, εDA, εBC , εCB}.
Role hierarchy:

1. Xi
r v P ij

rs, Y
j
s v P ij

rs for all i, j, r, s ∈ {1, 2}, r 6= s,
2. Xi

r v X,Y i
r v Y for all i, r ∈ {1, 2},

3. εADvP 11
12

+
, εAD v P 11

21
+,εDA v P 22

12
+
, εDA v P 22

21
+,

4. εBCvP 21
21

+
, εBC v P 21

12
+, εCB v P 12

21
+
, εCB v P 12

12
+,

Concept inclusion axioms:
5. > v≤1P ij

rs for all i, j, r, s ∈ {1, 2}, r 6= s,
6. > v ≤ 1X,> v ≤ 1Y ,
7. >v≤ 1εAD, >v≤ 1εDA, >v≤ 1εBC , >v≤ 1εCB ,
8. > v

⊔
1≤i≤l

(Di u (
l

1≤j≤l,j 6=i

¬Dj)),

9. Di v ∀X.
⊔

(Di,Dj)∈H
Dj u ∀Y.

⊔
(Di,Dk)∈V

Dk for each Di ∈ D,

10. A v ¬B u ¬C u ¬D u ∃X1
1 .B u ∃Y 1

1 .C u ∃εAD.D u ∀P 22
12 .⊥ u ∀P 22

21 .⊥,
11. B v ¬A u ¬C u ¬D u ∃X2

2 .A u ∃Y 1
2 .D u ∃εBC .C u ∀P 12

21 .⊥ u ∀P 12
12 .⊥,

12. C v ¬A u ¬B u ¬D u ∃X1
2 .D u ∃Y 2

2 .A u ∃εCB .B u ∀P 21
21 .⊥ u ∀P 21

12 .⊥,
13. D v ¬A u ¬B u ¬C u ∃X2

1 .C u ∃Y 2
1 .B u ∃εDA.A u ∀P 11

12 .⊥ u ∀P 11
21 .⊥.

Theorem 2 (Undecidability of SHIN+). The concept A is satisfiable w.r.t. concept
and role inclusion axioms in Def. 8 iff there is a compatible tiling t of the first quadrant
N× N for a given domino system D = (D,H,V).

Complete proofs of the obtained results in this work can be found in [11].
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Conclusion and Discussion

We have presented in this paper a decision procedure for the logic SHIO+ and shown
the finite model property for this logic. To do this we have introduced the neighborhood
notion which is an abstraction of the local satisfiability property of tableaux enables us
to encapsulate all semantic constraints imposed by the logic constructors in SHIO, and
thus to deal with transitive closure of roles independently from the other constructors.
According to Rem. 1, we can devise a decision procedure for deciding the concept sat-
isfiability in SHIO+ so that it runs in nondeterministic exponential time (NEXPTIME).
This result with the proof of Lem. 4 implies that this procedure runs in a determinis-
tic doubly exponential. However, the worst-case complexity of the problem remains an
open question.
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Zürcherstrasse 111, 8903 Birmensdorf, Switzerland

{Thomas.Scharrenbach, Rolf.Gruetter, Bettina.Waldvogel}@wsl.ch
2 University of Zurich, Department of Informatics Zurich, Switzerland

{bernstein}@ifi.uzh.ch

Abstract. Unsatisfiable concepts are a major cause for inconsistencies
in Description Logics knowledge bases. Popular methods for repairing
such concepts aim to remove or rewrite axioms to resolve the conflict by
the original logics used. Under certain conditions, however, the structure
and intention of the original axioms must be preserved in the knowledge
base. This, in turn, requires changing the underlying logics for repair. In
this paper, we show how Probabilistic Description Logics, a variant of
Reiter’s default logics with Lehmann’s Lexicographical Entailment, can
be used to resolve conflicts fully-automatically and receive a consistent
knowledge base from which inferences can be drawn again.

Key words: default logics, unsatisfiability, justifications, TBox repair

1 Introduction

Ontologies have become standard for knowledge representation in the Semantic
Web. While ontologies are usually expressed in Web Ontology Language (OWL)
recommended by the W3C [1], one of the underlying formalisms for reasoning
about data in the ontology is the Description Logic (DL) SHOIN (D), being a
decidable subset of first-order logic [2].
Knowledge may evolve over time and might lead to contradictions in the knowl-
edge base. Contradictions may as well occur when mapping two ontolgies on
each other. In the case of terminological knowledge, this causes concepts to be
inferred unsatisfiable. For example, in Figure 1, the concepts C,D and E are in-
ferred unsatisfiable. Unsatisfiable concepts, in turn, cause the whole knowledge
base to be inconsistent, if there exist assertions instantiating them.
Traditional approaches make the TBox satisfiable again by removing trouble-
causing axioms and (possibly) adding new axioms modelling the unsatisfiabil-
ity 3. This will, anyway, lead to a loss of the information originally specified
in the ontology. However, under certain conditions, all axiomatic information

3 The second case can be seen as axiom rewriting.
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should be preserved as much as possible in its original form as well as intuition.
We propose to use default logics for relaxing the axioms that cause the inco-
herency.
Defaults, introduced by Reiter [3] and re-interpreted by Lehmann [4], facilitate
the co-existence of default rules for typical cases together with exceptions from
these rules. When querying the knowledge base, more specific knowledge, i.e. the
exceptions, is preferred to more general knowledge, i.e. the defaults.
Transforming subclass inclusion axioms into defaults requires an extension of
traditional DL reasoning that copes with the properties that come along with
defaults. Probabilistic Description Logics (PDL) [5] is currently the only ap-
proach that is able to provide SHOIN (D) default reasoning, yet as a special
case.
We introduce the ∆-transformation for transforming DL axioms and sets of
these into defaults. We can show that, under certain conditions, transforming
the axioms justifying the unsatisfiability of concepts 4 in the TBox results in a
consistent P-SHOIN (D) knowledge base which re-enables us to draw conclu-
sions.
This work is structured as follows: After introducing preliminaries and custom
notions for methods used in Section 2, we present the proposed transformation
scheme in Section 3. The actual approach along with supporting examples and
formal framework is given in Sections 4 and 5. In Section 6 we give an overview
about related work. We conclude this paper and give an outlook to future work
in Section 7.

2 Unsatisfiable Concepts and Justifications

While we introduce the unsatisfiability of concept descriptions in Description
Logics (DL) and how to justify these, we will not give an introduction to De-
scription Logics in this paper. The interested reader os referred to [2]. For the
rest of this paper, we will restrict ourselves to the DL SHOIN (D), because
the methods presented in this paper build on Probabilistic Description Logics
which is currently defined for SHOIN (D). An extension to the current W3C
recommendation SROIQ(D) will remain for future work.
A concept description U is called unsatisfiable w.r.t. a TBox T , iff T |= U v ⊥.
A justification for an entailment T |= η is the minimal set of axioms from T such
that the entailment still holds. It is possible to compute the set of all justifica-
tions for an entailment [6] using an adapted version of Reiter’s Minimum Hitting
Set Tree (HST) [7] that originates from the area of Model Based Diagnosis.

Definition 1 (Justifications). Let T be an TBox. Jη ⊆ T is a justification
for T |= η, iff Jη |= η and J ′η 6|= η for any J ′η ⊂ Jη.

It turns out that the unsatisfiability of a concept description U1 may depend on
the unsatisfiability of another concept description U2, i.e. JU1v⊥ ⊇ JU2v⊥. In
4 By concepts we consider atomic as well as concept descriptions, if not stated other-

wise
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Fig. 1. Example TBox. Nodes correspond to concepts and arcs correspond to subclass
inclusions. Dotted arcs represent disjoints. The axioms are numbered for referring to
them in the text. Below, the root justifications for the non-purely derived unsatisfiable
concepts are shown.

> A B C D E

F

B u F

G 1 2 3

4

5

6

7

8

9

10

11

12

Jroot
1Cv⊥ = {2, 3, 4}, Jroot

2Dv⊥ = {2, 3, 5, 6}, Jroot
3Dv⊥ = {3, 5, 8, 9}, Jroot

4BuFv⊥ = {8, 11}

this case we say that JU2 is more general. The most general justifications for the
unsatisfiable concepts of an ontology are called root unsatisfiable. 5

It should be noted that root justifications are sets of axioms and should not
be mixed up with the notion of root unsatisfiable, partially derived and purely
derived concepts as denoted in [6]. However, there is a correspondence, i.e. every
root unsatisfiable concept description has only root justifications, every partially
dervied unsatisfiable concept description has at least one root justification and
every purely derived unsatisfiable concept description has no root justification.

Definition 2 (Root Justifications). Let J be the set of all justifications for
all unsatisfiable concept description of a TBox T . Then JrootUv⊥ ∈ J is a root
justification for some unsatisfiable concept description U , iff for any concept
description U ′ there is no JU ′v⊥ ∈ J such that JU ′v⊥ ⊂ JrootUv⊥.

Root justifications allow us to resolve only the most general causes for unsatis-
fiablility in a Tbox, which in turn result in the satisfiability of all unsatisfiable
concepts. For example in Figure 1, the partially derived unsatisfiable concept D
will be inferred unsatisfiable for the same reason as is the root unsatisfiable con-
cept C. The unsatisfiability of concept E is purely derived, since it depends on
the unsatisfiability of D. We do not have to distinguish between the unsatisfia-
bility of these concepts as long as we remove the most general causes. Please also
note, that the (root) justification for the concept description B u F contains its
declaration. If it did not, then Jroot3Dv⊥ ⊃ Jroot4BuFv⊥ and hence the unsatisfiability
of the atomic concept D would depend on the unsatisfiability of the concept
description BuF . This is indeed not the case, and hence this dependency has to

5 Please note that axioms of the form A v > are only included in a justification, if A
is a complex concept description, but not, if A is an atomic concept.
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be seen as an artifact. Therefore the declaration B u F is included in the (root)
justification.

3 Resolving Unsatisfiable Concepts

SHOIN (D) fulfils the monotonicity assumption, i.e. adding new axioms does
not invalidate existing entailments or introduce unsatisfiability. Hence, unsatis-
fiability cannot be resolved by just adding new axioms. Repair has to involve
the removal of axioms and is therefore always a non-monotone operation.
The currently most convenient way of resolving unsatisfiability in a TBox is to
remove axioms that are responsible for it. This task is often referred to as OWL-
Debugging. The interested reader may find a more detailed survey of approaches
to OWL-Debugging in [6].
In addition to that, attempts for semi-automatic axiom rewriting have been
made [6], referred to as repair plans. Common modelling errors have been iden-
tified empirically, and according to the kind of axioms that caused unsatisfiabil-
ity, repair plans are generated and proposed to an end-user that decides how to
repair the unsatisfiability.
Instead of doing the repair in SHOIN (D), it is also possible to change the
formalism for knowledge representation and/or inference. We propose that it is
desirable to keep as much of the original intention as well as structure of the
stated axioms as possible. Keeping the axioms’ structure requires some mecha-
nism of how to prefer some of the contradicting axioms over the others to keep
possible models of the ontology consistent.
Default logic is a way of generating a model of preferece for axioms of a first-
order logic knowledge base that soley relies upon the structure of the knowledge
base.

3.1 Probabilistic Description Logics

Recently, a method called probabilistic description logics (PDL) has been pro-
posed [5] that extends a SHOIN (D) knowledge base with probabilistic con-
straints. Such a constraint (A|B)[l, u] can be viewed as assigning the SHOIN (D)
TBox axiom B v A the belief interval [l, u] with 0 ≤ l ≤ u ≤ 1. The special case
l = u = 1, however, corresponds to to Reiter’s normal defaults [3]. For sake of
readability, we omit the interval and write defaults as (A|B).
As a consequence, PDL can be used as a way of modelling OWL-axioms B v A
as a set of defaults (A|B). The resulting logic is called P-SHOIN (D). PDL
extends a classical SHOIN (D) TBox by a set of constraints called PBox P.
Together, both of these form a so-called PTBox PT = (T ,P).
In case we restrict these constraints to defaults like above, inferences can be
drawn according to Lehmann’s lexicographical entailment [4]. The PTBox is
partitioned into sets of defaults P0, . . . , PN where P0 contains the most general
defaults and PN the most specific ones. Models are defined as in classical knowl-
edge bases. A default (A|B) falls into partition Pn iff there is a model for the
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TBox and the remaining defaults 6 that satisfies A(i) as well as B(i) for a new
individual i. We say that such a model verifies this default. A PTBox is consis-
tent iff there exists a partition for the PBox.
Inferences are drawn according to the lexicographical minimal model for a PT-
Box, where models are ordered lexicographically w.r.t. the number and level of
generality of defaults they violate. Models violating as few of the least specific
defaults as possible have higher preference when ordering the models.

3.2 From DL to PDL: The ∆-Transformation

Using default logic for resolving an unsatisfiable concept of a TBox T , we must
transform a TBox into a PTBox and hence a subset of T into a set of defaults.
We introduce the ∆-transformation for this transformation which changes the
logics from SHOIN (D) to P-SHOIN (D).

Definition 3 (∆-Transformation). Let α = B v A be a subclass inclusion
axiom in a TBox T , and Un be a set of subclass inclusion axioms being a subset
of T . The ∆-transformation for T maps axioms from T to defaults and sets of
axioms to a (partitioned) PBox.

(i) ∆T (α) = (A|B)
(ii) ∆T (Un) = {∆T (α)|α ∈ Un}
(iii) ∆T (U0, . . . ,UN )︸ ︷︷ ︸

pairwise disjoint

= ((T \ U0 ∪ . . . ∪ UN )︸ ︷︷ ︸
new TBox

, (∆(U0), . . . ,∆(UN ))︸ ︷︷ ︸
partitioned PBox

)

Please note that the ∆-transformation is bijective, i.e. we can easily define
∆−1
T (A|B) = B v A.

4 Constraints on the TBox

The most obvious method for resolving unsatisfiable concepts of a TBox is to
remove all the axioms from the justifications proving the unsatisfiability. How-
ever, it clearly suffices to remove only all the axioms of the root justifications
from the TBox, since any (purely) derived unsatisfiable concept will then also
become satisfiable.
Removing axioms from the TBox results in a loss of knowledge. We therefore
propose not to fully remove the axioms but to keep them in a different form,
i.e. as defaults. The ∆-transformtion will be applied to all axioms of the root
justifications for the unsatisfiable concepts of a TBox. In this section, it is shown
that this transformation results in a consistent PTBox, if the TBox fulfils cer-
tain constraints which are explained in the remainder of this section. Conflict
resolving using default logic works only if the axioms justifying the conflict are
on different levels of preference, like it is implied by PDL. Situations where con-
flicting axioms are on the same level of preference must be excluded.
6 T ∪ (P \ P0 ∪ . . . ∪ Pn−1)
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This means that all kinds of cycles and situtations where a concept is explicitely
stated to be subclass of one concept and its negation must not be allowed, since
the ∆-transformation will result in an inconsistent PTBox.

4.1 Disallow Cycles, Logical and Direct Contradictions

If we allowed for cycles in the TBox, then a justification may also contain this
cycle. In turn, all axioms involved in the conflict are on the same level of pref-
erence and there cannot be a verifying model for any of these axioms.
In the following, we assume every TBox and hence all justifications, to be free
of cycles. Logical contradictions, i.e. concepts of the form A u ¬A cannot be
resolved by applying the ∆-transformation. There is no valid world w.r.t. [5] for
the concept A u ¬A.

Corollary 1. If one of the axioms of a TBox T contains a logical contradiction
on the right hand side, then the ∆-transformation of T is inconsistent.

Since logical contradictions do not provide any useful information, we can safely
remove axioms containing Au¬A from the TBox without changing the intended
semantics. In the following, we assume every TBox not to contain any logical
contradiction. Default logics require contradictive information to be on different
level of preference in order to provide a consistent way for inference. This mech-
anism is doomed to fail in cases where a contradiction is stated explicitly, i.e.
some concept C is explicitely stated to be a subclass of the concepts A1 and A2

where A1 uA2 are a logical contradiction.

Definition 4 (Direct Contradictions).
A set of two axioms DC = {C v A1, C v A2} from a TBox T is called a direct
contradiction DC for a concept C ∈ T , iff A1 uA2 is a logical contradiction.

There exists some justification for T |= C v ⊥ that soley consists of the axioms
of the direct contradiction. Since there cannot exist a model that satisfies A1(i),
A2(i) and C(i) at the same time for a new individual i, the ∆-transformation
of the example TBox will lead to an inconsistent PTBox. Hence default logics
cannot resolve the unsatisfiability of C.

Corollary 2. The ∆-transformation of a TBox that contains a direct contra-
diction results in an inconsistent PTBox.

While logical contradictions can simply be removed from the TBox without loss
of relevant information, the situation for a direct contradiction DC is slightly
more difficult. Removing the axioms of theDC might lead to a loss of information.
Yet there is an option how to resolve a DC.
Considering PDL, we can simply add some new “intermediate” concept to at
least one of the axioms of the direct contradiction. In particular, we replace, e.g.,
the axiom C v A1 ∈ DC with C v B and B v A1 where B is a new concept that
does not yet occur in the TBox. The concept C is still unsatisfiable, but there is
no direct contradiction anymore. We can therefore safely assume the TBox not
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Fig. 2. Example TBox where C is inferred unsatisfiable due to the two direct contra-
dictions C v A,¬A and C v ∀R.A, ∃R.¬A in the left figure (a).
One possibility for resolving the direct contradictions by adding a new “intermediate”
concept is shown in the right figure (b).

> ∀R.A

A

∃R.¬A

C

(a)

> ∀R.A

A

∃R.¬A

C

E

F

(b)

to contain any direct contradictions.
In the example in Figure 2(a) there exist the direct contradictions DC1 = {C v
A,C v ¬A} and DC2 = {C v ∀R.A,C v ∃R.¬A}. These can be resolved, for
example, by introducing the new concepts E and F in between the subconcept
hierarchy of C v ¬A and C v ∃R.¬A, respectively.

5 Consistency of the ∆-Transformed TBox

After having excluded logical as well as direct contradictions and cycles, we have
to show that the PTBox that results from ∆-transforming all axioms from all
(root) justifications is consistent. According to [5], we have to show that the
resulting PBox is a valid z-partiton. We do so soley using the structure of the
justifications for the unsatisfiable concepts.
For each unsatisfiable concept U , we split the union of its justifications into two
parts: one that contains unsatisfiable concepts in the axioms ΓU and one that
does not, ΘU . The idea is to iteratively first transform axioms for a new partition
that occur only in some Θ, but not in some Γ , since these are not in conflict
with any other axiom.
Every axiom we transformed and hence removed from some ΘU has its conflicting
axioms its correponding ΓU set. The conflict for ΓU set is solved, if its ΘU set is
empty. The next partition is hence formed by all axioms in some ΓU ′ for which
ΘU ′ set is empty. We can now proceed with step one and, since the number of
axioms is finite, the procedure will terminate eventually.

5.1 Splitting the Root Justifications

Every justification for an unsatisfiable concept U contains at least one axiom
with U on the left-hand side of the subclass inclusion. As such, every justification
can be split up into two sets of axioms: one that contains axioms with U on the
left-hand-side and one that contains the rest. We call the first one the Γ -set of
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Table 1. Procedure for ∆-transforming the unsatisfiability splitting for the root justi-
fications for the non-purely derived unsatisfiable concepts in Figure 1. The last column
shows the axioms that are chosen to be ∆-transformed to the partitions P0, P1, P2 of
the resulting PBox during the corresponding Θ- or Γ step (indicated by a bold symbol),
whereas the J -columns show the current contents of the Θ and Γ sets.

Step J (C v ⊥) J (D v ⊥) J (B u F v ⊥)

1 Θ 2 2, 3, 8 8 P0 = {∆T ({2, 8})}
Γ 3, 4 5, 6, 9 11 - - - - - - - - - - - - - -

Θ ∅ 3 ∅ - - - - - - - - - - - - - -
2 Γ 3, 4 5, 6, 9 11 P1 = {∆T ({3, 4, 11})}
3 Θ ∅ ∅ ∅ - - - - - - - - - - - - - -

Γ ∅ 5, 6, 9 ∅ - - - - - - - - - - - - - -

Θ ∅ ∅ ∅ - - - - - - - - - - - - - -
4 Γ ∅ 5, 6, 9 ∅ P2 = {∆T ({5, 6, 9})}
5 Θ ∅ ∅ ∅ - - - - - - - - - - - - - -

Γ ∅ ∅ ∅ - - - - - - - - - - - - - -

U and the latter one its Θ-set. The splitting for the example of Figure 1 can be
obtained from the first row of Table 1.

Definition 5 (Unsatisfiability Splitting).
Let U0, . . . , UN be the unsatisfiable concepts of a TBox T . Let J root

Uiv⊥ be the
union of the root justifications for the unsatisfiability of the concept Ui. The
unsatisfiability splitting for T is defined as:7

J root
Uiv⊥ = ΘUi

⊕ ΓUi
where ΓUi

= {X v Y ∈ J root
Uiv⊥|X = Ui}

5.2 Obtaining the Partition by ∆-Transforming the Splitting

For an axiom of the root justifications, there exist three different possibilities
where it my reside:

1. In some ΘUj
but not in any ΓUk

. We denote these axioms with ϑ.
2. In some ΓUk

but not in any ΘUj
. These axioms are denoted with γ.

3. In both some ΘUj as well as some ΓUk
. In this case the axiom is denoted

with η.

In our example, processing step one, axioms 2 and 8 are of the ϑ type whereas
axioms 4, 5, 6 and 9 are of type γ. Axiom 3 is of type η, since it is contained in
both, ΓC and ΘD. For preparing the proof of the induction, we first proof some
auxiliary lemma stating the important properties of ϑ, γ and η axioms.

Lemma 1 (Satisfiability of θ, γ and η axioms).

7 The operator ⊕ denotes the union of pairwise disjoint sets.
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1. If some axiom ϑ is contained only in some ΘUi
but not in some ΓUj

, then
there exists verifying model for ∆(ϑ).

2. If some axiom γ is contained in some ΓUi
for which the corresponding ΘUi

is empty, then there exists verifying model for ∆(γ).
3. If some axiom η is contained in both, some ΘUi and some ΓUj , then there

cannot exist a verifying model for ∆(η) w.r.t. these two sets.

We explain the procedure using the example from Figure 1. We alternatively
∆-transform axioms according to 1, the so-called Θ-step, followed by the Γ -step
where axioms are ∆-transformed according to 2. The single steps are visualized
in Table 1.
In our example, step one, we can find a model for each ϑ axiom 2 and 8. In
particular we can obviously find a model in which A u B is satisfied and some
model in which B u ¬F is satisfied. On the other hand, all remaining axioms
contain by definition some unsatisfiable concept, which denies the existence of a
model for each of the remaining axioms. So even though axiom 3 is part of ΘD
we are not able to find a verifying model for it 8. Hence, the first partition is
P0 = {2, 8}.
We proceed with the next step and have a look at the Γ sets for which the
Θ set is empty. This is the case for ΓC . We remember that ΘUi contains at
least one element from each justification for T |= Ui v ⊥. Hence, for each
justification for T |= C v ⊥ we ∆-transformed at least one axiom which means
that T \∆−1(P0) 6|= C v ⊥. As a consequence, we can find a verifying model for
each axiom in ΓC . On the other hand, D v ⊥ still holds, such that we cannot
find a verifying model for any of the remaining axioms 5, 6 and 9. Hence, the
second partition is P1 = {3, 4, 11}.
For the next Θ-step we find that all of the Θ sets are empty, so we proceed
with the next Γ -step and find that ΓD is the only Γ -set left. Since all conflicting
axioms have already been ∆-transformed, we can for each axiom in ΓD trivially
find a verifying model which results in the next partition P2 = {5, 6, 9}.
In step nine, there are no more axioms left that we could process. The resulting
PTBox is:

PT = (({1, 10, 12})︸ ︷︷ ︸
T \∆−1(P)

, (

P0︷ ︸︸ ︷
∆({2, 8}),

P1︷ ︸︸ ︷
∆({3, 4, 11}),

P2︷ ︸︸ ︷
∆({5, 6, 9}))︸ ︷︷ ︸

P

)

Since we found a valid partition w.r.t. PDL, PT is consistent.
We now proof the parts of Lemma 1.

Proof. 1 If some axiom ϑ is contained only in some ΘU but not in some ΓU ′ ,
then ϑ has no unsatisfiable concept on the left-hand side. It also cannot have
an unsatisfiable concept on the right-hand side, because then it would be purely
derived. As such, we can find a model in which both the subconcept and the
superconcept are satisfied.

8 Indeed, axiom 3 is of type η.
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Proof. 2 If some axiom γ = U v A is contained in some ΓU for which the
corresponding ΘU is empty, there has been one axiom removed from every root
justification for T |= U v ⊥, i.e. the elements that had been in the now empty
ΘU and were ∆-transformed before. Hence U is not unsatisfiable anymore and
A must be satisfiable for the same reasons as in the proof for 1 which proofs the
existence of a model.
It should be noted that in this case, γ has been root unsatisfiable and the ∆-
transformed axioms from the ΘU were part of the root justifications.

Proof. 3 Some axiom η is contained in both, some ΘU and some ΓU ′ . Because
η ∈ ΘU , there still exists some ΓU correspoding to ΘU , which means that there
still exists a justification for U v ⊥. Hence, we cannot find a model for an axiom
that contains an unsatisfiable concept.
It should be noted that in this case, η = U v A is part of a justification for some
partially derived unsatisfiable concept.

5.3 Consistency of the ∆-Transformation of the Splitting

It remains to show that we can always find some axioms that fulfil the conditions
of the Θ-step followed by a Γ step. We do this by induction. As stated before,
every justification can be split into non-empty ΘU and ΓU . Since the number of
sets of the splitting of Definition 5 is finite, there has to exist some ΘU0 such
that for all axioms ϑ ∈ ΘU0 follows ϑ 6∈ ΓU . We ∆-transform all of these axioms
into the starting partition P0 and proceed with all axioms γ of the sets ΓU0 that
correspond to ΘU0 . By Lemma 1, part 2, these form the next partition P1.
In the induction step we have to show that having transformed the Γ -axioms

1. either there is some ΘU0 such that ΘU0 is disjoint to all remaining ΓU ,
2. or there is some ΓU0 for which all Θ-axioms have already been ∆-transformed
3. or there are no more axioms left to transform.

Since every ΓUi refers to a ΘUi , and since the number of sets is finite, and
justifications cannot be circular, for at least one ΓUi

there has to exist some
ΘUi

that contains neither γ nor η axioms. Please note that we allow the case
ΘUi

= ∅. In case ΘUi
is non-empty we proceed with the Θ-step, if it is empty,

we proceed with the Γ -step. The procedure terminates, if also the Γ sets are
empty.

Theorem 1. Let T be a TBox and P = (P0, . . . , PN ) be the partition resulting
from the ∆-transformation of the unsatisfiability splitting of all root justifications
for all unsatisfiable concepts in T .
Then the PTBox PT = (T \∆−1(P0, . . . , PN ),P) is consistent.

5.4 Complexity of the ∆-Transformation of the Splitting

The complexity of the presented procedure is dominated by the complexity
for finding justifications. This in turn depends on the complexity for consis-
tency checking in the tableaux calculus which is - in the case of SHOIN (D) -
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NEXPTIME-complete.
It should be noted that the presented approach does not involve any satisfiabil-
ity checks in addition to checking and tracing unsatisability, which have to be
performed anyway.

6 Related Work

In recent years, much progess has been made in the task to explain why a con-
clusion can be drawn from a DL knowledge base by soley using axioms from the
knowledge base itself. Schlobach and Cornet [8] came up with minimal unsatis-
fiable preserving sub-TBoxes (MUPS) which can explain the reason for unsat-
isfiability of concepts. Kalyanpur et al. [6] introduced justification as a form of
minimal explanation for any arbitrary entailment. It could be shown that com-
puting all justifications for an entailment is feasible in the tableaux calculus [6].
In the area of ontology evolution, the main focus usually lies on resolving incon-
sistencies and hence changes mainly occur on instance level or rather restricted
TBoxes [9]. Repair can also be done using higher-order logics like in the Ontology
Repair System [10]. This, however makes changes to the ontology and cannot be
applied easily to OWL ontologies.
Alternatives to do reasoning with incoherent DL knowledge bases are, for ex-
ample, paraconsistent logics [11]. However, these change the notion of inference
and hence their semantics much more than default logic does.
There have been made propositions of how to incorporate default knowledge in
OWL-DL knowledge bases in [12] [13], and [14]. While the first two deal with ap-
plcations of Reiter’s interpretation of defaults, to our knowledge, P-SHOIN (D)
[5] is currently the only formalism providing default reasoning services w.r.t.
Lehmann’s lexicographical entailment for OWL DL knowledge bases for which
an implementation is available [15].

7 Conclusion

We showed that default logics as introduced in [5] provide a way of re-enabling
coherency for incoherent DL knowledge bases. This way, structure as well as
semantics of the original axioms is kept as much as possible. The proposed
approach makes use of justifications, a standard technique for computing reasons
for conflicts in DL knowledge bases. Since these have to be computed anyhow for
repairing the knowledge base, the presented approach does not need to perform
any additional satisfiability checks.
While this paper proofs the correctness of the approach, an implementation and
evaluation on real-world data has to be performed showing whether the approach
is feasible. Comparisons to alternative approaches, for example, what can still be
inferred from the knowledge base after the repair and what not, will also remain
for future work.
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1 Introduction

Temporal description logics (TDLs) have been studied by many researchers (see
e.g., [1, 10] for surveys and [4, 2, 15] for recent or important results). These TDLs
are, however, not compatible in the following sense: these are not embeddable
into the standard (non-temporal) description logics (DLs), and hence the existing
algorithms for testing satisfiability in the standard DLs are not available for
these TDLs. Such a compatibility issue is important for obtaining reusable and
practical algorithms for temporal reasoning in ontologies.

In this paper, two compatible TDLs, XALC and BALCl, are introduced by
combining and modifying the description logic ALC [14] and Prior’s tomorrow
tense logic [12, 13]. XALC has the next-time operator, and BALCl has some re-
stricted versions of the next-time, any-time and some-time operators, in which
the time domain is bounded by a positive integer l. Semantical embedding theo-
rems of XALC and BALCl into ALC are shown. By using these embedding the-
orems, the concept satisfiability problems for XALC and BALCl are shown to
be decidable. The complexities of the decision procedures for XALC and BALCl

are also shown to be the same complexity as that for ALC. Next, tableau calculi,
T XALC (for XALC) and T BALCl (for BALCl), are introduced, and syntactical
embedding theorems of these calculi into a tableau calculus, T ALC (for ALC),
are proved. The completeness theorems for T XALC and T BALCl are proved by
combining both the semantical and syntactical embedding theorems.

Prior’s tomorrow tense logic, which is a base logic of XALC and BALCl, is
regarded as the next-time fragment of linear-time temporal logic (LTL) [11], and
hence XALC and BALCl may also be familiar with many users of the existing
LTL-based TDLs. The bounded temporal operators in BALCl are, indeed, re-
garded as restricted versions of the corresponding LTL-operators. Although the
standard temporal operators of LTL have an infinite (unbounded) time domain,
i.e., the set ω of natural numbers, the bounded operators which are presented
in this paper have a bounded time domain which is restricted by a fixed positive
integer l, i.e., the set ωl := {x ∈ ω | x ≤ l}.

To restrict the time domain of temporal operators is not a new idea. Such
an idea has been discussed [5–9]. It is known that to restrict the time domain
is a technique to obtain a decidable or efficient fragment of first-order LTL [8].

Proc. 23rd Int. Workshop on Description Logics (DL2010), CEUR-WS 573, Waterloo, Canada, 2010.

396



Restricting the time domain implies not only some purely theoretical merits,
but also some practical merits for describing temporal databases and planning
specifications [6, 7], and for implementing an efficient model checking algorithm
called bounded model checking [5]. Such practical merits are due to the fact that
there are problems in computer science and artificial intelligence where only a
finite fragment of the time sequence is of interest [6].

Finally in this section, other characters of XALC and BALCl are summarized
as follows: (1) the temporal operators in XALC and BALCl are only applied to
concepts and ABox assertions, (2) XALC and BALCl are based on the assump-
tions of rigid roles and rigid individual names, i.e., the interpretations of atomic
roles and individual names are not changed over time, and (3) XALC and BALCl

are based on the constant domain assumption, i.e., only one time domain is used
in the logics.

2 Temporal Description Logic with Next-Time, XALC
2.1 ALC
The ALC-language is constructed from atomic concepts, atomic roles, u (inter-
section), t (union), ¬ (classical negation or complement), ∀R (universal concept
quantification) and ∃R (existential concept quantification). We use the letters A
and Ai for atomic concepts, the letter R for atomic roles, and the letters C and
D for concepts.

Definition 1 Concepts C are defined by the following grammar:

C ::= A | ¬C | C u C | C t C | ∀R.C | ∃R.C

Definition 2 An interpretation I is a pair 〈∆I , ·I〉 where

1. ∆I is a non-empty set,
2. ·I is an interpretation function which assigns to every atomic concept A a

set AI ⊆ ∆I and to every atomic role R a binary relation RI ⊆ ∆I ×∆I .

The interpretation function is extended to concepts by the following inductive
definitions:

1. (¬C)I := ∆I \ CI ,
2. (C uD)I := CI ∩DI ,
3. (C tD)I := CI ∪DI ,
4. (∀R.C)I := {a ∈ ∆I | ∀b [(a, b) ∈ RI ⇒ b ∈ CI ]},
5. (∃R.C)I := {a ∈ ∆I | ∃b [(a, b) ∈ RI ∧ b ∈ CI ]}.

An interpretation I is a model of a concept C (denoted as I |= C) if CI 6= ∅.
A concept C is said to be satisfiable in ALC if there exists an interpretation I
such that I |= C.

The syntax of ALC is extended by a non-empty set NI of individual names.
We denote individual names by o, o1, o2, x, y and z.
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Definition 3 An ABox is a finite set of expressions of the form: C(o) or R(o1, o2)
where o, o1 and o2 are in NI , C is a concept, and R is an atomic role. An ex-
pression C(o) or R(o1, o2) is called an ABox statement. An interpretation I in
Definition 2 is extended to apply also to individual names o such that oI ∈ ∆I .
Such an interpretation is a model of an ABox A if for every C(o) ∈ A, oI ∈ CI

and for every R(o1, o2) ∈ A, (oI1 , oI2 ) ∈ RI . An ABox A is called satisfiable in
ALC if it has a model.

We adopt the following unique name assumption: for any o1, o2 ∈ NI , if
o1 6= o2, then oI1 6= oI2 .

Definition 4 A TBox is a finite set of expressions of the form: C v D. The
elements of a TBox are called TBox statments. An interpretation I := 〈∆I , ·I〉
is called a model of C v D if CI ⊆ DI . An interpretation I is said to be a
model of a TBox T if I is a model of every element of T . A TBox T is called
satisfiable in ALC if it has a model.

Definition 5 A knowledge base Σ is a pair (T ,A) where T is a TBox and A
is an ABox. An interpretation I is a model of Σ if I is a model of both T and
A. A knowledge base Σ is called satisfiable in ALC if it has a model.

Since the satisfiability for an ABox, a TBox or a knowledge base can be
reduced to the satisfiability for a concept [3], we focus on the concept satisfiability
in the following discussion.

2.2 XALC
Similar notions and terminologies for ALC are also used for XALC. The sym-
bol ω is used to represent the set of natural numbers. The XALC-language
is constructed from the ALC-language by adding X (next-time operator). An
expression XnC is inductively defined by X0C := C and Xn+1C := XXnC.

Definition 6 Concepts C are defined by the following grammar:

C ::= A | ¬C | XC | C u C | C t C | ∀R.C | ∃R.C

Definition 7 A temporal interpretation T I is a structure 〈∆T I , {·Ii}i∈ω〉 where

1. ∆T I is a non-empty set,
2. each ·Ii

(i ∈ ω) is an interpretation function which assigns to every atomic
concept A a set AIi ⊆ ∆T I and to every atomic role R a binary relation
RIi ⊆ ∆T I ×∆T I ,

3. for any atomic role R and any i, j ∈ ω, RIi

= RIj

.

The interpretation function is extended to concepts by the following inductive
definitions:

1. (XC)I
i

:= CIi+1
,
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2. (¬C)I
i

:= ∆T I \ CIi

,
3. (C uD)I

i

:= CIi ∩DIi

,
4. (C tD)I

i

:= CIi ∪DIi

,
5. (∀R.C)I

i

:= {a ∈ ∆T I | ∀b [(a, b) ∈ RIi ⇒ b ∈ CIi

]},
6. (∃R.C)I

i

:= {a ∈ ∆T I | ∃b [(a, b) ∈ RIi ∧ b ∈ CIi

]}.
For any i ∈ ω, an expression Ii |= C is defined as CIi 6= ∅. A temporal

interpretation T I := 〈∆T I , {·Ii}i∈ω〉 is a model of a concept C (denoted as
T I |= C) if I0 |= C. A concept C is said to be satisfiable in XALC if there
exists a temporal interpretation T I such that T I |= C.

Definition 8 A temporal interpretation T I in Definition 7 is extended to apply
also to individual names o such that for any i, j ∈ ω, oI

i ∈ ∆T I and oI
i

= oI
j

.
Such a temporal interpretation is a model of an ABox A if for every C(o) ∈ A,
oI

0 ∈ CI0
and for every R(o1, o2) ∈ A, (oI

0

1 , oI
0

2 ) ∈ RI0
. Such a temporal

interpretation is called a model of C v D if CI0 ⊆ DI0
. The satisfiability of

ABox, a TBox or a knowledge base in XALC is defined in the same way as in
ALC.

Remark that XALC is an extension of ALC since ·I0
includes ·I . Remark

also that XALC adopts the constant domain assumption, i.e., it has the single
common domain ∆T I , and the rigid role and name assumption, i.e., it satisfies
the conditions: for any atomic role R, any individual name o and any i, j ∈ ω,
we have RIi

= RIj

and oI
i

= oI
j

.

3 Semantical Embedding and Decidability

Definition 9 Let NC be a non-empty set of atomic concepts and N i
C be the set

{Ai | A ∈ NC} of atomic concepts where A0 = A, i.e., N0
C = NC . 1 Let NR be a

non-empty set of atomic roles and NI be a non-empty set of individual names.
The language Lx of XALC is defined using NC , NR, NI , X, ¬,u,t, ∀R and ∃R.
The language L of ALC is obtained from Lx by adding

∪
i∈ω N i

C and deleting X.
A mapping f from Lx to L is defined inductively by

1. for any R ∈ NR and any o ∈ NI , f(R) := R and f(o) := o,
2. for any A ∈ NC , f(XiA) := Ai ∈ N i

C , esp. f(A) := A,
3. For any A(o) ∈ NC , f(XiA(o)) := Ai(f(o)) ∈ N i

C , esp. f(A(o)) := A(f(o)),
4. f(Xi¬C) := ¬f(XiC),
5. f(Xi(C ] D)) := f(XiC) ] f(XiD) where ] ∈ {u,t},
6. f(Xi∀R.C) := ∀f(R).f(XiC),
7. f(Xi∃R.C) := ∃f(R).f(XiC).

Lemma 10 Let f be the mapping defined in Definition 9. For any temporal in-
terpretation T I := 〈∆T I , {·Ii}i∈ω〉 of XALC, we can construct an interpretation
I := 〈∆I , ·I〉 of ALC such that for any concept C in Lx and any i ∈ ω,
1 A can include individual names, i.e., A can be A(o) for any o ∈ NI .
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CIi

= f(XiC)I .

Proof. Let NC be a non-empty set of atomic concepts and N i
C be the set

{Ai | A ∈ NC} of atomic concepts where A0 = A. Let NR and NI be sets of
atomic roles and individual names, respectively.

Suppose that T I is a temporal interpretation 〈∆T I , {·Ii}i∈ω〉 where

1. ∆T I is a non-empty set,
2. each ·Ii

(i ∈ ω) is an interpretation function which assigns to every atomic
concept A ∈ NC a set AIi ⊆ ∆T I , to every atomic role R ∈ NR a binary
relation RIi ⊆ ∆T I ×∆T I and to every individual name o ∈ NI an element
oI

i ∈ ∆T I ,
3. for any R ∈ NR, any o ∈ NI and any i, j ∈ ω, RIi

= RIj

and oI
i

= oI
j

.

Suppose that I is an interpretation 〈∆I , ·I〉 where

1. ∆I is a non-empty set such that ∆I = ∆T I ,
2. ·I is an interpretation function which assigns to every atomic concept A ∈∪

i∈ω N i
C a set AI ⊆ ∆I , to every atomic role R ∈ NR a binary relation

RI ⊆ ∆I ×∆I and to every individual name o ∈ NI an element oI ∈ ∆I ,
3. for any R ∈ NR, any o ∈ NI and any i ∈ ω, RI = RIi

and oI = oI
i

.

Suppose moreover that T I and I satisfy the following condition: for any
A ∈ NC , any oinNI and any i ∈ ω,

AIi

= (Ai)I and (A(o))I
i

= (Ai(o))I .

The lemma is then proved by induction on the complexity of C. The base
step is obvious. We show some cases in the induction step below.

Case C ≡ ¬D: We obtain: a ∈ (¬D)I
i

iff a ∈ ∆T I \ DIi

iff a ∈ ∆I \ DIi

(by the condition ∆T I = ∆I) iff a ∈ ∆I \ f(XiD)I (by induction hypothesis)
iff a ∈ (¬f(XiD))I iff a ∈ f(Xi¬D)I (by the definition of f).

Case C ≡ XD: We obtain: a ∈ (XD)I
i

iff a ∈ DIi+1
iff a ∈ f(Xi+1D)I (by

induction hypothesis) iff a ∈ f(XiXD)I .
Case C ≡ ∀R.D: We obtain:

d ∈ (∀R.D)I
i

iff d ∈ {a ∈ ∆T I | ∀b [(a, b) ∈ RIi ⇒ b ∈ DIi

]}
iff d ∈ {a ∈ ∆I | ∀b [(a, b) ∈ RI ⇒ b ∈ DIi

]} (by the conditions ∆T I = ∆I

and RIi

= RI)
iff d ∈ {a ∈ ∆I | ∀b [(a, b) ∈ RI ⇒ b ∈ f(XiD)I ]} (by induction hypothesis)
iff d ∈ (∀R.f(XiD))I
iff d ∈ (∀f(R).f(XiD))I (by the definition of f)
iff d ∈ f(Xi∀R.D)I (by the definition of f).

Lemma 11 Let f be the mapping defined in Definition 9. For any temporal in-
terpretation T I := 〈∆T I , {·Ii}i∈ω〉 of XALC, we can construct an interpretation
I := 〈∆I , ·I〉 of ALC such that for any concept C in Lx and any i ∈ ω,
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Ii |= C iff I |= f(XiC).

Proof. We obtain: Ii |= C iff CIi 6= ∅ iff f(XiC)I 6= ∅ (by Lemma 10) iff
I |= f(XiC).

Lemma 12 Let f be the mapping defined in Definition 9. For any interpreta-
tion I := 〈∆I , ·I〉 of ALC, we can construct a temporal interpretation T I :=
〈∆T I , {·Ii}i∈ω〉 of XALC such that for any concept C in Lx and any i ∈ ω,

I |= f(XiC) iff Ii |= C.

Proof. Similar to the proof of Lemma 11.

Theorem 13 (Semantical embedding) Let f be the mapping defined in Def-
inition 9. For any concept C,

C is satisfiable in XALC iff f(C) is satisfiable in ALC.

Proof. By Lemmas 11 and 12.

Theorem 14 (Decidability) The concept satisfiability problem for XALC is
decidable.

Proof. By decidability of the satisfiability problem for ALC, for each concept C
of XALC, it is possible to decide if f(C) is satisfiable in ALC. Then, by Theorem
13, the satisfiability problem for XALC is decidable.

The satisfiability problems of a TBox, an ABox and a knowledge base for
XALC are also shown to be decidable.

Since f is a polynomial-time reduction, the complexities of the satisfiability
problems of a TBox, an ABox and a knowledge base for XALC can be reduced
to those for ALC, i.e., the complexities of the problems for XALC are the same
as those for ALC. For example, the satisfiability problems of an acyclic TBox
and a general TBox for XALC are PSPACE-complete and EXPTIME-complete,
respectively. For the concept satisfiability problem for XALC,

the existing tableau algorithms for ALC are applicable by using the transla-
tion f with Theorem 13.

4 Syntactical Embedding and Completeness

From a purely theoretical or logical point of view, a sound and complete axiom-
atization is required for the underlying semantics. In this section, we thus give
such a tableau calculus T XALC for XALC.

Definition 15 A concept is called a negation normal form (NNF) if the classical
negation connective ¬ occurs only in front of atomic concepts.
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Let C(x) be a concept in NNF. In order to test satisfiability of C(x), the
tableau algorithm starts with the ABox A = {C(x)}, and applies the inference
rules of a tableau calculus to the ABox until no more rules apply.

Definition 16 (T ALC) Let A be an ABox that consists only of NNF-concepts.
The inference rules for the tableau calculus T ALC for ALC are of the form:

A
A ∪ {C1(x), C2(x)} (u)

where (C1 u C2)(x) ∈ A, C1(x) /∈ A or C2(x) /∈ A,

A
A ∪ {C1(x)} | A ∪ {C2(x)} (t)

where (C1 t C2)(x) ∈ A and [C1(x) /∈ A and C2(x) /∈ A],

A
A ∪ {C(y)} (∀R)

where (∀R.C)(x) ∈ A, R(x, y) ∈ A and C(y) /∈ A,

A
A ∪ {C(y), R(x, y)} (∃R)

where (∃R.C)(x) ∈ A, there is no individual name z such that C(z) ∈ A and
R(x, z) ∈ A, and y is an individual name not occurring in A.

Definition 17 Let A be an ABox that consists only of NNF-concepts. Then,
A is called complete if there is no more rules apply to A. A is called clash if
{A(x),¬A(x)} ⊆ A for some atomic concept A(x). A tree produced by a tableau
calculus from A is called complete if all the nodes in the tree are complete. A
branch of a tree produced by a tableau calculus from A is called clash-free if all
its nodes are not clash.

The following theorem is known.

Theorem 18 (Completeness) For any ALC-concept C in NNF, T ALC pro-
duces a complete tree with a clash-free branch from the Abox {C} iff C is satis-
fiable in ALC.

The way of obtaining NNFs for XALC-concepts is almost the same as that
for ALC-concepts, except that we also use the law: ¬XC ↔ X¬C, which is
justified by the fact: (¬XC)I

i

= (X¬C)I
i

for any i ∈ ω.

Definition 19 (T XALC) Let A be an ABox that consists only of NNF-concepts.
The inference rules for the tableau calculus T XALC for XALC are of the

form:
A

A ∪ {XiC1(x), XiC2(x)} (Xu)
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where Xi(C1 u C2)(x) ∈ A, XiC1(x) /∈ A or XiC2(x) /∈ A,

A
A ∪ {XiC1(x)} | A ∪ {XiC2(x)} (Xt)

where Xi(C1 t C2)(x) ∈ A and [XiC1(x) /∈ A and XiC2(x) /∈ A],

A
A ∪ {XiC(y)} (X∀R)

where (Xi∀R.C)(x) ∈ A, R(x, y) ∈ A and XiC(y) /∈ A,

A
A ∪ {XiC(y), R(x, y)} (X∃R)

where (Xi∃R.C)(x) ∈ A, there is no individual name z such that XiC(z) ∈ A
and R(x, z) ∈ A, and y is an individual name not occurring in A.

An expression f(A) denotes the set {f(α) | α ∈ A}.

Theorem 20 (Syntactical embedding) Let A be an ABox that consists only
of NNF-concepts in Lx, and f be the mapping defined in Definition 9. Then:

T XALC produces a complete tree with a clash-free branch from A iff
T ALC produces a complete tree with a clash-free branch from f(A)

Proof. (=⇒): By induction on the complete trees T with a clash-free branch
from A in T XALC. (⇐=): By induction on the complete trees T ′ with a clash-
free branch from f(A) in T ALC.

Theorem 21 (Completeness) For any XALC-concept C in NNF, T XALC
produces a complete tree with a clash-free branch from the Abox {C} iff C is
satisfiable in XALC.

Proof. Let C be a XALC-concept in NNF. Then, we obtain:

T XALC produces a complete tree with a clash-free branch from {C}
iff T ALC produces a complete tree with a clash-free branch from {f(C)} (by

Theorem 20)
iff f(C) is satisfiable in ALC (by Theorem 18)
iff C is satisfiable in XALC (by Theorem 13).
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5 Temporal Description Logic with Bounded-Time,
BALCl

5.1 BALCl

Similar notions and terminologies for XALC are also used for BALCl. The sym-
bol ≥ or ≤ is used to represent a linear order on ω. In the following discussion, l is
fixed as a certain positive integer. The BALCl-language is constructed from the
XALC-language by adding G (any-time operator) and F (some-time operator).
Remark that the temporal operators X, G and F used in BALCl are interpreted
as some l-bounded versions of the original operators.

Definition 22 Concepts C are defined by the following grammar:

C ::= A | ¬C | XC | GC | FC | C u C | C t C | ∀R.C | ∃R.C

Definition 23 A bounded-time interpretation BI is the same as a temporal
structure, i.e., it is obtained from a temporal structure 〈∆T I , {·Ii}i∈ω〉 by re-
placing the notation ∆T I with the notation ∆BT . The interpretation function is
extended to concepts by induction on concepts. The definitions of the interpreta-
tion function is obtained from the conditions in Definitions 7 and 8 by replacing
∆T I with ∆BT , deleting the condition 1 in Definition 7, and adding the following
conditions:

1. for any i ≤ l − 1, (XC)I
i

:= CIi+1
,

2. for any i ≥ l, (XC)I
i

:= CIl

,
3. for any m ∈ ω, (XC)I

l+m

:= CIl

,
4. (GC)I

i

:= CIi ∩ CIi+1 ∩ · · · ∩ CIi+l

,
5. (FC)I

i

:= CIi ∪ CIi+1 ∪ · · · ∪ CIi+l

.

The notions of satisfiability etc. are defined in the same way as in XALC.
Remark that the new conditions for the interpretation function in Definition

23 are intended to have the following axiom schemes:

1. for any m ∈ ω, Xl+mC ↔ XlC,
2. GC ↔ C uXC u · · · uXlC,
3. FC ↔ C tXC t · · · tXlC,
4. ¬GC ↔ F¬C,
5. ¬FC ↔ G¬C.

Remark also that the new conditions in Definition 23 are the l-bounded time
versions of the following standard non-restricted conditions:

1. (XC)I
i

:= CIi+1
,

2. (GC)I
i

:=
∩
{CIj | i ≤ j ∈ ω},

3. (FC)I
i

:=
∪
{CIj | i ≤ j ∈ ω}.

These non-restricted conditions imply a standard LTL-based temporal descrip-
tion logic.
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5.2 Semantical Embedding and Decidability

Definition 24 The language Lb of BALCl is obtained from the language Lx

in Definition 9 by adding G and F. The language L of ALC is defined as the
same language in Definition 9. A mapping f from Lb to L is obtained from the
mapping defined in Definition 9 by adding the following conditions:

1. for any m ≥ l, f(XmXC) := f(XlC),
2. f(XiGC) := f(XiC) u f(Xi+1C) u · · · u f(Xi+lC),
3. f(XiFC) := f(XiC) t f(Xi+1C) t · · · t f(Xi+lC).

Lemma 25 Let f be the mapping defined in Definition 24. For any bounded-
time interpretation BI := 〈∆BI , {·Ii}i∈ω〉 of BALCl, we can construct an in-
terpretation I := 〈∆I , ·I〉 of ALC such that for any concept C in Lb and any
i ∈ ω,

CIi

= f(XiC)I .

Proof. Similar to the proof of Lemma 10 by replacing ∆T I with ∆BI .

We then obtain the key lemmas which correspond to Lemmas 11 and 12, and
hence obtain the following theorems.

Theorem 26 (Semantical embedding) Let f be the mapping defined in Def-
inition 24. For any concept C,

C is satisfiable in BALCl iff f(C) is satisfiable in ALC.
Theorem 27 (Decidability) The concept satisfiability problem for BALCl is
decidable.

The complexity of the decision procedure for concept satisfiability in BALCl

is the same as that in ALC.

5.3 Syntactical Embedding and Completeness

The way of obtaining NNFs for BALCl-concepts is almost the same as that for
XALC-concepts, except that we also use the laws: ¬GC ↔ F¬C and ¬FC ↔
G¬C.

Definition 28 (T BALCl) Let A be an ABox that consists only of NNF-concepts.
The inference rules for the tableau calculus T BALCl for BALCl are of the

form:
A

A ∪ {XlC(x)}
(X)

where Xl+mC(x) ∈ A for any m ∈ ω,

A
A ∪ {XiC(x), Xi+1C(x), ...,Xi+lC(x)}

(G)

Norihiro Kamide. 405



where XiGC(x) ∈ A and Xi+jC(x) /∈ A for some j ∈ ωl,

A
A ∪ {XiC(x)} | A ∪ {Xi+1C(x)} | · · · | A ∪ {Xi+lC(x)}

(F)

where XiFC(x) ∈ A and [XiC(x) /∈ A, Xi+1C(x) /∈ A, ... , and Xi+lC(x) /∈ A].

Theorem 29 (Syntactical embedding) Let A be an ABox that consists only
of NNF-concepts in Lb, and f be the mapping defined in Definition 24. Then:

T BALCl produces a complete tree with a clash-free branch from A iff
T ALC produces a complete tree with a clash-free branch from f(A)

Theorem 30 (Completeness) For any BALCl-concept C in NNF, T BALCl

produces a complete tree with a clash-free branch from the Abox {C} iff C is
satisfiable in BALCl.

6 Related Works

Some recent works concerned with TDLs are surveyed below. In [4], Baader
et al. considered the case where linear-time temporal operators are allowed to
occur only in front of DL axioms over ALC (i.e., ABox assertions and general
concept inclusion axioms), but not inside of concepts descriptions. They showed
that reasoning in the presence of rigid roles becomes considerably simpler in this
setting. The decision procedures described in [4] were developed for the purpose
of showing worst-case complexity upper bounds: with rigid roles, satisfiability
is 2EXPTIME-complete, without rigid roles, the complexity decreases further
to EXPTIME-complete (i.e., the same complexity as reasoning in ALC alone).
They also considered two other ways of decreasing the complexity of satisfiability
to EXPTIME. Compared with [4], our approach is mainly intended to obtain:
(1) reusable TDLs, i.e., the existing ALC-based satisfiability testing algorithms
are reusable and (2) “light-weight” TDLs, i.e., the complexity of satisfiability
testing is the same as that of ALC.

In [2], Baader et al. extended the known approaches to LTL runtime veri-
fication. In this approach, they used an ALC-based temporal description logic,
ALC-LTL, instead of the propositional LTL. They also considered the case where
states may be described in an incomplete way by ALC-ABoxs, instead of assum-
ing that the observed system behavior provides us with complete information
about the states of the system. Compared with [2], applications of our proposed
logics have not yet been proposed. In particular, it is not clear if the bounded-
ness of the time domain in BALCl is really useful for ontological reasoning.

Acknowledgments. I would like to thank the anonymous referees for their
valuable comments. This work was partially supported by the Japanese Ministry
of Education, Culture, Sports, Science and Technology, Grant-in-Aid for Young
Scientists (B) 20700015.

406 A Compatible Approach to Temporal Description Logics



References

1. A. Artale and E. Franconi, A survey of temporal extensions of description logics,
Annals of Mathematics and Artificial Intelligence 30, pp. 171–210, 2000.

2. F. Baader, A. Bauer and M. Lippmann, Runtime verification using a temporal
description logic, Proceedings of the 7th International Symposium on Frontiers of
Combining Systems (FroCoS 2009), LNCS 5749, pp. 149–164, 2009.

3. F. Baader, D. Calvanese, D. McGuinness, D. Nardi and Peter F. Patel-Schneider
(Eds.), The description logic handbook: Theory, implementation and applications,
Cambridge University Press, 2003.

4. F. Baader, S. Ghilardi and C. Lutz, LTL over description logic axioms, Proceedings
of the 11th International Conference on Principles of Knowledge Representation and
Reasoning (KR 2008), pp. 684–694, AAAI Press, 2008.

5. A. Biere, A. Cimatti, E.M. Clarke, O. Strichman and Y. Zhu, Bounded model check-
ing, Advances in Computers 58, pp. 118–149, 2003.

6. S. Cerrito, M.C. Mayer and S. Prand, First order linear temporal logic over finite
time structures, LNCS 1705, pp. 62–76, 1999.

7. S. Cerrito and M.C. Mayer, Bounded model search in linear temporal logic and its
application to planning, LNCS 1397, pp. 124–140, 1998.

8. I. Hodkinson, F. Wolter and M. Zakharyaschev, Decidable fragments of first-order
temporal logics, Annals of Pure and Applied Logic 106, pp. 85–134, 2000.

9. N. Kamide, Reasoning about bounded time domain: An alternative to NP-complete
fragments of LTL, Proceedings of the 2nd International Conference on Agents and
Artificial Intelligence (ICAART 2010), Volume 1: Artificial Intelligence, pp. 536–539,
INSTICC Press, 2010.

10. C. Lutz, F. Wolter and M. Zakharyashev, Temporal description logics: A survey,
Proceedings of the 15th International Symposium on Temporal Representation and
Reasoning (TIME 2008), pp. 3–14, IEEE Computer Society, 2008.

11. A. Pnueli, The temporal logic of programs, Proceedings of the 18th IEEE Sympo-
sium on Foundations of Computer Science, pp. 46–57, 1977.

12. A.N. Prior, Time and modality, Oxford: Clarendon Press, 1957.
13. A.N. Prior, Past, present and future, Oxford: Clarendon Press, 1967.
14. M. Schmidt-Schauss and G. Smolka, Attributive concept descriptions with com-

plements, Artificial Intelligence 48, pp. 1–26, 1991.
15. F. Wolter and M. Zakharyashev, Temporalizing description logic, In: Frontiers

of Combining Systems, D. Gabbay and M. de Rijke (Eds.), pp. 379–402, Studies
Press/Wiley, 1999.

Norihiro Kamide. 407



Guiding Reification in OWL
through Aggregation
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Abstract. We put forward a methodological approach aimed at guiding
ontology modellers in choosing which relations to reify. Our proposal
is based on the notion of aggregation as used in conceptual modelling
approaches for representing situations that, normally, would require non-
binary relations or complex integrity constraints. The feedback received
from using the method in a real-word situation is that if offers a more
controlled use of reification and a closer fit between the resulting ontology
and the application domain as perceived by an expert.

1 Introduction

A well-known limitation of OWL 2 (Web Ontology Language) is that only bi-
nary relations between classes can be represented [1–3]. In practice, relations of
arbitrary arity are quite common and they have to be represented in OWL in an
indirect way by coding them as classes3. In the literature of Description Logic
(DL) [4], the class codifying an n-ary relation ρ is called the reification of ρ 4.

As any codification, reification requires extra work in addition to ‘simple’
modelling, which can make it quite impractical (and unintuitive), especially when
performed by people who are not ‘experts’: extra classes, predicates, individuals
and axioms [5] need to be introduced and, as the number of classes increases,
ontologies can become very difficult to read and understand, mainly because this
additional information (which is encoded) is not directly visible. That is, there is
a mismatch between the layer of abstraction at which domain modellers work and
that of the representation where information is encoded, which is particularly
harmful when we want to extend and reuse ontologies.

In this paper, we propose the use of a methodological construction that has
been devised many years ago in the database community, which is based on
the notion of aggregation as proposed in [6]. Aggregation is an abstraction that

3 Similarly for RDF (Resource Description Framework)
4 The term reification can have several meanings and uses in Logic in general, and the

Semantic Web in particular. In this paper, we use it as a synonym for encoding n-ary
relations as classes. We do not use it to refer to the usage of RDF as a metalanguage
to describe other logics, or in situations in which a statement can be assigned a URI
and treated as a resource, or the use of classes as individuals.

Proc. 23rd Int. Workshop on Description Logics (DL2010), CEUR-WS 573, Waterloo, Canada, 2010.
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was offered therein for increasing the “understandibility of relational models by
the imposition of additional semantic structure”. Although, in ontologies, the
technical problems that arise are not necessarily the same as those of relational
databases, the methodological issues are similar in the sense that the solution to
our problem lies first of all in helping modellers to conceptualize the real world
in a way that can lead to a better representation, and then offering them a
mechanism for implementing these semantic structures in ontologies. By ‘better’
we mean a more controlled use of reification and a closer fit between the resulting
ontology and the real-world domain as perceived by an expert.

Having this in mind, we start by motivating the problem using the case
study that led us to investigate the representation of n-ary relationships — an
ontology of 16th-century Italian altarpieces. In Section 3, we discuss a formal,
set-theoretical, notion of aggregation and the way that it can be implemented
in ontologies through reification. Then, in Section 4, we discuss how aggregation
as a modelling abstraction can be used effectively in a number of situations that
are recurrent in domains such as that of altarpieces.

2 Motivation

In order to illustrate some of the problems that may arise from the limitations
of having to encode n-ary relations through reification and the method that we
propose to minimize them, we use the Ontology of Altarpieces [7] — a joint
project between the Departments of Computer Science and History of Art and
Film at the University of Leicester. This case study is a good example of a
domain in which n-ary relations arise quite naturally and frequently.

Suppose that we want to express the following knowledge as produced in
natural language by an art expert:

1. The altarpiece painted by Raphael called “Sistine Madonna”5 has the figure
of the Virgin on it.

2. The altarpiece painted by Raphael called “Sistine Madonna” has the figure
of the Christ on it.

3. The altarpiece painted by Raphael called “The Marriage of the Virgin”6 has
the figure of the Virgin on it.

The above sentences can be represented by a ternary relation hasF igure between
the sets Painters, PictureNames and Figures.

hasF igure = {(raphael, sistine madonna, virgin),
(raphael, sistine madonna, christ),
(raphael,marriage of virgin, virgin)}

Figure 1 shows an entity relation (ER) diagram for the relationship hasF igure
of which the set above is an extension. This relation cannot be represented in
5 See http://en.wikipedia.org/wiki/Sistine Madonna.
6 See http://en.wikipedia.org/wiki/The Marriage of the Virgin (Raphael).
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Painters hasFigure Pictures

Figures

Fig. 1. ER diagram: hasFigure as a relationship of arity 3

OWL unless we code it as a class ChasFigure of individuals that represent the
tuples — the reification of the relation [4]. For example, we create an individual
r1 that represents the tuple

〈raphael, sistine madonna, virgin〉

and we connect r1 to each component in the tuple using the role names painter,
picturename and figure as shown in Figure 2.

r1

painter

wwooooooooooooo

picturename
��

figure

))TTTTTTTTTTTTTTTTTT

raphael sistine madonna virgin

Fig. 2. Connecting r1 to the components of the tuple

However, reifying hasF igure is not necessarily the right decision that a mod-
eller should make. This is because Figure 1 shows the relationship hasF igure
isolated from the rest of the ontology. A diagram that shows other relationships
between these entities in a wider conceptual model of the domain of altarpieces
is depicted in Figure 3 In this diagram, we can see another relationship in-
volving Painters and PictureNames and a number of ‘descriptive attributes’
(functional relationships involving a data type) that apply to that relationship.
Naturally, one cannot take a blind approach to the representation of these as-
pects of the domain and reify relations as they come: the complexity of the
ontologies thus generated would be even beyond skilled computer scientists, let
alone domain experts.

410 Guiding Reification in OWL through Aggregation



Suppose we want to express that The Virgin is holding Christ in the altarpiece
called “Sistine Madonna” by Raphael. To represent the above sentence, we need
a relation holds of arity 4 where

holds = {(raphael, sistine madonna, virgin, christ)}

In the Ontology of Altarpieces we have about 20 relations of arity 3 such as
hasF igure and more than 4000 relations such as holds of arity 4. It would not
make sense to blindly reify all the relations of arity strictly greater than 2. Given
that each relation may have an average of 1000 tuples, doing so would mean 1000
individuals for coding the tuples and 1000 x 4 pairs connecting the individuals
with their components. If we consider that the details of those figures and other
attributes of the altarpieces need to be represented, it is easy to see that the
whole ontology would become quite unwieldy.

In other words, basic questions that a modeller needs to consider very care-
fully is: “Can I reduce the number of reifications in my ontology?”, “Which
relations are more convenient to reify?”. Our answer in this paper is given
in methodological terms, inspired by similar problems faced by the relational
database community 30 years ago.

Painters hasPainted PictureNames

hasFigure Figures

Height

Width

Date

Fig. 3. ER diagram: how the hasFigure relationship interacts with other relationships

The examples presented in this paper are very simple and try to extract the
main concepts behind the method. However, we have applied aggregations to
more complex relations in the Ontology of Altarpieces.
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3 Aggregation in Set Theory vs Reification in OWL

Aggregation as defined in [6] refers to an abstraction in which a relationship
between objects is regarded as a higher-level object. The intention, as stated
therein, was to adapt cartesian product structures (as proposed by T. Hoare
for record structures in programming languages) to be used in the context of
relational models. Although a formal definition was not given as a semantics for
the abstraction, we found it useful to advance one so that, on the one hand,
we can be precise about our usage of the term and, on the other hand, we can
relate it to the mechanism of reification. Throughout the paper, we use the Greek
alphabet for entities that we define in Set Theory.

Definition 1. Let ∆1,∆2 ⊆ ∆ and ρ ⊆ ∆1 × ∆2 be a binary relation. An
aggregation of ρ is a set ∆ρ ⊆ ∆ together with two (total) functions π1 and π2

(called projections) from ∆ρ to ∆1 and ∆2, respectively, such that:

1. For all r ∈ ∆ρ, 〈π1(r), π2(r)〉 ∈ ρ — i.e., there is no ‘junk’ in ∆ρ.
2. For all 〈x1, x2〉 ∈ ρ, there exists r ∈ ∆ρ such that π1(r) = x1 and π2(r) = x2

— the aggregation covers the whole relation ρ.
3. For all r1, r2 ∈ ∆ρ, if π1(r1) = π1(r2) and π2(r1) = π2(r2) then r1 =

r2 — i.e., there is no ‘confusion’: every tuple of the relation has a unique
representation as an aggregate.

It is trivial to prove the following result:

Proposition 1. ∆ρ is isomorphic to ρ.

That is, an aggregation is indeed offering a ‘faithfull’ representation of the rela-
tion. We denote this isomorphism by Ψρ or just Ψ where Ψ(r) = 〈π1(r), π2(r)〉.
Its inverse defines the encoding of the relation, i.e. it assigns to each tuple in the
relation ρ a unique element (aggregate) of the set ∆ρ.

Informally, the reification of a relation ρ is a class Cρ representing the tuples of
ρ [4, 8]. This representation should be as close as possible to the relation itself in
order to avoid any possible mismatch between the representation and the model
that the expert has in mind. In order to be able to analyse this relationship,
we have found it useful to provide a concrete definition of how we are using the
notion of reification:

Definition 2. Let ∆1,∆2 ⊆ ∆ and ρ ⊆ ∆1 ×∆2 be a binary relation. A reifi-
cation of ρ in OWL is a concept Cρ together with two roles P1 and P2, called
projections, two domains D1 and D2, and the following collection of axioms:

(proj func) > v≤ 1P1 u ≤ 1P2

(proj domain) ∃P1.> u ∃P2.> v Cρ

(proj range) > v ∀P1.D1 u ∀P2.D2

(proj totality) Cρ v ∃P1.D1 u ∃P2.D2

(unique rep) Cρ hasKey(P1, P2)
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These definitions can be generalized to relations of arbitrary arity. We can
now define more precisely how a reification relates to the relation:

Definition 3. Let ρ ⊆ ∆1×∆2 be a binary relation. Given an interpretation I,
we say that the reification (Cρ, D1, D2, P1, P2) is faithful to ρ in relation to I iff
DI

1 = ∆1, DI
2 = ∆2, and (CI

ρ , P
I
1 , P

I
2 ) is an aggregation of ρ.

Unfortunately, the axioms that are part of the reification are not sufficient
to guarantee that it is faithfull to ρ in relation to every interpretation:

– The first four axioms state that the role names P1 and P2 are total functions
from Cρ to D1 and D2, respectively. However, a limitation of OWL is that
the reasoner does not show any inconsistency if we forget to define P1 or
P2 for some element of Cρ (see [9]). This type of mistake could obviously
avoided if OWL provided us with relations of arity n.

– The axiom (unique rep) states that two named individuals in Cρ that have
the same projections should be equal. This axiom is weaker than the third
condition of Definition 1 in the sense that unicity of the representation is
not enforced for all individuals but only on those that are explicitly named
in the ontology. This is because the hasKey constructor of OWL-2 is a weak
form of key representation (so-called “EasyKey constraints”) that is valid
only for individuals belonging to the Herbrand Universe [10].

Summarising, reification is not only hard work (in the sense that it requires
the modeller to introduce a number of roles and axioms that are ‘technical’, i.e.
more related to the limitations of the formalism and less specific to the domain of
application) but also prone to errors. Essentially, errors may arise if the modeller
forgets to enforce the properties that cannot be expressed in OWL: totality, ‘no
junk’ or coverage.

Notice that, in the specific case of binary relations, we can add an atomic
role R to the ontology and add the following axiom to the reification, which
corresponds to the first condition of Definition 1 — ‘no junk’:

(R-contains) (P1)−1 ◦ P2 v R
This axiom states that the relation R can be recovered from the reification Cρ

through the projections P1 and P2. In this case, faithfulness would require that
RI = CI

ρ . The ability to work with an atomic role R also has methodological
advantages as illustrated in the next section.

Also note that, in the binary case, the converse of (R-contains), which would
correspond to the second condition of Definition 1, is as follows

(R-inclusion) R v (P1)−1 ◦ P2

However, this axiom cannot be expressed in OWL in the above form 7 because
the right-hand side of the inclusion is not a role name (see [3]).
7 This is not a proof that the axiom cannot be expressed in the logic which would be

more involved.
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These shortcomings show why methodological support is necessary when us-
ing reification in OWL: one should make sure that abstraction mechanisms are
available through which a modeller can keep a close fit between the represen-
tation and the domain and that these mechanisms are supported, as much as
possible, by tools. The aim of the techniques put forward in the next section
is precisely to overcome the gap that may exist between the perception of the
relationships that exist in the domain of discourse and the use of reification to
encode them in OWL.

4 Guiding the Use of Reifications in Ontologies

In this section, we put forward a methodological approach aimed at guiding
the modeller in the use of reification. The method is based on the usage of
the semantic primitive of aggregation as used in conceptual modelling precisely
for representing situations that, normally, would require non-binary relations or
complex integrity constraints [11]. We illustrate the approach with some exam-
ples that are representative of the situations that we have encountered in the
altarpieces project.

Painters hasPainted PictureNames

hasFigure Figures

Fig. 4. ER diagram: hasPainted as an aggregate of hasFigure

4.1 Relationships amongst Relationships

A recurrent situation in database modelling is the use of aggregation in order to
reduce certain ternary relationships to binary ones [11]. Using ER diagrams, the
method can be explained in terms of evolving situations such as the one depicted
in Figure 1 to the one depicted in Figure 4. More specifically, the method consists
in identifying a binary relationship — hasPainted — such that the ternary
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relationship — hasF igure — can be expressed as a binary relationship between
the aggregation of the former — hasPainted — and the remaining domain —
Figures. The aggregation of a relationship is indicated by the box that surrounds
the relationship diagram. Following this method, instead of reifying the whole
relation hasF igure, we reify hasPainted. Since hasPainted is a binary relation,
we represent it by the role hasPainted and consider the reification of hasPainted
as in Definition 2. For this, we introduce the class Altarpieces as the reification
ChasPainted and the roles painter and picturename as the projections. The relation
hasF igure is represented as an object property whose domain is ChasPainted and
whose range is Figures as shown in Figure 5.

Painters

hasPainted

��

painter−1

��

Altarpieces = ChasPainted

painter

iiTTTTTTTTTTTTTTT

picturename
uujjjjjjjjjjjjjjj

hasFigure
// Figures

PictureNames

Fig. 5. Representation of hasFigure that considers hasPainted as an aggregate

We have chosen the simplest example from the ontology to illustrate the
method. In this case it is clear from the use of the noun in the sentences in
Section 2 that we should have chosen to model altarpieces as a class Altarpieces
right from the start. The point is that, from the point of view of conceptual
modelling, altarpieces are an aggregation of a relation: art experts identify al-
tarpieces precisely through the name of the painter and the designation of the
picture. Therefore, the class Altarpieces corresponds, in a natural way, to the
reification of the relation hasPainted. In the case of other examples in our on-
tology, for instance the relations holds and wears, among others, the class does
not arise so naturally (indeed, they do not correspond to nouns), which explains
why using reification to represent them is somewhat artificial, i.e. driven by
technical, not conceptual concerns.

Definition 4. Let ∆1,∆2,∆3 ⊆ ∆, ρ ⊆ ∆1 × ∆2 be a binary relation and
ρ′ ⊆ ∆1 ×∆2 ×∆3 be a ternary relation. We say that ρ participates in ρ′ if the
following condition is satisfied:

– For all x ∈ ∆1, y ∈ ∆2, z ∈ ∆3, (x, y) ∈ ρ whenever (x, y, z) ∈ ρ′.
If ρ participates in ρ′ then ρ′ “can be seen” as a binary relation between the

aggregation ∆ρ and ∆3.
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The relationship hasPainted ‘participates’ in the relationship hasF igure
since the following constraint is satisfied:

if (x, y, z) ∈ hasF igure then (x, y) ∈ hasPainted. (1)

The above constraint is enforced in OWL by the axiom that states that the
domain of hasFigure is ChasPainted, and the axiom (hasPainted-contains) from
the binary-relation extension of Definition 2 (see Figure 5).

The method that we propose for guiding reification consists in analysing
which relations participate in other relations: if ρ participates in ρ′ then, instead
of reifying the whole relation ρ′, we should consider reifying the participating
relation ρ and represent ρ′ as a role whose domain is Cρ. If ρ participates in yet
another relation, say ρ′′, that relation does not need to be reified either but reuse
instead the reification of ρ. Indeed, hasPainted participates in many relations
other than hasF igure — e.g. hasF ield, for representing polyptych altarpieces
that have many fields. All the corresponding relations can be represented in
OWL as object properties whose domain is ChasPainted as in Figure 5.

Another important aspect of this representation (which is another reason why
it is better than the reified ternary relation) is that we now have the relation
hasF igure represented as a property hasFigure and not as a class ChasFigure.
Reifications represent properties but they cannot be used in the syntax as prop-
erties because they are actually classes. We cannot use constructors for roles on
ChasFigure such as composition, quantification or transitive closure, which may
restrict the ability of the modeller to capture important aspects of the domain.
Whilst the representation of hasF igure as a property allows us to use the role
name hasFigure in quantifications or in compositions. For instance, we can use
an existential quantifier over the role hasFigure to express that all altarpieces
must have some religious figure on it as follows:

Altarpieces v ∃hasFigure.Religious

4.2 Descriptive attributes

Another related methodological guideline for the use of reification arises from
what in [11] are called descriptive attributes. Descriptive attributes are used to
record information about a relationship rather than about one of the participat-
ing entities, again using an aggregation. From a conceptual modelling point of
view, they allow us to capture typical situations in which a functional depen-
dency exists on a ternary relation as an attribute of the aggregation of a binary
relation. For example, it would be intuitive to represent height, width and date in
Figure 6 as descriptive attributes associated with the relationship hasPainted.

Definition 5. Let ρ ⊆ ∆1 × ∆2 and ρ′ ⊆ ∆1 × ∆2 × ∆3. We say that ρ′ is
descriptive attribute of ρ if the following conditions holds:

1. ρ′ is a function from ∆1 ×∆2 into ∆3.
2. ρ participates in ρ′ (see Definition 4).
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Painters hasPainted PictureNames

Height

Width

Date

Fig. 6. ER diagram: hasPainted and descriptive attributes associated with it

This property is, indeed, satisfied by height:

1. There is a functional dependency between the height of the altarpiece and
the pair given by the painter and the picture name. In other words, the
ternary relation height is actually a function

height ∈ Painters× PictureNames→ Int

2. hasPainted participates in height, i.e.:

if (x, y, z) ∈ height then (x, y) ∈ hasPainted. (2)

Given that descriptive attributes involve a participating relation, the method-
ological guidelines that we discussed in 4.1 suggest that descriptive attributes be
represented as (functional) roles of the reification of the participating relation.
For instance, using the reification ChasPainted, the descriptive attribute height
can be represented in OWL by a data type property height and two axioms

> v≤ 1.height

≥ 1height v ChasPainted

The constraints associated with the descriptive attribute height are deduced from
the above two axioms and the axiom (hasPainted-contains).

5 Related Work and Concluding Remarks

The use of conceptual modelling primitives in the context of ontologies is not
new. For instance, [12] and [13] show how to transform ER diagrams into Descrip-
tion Logic. However, this transformation does not include relationships involving
relationships or descriptive attributes as illustrated in Section 4, nor does it ad-
dress aggregation as a modelling abstraction. A paper that focuses specifically on
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aggregation is [14]. However, the author represents aggregations using union of
classes, which does not correspond in any way to their original meaning [6]. Our
use of aggregation (based on cartesian products) adheres to its use in databases
and explores its methodological advantages for conceptual modelling [11].

Our approach is also related with proposals that, like [15], put forward pat-
terns for representing relations ρ ⊆ A × B × C. The third case of Pattern 1 in
that note does the reification of the whole relation and the remaining cases do
the reification of B×C and represent ρ as a property whose range is the reifica-
tion CB×C . Our method is based on semantic abstractions and, therefore, goes
beyond simple patterns. In fact, it deepens the study of these patterns in the
sense that it guides the application of reification by the identification of relations
that, like hasPainted, participate in other relations.

On the subject of representing non-binary relations, [16] provides a trivial
extension of the syntax of OWL with n-ary properties. Decidability is not studied
and the extension contemplates only properties: there are no other constructors
to deal with predicates of arity n as in [4, 8]. On the other hand, OWL 2 provides
the possibility of defining n-ary datatype predicates F , albeit in a restricted way
[17]. We can use an n-ary predicate F in expressions of the form ∀P1 . . . Pn.F or
∃P1 . . . Pn.F where P1 . . . Pn are binary data type predicates. The n-ary predicate
F is actually a functional proposition defined implicitly by a formula of the form
λ(x1 . . . xn).comp(p, q) where comp ∈ {≤,=,≥, <,>, 6=} and p and q are linear
polynomials on x1, . . . , xn. However, OWL does not support the definition of
n-ary predicates by listing the tuples as for object and datatype properties.

Our plans for future work include further study of the extensions of DL
for n-ary relations [4, 8, 18]. In particular, we have in mind to investigate the
formal mechanisms that, from a DL point of view, can support the construc-
tions illustrated in Section 4. For instance, following the argument in Section
10.6.1 of [5], the class Altarpieces can be seen as a binary relation with two at-
tributes painter and picturename or as a ternary relation with three attributes
painter, picturename and height. This is possible in the case of a descriptive at-
tribute because of the fact that there is a functional dependency. However, in
the case of general ternary relations such as hasFigure, this is not possible: the
class Altarpieces cannot be seen as a ternary relation with attributes painter,
picturename and hasFigure. The relation hasFigure is being represented by the
role name hasFigure and not by Altarpieces. This change of point of view is im-
portant when we consider aggregations of aggregations, which is another topic
that we are exploring.

The examples presented in this paper are very simple and try to extract the
main concepts behind the method. However, we have applied aggregations to
more complex relations in the Ontology of Altarpieces. For instance, there are
cases where we need to add another layer of aggregations and, therefore, consider
aggregations of aggregations. This is the case of many relations such as holds
and wears where the relation hasF igure itself needs to be reified.
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Generating Referring Expressions with OWL2

Yuan Ren, Kees van Deemter, and Jeff Z. Pan
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Abstract. The task of generating referring expressions, an important subtask of
Natural Language Generation is to generate phrases that uniquely identify do-
main entities. Until recently, many GRE algorithms were developed using only
simple and essentially home-made formalisms. Following the fast development
of ontology-based systems, reinterpretations of GRE in terms of description logic
have been studied. However, the quantifiers generated are still limited, not ex-
ceeding the works covered by existing GRE approaches. In this paper, we propose
an DL-based approach to GRE that exploits the full power of OWL2 to generate
referring expressions that goes beyond the expressivity of previous GRE algo-
rithms. The potential of DL reasoning in GRE is also discussed.

1 GRE and KR: the story so far

Generation of Referring Expressions (GRE) is the subtask of Natural Language Gener-
ation (NLG) that focuses on the identification of objects in natural language. For exam-
ple, Fig.1 depicts the relations between several individuals of women, dogs and cats. In
such a scenario, a GRE system might identify a given object as “Dog” or, if this fails to
identify the referent uniquely, “the Dog that loves a Cat”, which is literally unique for
d1. Reference has long been a key issue in theoretical linguistics and psycholinguistics,
and GRE is a crucial component of almost every practical NLG system [5, 4]. Accord-
ingly, GRE has become one of the best developed areas of NLG, with links to many
other areas of Cognitive Science.

Fig. 1. An example of women, dogs and cats, in which edges from women to dogs denote feed
relations, from dogs to cats denote love relations.

Traditional GRE algorithms are usually based on very simple, essentially home-
made, forms of Knowledge Representation (KR); in many cases all properties are ex-
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pressed in a simple 〈Attribute : V alue〉 format, e.g 〈Type : Dog〉. This is perhaps
justifiable as long as the properties expressed by these algorithms are simple one-place
predicates (being a cat, being a Dog, etc.), but when logically more complex descrip-
tions are involved, the potential advantages of “serious” KR become overwhelming. A
few proposals in recent years have started to combine GRE with well-developed KR.
Following on from earlier work based on labelled directed graphs [9, 14], for exam-
ple, analyzed GRE as a projection problem in Conceptual Graphs. More recently, [1]
reinterpreted GRE as a problem in Description Logic (DL), producing a formula such
as Dog u ∃love.Cat to refer to the (unique) Dog who loves at least one Cat. It is this
last approach that forms the basis of the present paper, which aims to show that when a
principled, logic based approach is chosen, it becomes possible to refer to objects which
no existing approach to GRE has so far been able to refer to.

In doing so, we shall follow Areces et al (and many other researchers in GRE) in
focussing on the semantic core of the GRE problem: we shall be content to generate
descriptions of logical/semantic content, leaving the decision of what English (or other
languages) words to use for expressing this content (e.g., ‘the ancient dog’, or ‘the dog
which is old’) to later stages in the NLG pipeline. Secondly, we shall assume that all
domain objects are equally salient [8]. Perhaps most importantly, we do not consider
here the important matter of the naturalness or efficacy of the descriptions generated. We
shall be content proposing an algorithm that produces uniquely referring expressions
whenever such expressions are possible, leaving the choice of the optimal referring
expression in each given situation for later.

In what follows we start by explaining how DL has been applied in GRE (Sec.2),
pointing out the limitations of existing works. In Sec.3 we discuss which kinds of ad-
ditional expressivity are required and how they can be achieved through modern DL.
In Sec.4 we present an generic algorithm to compute these expressive REs. Sec.5 con-
cludes the paper by comparing its aims and achievements with current practise in GRE.

2 DL for GRE

2.1 Description Logics

Description Logic (DLs) come in different flavours, based on decidable fragments of
first-order logic. A DL-based KB represents the domain with descriptions of concepts,
relations, and their instances. DLs underpin the Web Ontology Language (OWL), whose
latest version of OWL2 [11] is based on DL SROIQ [7].

An SROIQ ontology Σ usually consists of a TBox T and an ABoxA. T contains
a set of concept inclusion axioms such as C v D, relation inclusion axioms such as
R v S, R1 ◦ . . . ◦ Rn v S, and other axioms saying that a particular relation is
functional, or reflexive, or symmetric, etc.; A contains axioms about individuals, e.g.
a : C (a is an instance of C), (a, b) : R (a has an R relation with b).

Given a set of atomic concepts, the entire set of concepts expressible by SROIQ is
defined recursively. Assuming that C and D are concepts, then so are> |⊥ |A | ¬C |Cu
D | C t D | ∃R.C | ∀R.C | ≤ nR.C | ≥ nR.C | ∃R.Self | {a1, . . . , an}, where
> is the top concept, ⊥ the bottom concept, A an atomic concept, n a non-negative
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integer number, ∃.Self the self-restriction, ai individual names and R a relation which
can either be an atomic relation r or the inverse of another relation (R−).

An interpretation I is a pair 〈∆I , �I〉 where ∆I is a non-empty set and �I is a
function that maps atomic concept A to AI ⊆ ∆I , atomic role r to rI ⊆ ∆I × ∆I
and individual a to aI ∈ ∆I . The interpretation of complex concepts and axioms can
be defined inductively based on their semantics, e.g. (C uD)I = CI ∩DI , etc.
I is a model of Σ, written I |= Σ, iff the semantics of all the axioms in Σ are

satisfied. It should be noted that one Σ can have multiple models. For example when
T = ∅,A = {a : A t B}, there can be a model I1 s.t. aI1 ∈ AI1 , aI1 6∈ BI1 , and
another model I2 s.t. aI2 6∈ AI2 , aI2 ∈ BI2 . In other word, the world is open. For
details, we refer the readers to [2].

When dealing with a closed world, people usually (partially) close the ontology with
a DBoxD [12], which is syntactically similar to theA. However,D contains only a : A
((a, b) : r) where A (r) is atomic. Furthermore, every concept or relation appearing in
D is closed. Its extension is exactly defined by the contents of D, i.e. if A (r) appearing
in D and a : A 6∈ D ((a, b) : r 6∈ D), then a : ¬A ((a, b) : ¬r), thus is the same in all
the models. The concepts and relations not appearing in D are still open.

DL reasoning can be exploited to infer implicit information from ontologies. For
example, given T = {Dog v ∃feed−.Woman} andA = {d1 : Dog,w1 : Woman},
we know that there must be some Woman who feeds d1. When the domain is closed
as D = A we can further infer that this Woman is w1 although there is no explicit
relation between w1 and d1. The complexity of such reasoning services is normally
2NEXPTIME-complete.

2.2 Background Assumptions

When applying DL to GRE, people usually impose the following assumptions.

– Identifiers cannot be used in REs. For example, “the Woman who feeds d1” would
be invalid, because d1 is an identifier. Such identifiers are typically outlawed in
GRE because, in many applications, many objects do not have identifiers that read-
ers/hearers would be familiar with: e.g. chairs, trees, or time periods seldom have
commonly known identifiers.

– Closed Domain Assumption (CWA): In existing works regarding DL and GRE, peo-
ple assume that D = A. Furthermore, the domain is usually considered to be finite
and containing individuals only visible inD. As we will show, this “partially” close
the interpretation of the atomic symbols mentioned inA but will still allow the rest
open.

– Unique Name Assumption (UNA): Different names denote different individuals. If,
for example, w1 and w2 may potentially be the same woman, then we can not
distinguish one from the other.

We follow these assumptions when discussing existing works and presenting our ap-
proach. We will also show how our approach can be extended to achieve more when
these assumptions are not imposed. In addition, we consider the entire KB, including
both A (D) and T .
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It is worth mentioning that, in the syntax of SROIQ, negation of relations are
not allowed in concept expressions, e.g. you can not compose a concept ∃¬feed.Dog.
However, if we impose the CWA and close feed, then we can interpret (¬feed)I =
∆I ×∆I \ feedI . In the rest of the paper, we use this as a syntactic sugar.

2.3 Using DL for GRE

Every DL concept can be interpreted as a set. If the KB allows one to prove that this
set is a singleton then the concept is a referring expression. It is this simple idea (earlier
expounded by [6]) that [1] explored. In doing so, they say little about the TBox, appear-
ing to consider only the ABox (DBox), which contains only axioms about instances of
atomic concepts and relations. For example, the domain in Fig.1 can be described as

KB1: T1 = ∅, A1 = {w1 : Woman, w2 : Woman, d1 : Dog, d2 : Dog,
c1 : Cat, c2 : Cat, (w1, d1) : feed, (w2, d1) : feed, (w2, d2) : feed,
(d1, c1) : love}
Assuming that this represents a Closed World, the authors propose an algorithm

that is able to generate descriptions by partitioning the domain.1 More precisely, the
algorithm first finds out which objects are describable through increasingly large con-
junction of (possibly negative) atomic concepts, then tries to extend these conjunctions
with complex concepts of the form (¬)∃R.Concept, then with concepts of the form
(¬)∃R1.(Conceptu (¬)∃R2.Concept), and so on. At each stage, only those concepts
that have been acceptable through earlier stages are used. Consider, for instance, KB1
above. Regardless of what the intended referent is, the algorithm starts partitioning the
domain with atomic concept (suppose staring with Dog) in (1), then the ones in (2),
then the ones in (3). Each stage makes use of all previous stages. During stage (3), for
example, the object w2 could only be identified because d2 was identified in phase (2).

(1). Dog = {d1, d2}, ¬Dog uWoman = {w1, w2},
¬Dog u ¬Woman = {c1, c2}.
(2). Dog u ∃love.(¬Dog u ¬Woman) = {d1},
Dog u ¬∃love.(¬Dog u ¬Woman) = {d2}.
(3). (¬Dog u Woman) u ∃feed.(Dog u ¬∃love.(¬Dog u ¬Woman)) =
{w2},
(¬DoguWoman)u¬∃feed.(Dogu¬∃love.(¬Dogu¬Woman)) = {w1}.

As before, we disregard the important question of the quality of the descriptions gen-
erated, other than whether they do or do not identify a given referent uniquely. Other
aspects of quality depend in part on details, such as the question in which order atomic
properties are combined during phase (1), and analogously during later phases.

1 Areces et al. [1] consider several DL fragments (e.g., ALC and EL). Which referring expres-
sions are expressible, in their framework, depends on which DL fragment is chosen. Their
analysis of the differences between fragments is perhaps the most valuable aspect of their
paper. Existential quantification, however, is the only quantifier that was used, and inverse
relations are not considered either.
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Although this demonstrates how DL can be used in GRE, it does not extend the
expressive power of GRE. This is not because of some specific lapse on the part of the
authors: it seems to have escaped the GRE community as a whole that relations can
enter REs in a variety of alternative ways. Also, the above algorithm considers only the
ABox therefore some background information will not be used. For example, suppose
we extend Fig.1 with background knowledge saying that one should care about thoes
beloved by whom he/she is feeding, and an additional love relation (Fig.2).

Fig. 2. An extended example of Fig.1. Edges from women to cats denote care relations. Dashed-
edge indicates implicit relations.

Together, the domain can be described as:

KB2: T2 = {feed ◦ love v care}, A2 = A1 ∪ {(d2, c2) : love}
The TBox axiom should allow the inference of additional facts: the facts (w1, c2) :
care, (w2, c1) : care, and (w2, c2) : care can be inferred using ontology reasoning.
Our own approach will allow this kind of reasoning to be brought to GRE. Continuing
to focus on the materialised KB2, we note another limitation of existing works: if only
existential quantifiers are used then some objects are unidentifiable (i.e., it is not pos-
sible to distinguish them uniquely). These objects would become identifiable if other
quantifiers and inverse relations were allowed. For example,

The cat who is cared by at least 2 women = Catu ≥ 2feed−.Woman =
{c1},
The woman feeding only those fed by at least 2 women = Womanu∀feed. ≥
2.feed−.Woman = {w1},
The woman who feeds all the dogs = {w2}.
It thus raises the question: which quantifiers will be appreciated and how to use DL

to realise them in GRE?

3 Beyond Existential Descriptions

In this section, we show how more expressive DLs can make objects referable that were
previously unreferable. Far from being a minor modification of existing works, this will
amount to a substantial reformulation which will allow the DL-based approach to move
beyond other GRE algorithms in its expressive power and representational efficiency.
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3.1 Expressing Generalized Quantifiers in OWL2

Because the proposal in [1] uses only existential quantification, it fails to identify any
individual in Fig.2. Before attempting to fill this gap, we briefly pause to ask what level
of expressivity might be achievable. In doing so, we shall make use of a conceptual
apparatus developed in the formal study of natural language. The most general format
for REs that involve a relation R is, informally, the N1 who R Q N2’s, where
N1 and N2 denote sets and Q is a quantifier. (Thus for example the women who
feed SOME dogs.) An expression of this form is a uniquely identifying expression
if it corresponds to exactly one element in the domain. Using a slightly more formal
set-theoretic notation, this means that the following set has a cardinality of 1:

{y ∈ N1 : Qx ∈ N2 | Ryx}
where Q is a generalized quantifier (GQ [10]). For example, if Q is the existential
quantifier, while N1 denotes the set of women, N2 the set of dogs, and R the relation
of feeding, then this says that the number of women who feed SOME dog is just one.
If Q is the quantifier Exactly three, however, then it says that the number of women
who feed exactly THREE dogs is just one. It will be convenient to write the formula
above in the standard GQ format where quantifiers are seen as relations between sets of
domain objectsA,B. For example, using the universal quantifier as an example, instead
of writing ∀x ∈ A | x ∈ B, we write ∀(AB). Thus, the formula above is written

{y ∈ N1 : Q(N2{z : Ryz})}.
Instantiating this as before, we get {y ∈Woman : ∃(Dog{z : Feed yz})}, or “women
who feed a dog”, where Q is ∃, A = Dog and B = {z : Feed yz} for some y.

Mathematically characterizing the class of all quantifiers that can be expressed in
referring expressions is a complex research programme to which we do not intend to
contribute directly, partly because this class includes quantifiers that are computation-
ally problematic; for example, quantifiers such as most (i.e., more than 50%) and many
(which is vague) are not first-order expressible, as is well known.

To make transparent which quantifiers are expressible in the logic that we are using,
let us think of quantifiers in terms of simple quantitative constraints on the sizes of the
sets A ∩ B, A − B, and B − A, as is often done in GQ theory, asking what types of
constraints can be expressed in referring expressions based on SROIQ. The findings
are illustrated in Tab.1. The table shows that OWL2 can express any of the following,
plus disjunctions and conjunctions of anything it can express.

Let us call the class of quantifiers defined by the table NatGQ. To see how large
and general NatGQ is, a few examples will be useful. When n = 1, for example, type
1 becomes ∃R.N2, i.e. the existential quantifier. When n = 0 type 7 becomes ∀R.N2,
i.e. the only quantifier. When n = 0 type 6 becomes ∀¬R.¬N2, i.e. the all quantifier.
In types 2, 4, 6 and 8, negation of relation is used in a concept expression. This is not
directly supported in SROIQ but, as we indicated earlier, given a closed KB Σ, when
relation R is closed, ¬R is valid in concepts.

Together, this allows the expression of a description such as “women who feed at
least one but at most 7 dogs”, by conjoining a quantifier of type 1 (with n = 1) with
one of type 5 (with n = 7). It even allows expression of “women who do not feed
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Table 1. Expressing GQ in DL

QAB DL

1 ≥ nN2{z : Ryz} y :≥ nR.N2
2 ≥ nN2¬{z : Ryz} y :≥ n¬R.N2
3 ≥ n¬N2{z : Ryz} y :≥ nR.¬N2
4 ≥ n¬N2¬{z : Ryz} y :≥ n¬R.¬N2
5 ≤ nN2{z : Ryz} y :≤ nR.N2
6 ≤ nN2¬{z : Ryz} y :≤ n¬R.N2
7 ≤ n¬N2{z : Ryz} y :≤ nR.¬N2
8 ≤ n¬N2¬{z : Ryz} y :≤ n¬R.¬N2

all dogs and who feed at least one non-dog”, which can be expressed as Woman u
¬∀¬Feed.¬Dog u ∃Feed.¬Dog. In addition to Tab.1, SROIQ can even represent
reflexive relation such as “the dog who loves itself” by Dog u ∃love.Self , which used
to be regarded infeasible [6].

Comparing the quantifiers that become expressible through OWL2’s apparatus with
classes of quantifiers studied in the theory of GQ, it is clear that OWL2 is highly ex-
pressive: it does not only include quantifiers expressible in Van Benthem’s binary tree
of numbers [13] – which is often regarded as sufficient – but much else besides. Wider
classes of referring expressions can certainly be conceived – for example by moving
into intensionally or higher-order logic – but these are not likely to have overwhelming
practical utility in todays’s NLG applications.

4 Generating SROIQ-enabled REs

In this section, we present an algorithms that is able to compute the descriptions we
presented in sect.3. A GRE algorithm should have the following behaviour: if an entity
is distinguishable from all the others, the algorithm should find a unique description;
otherwise, the algorithm should say there exists no unique description. There are two
major tasks in a GRE program:

1. Finding possible descriptions: Generating syntactically valid descriptions.
2. Validating a description: Checking whether a description can be satisfied by a par-

ticular object.

These two tasks can be done simultaneously for all the domain elements, or for a target
referent. In the former case, candidate descriptions are generated and then tested for
each domain element. If a description holds for only one element, then it is the RE for
that element. This generate & test cycle is repeated until all the REs can be found. In the
later case, candidate descriptions are generated and tested for a particular target referent
until a valid RE is found or such a target referent can not be distinguished from some
other element. In this paper, we follow the strategy of Areces et.al work to generate REs
in a simultaneous way.

Since we consider more constructs than any previous treatment of relational de-
scriptions, the combination of them can result in an enormously large search space. To
measure the complexity of these descriptions, we define their depth:
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Definition 1. (Depth) Given a description d, its depth |d| is calculated as follows:

1. |d| = 1 for d := >|⊥|A|¬A.
2. |d u d′| = |d t d′| = max(|d|, |d′|) + 1.
3. |∃r.d| = |∀r.d| = | ≤ nr.d| = | ≥ nr.d| = | = nr.d| = |d|+ 1.

Syntactically different descriptions can have same semantics, e.g.¬∀R.A ≡ ∃R.¬A.
We leave aside the question which syntactic variant should be used and focus on gen-
erating one form, assuming all the concepts are in their unique negation normal form
(NNF). A NNF has ¬ in front of only atomic concepts (include > and ⊥) or nominals.
The NNF of ¬C is denoted by ~C.

To ensure we can generate proper descriptions w.r.t. particular requirements, we
present the following abstract algorithm A-1. Given an ontology Σ, we initialise the
algorithm with the following sets:

1. The concept name set CN is the minimal set satisfying:
– > ∈ CN ;
– if A is an atomic concept in Σ, then A ∈ CN ;
– if R is an atomic role in Σ, then ∃r.Self ∈ CN ;
– if A ∈ CN , then ~A ∈ CN ;

2. The relation name set RN is the minimal set satisfying:
– if R is an atomic relation in Σ, then R ∈ RN ;
– if R ∈ RN , then ~R ∈ RN ;
– if R ∈ RN , then R− ∈ RN ;

3. The number set N = {1, 2, . . . , n} where n is the number of individuals in Σ.
4. The construct set S contains all the constructs that supported by a particular lan-

guage. For SROIQ, S = {¬,u,t,∃,∀,≤,≥,=}. Usage of names is disallowed
(cf sect.2).

Obviously, ~(~A) = A, ~(~R) = R, (R−)− = R, and (~R)− =~R−. Then the
algorithm takes an ontology Σ as its input and output a queue D of descriptions.

Algorithm A-1: Construct-description(Σ, CN,RN,N, S)
INPUT: Σ,CN,RN,N, S
OUTPUT: Description Queue D

1: D := CN
2: for d = fetch(D) do
3: for each s ∈ S do
4: if s = u or s = t then
5: for each d′ ∈ D do
6: D := Add(D, d u d′(d t d′))
7: if s = ∃ or s = ∀ then
8: for each r ∈ RN do
9: D := Add(D,∃r.d(∀r.d))

10: if s =≤ or s =≥ or s is = then
11: for each r ∈ RN , each k ∈ N do
12: D := Add(D,≤ kr.d(≥ kr.d,= kr.d))
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13: return D

Algorithm A-2:Add(D, e)
INPUT: D, e
OUTPUT: (Extended )Description Queue D

1: for d ∈ D do
2: if |d| < |e| and d vΣ e then
3: return D
4: else if |d| = |e| and d @Σ e then
5: return D
6: if |[[e]]|Σ > 0 then
7: D := D ∪ {e}
8: return D

In Step 1, D is initialised by CN . From Step 2, we recursively process elements of
D one by one. We use fetch(D) to retrieve the first unprocessed element ofD and new
elements are added to the end of D. Thus D is a first-come-first-server queue (note that
processed elements are not removed from D). For each element d of D, Step 3 to 12
extend it with a construct s:

1. If s is u or t, in Step 5 and 6, we extend d with all the elements of D and add new
descriptions to D.

2. If s is ∃ or ∀, in Step 8 and 9, we extend d with all relations of RN and add new
descriptions to D. In Areces et el.’s work, ∀ is also available when using ¬ and ∃
together, however due to their algorithm they can never generates descriptions like
∀r.A.

3. If s is ≤,≥ or =, in Step 11 and 12, we extend d with all relations of RN and all
numbers of N , and add new descriptions to D.
In this step, = kr.d ≡≥ kr.du ≤ kr.d, which means = construct can be equiva-
lently substituted by the combination of ≤,≥ and u constructs.
Therefore, it is an modelling choice to use either ≤,≥, or only =, or all of them. In
this algorithm we present all of them from a syntactic point of view.

Because we compute only the NNF and we disallow the usage of individual iden-
tifiers, negation ¬ appears only in front of atomic concept names, which have all been
included inCN . Thus in extension, we do not consider s = ¬. The ordering of choosing
constructs, relations, integers and conjuncts/disjuncts is not the topic of this paper.

Obviously, at any time,D,RN,N, S are all finite, thus Step 3 to 12 terminates for a
particular d ∈ D. Because Step 3 to 12 generates descriptions with incremental depth,
for a particular n, there are finite d ∈ D such that |d| = n. Thus, the termination of
Algorithm A-1 depends on the increment ofD. This is controlled by theAdd procedure,
which determines whether a new generated description is added into D or not.

The mechanism ofAdd depends on the requirements of the application. In this paper
we control the addition by following a simple heuristic: more complex descriptions
should have smaller extension.
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In Algorithm A-2, Step 2 ensures that, when adding a new description e into D, its
extension should be smaller than any existing description d ∈ D with a smaller depth
than e. Step 4 ensures that when adding a new description e intoD, its extension should
be no larger than any existing description d ∈ D with same depth as e. Step 6 to 7 adds
a new description when its extension is non-empty. The subsumption checking in Step
2 and 4, the instance retrieval in Step 6, must be realised by DL reasoning.

A-2 guarantees that when the complexity of descriptions increases, their extensions
are getting smaller and smaller (but still non-empty). Because descriptions of a particu-
lar depth is always finite, when the domain is finite, Algorithm A-1 always terminates.

It can be shown that, our approach is an extension of the algorithm presented in
Areces et al.’s work. The example in Fig.2 shows that some referring expressions gen-
erated by our algorithm cannot be generated by our predecessors; more importantly
even, some objects that are not referable for them are referable for us.

It is worth stressing here that our algorithm focusses on finding uniquely referring
expressions, leaving aside which of all the possible ways in which an object can be
referred to is “best”. For this reason, empirical validation of our algorithm – a very
sizable enterprise in itself, which should probably be based on descriptions elicited by
human speakers – is not yet in order.

Discussion Now we revisit the basic assumptions to see what can be achieved with-
out them.

1. Using names in REs, e.g. “the husband of Marie Curie”. Here “Marie Curie” servies
as both the identifier of the individual and the name of its interpretation. In this case,
we extend our Algorithm A-1 by including {Maria Curie} in CN .

2. An open world: when the domain is not restricted to be closed, traditional GRE
approaches may fail because they have always been assuming a single model with
complete knowledge. In this case, interesting REs can still be found by our ap-
proach. For example, if someone is known to be the only Chinese or Japanese,
we can refer to him/her as Chinese t Japanese although the exact nationality is
unknown.

3. Individual with multiple names. DL imposes the UNA by explicit asserting the
inequality of each two individuals. Without UNA, reasoning can still infer some
results, e.g. {WomanuMan v ⊥, David : Man,May : Woman} |= David 6=
May. Thus we can refer to David as “the man” if the domain is closed.

5 Conclusion: widening the remit of GRE

This paper has shown some of the benefits that arise when the power of KR is brought to
bear on an important problem in NLG, namely the generation of referring expressions
(GRE). We have done this by using DL as a representation and reasoning formalism,
extending previous work in GRE in two ways. In order to explain what class of referring
expressions is covered by our proposal, we have related our algorithm to the theory of
Generalized Quantifiers, which allowed us to formally characterize the set of quanti-
fiers that are used by our algorithm, thereby making exact how much expressive power
we have gained. Secondly, we have demonstrated the benefits of implicit knowledge
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through inferences that exploit TBox-information, thereby allowing facts to be repre-
sented more efficiently and elegantly, and allowing GRE to tap into kinds of generic (as
opposed to atomic) knowledge that it had so far left aside, except for hints in [6] and
in [3].

Current work on reference is overwhelmingly characterized by an emphasis on em-
pirical accuracy, often focussing on very simple referring expressions, which are con-
stituted by conjunctions of 1-place relations (as in “the grey poodle”, “the Swedish
woman”), and asking which of these conjunctions are most likely to be used by human
speakers (or sometimes, which of these would be most useful to a human hearer or
reader). The present work stresses entire different concerns: we have focussed on ques-
tions of expressive power, focussing on relatively complex descriptions, asking what
referring expressions are possible when relations (such as “love” or “feed”) between
domain objects are used. We believe that, at the present stage of work in GRE, it is of
crucial importance to gain insight into questions of this kind, since this will tell us what
types of reference are possible in principle. Once these questions are answered, we shall
explore how the newly gained expressive power can be put to practical use.
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Abstract. The system description presents the conception and a pro-
totypical implementation of a multi-context system, used for computing
and implementing temporal modalities within given data without the
use of modal operators. Instead, an external constraint based rule sys-
tem is used for computing the corresponding temporal relations, making
use of the way a multi-context system works for transporting the needed
information between contexts and knowledge bases.

1 Point of Departure and Problem Statement

Introducing new modalities should involve no more fuss than intro-
ducing a new predicate. [1]

The above quotation, taken from John McCarthy’s paper “Modality, Si! Modal
Logic, No!”, addresses a point quite well-known to description logicians and peo-
ple working with systems for knowledge representation, based on DL. Real world
applications often demand for the use of modalities (e.g. to express statements
about time), or using McCarthy again:

In particular, human-level AI requires that programs be able to in-
troduce modalities when this is appropriate, e.g. have function taking
modalities as values. [1]

Nevertheless, allowing for the unrestricted use of modal operators within a de-
scription logic framework (given the not very probable case that this may be pos-
sible), major problems concerning decidability, completeness and computability
arise. Even if only some modal operators shall be incorporated into a standard
DL framework (as e.g. SHOIN (D), corresponding to the widely used OWL DL
V1.0 language, or SROIQ(D) for OWL DL V2.0), a large part of the “pleasant”
properties of the original formalism gets lost.

Thus, we decided to build a working and applicable implementation of modal-
ities (in the following we will use time as an example modality) without the use
of modal operators, thereby following the basic idea lined out in McCarthy’s
paper. We managed to do so by using concepts from the field of multi-context
systems (MCS), mainly based on the results presented in [2] and [3].
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2 Attempt at a Solution

The idea underlying our solution to the stated problem is the following: Knowl-
edge bases in DL normally contain definitions of concepts, roles and instances,
stated in present tense. For formal reconstruction purposes within many differ-
ent domains, e.g. cultural heritage, descriptions of instances which are situated
in the past would be needed. But modal logical extensions of DL often carry
– besides the problem of (un)decidability – new operators (e.g. “Until”) with
them. In many cases, a description not relying on the use of modal operators
would be sufficient. Moreover, the modellers wouldn’t have to learn how to use
the new operators properly.

In order to enhance the widely used DL SHOIN (D) (OWL DL V1.0) with
these kind of descriptions, in a reference ontology for cultural heritage (ECRM)
Allen’s time relations ([4]) are added as descriptions (as already demanded by the
CIDOC-CRM3). Having done so, the descriptions are contained, but a mecha-
nism performing calculations on this modalities is still missing. This mechanism
may be introduced by means of an external module, a constraint based rule
system (CBRS).

3 Mode of Operation

Given a DL knowledge base, the functionality of our system may basically be
sketched as follows:

1. Extend the concrete knowledge base: Collect time describing features within
the DL descriptions and state them explicitly.

2. Transfer the collection of time describing features to a constraint based rule
system (CBRS), already containing abstract rules which model Allen’s time
relations.

3. Generate a model by means of the CBRS and afterwards extract the newly
calculated, concrete time relations from the model.

4. Inject the extracted concrete time relations into the DL knowledge base.

Thus the result of the external calculations in the CBRS may be used for the
proper reasoning within the DL knowledge base. Moreover, this allows – besides
of the possibility of the description of the instances in the past – for an automatic
sorting of the time descriptions on a timeline given by Allen’s relations.

Furthermore, the approach is very flexible, as the means for calculations and
computation may be extended: The descriptions in the ontology may be ex-
panded with more relations, given the corresponding bridge rules to the CBRS.
Thereby, the limitations of the description are not caused by the restrictions
3 CIDOC, the Committee on Documentation of the International Council of Muse-

ums, is a working group focusing on the documentation requirements and standards
of museums, archives, and similar organizations. CIDOC has defined a Conceptual
Reference Model, the CIDOC-CRM, which provides a formal and extensible ontol-
ogy for cultural heritage information.
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from the SHOIN (D) language, but are given according to the configurable exter-
nal logic. As this logic may be configured and extended stepwise, exactly those
modalities needed for a concrete formal reconstruction may be implemented.
Hence, in place of making necessary an entire extension of DL, constructed
around one modal operator or another, our approach allows for the incremental
construction of a TimeDL.

This extension may be transferred to other formal reconstructions wit relative
ease, and can also be applied to other DLs. Only the quite simple DL S is needed
when describing Allen’s temporal relations. Thus re-usability within other DLs,
build upon S (as e.g. SROIQ , corresponding to OWL DL V2.0) may easily be
reached.

Further independence between the extension and the underlying knowledge
representation formalism has been obtained.

4 (Very) Short Introduction to Multi-Context Systems

Here we restate the key definitions given in [2]. First, the concept of logic4 is
defined in terms of input-output conditions.

Definition 1. A logic L = (KBL,BSL,ACCL) is composed of the following
components:

1. KBL is the set of well-formed knowledge bases of L. We assume each element
of KBL is a set.

2. BSL is the set of possible belief sets,
3. ACCL : KBL 7→ 2BSL is a function describing the “semantics” of the logic

by assigning to each element of KBL a set of acceptable sets of beliefs.

Given several logics, bridge rules are used to translate between the logics.

Definition 2. Let L = {L1, . . . , Ln} be a set of logics. An Lk -bridge rule over
L, 1 ≤ k ≤ n, containing m conditions, is of the form

s← (r1 : p1), . . . , (rj : pj),not(rj+1 : pj+1), . . . ,not(rm : pm) (1)

where j ≤ m, 1 ≤ rk ≤ n, pk is an element of some belief set of Lrk
and s

is a syntactically valid element of a knowledge base from KBk,5 and for each
kb ∈ KBk : kb ∪ {s} ∈ KBk.

A configuration of logics and bridge rules comprises a multi-context system.

4 As in the following, no information containing satisfiability or inference rules within
the corresponding logics will be given, also the denomination ”pre-logic” would be
justifiable. For the sake of consistency we will keep the original naming calling it a
”logic”.

5 In contrast to [2] where a similar constraint concerning the nature of s is imposed
only implicitly.
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Definition 3. A multi-context system M = (C1, . . . , Cn) consists of a collection
of contexts Ci = (Li, kbi, bri), where Li = (KBi,BSi,ACCi) is a logic, kbi a
knowledge base (an element of KBi ), and bri is a set of Li-bridge rules over
{L1, . . . , Ln}.
A belief state is the combination of the belief sets of all contexts of the MCS.

Definition 4. Let M = (C1, . . . , Cn) be a MCS. A belief state is a sequence
S = (S1, . . . , Sn) such that each Si is an element of BSi.

We say a bridge rule r of form (1) is applicable in a belief state S = (S1, . . . , Sn)
iff for 1 ≤ i ≤ j : pi ∈ Sri

and for j + 1 ≤ k ≤ m : pk 6∈ Srk
. A belief state

is an equilibrium if the consequences of all applicable bridge rules are given,
hence each context has an acceptable belief set given the belief sets of the other
contexts.

Definition 5. A belief state S = (S1, . . . , Sn) of M is an equilibrium iff, for
1 ≤ i ≤ n, the following condition holds:

Si ∈ ACCi(kbi ∪ {head(r)|r ∈ bri applicable in S}).6

Now, we moreover introduce “bridge rule models” as a possibility to expatiate
on the actual reasoning by signalizing explicitly which bridge rules within an
MCS are active with respect to a given belief state (for further details vide [5]).

Definition 6. Let Br be a set of n bridge rules of an MCS. A bridge rule model
is an assignment Br 7→ {0, 1}n that represents for each bridge rule in Br whether
it is active (i.e. the bridge rule is applied, and the element in its head is added
to the respective target knowledge base) or not.

Proposition 1. For each equilibrium there is exactly one bridge rule model.

Proof. Given an MCS and an equilibrium belief state. Then for every bridge
rule we can decide whether or not its prerequisites are satisfied. Hence, for each
position in the bridge rule model we can decide whether the value is 0 or 1.

5 MCS and Museum Data Completion and Consistency

The now presented MCS, implementing the algorithm for finding the equilibria
of an MCS from [3], has been developed in cooperation with part of the team of
the WissKI research project7.

6 Please note that, if r is a bridge rule of the form a← . . ., then head(r) = a
7 Research project “WissKI - Wissenschaftliche KommunikationsInfrastruktur”, fund-

ing provided by the German Research Council (DFG). The project is being carried
out at the Chair for Computer Science 8: Artificial Intelligence of the University of
Erlangen-Nuremberg, together with collaborators from the GNM Nuremberg and the
ZFMK Bonn. For a presentation of the project vide [6] and http://www.wiss-ki.eu.
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The WissKI project’s main purpose is to extend the the current conception of
wiki-style media to a medium of science communication and scientific interaction.
Amongst its main goals are therefore to enable semantic content analysis by
means of CIDOC-CRM (ISO 21127) (e.g. vide [7] and [8]). One of the tools
under development in the project is a semantics enhanced content management
system (CMS+S), in which we integrated a special form of an MCS in order to
obtain additional temporal reasoning functionality for the semantic analysis.8

We accomplished this by using a form of inference fusion: Starting from a DL
based initial representation of data, we transfer parts of it (containing temporal
information) to another formalism. Then, we use smodels9 as a reasoner in order
to obtain additional results (in concrete for – if possible – establishing an ordering
within the expressed time statements), and finally combine the results of the
reasoner and the original data into another enhanced DL representation.

The scenario where the MCS comes into play within the CMS+S may be
sketched as follows: We are given a CIDOC-CRM conform file (OWL/DL for-
mat, vide [10]) containing information from the context of master pieces of gold-
smith art (vide [11]), which also contains – in the form of free text – temporal
information about persons and events. An already implemented software tool
preprocesses the free text for the MCS: It parses the free text parts, identi-
fies, and then returns place names, person names and time specifications (again
vide [11]). Our MCS takes the time specifications (represented as time intervals
using Turtle file format10) as inputs, creates bridge rules for the transport of all
the given statements to a representation suitable for reasoning with smodels,11

and afterwards uses smodels and given constraints on temporal reasoning in or-
der to create a linear ordering of the given time statements (the ordering of the
intervals is established according to [4]). If a linear ordering can be established
(if this cannot be done the set of time statements is inconsistent), after ordering
the time statements, again bridge rules are created to transport the ordering
information to a knowledge base in OWL/DL format, using the CIDOC-CRM

8 The implementation of the CIDOC-CRM the WissKI project is working on is based
on a logical formalism equivalent to a SHOIN (D) DL. Therefore, temporal reasoning
is not supported by the used logical formalism itself.

9 An implementation of the stable model semantics for logic programs, vide e.g. [9].
10 For details concerning the Turtle file format vide e. g. [12]. A typical Tur-

tle triplet encountered in the implementation example contains as first string
an identifier, the second string states a property of the corresponding ob-
ject, and the third string explicitely states a value, related to this prop-
erty, in XSD time data format: http://wiss-ki.eu/ns/tmp/gen e61 2 N65566

http://www8.informatik.uni-erlangen.de/IMMD8/Services/cidoc-crm/erlangen

-crm 090330 5 0 1 TQ.owl#has primitiveTime ‘‘2009-06-22’’
11 By this not only extracting the information from the initial context and adding it

to a context suitable for reasoning with smodels, but also performing a translation
between the OWL/DL language and a suitable representation for lparse (vide [13])
input at the same time, as the segmentation of bridge rules in a head part and a
body part – without a constraint restricting the formal languages used in both parts
to be the same – allows for this kind of use.
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time relations12 to reproduce the ordering found. Afterwards, the results may be
merged with the original CIDOC-CRM conform file and another reasoner may
be used (e.g. RACER13 on the given data) in two ways: to check the consistency
of the enhanced knowledge base, or for data completion purposes taking into
account the newly obtained time information.

The MCS just described is of special form, we call it a “linear multi-context
system”, as the information is passed through it in a linear way. The basic
principle may be sketched as follows: The parser/tagger software tool creates a
Turtle format representation of the time statements, this is kb1 in context C1.
Then, as all information from kb1 has to be transported to the smodels context’s
knowledge base kb2 ∈ C2, the bridge rules from kb1 to kb2 may automatically be
created given kb1. The reasoning part is done in kb2 when the import has been
completed. Afterwards, all obtained information concerning time relations has to
be transported to the OWL/DL representation in context C3 (containing kb3),
the bridge rules may automatically be created, completely covering all corre-
sponding elements of kb2.14 When the transport to kb3 has been completed, the
work of the MCS is mainly done, the fusion of kb3 with the original OWL/DL
base in the narrower sense is not part of the MCS. Now the mode of operation of
the linear MCS shall be discussed in more detail. Given the Turtle triplets – con-
taining information concerning person names, place names and time statements
– the parser/tagger returns as output of his free text analysis, the MCS has to
identify and extract the time information by simple structural filtering (due to
the chosen output format of the parser/tagger, a strictly syntactical discrimina-
tion of the different types of statements is possible, e.g. via the use of regular
expressions). The results of this process are written to kb1, the knowledge base
of C1. Now, the bridge rules for the transport of the time interval information
from kb1 to kb2 (knowledge base of C2) have to be created and added to br2.
The bridge rules only have one condition (the element of kb1 which shall be
transported): “f(a) ← (1 : a)”, where a ∈ kb1, f(a) ∈ kb2 and f(·) a function
returning as result a “translation” of a to the smodels formalism. Patterns of the
bridge rules requiring generation are given in form of generic bridge rules within

12 Allen’s temporal relations between time intervals are implemented by CIDOC-CRM
properties P114 to P120, vide [7].

13 Vide e.g. [14].
14 One might be tempted to think about generating all the bridge rules already ini-

tially, before starting the MCS procedure, and not dynamically during processing.
Unfortunately, this would raise major problems: As no information concerning the
ordering within the time statements (computed within kb2) is ab initio available, in
br3 we would have to create a bridge rule for every possible relation between two
time intervals for every tuple of time intervals that may have been transported from
kb1 to kb2. This would yield thirteen bridge rules for every tuple, out of which only
one may in fact be activated in the final equilibrium bridge rule model. Therefore,
the number of bridge rule models which (according to [3]) have to be tested for rep-
resenting the equilibrium of the MCS would be multiplied, substantially worsening
the performance of the entire MCS.
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Fig. 1. A sketch of the design of the linear MCS.

br2.15 For every interval from kb1, starting time point and ending time point are
transported. Having built all bridge rules according to the generic prototypes,
we may apply them all at once, as a complete transfer of knowledge from kb1
to kb2 shall be performed (the bridge rules have been constructed accordingly).
Now, kb2 is populated with all the temporal information concerning time in-
tervals obtained from the free texts. But kb2 contains constraints depicting the
relations between time intervals that Allen proposed. A reasoner call over kb2 is
performed. The result is again used for bridge rule generation: For each state-
ment indicating the relation between two time intervals, a bridge rule has to
be created, transferring this statement to the third context C3, adding the cor-
responding CIDOC-CRM statementin OWL/DL format to the knowledge base
kb3. Again, generic bridge rules from br3 prototypically indicate which bridge
rules have to be created.16 When all of the mentioned bridge rules have been
added to br3, for the same reason as above they may again all be applied at a
time. Finally, kb3 – now containing all the statements concerning the ordering
relations amongst the time intervals – is merged with the initial CIDOC-CRM
knowledge base (which contains the free texts the parser/tagger originally used),
or a single OWL file containing the interval information may be produced.

6 Used Technical Infrastructure

For the implementation of the just sketched MCS we made use of a proof-of-
concept MCS Software Framework developed as part of one of the authors’
15 E.g. day(X,Y ) ← (1 : day(X,Y )), indicating that for every element from kb1,

unifyable with day(X,Y ) (X an identifier for the temporal entity, Y a numeric value
indicating the day’s date within the month) a bridge rule shall be generated mapping
it to its corresponding element of kb2.

16 E.g. “P114.is equal in time to(X,Y )← 2 : is equal in time to(X,Y )” (X, Y vari-
ables for identifiers of time intervals), would create for every fitting element in kb2,
a bridge rule mapping it to its corresponding P114 CIDOC-CRM statement in kb3.
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master’s thesis. A detailled overview of the concrete MCS implementation is
given in [5]. Therefore, in the following we only want to give an overview of the
main technical characteristics of the system used:

As programming language we used Scala17 (e. g. vide [15]), a general pur-
pose programming language. The advantages of Scala, apart from allowing
for both object-oriented and functional programming, are its full interoperabil-
ity with native Java code (Java may be directly called from Scala and vice
versa), the full byte code compatibility - making possible the full use of existing
Java libraries or application code - and the possibility to run Scala programs
on the widespread Java VM.

Moreover, as previously mentioned, we made use of the lparse/smodels com-
bination as implementation of the stable model semantics for logic programmes,
which are both freely available to the scientific community. Both, the lparse
front-end and smodels itself, are at some points called as external components
by the MCS framework.

For the smodels reasoning, we set up a constraint based implementation of
Allen’s Interval Algebra, allowing smodels to compute an Allen-like ordering
within the time intervals whenever possible (vide Figure 2).

The modality computing MCS has then been integrated into the already
existing WissKI software system,18 placing it in a line with the aforementioned
parser/tagger used for performing the free text analysis and production of the
MCS’s input Turtle triplets. Having computed the linear ordering within the
time intervals, the output of the MCS is being merged with the remaining data
in OWL/DL format, serving data enrichment and completion purposes.

7 Why Use an MCS – Enhanced Scenarios

Up to now, critics of this approach may question why to use an MCS for this
purpose, because as seen from some angles a more or less elaborately written
script might provide almost the same functionality. But the scenario just shown
is only the first step of evolution of this kind when using an MCS: We conceive by
far more complex systems, not being linear, but containing at least one feedback
loop from C3 to C1, e.g. testing the fusion of C3 and the original OWL/DL base
for consistency, and modifying the knowledge base kb1 ∈ C1 if any inconsistency
is detected. Performing a run of the MCS excluding in a systematical manner
elements from kb1 from being promoted to kb2, we might possibly identify the
causes for the inconsistency.

17 We compiled the MCS framework implementation with “Scala version 2.7.5

final (Java Hotspot(TM) Client VM, Java 1.6.0 15)”.
18 For more details again vide e.g. http://www.wiss-ki.eu.
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. . .

month leq(X, Y) : −month(X, A), month(Y, B), A ≤ B, X 6= Y.

month leq(X, Y) : −not month(X, ), month(Y, B), starting time primitive( , X).

month leq(Y, X) : −not month(X, ), month(Y, B), ending time primitive( , X).

month eq(X, Y) : −month(X, A), month(Y, B), A = B, X 6= Y.

. . .

before(X, Y) : −year leq(X, Y), not year eq(X, Y).

before(X, Y) : −year eq(X, Y), month leq(X, Y), not month eq(X, Y).

before(X, Y) : −year eq(X, Y), month eq(X, Y), day leq(X, Y),

not day eq(X, Y).

. . .

before(X, Y) : −year eq(X, Y), month eq(X, Y), day eq(X, Y),

hour eq(X, Y), minute eq(X, Y), second eq(X, Y),

millisecond leq(X, Y), not millisecond eq(X, Y).

time primitive(Y) : −starting time primitive(X, Y), year(Y, Z).

time primitive(Y) : −ending time primitive(X, Y), year(Y, Z).

equal(X, Y) : −not before(X, Y), not before(Y, X), time primitive(X),

time primitive(Y), X 6= Y.

inconsistent(X) : −starting time primitive(X, A), ending time primitive(X, B),

before(B, A).

: −inconsistent(X).

finishes(X, Y) : −X 6= Y, starting time primitive(X, A),

ending time primitive(X, B), starting time primitive(Y, C),

ending time primitive(Y, D), equal(B, D), before(C, A),

not inconsistent(X), not inconsistent(Y).

is finished by(X, Y) : −X 6= Y, starting time primitive(X, A),

ending time primitive(X, B), starting time primitive(Y, C),

ending time primitive(Y, D), equal(B, D), before(A, C),

not inconsistent(X), not inconsistent(Y).

. . .

occurs during(X, Y) : −X 6= Y, starting time primitive(X, A),

ending time primitive(X, B), starting time primitive(Y, C),

ending time primitive(Y, D), before(C, A), before(B, D),

not inconsistent(X), not inconsistent(Y).

. . .

Fig. 2. Parts of a constraint base for computing Allen’s time interval relations.
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Input:
tagger output : List[String] (containing strings with data triplets in Turtle
format),
MCS = (C1, C2, C3) (kb2 : List[String] containing the smodels constraint rules
for temporal reasoning, br2 : List[String] and br3 : List[String] each containing
generic bridge rules,
kb1 : List[String] = kb3 : List[String] = br1 : List[String] = ∅).
Output:
MCS output : List[String] (containing the relations between time intervals).

br model : List[List[Int]] ← {}
kb buffer : List[String] ← {}
kb1 ← extractT imeInformation(tagger output)
for generic br ∈ br2 do

for element ∈ kb1 do
if matchesPattern(element, generic br) then

br2 ← br2 ∪ instantiateBR(element, generic br)
br model(C2) ← br model(C2) ∪ {{1}}

removeFrom(generic br, br2)

setAllV aluesToZero(br model(C1)), setAllV aluesToZero(br model(C3))
kb buffer ← extractKB(findEquilibria(MCS, br model), kb2)
for generic br ∈ br3 do

for element ∈ kb buffer do
if matchesPattern(element, generic br) then

br3 ← br2 ∪ instantiateBR(element, generic br)
br model(C3) ← br model(C3) ∪ {{1}}

removeFrom(generic br, br3)

setAllV aluesToZero(br model(C1)), setAllV aluesToZero(br model(C2))
kb buffer ← extractKB(findEquilibria(MCS, br model), kb3)
MCS output ← addHeaderEtc(kb buffer)
return MCS output

Algorithm 1: The linear MCS for the CMS+S.

Example 1. Given an MCS M = (C1, C2, C3), where C1 and C3 are DL contexts,
and C2 is a temporal logic context.19 Moreover, initially kb1 = {david, goli-
ath, abraham, lifetime(abraham, 150−200), lifetime(david, 175−225), life-
time(goliath, 205− 250), is father of(abraham, david), is son of(david, goli-
ath)}.20

Now, assuming that the “is father of(X,Y )” and the “is son of(X,Y )”
relations have properly been modelled (i. e. also stating conditions on the relation
between the lifetimes of father and son, e.g. that the lifetime of the son may not

19 For the sake of readability and to avoid unnecessary complications, in the example
we will not use the Turtle and OWL syntax, but a more intuitive and easily accessible
notation.

20 is father of(X,Y ) stating that X is the father of Y , and is son of(X,Y ) analo-
gously stating that X is the son of Y .
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begin before the lifetime of the father begins), performing a run of the MCS
– analogously to the description of the linear MCS above – we would obtain
an inconsistency in the belief set corresponding to C3, as for the lifetimes of
“david” and “goliath” – according to Allen’s relations between time intervals
– “lifetime(david, 175 − 225) overlaps lifetime(goliath, 205 − 250)” would be
stated. This contradicts the fact that “david” is declared a son of “goliath”.

Excluding the “is son of(david, goliath)” statement from kb1, we would ob-
tain a consistent belief state, stating an equilibrium of the MCS. Thus, “is son
of(david, goliath)” has been identified as possibly causing an inconsistency within
the data and should be reviewed.21

A related application would be a series of MCS calls for data completion pur-
poses, after each complete call using the newly obtained data for another run of
the MCS, until no further augmentation of information may be obtained.

Another but far more sophisticated way of using this type of MCS would
be an application in combination with the symbolic sub-symbolic integration
proposed in [3]: A “modality + sub-symbolic MCS” could e.g. be used to combine
person recognition systems (e.g. based on neural networks) at airports, train
stations and street cameras with databases for train, flight and bus timetables
etc., making possible tracing, tracking and verification of a person’s movement
pattern on a wide-area basis.

8 Future Prospects and Conclusion

To the best of our knowledge, the implemented functionality is quite innovative
and enriches the CMS+S system with a very attractive feature: the possibility
to also perform temporal reasoning. Normally, the underlying description logic
by itself does not offer this possibility, but a special temporal extension to the
DL must be used. With our approach, the original DL may stay untouched, and
moreover the applied “temporal logic” must not be fixed, but may be extended or
modified according to individual needs and thus becomes highly modularisable,
as additional inference rules or entire logic formalisms may be added to the
temporal logic context without modifying the description logic parts of the MCS.

As next step we see an examination of the extendability of the used concept
to other modalities then time, e.g. place or possibility.

Moreover, the implementation of the enhanced functionality sketched in Sect. 7,
offering functionality for the diagnosis of possibly implicit inconsistencies in the
DL knowledge base, as well as for data completion purposes, is one of the main
topics on our agenda.

21 Also the lifetimes of “david” and “goliath” would be possible reasons for the incon-
sistency. Which proposal for the source of error to start with in the reviewing process
has to be decided application specific, or even some kind of “hypothetical reasoning”
handling alternate versions of the knowledge base may be performed (using the cor-
responding bridge rule models as identifiers and basis of the alternate possibilities
of knowledge base evolution).
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Abstract. Dynamic epistemic logic plays a key role in reasoning about
multi-agent systems. Past approaches to dynamic epistemic logic have
typically been focused on actions whose primary purpose is to communi-
cate information from one agent to another. These actions are unable to
alter the valuation of any proposition within the system. In fields such
as security, it is easy to imagine situations in which this sort of action
would be insufficient. We expand the algebraic framework presented by
M. Sadrzadeh [14] to include both communication actions and dynamic
actions that change the state of the system. Furthermore, we propose
a new modality that captures both epistemic and propositional changes
resulting from the agents’ actions.

1 Introduction

As the applications for epistemic logic and dynamic epistemic logic grow more
numerous and more diverse, we are faced with the challenge of developing logics
rich enough to model these applications but also flexible enough that they are not
limited to one particular application. Although it is unlikely that a one-size-fits-
all logic will work for every application, logics that incorporate more algebraic
structure make it easier to model a variety of situations without having to be
too explicit in the description of the situation. Once the underlying algebraic
structure of such a logic is in place, its algebraic constructs can be interpreted in
a variety of ways. For example, in the semantic web, where agents are constantly
interacting with each other and exchanging information, having a formal, alge-
braic model for how these exchanges take place, and what is exchanged is key to
reasoning about the security of a system. In this paper we focus on building a
robust algebraic model, which can then be interpreted in a variety of situations.

Epistemic Logic, the branch of logic dealing with knowledge and belief, was
first introduced by Hintikka in [10]. Hintikka gave a semantics for epistemic
logic that is a simple variation of Kripke’s semantics (see [11]), which was then
extended to model multi-agent systems by using accessibility relations for each
agent (see [5, 8, 7]). However, neither of these logics dealt with situations in which
the agents’ knowledge changes over time.
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Since then, many different approaches have been proposed to formalize the
dynamics of knowledge in multi-agent systems. In some cases dynamic modalities
(see [9]) are used in conjunction with model restriction (see [16, 6]) to alter
the structural properties of the Kripke model, and thus the agents’ knowledge.
In particular, a lot of focus has been put on logics in which actions take the
form of public announcements of propositions [16, 13]. While a lot can be done
using logics of this type, they have one major drawback: actions are necessarily
idempotent, meaning that announcing the same proposition twice will have the
exact same effect as announcing it once. However, the repetition of a statement
may actually convey information; an example of problem of this type is the
Muddy Children Puzzle (see [8]).

In [3, 14], the authors view actions as resources. This helps overcome the
issue of idempotent actions, thus opening the door to modelling more complex
scenarios. In [14], the dynamics of knowledge is represented by a proposition set
and action set with more algebraic structure than in previous logics.

In this paper, we expand the work from [14] and [3] by broadening the
algebraic framework they introduced to model knowledge in multi-agent systems.
In particular, previous work focused predominantly on communication actions
(see [14, 2, 5]). Our goal is to also model dynamic actions, which may change
the state of the system (and hence, the valuations of the propositions within
the system), in addition to conveying information. Such actions are important
in multi-agent systems in which planning has to occur.

The paper is organized as follows. In Sec. 2.1, we review Kripke structures
and how they are used to model agents’ knowledge. In Sec. 2.2 we describe in
detail the algebraic structures used to model multi-agent systems in [14]. In Sec.
3 we define systems with dynamic actions and present an example showing why
the model proposed in [14] does not work for such systems. In Sec. 4, we extend
the model presented in Sec. 2.2 to accommodate such situations, and revisit the
example. Finally in Sec. 5, we conclude and discuss possible extensions of this
work.

2 Preliminaries

2.1 Kripke Structures

Kripke structures are a common way of formalizing and connecting epistemic
concepts in multi-agent systems. They allow for the model to keep track of the
underlying state of the system, while also modelling which states (or worlds)
each agent deems to be possible.

Definition 1. A Kripke structure M for a set of agents A over a set of
propositions Φ is a tuple M = (W,V, {RA}A∈A) [5] where W is a set of states
(also called possible worlds), RA defines a binary relation on W (referred to as
the accessibility relation) for each A ∈ A, and V : is a valuation mapping
Φ→ P(W ).
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A proposition p is satisfied at a state (possible world) w in a Kripke structure
M (written as (M,w) � p) if and only if w ∈ V (p). In addition, (M,w) � ⊤,∀w
and (M,w) 2 ⊥,∀w. More complex propositions (conjunctions, disjunctions,
negation and implication) can be evaluated using propositional logic [5].

In Kripke structures, knowledge is modelled using the accessibility relation
RA defined over (W×W ). For each agent, if two worlds are related by the agent’s
accessibility relation, it means the agent is unable to tell them apart. More
specifically, if world w1 is related to world w2 by agent A’s modality (denoted
by w1RAw2), then when w1 is the case, A thinks that w2 is possible. In layman’s
terms, an agent “knows” a formula is true if the formula holds in all worlds it
thinks might be possible. Formally, (M,w) � KAϕ iff ∀w′ s.t. wRAw

′, (M,w′) �
ϕ. For any model M and agent A, we typically require that the knowledge
modality to satisfy the following axioms [5]:

A0 M � ϕ, then M � KAϕ (Knowledge generalization)
K M � (KAϕ ∧KA(ϕ⇒ ψ)) ⇒ KAψ (Distribution)
T M � KAϕ⇒ ϕ (Truth or knowledge axiom)
D M � KAϕ⇒ ¬KA¬ϕ (Consistency axiom)
4 M � KAϕ⇒ KAKAϕ (Positive Introspection)
5 M � ¬KAϕ⇒ KA¬KAϕ (Negative Introspection)

Depending on the applications, the axioms that the knowledge modality is
required to satisfy might change. Remarkably, almost all of these axioms cor-
respond to a single, specific property of the accessibility (RA) relations. The
properties of interest include reflexivity, symmetry, transitivity, Euclidity, and
seriality. Table 1 presents this correspondence.

Axiom Name Property

T M � Kiϕ ⇒ ϕ Truth or knowledge axiom Reflexive
D M � Kiϕ ⇒ ¬Ki¬ϕ Consistency axiom Serial
4 M � Kiϕ ⇒ KiKiϕ Positive Introspection Transitive
5 M � ¬Kiϕ ⇒ Ki¬Kiϕ Negative Introspection Euclidean

Table 1. Knowledge axioms and their corresponding properties

For many purposes, the correct choice is to require that RA be an equivalence
relation, meaning that RA must be symmetric, transitive and reflexive (and
consequently serial and Euclidean). In structures of this kind, two worlds are
indistinguishable if and only if the agent has the same information about each
world [5].

2.2 Intuitionistic Dynamic Epistemic Action Logic

Intuitionistic Dynamic Epistemic Action Logic (IDEAL) [14] is an algebraic
approach to dynamic epistemic logic, in which states are described entirely by
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the propositions they satisfy. By eliminating the state space and using the algebra
of the set of propositions, a much richer structure than just a set with a binary
relation becomes available, and with this added structure come new and useful
properties. In order for these properties to hold though, we must first equip
the set of propositions with sufficient algebraic structure. In particular, we will
construct a complete algebraic lattice.

At this point, it is useful to distinguish between the concepts of formulas and
propositions. To do this we define two sets: P (whose elements are denoted by
lower-case letters (p, q, ..)) is a finite set of atomic propositions, and Φ a set of
formulas built from Boolean combinations (∧,∨,¬, ...) of propositions in P . The
only requirement placed on Φ is that it must contain all propositions in P and
be closed under conjunction. Other entailment axioms may be added as needed.

We will build the lattice on the set Φ, because its nature suggests an obvious,
non-trivial notion of order: entailment. Entailment is a preorder on Φ, such that
for ϕ,ψ ∈ Φ, ϕ ⊑ ψ if and only if ϕ entails ψ. It is clear that the properties
of a preorder (reflexivity and transitivity) are satisfied by ⊑. We also include a
least and greatest element in Φ (⊥ and ⊤ respectively) to ensure that all pairs of
elements (and thus all sets) have a least upperbound and a greatest lowerbound.

Recall that (Φ,⊑) is only a preorder and thus may not be anti-symmetric (a
requirement if we are building a lattice). To resolve this issue, we use filters to
construct a complete algebraic lattice of formulas (M,≤), which preserves the
natural entailment relation on the propositions but is now equipped with the
structure of a complete algebraic lattice. Now we describe how actions interact
with this lattice, and eventually how it relates to knowledge.

Unlike Kripke structures (where the valuation V is fixed), the sorts of sys-
tems we wish to model are those in which the actions serve two purposes: first,
they modify the underlying valuation functions of the system and second, they
allow agents to communicate information to one another. We will address the
communication aspect later, as it must be considered from the perspective of a
particular agent.

The idea that actions can modify the valuation of propositions can be ex-
pressed in terms of operators on the lattice. We define the action set Q to be a
monoid (it is labelled Q rather than A to avoid confusion with agent names),
where ; is concatenation. In some cases it makes sense to equip this monoid with
a partial-order structure, in which case it becomes a quantale [14]. However, in
this paper we consider the action set Q to be a monoid without any underlying
order. Together, the action monoid and the lattice of formulas are referred to as
a system.

Definition 2. A system is a pair (M,Q) where M is a lattice and Q is a
monoid acting on M [14]. Each element q ∈ Q defines a mapping q : M → M
such that :

1. q(
∨

imi) =
∨

i(q(mi)), ∀mi ∈M (q preserves joins)
2. ǫ(m) = m,∀m ∈M (the unit of the monoid is the identity operator on M)
3. (q1; q2)(m) = q1(q2(m)) (the mapping is associative over the binary operation

of the monoid).
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Since each action q ∈ Q is an join-preserving endomorphism of a complete
algebraic lattice (M), it must have a right adjoint. This adjoint, denoted by
[q] : M → M , is defined as: [q]m =

∨{m′ ∈ M |q(m′) ≤ m}, i.e., the join of all
formulas m′ which, when acted on by q, result in m being true. In other words,
m′ is the weakest precondition, or dynamic modality [14]. Formally, the dynamic
modality adjoint i as follows:

q(m′) ≤ m

m′ ≤ [q]m
(1)

If the action set is a quantale, it is possible to define other adjoints as well [14],
but the dynamic modality is the one most frequently used in defining and rea-
soning about epistemic systems.

In Kripke structures (as defined in Sec. 2.1), the agents’ uncertainty as to
which propositions are true was reflected in the fact that agents found certain
sets of states indistinguishable. In epistemic systems, we approach uncertainty
in a different manner, using the complete algebraic lattice of formulas instead
of accessibility relations. For example, if an agent A is unable to distinguish
between the times when m and m′ hold (for some m,m′ ∈ M), we say that
when m is true, it appears to the agent that m ∨ m′ is true. This notion is
formalized as an appearance map.

Definition 3. An appearance map for an agent A is an endomorphism fA :
M →M with the following properties:

1. fA is increasing: m ≤ fA(m),∀m ∈M .
2. fA is monotone: m1 ≤ m2 ⇒ fA(m1) ≤ fA(m2).
3. fA is idempotent: fA(fA(m)) = fA(m),∀m ∈M .
4. fA is join-preserving: fA(m1 ∨m2) = fA(m1) ∨ fA(m2).

The appearance map fA is defined with respect to a specific agent, A. Fur-
thermore, properties 1-3 make fA a closure operator. In the context of epistemic
systems, these properties have very specific meanings. Property 1 says that fA

is obscuring information in some way, as fA(m) is at most as informative as
m (recall that M is ordered by entailment). Property 2 says that fA is order-
preserving: if m1 was more informative than m2 (m1 ≤ m2), then when fA is
applied to both propositions, fA(m1) will be more informative than fA(m2).
Property 3 says that no additional information can be gained (or lost) by ap-
plying fA repeatedly. Finally, property 4, together with property 2 and the fact
that fA is an endomorphism of a complete lattice, tells us that fA must have
a right-adjoint. In the framework presented here, we define this adjoint to be
knowledge and therefore denote it by KA.

Definition 4. Knowledge is the right-adjoint of the appearance map, and is
defined as follows:

fA(m1) ≤ m2

m1 ≤ KAm2
(2)

Additionally, the following holds: m ≤ KAfA(m)
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We claim that the (fA,KA) adjoint pair is the connection between how the
world appears to an agent and what the agent knows. Indeed, one can interpret
the first equation in Def. 4 as saying: If agent A’s view of m1 entails m2, then
whenever m1 holds in reality, it follows that agent A knows m2. Because the
properties of fA induce analogous properties of KA, we can capture some of
the properties of knowledge (as described in Section 2.1). For example, posi-
tive introspection (KAm ⇒ KAKAm) follows from the fact that ≤ is reflexive
(KAm ≤ KAm) and fA is the idempotent left adjoint to KA [14]. In systems
where the action set is a quantale, it is possible to define an appearance map
on the actions as well [14]. For the purpose of this work though, we assume
that all actions are visible to all agents (the appearance map on the action set is
the identity mapping). We can now modify the definition of a system to include
appearance maps, which are key to modelling epistemic situations.

Definition 5. An epistemic system is a tuple (M,Q, {fA}A∈A) where (M,Q)
is a system as defined in Def, 2) and {fA}A∈A is a set of appearance maps for
each agent A ∈ A [14].

Embedded within this epistemic system are two modalities in the form of Ga-
lois adjoints: the dynamic modality (q, [q]), and the knowledge modality (fA,KA).
It remains to be shown how these two concepts interact. More specifically, since
actions are not necessarily increasing on M , we do not know for any arbitrary
q ∈ Q,m ∈ M how q(m) relates to m. Because of this, it is not possible to
derive how fA(m) relates to fA(q(m)). In [14], the following update inequality
was defined to specify this connection:

fA(q(m)) ≤ q(fA(m)) (3)

Intuitively this means that for an agent, observing the execution of an action q
should be at least as informative as imagining the outcome of the action.

3 Games with Fact-Changing Actions

Automata games are a concept derived from automata theory, involving one or
more agents and an automaton (a finite-state transition system). This system
can be deterministic or not. In the deterministic case, the system is defined by a
triple (S,Act, {τq}q∈Act) where S is the state set and Act is the action set. The
dynamics of the system is defined by mappings τa : S → S, such that τq(s) = t
if and only if taking action q from state s causes a transitions to state t. τq does
not need to be total (some actions may be disabled in certain states).

These systems can be the setting of a variety of epistemic tasks. Even when
the underlying structure of the system is common knowledge, there are still
epistemic tasks that can be studied, starting with the localization task (finding
the current state), which can be extended to learning in which state the agent
started, or “steering” the system to reach or avoid certain states. All of these
tasks are useful in multi-agent systems as well, highlighting the need to study
these systems from an epistemic perspective.
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Given a transition system (S,Act, {τq}q∈Act), we begin by defining the propo-
sition set. In the case of localization, we take the atomic proposition set P to
be S ∪ {⊤,⊥}. From here we build our module M using filters as described
before (see Sec. 2.2). For the action set, we use again the structure inherited
from the transition system and define Act to be the set of atomic actions. From
Act we can define a monoid Q = Act∗, equipped with an identity element ǫ and
an composition function ; : Q → Q such that for q1, q2 ∈ Q, q1; q2 = q1q2 (the
concatenation of the two action sequences).

Next we establish the manner in which the action set Q acts on the module
of propositions, M . At an atomic level, this is already defined by the transition
function τ . To make τq a total function, we simply extend it such that if the
action q is not enabled at a state s, then τq(s) = ⊥. Furthermore, note that from
Def. 2, the way sequences of actions (i.e. non-atomic actions) act on propositions
is defined entirely by the composition of the atomic actions in the sequence.
Hence, to characterize the effects of the action monoid Q, it is sufficient to
define the effects of atomic actions on the proposition set.

First, we define the identity element ǫ ∈ Q, such that ǫ(m) = m, ∀m ∈ M .
Then, for any atomic action q ∈ Act, we have the following:

– q(⊤) =
∨

s∈S q(s) (Recall that the proposition set P = S ∪ {⊤,⊥}).
– q(⊥) = ⊥.
– q(s) = τq(s) where s is an atomic proposition (s ∈ S ⊂ P ).
– q(m1 ∨m2) = q(m1) ∨ q(m2) where m1,m2 ∈M .
– q(m1 ∧m2) = q(m1) ∧ q(m2) where m1,m2 ∈M .

Finally, we have to define appearance maps and knowledge. For the purpose of
the following example, we assume that the underlying structure of the transi-
tion system is common knowledge to all agents. Thus, by observing the actions
available to it at any given time, an agent will be able to rule out certain states.
To formalize this concept, we define a function en : S → P(Act) defined by

en(s) = {q ∈ Act|τq(s) 6= ⊥}. (4)

en(s) gives the set of actions which are enabled at state s. Now we can use the
enabled function to define appearance maps for atomic (state) propositions:

fA(s) =
∨
{t ∈ S|en(s) = en(t)}. (5)

That is, when the agent is actually in the state s (and thus proposition s holds),
it appears to the agent as though it might be in any state in which the en-
abled actions match those enabled in s. We also have that fA(⊥) = ⊥ (if an
illegal action occurs, everyone sees it) and fA(⊤) = ⊤ (this follows from the
fact that appearance maps are increasing). Since appearance maps are join pre-
serving as well, we can define how they act on disjunctions of state proposi-
tions entirely by specifying their behaviour on atomic propositions: fA(s ∨ t) =
fA(s) ∨ fA(t) for any s, t ∈ S.
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As was the case with the actions, each appearance map fA has a right adjoint
(fA ⊣ KA) which models the agent’s knowledge:

fA(m) ≤ m′

m ≤ KAm′ . (6)

3.1 Example

To illustrate the epistemic nature of automata games, and the way IDEAL works,
we present a simple example, to which we will return throughout the rest of the
paper. Consider the automaton in Fig. 1, in which there is only one agent trying
to learn its location in the system. For simplicity, we omit the subscripts on the
appearance maps and refer to the single agent’s appearance map and knowledge
operator as f and K respectively.

As depicted in Fig. 1, the environment is a simple four-state world (S =
{s1, s2, s3, s4}) with two possible actions (Act = {a, b}). However, these two
actions are not enabled in every state. In particular, states s3 and s4 are dead
states, meaning they have no outgoing transition arrows. In other words, en(s3) =
en(s4) = ∅. On the other hand, states s1 and s2 have both actions enabled, thus
en(s1) = en(s2) = {a, b}. Note that although both actions are enabled in both
states, they do not have identical outcomes. In particular, taking an a action from
state s1 leads to a dead state (s4), whereas taking an a action from state s2 leads
to state s1. There is no way to know the exact outcome of an action before it

s2 s3

s4s1

a b

b

a

Fig. 1. The transition system for an automaton game

has been taken. This is where the appearance maps come in. Recall that we de-
fined appearance maps for automata games as f(s) =

∨{t ∈ S|en(t) = en(s)}.
Applying this definition to the example, we see that f(s1) = f(s2) = s1 ∨ s2,
and f(s3) = f(s4) = s3 ∨ s4. Prior to taking an action, the agent can only base
its knowledge on the actions available to it, and thus cannot distinguish between
states s1 and s2 even though they behave differently under both actions.

Now let us investigate what happens after an a action is taken from state s1.
Recall that prior to taking the action, the agent could not know it was in state s1
(because f(s1) = s1 ∨ s2 and applying the knowledge adjoint, s1 ≤ K(s1 ∨ s2) �
Ks1). To determine exactly where in the system it is, the agent must use the
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actions available to it. Since the structure of the system is common knowledge,
it is easy to enumerate all possible results of an a action. In this case, if the
agent believes it may be in state s1 or s2, it knows an a action will lead to state
s4 (if s1 was the initial state) or state s1 (if s2 was the initial state). What we
have just calculated is a(f(s1)). However, it is only after the action has been
executed that the agent will learn which of the two scenarios have occurred. If
the agent truly started in state s1, it ends up in a dead state after an a transition
and ascertains (by means of the appearance map) that the current state must
be s3 or s4 (this is the calculation for f(a(s1))). To state formally what was just
described:

– a(f(s1)) = a(s1 ∨ s2) = a(s1) ∨ a(s2) = τa(s1) ∨ τa(s2) = s4 ∨ s1
– f(a(s1)) = f(s3) = s3 ∨ s4

First and foremost, note that these elements of M are incomparable. That
is, s4 ∨ s1 � s3 ∨ s4, and likewise s3 ∨ s4 � s4 ∨ s1. Hence the update inequality
(Eqn. 3) is not applicable to this situation. Even more curious though, is the fact
that neither of these propositions tells the whole story. Indeed, if a human were
put in this position, he or she would be able to put these two pieces together
and determine the exact location, ruling out s3 since it cannot be reached on an
a transition.

This sort of knowledge cannot be obtained by “imagining” the outcome of an
action (a(f(s1))), or by “forgetting” that the action occurred and looking only
at the resulting proposition (f(a(s1))). Instead, these two concepts need to be
combined and actions must be remembered in some way. In order to model this
situation effectively, appearance maps must be allowed to change as a result of
the agents’ actions.

4 Dynamic Appearance Maps

We would like to combine the rich algebraic structure of epistemic systems with
the versatility of Kripke structures. The reason Kripke structures are able to
model complex epistemic situations is that the equivalence relations upon which
the agents’ knowledge is based change over time. This means that even if the
state of the system remains constant, the states that each agent believes possible
(and hence the agent’s knowledge) change as the agent observes the game.

Applying this idea to our framework means that even if the execution of an
action q does not alter the valuation of a proposition m, we do not require the
agent’s appearance map of m to be fixed as well. In other words, the actions, in
addition to acting on propositions, also alter appearance maps. This is analogous
to the way equivalence relations in Kripke structures change over time but also
allows us to preserve the algebraic structure of epistemic systems.

We will now introduce an extension of the epistemic system that captures the
idea that agents’ knowledge can change even when the underlying propositions
do not. Let F : M →M be the set of all possible appearance maps.
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Definition 6. An extended epistemic system for a set A of agents is a
tuple (M,Q, {fA|A ∈ A}, {q̂|q ∈ Q}), where (M,Q, {fA|A ∈ A}) is an epistemic
system as defined previously and q̂ (q ∈ Q) defines a mapping F → F describing
how an agent’s appearance map changes after a q action is executed.

We must now address the issue of knowledge. Because the definition of knowl-
edge modality rests on that of the appearance map, a change in the appearance
map will result in a change in knowledge. Previously it was sufficient to say that
m ≤ KAm

′, meaning that whenever m held, agent A knew m′ to be true. Clearly
this is no longer the case as illustrated by the example. An agent’s knowledge now
depends not only on the propositions that hold, but also on the actions which
have occurred, and this must somehow be reflected in the knowledge modality.
In order to do this, we introduce a new adjoint relationship:

q̂(fA)(m) ≤ m′

m ≤ Kq
Am

′ (7)

First, note that q̂(fA) ∈ F is itself an appearance map and thus has a right
adjoint. This adjoint, Kq

A, looks very similar to the initial knowledge modal-
ity but depends on the actions that have occurred.The next step is to define
exactly how these actions modify the agents appearance maps. To do this, we
introduce a new concept, backward actions, and use it to define an update in-
equality analogous to Eqn. 3. Backwards actions are operators acting on the
module of propositions. They serve the purpose of allowing the agent to reason
retroactively. Every atomic action q ∈ Act has a corresponding backwards ac-
tion, denoted by \q. Non-atomic actions, that is, concatenations of two or more
atomic actions, also have corresponding backwards actions, which are defined
inductively:

– \ǫ = ǫ (The backwards action corresponding to the empty action sequence
is the empty action sequence.)

– For any action sequence α = β; q such that α, β ∈ Q, q ∈ Act, \α = \q; \β

(Note that the order is of the actions is reversed: the last action in the
original sequence is the first in the backward action sequence).

Backwards actions distribute over meets and joins so (m1 ∨m2)\q = m1 \q

∨m2\q and (m1∧m2)\q = m1\q∧m2\q, ∀m1,m2 ∈M . Also,⊥\q = ⊥. It remains
to describe how backwards actions act on elements of the atomic proposition set
P . This is where the distinction between backwards actions and normal actions
becomes apparent:

Definition 7. Backwards Actions:

p\q =
{
p if ∃m ∈M,m 6= ⊥ s.t. q(m) ≤ p
⊥ otherwise (8)

So for any proposition p ∈ P , p\q ≤ p if and only if p holds after taking a q
action
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Note that backwards actions are decreasing, that is, for all m ∈M , m\q ≤ m.
This follows from the fact that backwards actions either leave atomic proposi-
tions unaltered or result in a contradiction (⊥). Using backwards actions, we
define a new update inequality which defines how normal actions should modify
appearance maps in extended epistemic systems.

Definition 8. Update Inequality:

q̂(fA)(m) ≤ fA(q(m))\q (9)

In order to explain this update inequality, we will look at each part separately.
First, recall that the left-hand side of the equation is simply the revised appear-
ance map q̂(f)(m). If initially m holds, then q̂(f)(m) specifies how the world
appears to the agent after taking a q action. Clearly, q̂(f)(m) ≤ f(q(m)), that
is, after taking a q action when m held initially, the agent should have at least
as much information about its environment as it would if it ignored the action
itself and simply looked at the resulting proposition, q(m).

However, we can say something even stronger. Recall that backwards actions
are decreasing and thus, f(q(m))\q ≤ f(q(m)). f(q(m))\q can be viewed as
follows: take the appearance map of the resulting proposition q(m) and apply
the backwards action \q. This allows us to eliminate any disjuncts of the formula
f(q(m)) that are not consistent with the fact that the last action taken was an
q. In other words, we are remembering the action and its effects without having
to keep track of entire action sequences.

4.1 Example

We now revisit our example from Section 2.2, Fig. 1. Recall that the goal of this
example was to be able to prove statements of the form: s1 ≤ [a]Ks4 (if the
agent is in state s1, after an a action, it will know that it is in state s4). We
will do this by using dynamic appearance maps and their resulting knowledge
modalities, which allow us to explicitly incorporate the observation of an action.
Hence it suffices to show that: s1 ≤ Kas4

From here we can apply the dynamic knowledge adjoint (â(f),Ka) and see
that it is enough to prove â(f)(s1) ≤ s4. However, we do not know exactly how
that â action affects the appearance map, as this is not explicitly defined in the
formalism. However, we know that it must respect the revised update inequality:
â(f)(s1) ≤ f(a(s1))\a.

Thus, it suffices to show that f(a(s1))\a ≤ s4. To this end, we evaluate the
left-hand side of the equation and find that a(s1) = τa(s1) = s4. Applying the
appearance map f to this result, we get that f(s4) =

∨{s ∈ S|en(s) = en(s4)} =
s3 ∨ s4. since s3 and s4 are both dead states with no actions enabled. Then we
apply the backwards a-action and find that (s3 ∨ s4)\a = ⊥ ∨ s4 ≤ s4. We have
now shown that â(f)(s1) ≤ s4 by way of the dynamic knowledge adjoint and the
revised update in equality. It follows then, that s1 ≤ Kas4.
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5 Conclusions and Future Work

The main contribution of this work is to broaden the algebraic framework de-
veloped in [14] and [3] to include actions which are both communicative and
dynamic in nature. To understand the effect these actions on agents’ knowl-
edge, we introduced the notion of dynamic appearance maps along with a new
modality that captures both the epistemic and non-epistemic dynamics of the
system.

There is a striking similarity between the backward actions defined in Section
4 and the model restriction process used in Public Announcement logic (see [16]).
It would be interesting to further explore this similarity and see what the equiv-
alent of the backwards action and the newly defined knowledge modality (Kq

A)
are in Kripke semantics. Exploring the coalgebraic properties of backwards ac-
tions, as the authors of [14, 12] did for the knowledge modality, would also be
informative.

Another possible extension is the development of a proof system. In [14], in
order to prove the soundness and completeness of IDEAL, the author develops
a sequent calculus not unlike that of propositional dynamic logic (see [9]). The
sequent calculus makes it possible to formalize the axioms of the logic as rules of
inference including the epistemic update. In this way, it is possible to prove the
soundness and completeness of the proof system with respect to the algebraic
semantics.

The most exciting extensions to this work deal with building a richer dy-
namic logic. There are a couple of ways in which our logic could be enriched.
The first is through the introduction of new modalities. The algebraic structure
of our logic provides a framework for introducing new modalities without hav-
ing to rethink the entire system. This is especially important when dealing with
security protocols. While several logics [4, 15] have been developed for reason-
ing about authentication protocols, they tend to be very specialized and often
a new protocol requires a new logic. It is hoped that the algebraic structure of
our logic will provide a framework in which various security protocols can be
modeled effectively, with only slight alterations needed to accommodate each
protocol. Another extention to this work would be to enrich the logic by equip-
ping it with a description logic to model objects and properties [1, 17] . This
combination, a strong algebraic framework for modeling change, and a strong
knowledge representation for interpreting the outcomes of these actions, would
provide an ideal setting in which to reason about complex multi-agent systems.
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A MapReduce Algorithm for EL+
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Abstract. Recently, the use of the MapReduce framework for distribu-
ted RDF Schema reasoning has shown that it is possible to compute the
deductive closure of sets of over a billion RDF triples within a reason-
able time span [22], and that it is also possible to carry the approach
over to OWL Horst [21]. Following this lead, in this paper we provide
a MapReduce algorithm for the description logic EL+, more precisely
for the classification of EL+ ontologies. To do this, we first modify the
algorithm usually used for EL+ classification. The modified algorithm
can then be converted into a MapReduce algorithm along the same key
ideas as used for RDF schema.

1 Introduction

The realization of Semantic Web reasoning is central to substantiating the Se-
mantic Web vision [8]. By its very nature, automated reasoning requires a formal
representation of knowledge, and in the Semantic Web at least RDF [14] and
OWL [9] are two languages commonly used for this purpose. OWL, which is
essentially the description logic SROIQ, is considerably more expressive than
RDF, and reasoning with it is therefore computationally more expensive. How-
ever, restricted profiles of OWL 2 (including OWL 2 EL, which is essentially
the description logic EL++ [2]) have been developed [15], and for each of these
polynomial time algorithms exist for standard inferencing tasks.

There is a large amount of data that is exposed on the Web in RDF and OWL
formats. E.g., in a recent discussion of Linked Open Data [5], it is estimated that
there are approximately 4.7 billion RDF triples on the Web interlinked by 142
million RDF links.1 Reasoning with such large amounts of data is inherently
difficult due to the high computational complexity of RDF and OWL reasoning.
At the same time, however, it has been argued that the Linked Open Data cloud
is in need of more expressive schema knowledge, knowledge of a sort expressible
in OWL [10]. In order to reason with such data, scalable reasoning algorithms
are essential, and parallelization of reasoning is one of the obvious routes to
investigate in achieving the required scalability.

The present paper describes the first steps in an effort toward achieving that
end. Specifically, we present a parallel algorithm for classifying EL+ontologies
using MapReduce, which is a programming model and software framework for
1 Some OWL is used as well, usually for indicating that two resources should be

considered equal, using owl:sameAs.
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distributed processing of data on clusters of machines. In doing so, we follow the
lead of [21, 22], where the MapReduce framework was successfully applied for
computing RDF Schema closure and for reasoning with OWL Horst.

These publications are part of a recent trend in Semantic Web reasoning
to explore parallelization of reasoning tasks. Some of the most notable recent
developments are the use of the MapReduce framework for RDF [19, 21, 22],
using distributed hash tables for RDF Schema [11], the MaRVIN peer-to-peer
platform for RDF [16], and the approach in [23] for parallel computation of
RDF Schema closures. However, there is relatively little work on attempting to
carry these successes over to OWL reasoning, apart from some investigations into
OWL Horst [18, 21], OWL RL [13], distributed resolution for SHIQ ontology
networks [17], and some preliminary investigations [1, 6].

The remainder of the paper is structured as follows. Background information
on EL+ and the MapReduce framework is provided in Section 2, and the new
algorithm is described in Section 3. An example illustrating how the algorithm
works is also given. Section 4 concludes with directions for future research.

Acknowledgements. We thank Keke Chen, Frank van Harmelen, Spyros Ko-
toulas and Jacopo Urbani for helpful discussions.

2 Preliminaries

2.1 The Description Logic EL+

Concepts in EL+ [3, 4, 2] are formed according to the grammar

C ::= A | > | C uD | ∃r.C,

where A ranges over concept names, r over role names, and C,D over (possibly
complex) concepts. An EL+ ontology is a finite set of general concept inclusions
(GCIs) C v D and role inclusions (RIs) r1 ◦ · · · ◦ rn v r, where C,D are
concepts, n is a positive integer and r, r1, . . . , rn are role names.

The CEL algorithm [4] performs classification of an EL+ ontology, i.e., it
computes the complete subsumption hierarchy between all concept names oc-
curring in the ontology. Classification is one of the standard reasoning tasks.
The algorithm first transforms the ontology into normal form, which requires
that all concept and role inclusions are of one of the forms shown in the left part
of Figure 1. This can be done in linear time [2]. For the remainder of the paper,
we assume that input ontologies are in normal form.

The algorithm is formulated in terms of two mappings S and R, where S(X)
maps a class name X to a set of class names, and R(r) maps each role name r to a
set of class name pairs. Intuitively, B ∈ S(A) implies A v B, and (A,B) ∈ R(r)
implies A v ∃r.B. For purposes of the algorithm, > is taken as a concept name.
The mappings are initialized by setting S(A) = {A,>} for each class name A
in the input ontology O, and R(r) = ∅ for each role name in O. The sets S(A)
and R(r) are then extended by applying the completion rules shown in the right
part of Figure 1 until no rule is applicable.
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Normal Form Completion Rule

A1 u · · · uAn v B R1 If A1, . . . , An ∈ S(X), A1 u · · · uAn v B ∈ O, and B 6∈ S(X)
then S(X) := S(X) ∪ {B}

A v ∃r.B R2 If A ∈ S(X), A v ∃r.B ∈ O, and (X,B) 6∈ R(r)
then R(r) := R(r) ∪ {(X,B)}

∃r.A v B R3 If (X,Y ) ∈ R(r), A ∈ S(Y ), ∃r.A v B ∈ O, and B 6∈ S(x)
then S(X) := S(X) ∪ {B}

r v s R4 If (X,Y ) ∈ R(r), r v s ∈ O, and (X,Y ) 6∈ R(s)
then R(s) := R(s) ∪ {(X,Y )}

r ◦ s v t R5 If (X,Y ) ∈ R(r), (Y,Z) ∈ R(s), r ◦ s v t ∈ O, (x, Z) 6∈ R(t)
then R(t) := R(t) ∪ {(X,Z)}

Fig. 1. The CEL algorithm for EL+

The algorithm is guaranteed to terminate in polynomial time relative to the
size of the input ontology, and it is also sound and complete: after termination,
B ∈ S(A) if and only if A v B holds, for all class names A and B.

2.2 MapReduce

MapReduce is a programming model for distributed processing of data on clus-
ters of machines (each machine being called a node) [7]. The data set to be
processed is divided into multiple chunks, and each chunk is assigned to an idle
node. There are three different types of node, and each type has its own function.

Master: The Master node assigns chunks to Map nodes and passes the inter-
mediate output locations to Reduce nodes. It also takes care of node failures.

Map: Map nodes accept data chunks from the Master and generate intermediate
output according to a user-defined function. In its general form, the function
accepts a key-value pair and returns a set of key-value pairs. The output pairs
are typically written to a local disk, and the location of these is returned to
the Master. The functionality of Map nodes can be represented as

Map : (k1, v1) 7→ list(k2, v2).

Reduce: Reduce nodes are notified of the locations of intermediate output.
They group values by key, and then process the values according to a user-
defined Reduce function. One or more output values is produced. The general
process can be represented as

Reduce : (k2, list(v2)) 7→ list(v3).

There are several prominent implementations of the MapReduce model.2

Using them, developers need only define the Map and Reduce functions. Lower
level and administrative tasks, such as allocating data to nodes and recovering
from failures, are handled by general purpose components of the system.
2 E.g., Hadoop (http://hadoop.apache.org/) is a popular Java implementation.
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3 MapReduce for EL+

We follow the lead of [22], which describes a MapReduce algorithm for comput-
ing RDF Schema closures. However, since the completion rules from Figure 1
are structurally more complicated than the RDF Schema completion rules, we
cannot straightforwardly adopt their approach. In the submitted paper [21], the
authors extend their approach to OWL Horst [20], facing structurally similar
problems. However, due to the specific knowledge bases they are looking at,
they choose a solution which is not applicable in our case. We will return to this
discussion in Section 3.2, after presenting our algorithm.

3.1 Revising the CEL algorithm

Considering the completion rules in Figure 1, it is rather straightforward to cast
rules R2 and R4 into a MapReduce format, and we will see in Section 3.2 how
this is done. Rules R1, R3, and R5, however, cannot be transformed directly,
and so we first give an alternative formulation of the CEL algorithm. The rules
of the reformulated algorithm are cast into a MapReduce format in Section 3.2.

The reformulation requires an additional function P (which stands for Par-
tial) and an extension of the function R. These serve to split some of the com-
pletion rules from Figure 1 into two rules, explained shortly.

The function P maps each class name X (including >) to a set of pairs (A,B),
where A and B are class names (again including >). Intuitively, (A,B) ∈ P (X)
implies A uX v B. Initially, P (X) is set to ∅ for each X.

R is extended to map expressions of the form r ◦ s, for role names r and s,
to pairs of class names (possibly including >). The intuition remains the same,
however: (A,B) ∈ R(r ◦ s) implies A v ∃(r ◦ s).B. The latter expression is not
a valid EL+ expression, but it is semantically unproblematic. Furthermore, it
causes no problems in the algorithm, since we do not formally deal with such
expressions, and in particular they are not allowed in the input ontology.

We also require another normalization step: Each axiom of the form A1 u
· · ·uAn v A, for n > 2, is replaced by n−1 axioms A1uA2 v N1, N1uA3 v N2,
. . . , Nn−2 u An v A, where all Ni are class names not occurring anywhere else
in the final knowledge base. This transformation obviously retains the original
subsumption hierarchy between named classes of the original ontology.

Our revised algorithm for EL+ is now identical to the algorithm presented
in Section 2.1, except that the completion rules from Figure 1 are replaced with
those in Figure 2, and the input is now required to be in the modified normal
form. The algorithm terminates if no application of any of the rules extends any
of the sets S(X), R(r), P (X), or O.

Let us explain the rationales behind the new completion rules. The original
rule R1 can be simulated by subsequent applications of R1-1 and R1-2 (note
that an inclusion axiom of the form A v B—that is, where n = 1—is covered
by R1-2 alone). At the same time, output produced by applying R1-1 is only
used in the precondition of R1-2, and so it does not have any other effect on
the outcome of the overall algorithm. Rule R2 is left untouched apart from

Raghava Mutharaju, Frederick Maier and Pascal Hitzler. 459



Normal Form Completion Rule Key

A1 uA2 v B R1-1 If A1 ∈ S(X) and A1 uA2 v B ∈ O A1

then P (X) := P (X) ∪ {(A2, B)}
(A,B) ∈ P (X) R1-2 If A ∈ S(X) and ((A,B) ∈ P (X) or A v B ∈ O) A

then S(X) := S(X) ∪ {B}
A v ∃r.B R2 If A ∈ S(X) and A v ∃r.B ∈ O A

then R(r) := R(r) ∪ {(X,B)}
∃r.A v B for A R3-1 If A ∈ S(X) and ∃r.A v B ∈ O A

then O := O ∪ {∃r.X v B}
∃r.A v B for r R3-2 If (X,Y ) ∈ R(r) and ∃r.Y v B ∈ O r (or Y )

then S(X) := S(X) ∪ {B}
r v s R4 If (X,Y ) ∈ R(r) and r v s ∈ O r

then R(s) := R(s) ∪ {(X,Y )}
r ◦ s v t R5-1 If (X,Z) ∈ R(r) and (Z, Y ) ∈ R(s) Z

then R(r ◦ s) := R(r ◦ s) ∪ {(X,Y )}

Fig. 2. Revised CEL algorithm for EL+. The keys are used in the MapReduce algo-
rithm. Note that in R4, r is allowed to be compound, i.e., of the form s ◦ t.

removing the precondition (X,B) 6∈ R(X), which is used only for termination
purposes. Since we have reworded the termination condition, there is in effect
no difference between the two versions of the rule. The reason for rewording is
that the new termination condition is more easily cast into MapReduce format.
The original rule R3 can be simulated by subsequent applications of R3-1 and
R3-2. Rule R3-1 introduces new axioms into O, but since the new axioms are
logical consequences of the knowledge base, they do not affect soundness or
completeness of the algorithm. Note that this also does not cause any problems
with respect to termination, since there is a finite upper bound3 on the number
of possible axioms of the form ∃r.X v B. Rule R4 is again left unchanged, apart
from the fact that it now also applies to compound expressions of the form s ◦ t.
Note, however, that this extension of R4 is semantically sound, and so it does not
affect the correctness of the algorithm. The original rule R5 can be simulated
by subsequent application of R5-1 and R4—the latter in this case using the
extended form with composed roles. The newly introduced output produced by
applying R5-1 is sound, and so the correctness of the algorithm is again left
unaffected.

It is straightforward to show formally that our revised algorithm is indeed
sound, complete, and terminating. It is also of polynomial worst-case complexity
in the size of the input ontology; this can be shown easily along the lines of
argument for the algorithm presented in [3] for EL++.

3 The upper bound is k · l2, where k is the number of role names, and l is the number
of class names (including >) in O.
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3.2 Parallelization using MapReduce

We now convert the completion rules of Figure 2 into MapReduce algorithms
computing the closure of O, S, R and P . Initialization is done by setting S(A) =
{A,>} and P (A) = ∅, for each class name A (including >), and R(r) = ∅ for
each role name r. In the discussion below, we freely switch between viewing S,
R, and P as maps and viewing them as sets, and we slightly abuse terminology
by referring to all expressions of the form A ∈ S(X), (A,B) ∈ P (X) or (X,Y ) ∈
R(r), in addition to all elements of O, as axioms.

The completion rules are applied in an iterative manner, picking one rule to
apply in each iteration. The rules are interdependent and the results of previous
iterations are reused in subsequent iterations. This is realized by adding the
outputs of each iteration to the database where O, S, R and P are stored.

The general strategy that is followed by all the algorithms is given in Fig-
ure 3. The set of axioms (taken from O, S, P , and R) forms the input. This set
is divided into multiple chunks, and each chunk is distributed to different com-
puting nodes. These first act as map nodes and then as reduce nodes, thereby
completing the parallel application of one of the completion rules.

To give a concrete example, consider rule R2. Each map node first identifies,
in its input chunk, all axioms of the form A ∈ S(X) and A v ∃r.B and then
outputs them as key-value pairs 〈A,A ∈ S(X)〉 and 〈A,A v ∃r.B〉, respectively.
In the reduce phase, all pairs with key A end up in the same reduce node, which
can then complete the application of R2 by adding to R.

This idea of casting completion rules into MapReduce closely follows [22].
Note, however, that the rules R1, R3, and R5 from the original CEL algorithm
cannot directly be dealt with using this approach, since each of them has three
preconditions which do not share a common element which could be used as
a key for the reduce phase. In [21], which deals with OWL Horst, a similar
problem occurs, and the authors deal with it by performing part of the operation
in-memory using a central store. This is made possible because of the specific
form of the problematic completion rules for OWL Horst, where one of the
preconditions is always a schema axiom, and because of the specific applications
the authors have in mind, where there is much less schema knowledge than facts.
Note that we cannot adopt this approach for EL+, since a separation along
similar lines would hardly be reasonable for studying classification in EL+. We
hence choose to provide a generic algorithm, based on the revised CEL algorithm.

We refrain from giving detailed descriptions of the MapReduce algorithms
corresponding to all of the completion rules in Figure 2. We do give details for
rules R1-1 and R1-2 in Figures 4 and 5, however. The remaining rules are dealt
with in a completely analogous manner, using the keys shown in Figure 2.

The behavior of R1-1 and R1-2 can be illustrated using the below axioms.

A u B v C
A v B
A v D
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ComputeClassificationSet()
{
1. Each node takes a subset of all axioms as input and computes additional elements

for O, S, R or P , depending on the completion rule which is applied.

(a) In the Map phase, based on the rule that is applied in the current iteration,
the set of axioms which satisfy any one of the preconditions of the rule are
found and given as output. In the output 〈key, value〉 pairs, key is the concept
or relationship which is common to both the preconditions of a rule (as indi-
cated in Figure 2). The value is the corresponding axiom (which satisfies the
precondition).

(b) In the Reduce phase, all axioms belonging to the same key are collected from
different nodes and conclusions of the completion rule are computed according
to the completion rule, taking all valid combinations of axioms into account.

2. All outputs are stored in the database, unless they are already contained in it.
3. Call ComputeClassificationSet() again until no selection of a rule results in any

additions to the database.

}

Fig. 3. General strategy followed by MapReduce algorithms for each completion rule.

It readily follows that A is a subclass of both C and D, and one can obtain this
result using R1-1 and R1-2 alone. When the algorithm is initialized, S(X) =
{X,>} and P (X) = ∅ for each class name X. When R1-1 is applied (we may
suppose that both axioms are given to a single node), the map function generates
the key-value pair 〈A,AuB v C〉. Other pairs are produced as well (specifically,
〈X,S(X)〉 and 〈>, S(X)〉, for each name X). This intermediate output is used
in the reduce phase, which in this example produces the following result: For
key A, v1 = A ∈ S(A) and v2 = A u B v C together cause (B,C) to be added
to P (A). This new axiom is added to the set of axioms already present, and all
axioms—old and new—are used in the next map-reduce step.

The map phase of R1-2 then yields the following key-value pairs:

{〈A,A ∈ S(A)〉, 〈B, (B,C) ∈ P (A)〉, 〈A,A v B〉, 〈A,A v D〉}

In the reduce phase, since A ∈ S(A) and A v B are both associated with
key A, B is added to S(A). Analogously, D is added to S(A). These are the only
significant changes made during the iteration. Applying R1-2 again, however,
causes C to be added to S(A) as well. Specifically, when the map function is
invoked, since B is now an element of S(A), the pair 〈B,B ∈ S(A)〉 will be
generated, as will 〈B, (B,C) ∈ P (A)〉. In the reduce phase, since both tuples are
now indexed by the same key (namely, B), they can be used in conjunction. It
is this that allows C to be added to S(A).
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map(key, value)

// key: line number (not relevant)

// value: an axiom

{
if(value == A ∈ S(X))

emit(〈A, A ∈ S(X)〉);
else if(value == A1 uA2 v B)

emit(〈A1, A1 uA2 v B〉);
}
reduce(key, iterator values)

// key: A concept name (e.g. A)

// values: axioms corresponding to a rule precondition

{
for each v1 in values

for each v2 in values

{
if(v1 == A1 ∈ S(X) and v2 == A1 uA2 v B)

emit((A2, B) ∈ P (X));
}

}

Fig. 4. MapReduce algorithm for R1-1. The input of the map function is an axiom,
taken from either the ontology O, or else one generated from the sets S, P , or R. Key-
value pairs are generated, which are used in the reduce phase. The reduce function
accepts a key and a list of values. Every possible combination of values is examined to
determine whether R1-1 is applicable. A list of axioms is produced.

4 Conclusion and Future Work

Due to the ever increasing amount of data on the Web, there is a need for
parallelizable approaches to reasoning algorithms. Following the lead of existing
work on scalable implementations of RDF Schema closure, we have in this paper
provided a MapReduce algorithm for the classification of EL+ ontologies. This
approach, we believe, is scalable and will reduce the time needed to compute
classification over large ontologies.

Our next step is to implement this algorithm using the Hadoop framework
and the cloud computing infrastructure available at Wright State University. The
experiences reported in [21, 22] on using MapReduce for RDF Schema indicate
that optimizations, in particular concerning the choice of which completion rule
is applied next, will be crucial for the performance. We intend to use the master
node to monitor the outputs of previous MapReduce steps, and to use this output
to decide which completion rule to apply next.

The results in [21, 22] also indicate that the MapReduce approach requires
rather large datasets to show a pay-off in terms of performance, which in our
case may require the generation of artificial datasets for initial experiments.
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map(key, value)

// key: line number (not relevant)

// value: an axiom

{
if(value == A ∈ S(X))

emit(〈A, A ∈ S(X)〉);
else if(value == (A,B) ∈ P (X))

emit(〈A, (A,B) ∈ P (X)〉);
else if(value == A v B)

emit(〈A, A v B〉);
}
reduce(key, iterator values)

// key: A concept (e.g., A)

// values: axioms corresponding to a rule precondition

{
for each v1 in values

for each v2 in values

{
if(v1 == A ∈ S(X))
{

if(v2 == (A,B) ∈ P (X) or v2 == A v B)

emit(B ∈ S(X));
}

}

Fig. 5. MapReduce algorithm for R1-2

We furthermore consider this line of work on EL+ to be only the starting
point for investigations into more expressive languages, such as EL++, ELP [12],
or even OWL 2 DL.
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13. Gergely Lukácsy and Péter Szeredi. Scalable Web Reasoning Using Logic Pro-
gramming Techniques. In Axel Polleres and Terrance Swift, editors, Proceedings
of the Third International Conference on Web Reasoning and Rule Systems, RR
2009, Chantilly, VA, USA, October 25-26, 2009, volume 5837 of Lecture Notes in
Computer Science, pages 102–117. Springer, 2009.

14. Frank Manola and Eric Miller, editors. Resource Description Framework (RDF).
Primer. W3C Recommendation, 10 February 2004. Available at http://www.w3.

org/TR/rdf-primer/.
15. Boris Motik, Bernardo Cuenca Grau, Ian Horrocks, Zhe Wu, Achille Fokoue, and

Carsten Lutz, editors. OWL 2 Web Ontology Language: Profiles. W3C Recommen-
dation, 27 October 2009. Available at http://www.w3.org/TR/owl2-profiles/.

16. Eyal Oren, Spyros Kotoulas, George Anadiotis, Ronny Siebes, Annette ten Teije,
and Frank van Harmelen. Marvin: Distributed reasoning over large-scale Semantic
Web data. Web Semantics: Science, Services and Agents on the World Wide Web,
7(4):305–316, 2009.

Raghava Mutharaju, Frederick Maier and Pascal Hitzler. 465



17. Anne Schlicht and Heiner Stuckenschmidt. Distributed Resolution for Expressive
Ontology Networks. In Axel Polleres and Terrance Swift, editors, Proceedings
of the Third International Conference on Web Reasoning and Rule Systems, RR
2009, Chantilly, VA, USA, October 25-26, 2009, volume 5837 of Lecture Notes in
Computer Science, pages 87–101. Springer, 2009.

18. Ramakrishna Soma and Viktor K. Prasanna. Parallel inferencing for OWL knowl-
edge bases. In 2008 International Conference on Parallel Processing, ICPP 2008,
September 8-12, 2008, Portland, Oregon, USA, pages 75–82. IEEE Computer So-
ciety, 2008.

19. Radhika Sridhar, Padmashree Ravindra, and Kemafor Anyanwu. RAPID: Enabling
Scalable Ad-Hoc Analytics on the Semantic Web. In Abraham Bernstein et al., ed-
itors, Proceedings of the 8th International Semantic Web Conference, ISWC 2009,
Chantilly, VA, USA, October 25-29, 2009, volume 5823 of Lecture Notes in Com-
puter Science, pages 715–730. Springer, 2009.

20. Herman J. ter Horst. Completeness, decidability and complexity of entailment for
RDF Schema and a semantic extension involving the OWL vocabulary. Journal of
Web Semantics, 3(2–3):79–115, 2005.

21. Jacopo Urbani, Spyros Kotoulas, Jason Maassen, Frank van Harmelen, and Henri
Bal. OWL reasoning with WebPIE: calculating the closure of 100 billion triples.
In Proceedings of the 8th Extended Semantic Web Conference (ESWC2010), Her-
aklion, Greece, May 30–June 3, 2010. Springer, 2010.

22. Jacopo Urbani, Spyros Kotoulas, Eyal Oren, and Frank van Harmelen. Scalable
Distributed Reasoning Using MapReduce. In Abraham Bernstein et al., editors,
Proceedings of the 8th International Semantic Web Conference, ISWC 2009, Chan-
tilly, VA, USA, October 25-29, 2009, volume 5823 of Lecture Notes in Computer
Science, pages 634–649. Springer, 2009.

23. Jesse Weaver and James A. Hendler. Parallel materialization of the finite RDFS
closure for hundreds of millions of triples. In Abraham Bernstein et al., editors,
The Semantic Web – ISWC 2009, 8th International Semantic Web Conference,
ISWC 2009, Chantilly, VA, USA, October 25-29, 2009, volume 5823 of Lecture
Notes in Computer Science, pages 682–697. Springer, 2009.

466 A MapReduce Algorithm for EL+



Distance-based Measures of Inconsistency and
Incoherency for Description Logics

Yue Ma1 and Pascal Hitzler2
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Abstract. Inconsistency and incoherency are two sorts of erroneous informa-
tion in a DL ontology which have been widely discussed in ontology-based ap-
plications. For example, they have been used to detect modeling errors during
ontology construction. To provide more informative metrics which can tell the
differences between inconsistent ontologies and between incoherent terminolo-
gies, there has been some work on measuring inconsistency of an ontology and
on measuring incoherency of a terminology. However, most of them merely fo-
cus either on measuring inconsistency or on measuring incoherency and no clear
ideas of how to extend them to allow for the other. In this paper, we propose a
novel approach to measure DL ontologies, named distance-based measures. It has
the merits that both inconsistency and incoherency can be measured in a unified
framework. Moreover, only classical DL interpretations are used such that there
is no restriction on the DL languages used.

1 Introduction

Real ontology applications on the Semantic Web will often involve imperfect ontologi-
cal information [1]. This is reflected as inconsistency or incoherency in the underlying
description logic knowledge bases [2, 3]. Inconsistency indicates that there are some
logical contradictions such that the ontology becomes trivial because any conclusion
follows from it. Incoherency suggests ontology engineering mistakes because some
concepts are named but never can be instantiated. Detecting inconsistency and inco-
herency have been shown important for ontology-based applications [4].

Inconsistency and incoherency are two kinds of relevant but different information
about an ontology. Different approaches have been proposed in the literature to deal
with them. For conquering the triviality of inconsistent ontologies, there are approaches
that circumvent the inconsistency problem by applying non-standard reasoning meth-
ods to obtain meaningful answers, such as by paraconsistent semantics or by selecting
consistent sub-ontologies [5, 6]. For incoherent ontologies, ontology debugging tools
[7–9] and revision operators are studied to resolve modeling errors which lead to inco-
herencies [10, 11].

Besides directly handling inconsistencies or incoherencies, the measuring of incon-
sistency and incoherency has been proposed as a promising service to provide some
context information which can be used for ontology applications [12–14]. The existing
methods around this issue fall into one of the following categories: One is syntax-based
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measurement [13] which calculates the percentage of axioms involved in inconsisten-
cies; The other is the semantics-based method [12, 14] which computes the percent-
age of assertion atoms involved in inconsistencies under some paraconsistent models.
Unlike the existing work, in this paper, we propose a new approach, named distance-
based measures. It is based on classical DL interpretations with no need to refer to
any paraconsistent semantics such that it can be used with any DL language. Note that,
distance measures have been widely studied in the field of belief revision and belief
merging, and also for reasoning under inconsistencies. Inspired by, but different from
those works, this paper proposes a way to define inconsistency and incoherency degrees
by employing distance measures.

The idea of our approach is to consider the distance between a DL ontology and its
preferred interpretations, the most relevant classical interpretations, which shows how
far it is away from being consistent/coherent. Based on such a distance, we propose
the inconsistency (resp. incoherency) deviation degree of a DL theory. For example, the
inconsistency (resp. incoherency) deviation degree of a consistent ontology (terminol-
ogy) is 0, which intuitively means that it has no deviation from being consistent (resp.
coherent). On the contrary, a DL ontology has 1 as its inconsistency (resp. incoherent)
deviation degree if and only if all of its axioms are unsatisfiable (resp. all atomic classes
are incoherent), which intuitively indicates that it is fully inconsistent (resp. incoherent).
The definition of distance is based on the extension of distance-based semantics for
propositional logic [15, 16]. Our work essentially differers from [11] in that [11] stud-
ies a model-based revision for terminologies but not for measuring incoherency which
is our goal in this paper.

This paper is organized as follows. We first provide some basic notions of descrip-
tion logics and distance and aggregation functions in Section 2. Our measures of incon-
sistency and incoherency are then discussed in detail in Section 3, in which distance-
based inconsistency/incoherency deviation degrees are defined first; And then the appli-
cation of such measures for ordering inconsistent ontologies and terminologies is given;
Finally the comparison of aggregation functions for better measures is discussed. We
wrap up the work in Section 4 with some further perspectives.

2 Preliminaries

We assume that the reader is familiar with basic syntax and semantics of description
logics, as introduced, e.g., in [2, 3]. For notation, CN is the set of atomic concepts
(concept names), RN is the set of roles (role names), and IN is the set of individuals.
It is safe to read this paper under the assumption that we’re working with ALC, but the
approach will work for any description logic. We will refer to interpretations under the
standard semantics as classical or DL interpretations. An ontology is called satisfiable
(unsatisfiable) iff there exists (does not exist) such a model. We denote with CM(O)
the set of classical models of O.

We say that a DL ontology (resp. a TBox or ABox axiom α) is inconsistent iff
CM(O) = ∅ (resp. CM(α) = ∅). A named concept C in a TBox T is unsatisfiable iff
CI = ∅ for each model I of T . A TBox is incoherent iff there exists an unsatisfiable
named concept in T .
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We now review basic definitions about distance which will be used in our work to
define distance-based inconsistency and incoherency measures.

Definition 1 A total function d : U × U 7→ R+ ∪ {0} is called a distance (or metric
[17]) on U if it satisfies: (1) ∀u, v ∈ U, d(u, v) = d(v, u); (2) ∀u, v ∈ U, d(u, v) = 0
iff u = v; (3) ∀u, v, w ∈ U, d(u, v) + d(v, w) ≥ d(u,w).

Definition 2 A numeric aggregation function f is a total function that accepts a mul-
tiset of real numbers and returns a real number satisfying: (a) f is non-decreasing in
the values of its argument, that is, f({x1, ...xi, ..., xn}) ≤ f({x1, ..., x

′
i, ..., xn}) iff

xi ≤ x′i where i ∈ [1, n]. (b) f({x1, ..., xn}) = 0 if and only if x1 = ... = xn = 0, and
(c) ∀x ∈ R, f({x}) = x.

We will consider the following aggregation functions in this paper:

– The maximum aggregation function f : f({x1, ..., xn}) = maxi xi;
– The summation aggregation function f : f({x1, ..., xn}) =

∑
i xi;

– The k
m -voting aggregation function f :

f({x1, ..., xn}) =


0 if Zero({x1, ..., xn}) = n;
1
2 if

⌈
k
mn
⌉ ≤ Zero({x1, ..., xn}) < n;

1, otherwise,

where Zero({x1, ..., xn}) is the number of zeros in {x1, ..., xn}. Additionally, we
use |S| to stand for the cardinality of any set S.

3 Distance-based Measures

During our work on measuring DL ontologies or TBoxes, we obey the following prin-
ciples:

– Normalization Principle: The measure should be a value in [0, 1], where 0 repre-
sents a consistent ontology and 1 means a totally inconsistent ontology.

– Variation Principle: The possible values under the measurement should be as var-
ious as possible such that it can better distinguish between different ontologies
according to their degree under this measure.

– Applicability Principle: This measure should be useable for measuring both the
inconsistency of DL ontology and the incoherency of a DL TBox.

The normalization principle is defined for comparing different ontologies/TBoxes with-
out having to worry about differences in their sizes, in the number of ontological entries,
etc. The second principle says that finer granularity is better, since a binary measure is
of limited usefulness. By the applicability principle, we enable our method to estimate
both inconsistency and incoherency degrees. In fact, this is not a trivial requirement.
For example, it seems there is no clear idea how to extend the existing paraconsistent
semantics based inconsistency measurements [12, 14] to measure incoherency because
incoherent TBoxes do not suffer from the lack of classical models which is just what
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paraconsistent semantics is made for. Similarly, the incoherency measure [13] is diffi-
cult to be extended to measure inconsistency. The reason is that, unlike the available
number of unsatisfiable concepts in an incoherent TBox, the lack of classical models
leads to no obvious way to count the number of “inconsistencies” in an inconsistent
ontologies.

To achieve such a measure, in this section, we propose a distance-based measuring
framework. Before any technical details, we first summarize the underlying ideas.

Let O be a set of ontologies. A distance function λ : S × O 7→ R+ ∪ {0} is de-
fined as a map from a classical interpretation I ∈ S and an ontology O ∈ O to a
nonnegative real value, where S is the interpretation space which varies under different
measuring tasks. In the following, we will see that the choice of interpretation space S
is different for measuring inconsistency and measuring incoherency. Simply speaking,
for measuring inconsistency, we consider the interpretation space S containing all DL
interpretations; But for measuring incoherency, S should merely contain DL interpre-
tations which do not interpret any atomic concept or role as an empty set. Then λ(·, ·)
will be used to select the most relevant DL interpretations to measure inconsistency or
incoherency.

3.1 Measuring Inconsistency

In a logical system, interpretations or models are used to represent the semantics. The
underlying idea of our measures is that calculating the distance between interpretations
is a way to estimate the deviation between two meanings. To this end, next we pro-
pose some ways to define the distance between two DL interpretations. The first is the
simplest way called drastic distance:

Definition 3 (Drastic Distance) Let I1 = (∆, ·I1) and I2 = (∆, ·I2) be two DL inter-
pretations. The drastic distance1 between I1 and I2, denoted dD(I1, I2), is defined as
follows:

dD(I1, I2) =
{

0 if I1 = I2;
1 otherwise .

That is, the drastic distance of two interpretations is 0 if they are the same, and 1 oth-
erwise. Different from the Hamming distance given below, for a given ontology with
finite numbers of concept and role names, an advantage of the drastic distance dD(·, ·)
is in that it always yields a finite value even for infinite domains.

However, the drastic distance is very coarse. A more finer-grained distance is the
Hamming Distance, as follows.

Definition 4 (Hamming Distance) Let I1 = (∆, ·I1) and I2 = (∆∪∆′, ·I2) be two DL
interpretations. The Hamming distance between I1 and I2 for inconsistency, denoted
dH(I1, I2), is defined as follows:

dH(I1, I2) = |{A(a) : A(a)I1 6= A(a)I2 , A ∈ CN, aI2 ∈ ∆}|+
|{R(a, b) : R(a, b)I1 6= R(a, b)I2 , R ∈ RN, aI2 , bI2 ∈ ∆}|
+|CN ||∆′|+ |RN ||∆′|2.

1 more commonly known as the discrete metric
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That is, the Hamming distance of two interpretations for inconsistency is the cardinal-
ity of the set of concept and role assertions which are interpreted differently on their
common domain ∆ plus the number of atomic grounded concept and role assertions. In
this way, two interpretations of different sizes of domains are comparable.

Note that dH(I1, I2) can be +∞ if∆ is infinite even if |CN | and |RN | are finite. To
avoid this, we only consider finite interpretations whenever talking about the Hamming
distance. This is reasonable in practical cases because only finite numbers of individuals
can be represented or would be used. It is reasonable also in that if an ontology is
inconsistent (resp. a TBox is incoherent), then it is inconsistent (resp. incoherent) w.r.t.
finite domains.

In the rest of this paper, when the study is independent on the concrete form of
distance functions between two interpretations I1 and I2, d(I1, I2) is used to refer to
either sort of distances, Hamming distance or drastic distance.

Based on distance defined between two classical interpretations, we can define the
distance between an interpretation and a TBox or ABox axiom. We will see later that
this step is necessary because the set of classical models is empty for an inconsistent
ontology.

Definition 5 Let I = (∆, ·I) be a DL interpretation and α be a TBox or ABox axiom.
The distance between I and α, denoted d(I, α), is defined as follows:2

d(I, α) =
{

minJ∈CM(α) d(I, J), if CM(α) 6= ∅
τ, otherwise

where τ is a given as follows:

τ =
{ |CN ||∆|+ |RN ||∆|2 + 1, if d(I, J) is the Hamming distance,

2, if d(I, J) is the drastic distance.

That is, if α is consistent, then d(I, α) equals the minimal distance between I and the
models of α; Otherwise, it equals the given value τ which is strictly larger than any
distance between two interpretations. This means that an interpretation is further away
from an unsatisfiable axiom than from any satisfiable one. In this way, we will see that
compared to satisfiable axioms, an unsatisfiable axiom deviates from being consistent
to a larger degree, which is intuitively plausible. The next example further illustrates
this intuition.

Example 1 Let α = A v B u ¬B, α′ = A t ¬A v B u ¬B, and I = ({a}, ·I)
with AI = {a}, BI = {a}. We have d(I, α) = 1 because I 6∈ CM(α) and there is
I ′ ∈ CM(α) with AI = ∅, BI = {a} and dH(I, I ′) = 1. Moreover, dH(I, α′) =
2 × 1 + 1 = 3 since α′ is unsatisfiable and τ = 3 with CN = {A,B} and RN = ∅.
That is, the unsatisfiable ontology α′ deviates from consistency further than α does.

Given a numeric aggregation function, we can define a distance between an ontology
and a classical interpretation as follows:

2 The overloaded notation should not cause any difficulties.
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Definition 6 Given a distance function d and a numeric aggregation function f , let I
be a DL interpretation and O = {α1, ..., αn} be an ontology, where αi is a TBox or
ABox axiom. The distance between I and O, written λd,f (I,O), is defined as follows:

λd,f (I,O) = f({d(I, α1), ..., d(I, αn)}).
The distance defined above is syntax sensitive which falls into a category of inconsis-
tency measuring approaches that can be useful in some applications as argued in [18].

Definition 7 (Interpretation ordering w.r.t. distance) Let I1 and I2 be two DL inter-
pretations. We say that I1 is closer to a DL ontology O than I2 (w.r.t a distance func-
tion d and an aggregation function f ), written I ≤Od,f J , if and only if λd,f (I,O) ≤
λd,f (J,O).

As usual, I1 <Od,f I2 denotes I1 ≤Od,f I2 and I2 6≤Od,f I1, and I1 ≡Od,f I2 denotes
I1 ≤Od,f I2 and I2 ≤Od,f I1.

The next definition captures the intuition of our distance-based inconsistency mea-
surement such that the most relevant interpretations of an ontology are those λd,f -
closest to the ontology.

Definition 8 (Preferred Consistent Interpretation) The set of preferred interpreta-
tions of a DL ontology O with respect to a distance function d and an aggregation
function f , written PId,f (O), is defined as follows:

PId,f (O) = {I : for any classical interpretation J, I ≤Od,f J}.
That is, a preferred interpretation has minimal distance to O. When O is consistent, the
following proposition holds by noting that d(I,O) = 0 iff I ∈ CM(O).

Proposition 1 For any consistent ontology O, PId,f (O) = CM(O).

The distance between an ontology and its preferred interpretations reflects the dis-
tance of the ontology from being consistent. In other words, it represents to what extent
it deviates from being consistent. Intuitively, the larger the distance is, the more in-
consistent the ontology is. For consistent ontologies, the distance is 0 which says that
there is no deviation from being consistent. We normalize this distance in the following
definition.

Definition 9 (Inconsistency Deviation Degree) Given a distance function d and a nu-
meric aggregation function f , the Inconsistency Deviation Degree of a DL ontology O,
written IDDd,f (O), is defined by:

IDDd,f (O) =
λd,f (I,O)

max f({x1, · · · , xn}) ,

where I ∈ PId,f (O) and max f({x1, · · · , xn}) is given below:

max f({x1, · · · , xn}) =

nτ, if f is the summation aggregation function,
1, if f is the voting aggregation function,
τ, if f is the maximum aggregation function,

where τ = 2 for the drastic distance, and τ = |CN ||∆0| + |RN ||∆0|2 + 1 with
|∆0| = minI∈PId,f (O) |∆I | for the Hamming distance.
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Note that the minimal domain size of preferred models is used as the denominator
for normalization in Definition 9. This suffices to make sure that IDDd,f (O) ∈ [0, 1]
because all the preferred models have the same distance from O.

Example 2 (Example 1 contd.) LetO = {A v Bu¬B,At¬A v Bu¬B,A(a)}. We
have IDDd,f (O) = f(0,3,1)

maxxi∈[0,τ] f(x1,x2,x3)
= 4

9 if d is the Hamming distance and f is
the summation function by noting that a preferred interpretation of O with the minimal
domain size is I = ({a}, ·I) with AI = ∅, BI = {a}.

By Proposition 1, the following corollary holds obviously.

Corollary 2 For an ontologyO, we have IDDd,f (O) ∈ [0, 1]. Moreover,O is consistent
if and only if IDDd,f (O) = 0 for any distance function d and aggregation function f .

3.2 Incoherency Deviation Degree

For description logics, incoherency reveals the occurrence of unsatisfiable concepts w.r.t
a TBox, that is, it is TBox-relevant but ABox-independent. In this section, we study the
distance-based metric for measuring incoherency of a TBox.

Different from the case of measuring inconsistency, to measure incoherency, we put
the atomic differences between two interpretations on concept and role names and ig-
nore individual assertions because only a TBox is considered, which leads to a different
Hamming Distance given below.

Definition 10 (Hamming Distance) Let I1 = (∆, ·I1) and I2 = (∆ ∪∆′, ·I2) be two
DL interpretations. The Hamming distance between I1 and I2 for incoherency, denoted
d̃H(I1, I2), is defined as follows:

d̃H(I1, I2) = |{A ∈ CN : AI1 6= AI2 ∩∆}|+ |{R ∈ RN : RI1 6= RI2 ∩∆2}|.

That is, the Hamming distance of two interpretations for incoherency is the cardinal-
ity of the set of concept and role names which are interpreted differently. Unlike the
Hamming distance in the case of inconsistency, d̃H(I1, I2) is always finite even if ∆ is
infinite. So when measuring incoherency, we have no need to restrict to finite domains.

The following example shows that the Hamming distances defined for inconsistency
dH(·, ·) and for incoherency d̃H(·, ·) can have distinct values.

Example 3 Consider two DL interpretations I = (∆I , ·I) and I ′ = (∆I′ , ·I′) defined
as follows: ∆I = {a, b, c}, AI = {a}, BI = {b, c}, CI = {c}; ∆I′ = {a, b, c}, AI′ =
{a}, BI′ = {b}, CI′ = {a, b, c}. We have dH(I, I ′) = |{BI(c), CI(a), CI(b)}| = 3,
whilst d̃H(I, I ′) = |{B,C}| = 2.

For the drastic distance, it remains the same for inconsistency and incoherence. In the
rest of this paper, we use d̃(I1, I2) to refer to either sort of distances whenever there is
no necessity to make a distinction. Similarly to the case of measuring inconsistency, we
can define the distance between an interpretation I and a TBox axiom.
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Definition 11 Let I = (∆, ·I) be a DL interpretation and tt be a TBox axiom. Denote
by CM(tt) the set of classical models of tt, that is, CM(tt) = {I : I |=2 tt}. The
distance between I and tt, denoted d(I, tt), is defined as follows:

d̃(I, tt) =
{

minJ∈CM(tt) d̃(I, J), if CM(tt) 6= ∅
τ̃ , otherwise

where τ̃ is a given real value which depends on the value range of d̃(I, J):

τ̃ =

{
|CN |+ |RN |+ 1, if d̃(I, J) is the Hamming distance;

2, if d̃(I, J) is the drastic distance.

Definition 12 Given a distance function d and a numeric aggregation function f , let I
be a DL interpretation and T = {t1, ..., tn} be a TBox. The distance between I and T ,
written λd,f (I, T ), is defined as follows:

λ̃ed,f (I,O) = f({d̃(I, t1), ..., d̃(I, tn)}).

For any two DL interpretations I1 and I2, we say that I1 is closer to a TBox T than
I2 (w.r.t. a distance function d̃ and an aggregation function f ), written I ≤Ted,f J , if and

only if λ̃ed,f (I, T ) ≤ λ̃ed,f (J, T ).
Next we turn to define preferred interpretations which capture the intuition of our

distance-based incoherency measurement that the most relevant interpretations of a
TBox are those λ̃ed,f -closest to the TBox. Note that one of the essential differences to
measuring inconsistency is in that the interpretation space, the set of candidate preferred
interpretations, consists of interpretations which interpret no concept to the empty set.
For ease of notation, denote such an interpretation space by S = {I : ∀A ∈ CN,AI 6=
∅}.
Definition 13 (Preferred Coherent Interpretation) The set of preferred interpretations
of a TBox T w.r.t. a distance function d̃ and an aggregation function f , written P̃I ed,f (T ),

is defined as P̃I ed,f (T ) = {I ∈ S : ∀J ∈ S, I ≤Ted,f J}.
Example 4 Let T = {A v B u D,D v C,A v ¬B,D v ¬C}. We know that
A,D are two unsatisfiable concepts with respect to T . Consider two interpretations
I = (∆I , ·I) and I ′ = (∆I′ , ·I′) with ∆I = ∆I′ = {a, b, c}, AI = {a}, BI =
{a}, CI = {a, b, c}, DI = {a, c}, and AI

′
= ∅, BI′ = {a}, CI′ = {a, b, c}, DI′ =

{c}. We have λ̃d,f (I ′, T ) ≤ λ̃d,f (I, T ). However, we have I ∈ P̃I ed,f (T ), but I ′ 6∈
P̃I ed,f (T ) because it assigns A to the empty set. Another preferred model of T can be
J = ({a}, ·I) with AI = BI = CI = DI = {a}. By a careful computation, we obtain
λ̃ed,f (I, T ) = λ̃ed,f (J, T ) = f(0, 0, 1, 1).

Proposition 3 For any coherent TBox T , we have P̃I(T ) = CM(T ), where CM(T )
is the set of classical models of T . For an incoherent TBox T , P̃I(T ) ∩ CM(T ) = ∅.
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Similarly to the definition of inconsistency deviation degree, we can define the in-
coherency deviation degree of a TBox which measures to what extent it deviates from
being coherent.

Definition 14 (Incoherency Deviation Degree) Given a distance function d̃ and a nu-
meric aggregation function f , the Inconsistency Deviation Degree of a TBox T , written
ĨDD ed,f (T ), is defined as follows:

ĨDD ed,f (T ) =
λ̃(I, T )

max f({x1, · · · , xn}) , (1)

where I ∈ P̃I ed,f (T ) and max f({x1, · · · , xn}) is given in Definition 9 by replacing τ
by τ̃ .

Example 5 (Example 4 contd.) For T , we have known that I ∈ P̃I ed,f (T ), by which we

have ĨDD ed,f (T ) =
λ ed,f (I,T )

max f({x1,··· ,xn}) = f(0,0,1,1)
5×4 = 1

10 when d̃ is the drastic distance
and f is the summation function, where |CN | = {A,B,C,D} = 4, τ̃ = 5.

Example 6 Let T1 = {Ci v ⊥ : i ∈ [1, n]} and T2 = {Ci v Ci+1} ∩ {Cn v ⊥}.
Suppose I = (∆I , ·I) with ∆I = {a} and CIi = {a}; We have I ∈ P̃I ed,f (T1) and

I ∈ P̃I ed,f (T2). We have λ̃(I, T1) = f(τ̃ , ..., τ̃) and λ̃(I, T2) = f(0, ..., 0︸ ︷︷ ︸
n−1

, τ̃) such

that λ̃(I, T1) > λ̃(I, T2). This meets the intuition that T1 contains more incoherence
“resources” (unsatisfiable concepts) than T2 does.

Corollary 4 For any TBox T , ĨDD ed,f (T ) ∈ [0, 1]. Moreover, T is coherent if and only

if ĨDD ed,f (T ) = 0 for any distance function d̃ and aggregation function f .

3.3 Inconsistency and Incoherency Ordering

An application of measuring inconsistency or incoherency is to order inconsistent on-
tologies and incoherent terminologies to assist ontology engineering. In this section, we
provide a distance-based inconsistency and incoherency ordering.

Definition 15 (Distance-based Inconsistency/Incoherence Ordering) Given two on-
tologies O = {α1, ..., αn} and O′ = {α′1, ..., α′m} (resp. TBoxes T = {t1, ..., tn} and
T ′ = {t′1, ..., t′m}), w.l.o.g, assume m ≤ n. We saz that O is less inconsistent than O′

(resp. T is less incoherent than T ′) w.r.t. ς , written O ≤Inconsist O
′ (resp. T1 ≤Inconher

T ′), iff there exist preferred consistent interpretations I of O (resp. T ) and I ′ of O′

(resp. T ′) such that IDDd,f (O) ≤ IDDd,f (O′) (resp. ĨDD ed,f (T ) ≤ ĨDD ed,f (T ′)).
Example 7 (Example 2 contd.) LetO′ = {A v Bu¬B,A(a)}. We have IDDd,f (O′) =

f(0,1,0)
maxxi∈[0,τ] f(x1,x2,x3)

= 1
9 if d is the Hamming distance and f is the summation function

by noting that a preferred interpretation of O is I ′ = ({a}, ·I′) with AI
′

= ∅, BI′ =
{a}. So IDDd,f (O′) <Inconsist IDDd,f (O).
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Example 8 (Example 4 contd.) Let T ′ = {A v B u C,B v ¬C,A v D}. We know
that A,B are unsatisfiable concepts with respect to T . Consider J = (∆J , ·J) with
∆J = {a, b, c} and AJ = {a}, BJ = {a, b}, AJ = {a, b, c}, DJ = {c}. We have
λH,f (J, T ′) = f(0, 0, 1, 0) = 1 for drastic distance function and summation aggre-
gation function. Since T ′ is incoherent, there is no J ′ ∈ S such that λH,f (J ′, T ′) <
λH,f (J, T ′). Therefore, J ∈ PI(T ′). By noting that λH,f (J, T ′) < λH,f (I, T ) =
f(0, 0, 1, 1), we have that T ′ is less incoherent than T .

3.4 Comparison of Aggregation Functions

Above, we have given a framework for defining the inconsistency deviation degree and
the incoherency deviation degree based on some given distance function and aggre-
gation function. In this section, by the following example, we make a comparison of
aggregation functions discussed in this paper. The conclusion is that the summation ag-
gregation function is better for distinguishing ontologies (resp. terminologies) in terms
of their different inconsistency (resp. incoherency) degrees.

Example 9 Let O = {A v B u ¬B,A(a)} and O′ = {A(a),¬A(a), B(a), ¬B(a),
C(a), ¬C(a)}. Consider ∆ = {a} and two interpretations I with AI = ∅, BI =
{a}, CI = ∅ and I ′ with AI

′
= ∅, BI′ = {a}, CI′ = {a}. We have I ∈ PI(O) and

I ′ ∈ PI(O′). Moreover, λ{H,D},f (I,O) = f({0, 1, 0, 0, 0, 0}), d{H,D},f (I ′, O′) =
f({0, 1, 1, 0, 1, 0}). Then the following hold.

– If f is the maximum function, then λ{H,D},f (I,O) = λ{H,D},f (I ′, O′) = 1;
– If f is the voting function, then λ{H,D},f (I,O) = 0, λ{H,D},f (I ′, O′) = 1

2 if
k
m ≥ 0.5, otherwise, λ{H,D},f (I ′, O′) = 0;

– If f is the summation function, then λ{H,D},f (I,O) = 1, λ{H,D},f (I ′, O′) = 3.

That is,O has the same inconsistency asO′ under the maximum function and the voting
function (with k

m ≥ 0.5 in this example). But with the summation function, we obtain
that O is less inconsistent than O′ which coincides with the intuition.

From this example, we can see that, compared to the maximum function and the voting
function, the summation function allows for a larger range of distinctive values of the
distance between an ontology and its preferred interpretations such that it better satisfies
the variation principle than the other two aggregation functions.

4 Conclusion and Future Work

We studied a distance-based framework to define inconsistency measures and inco-
herency measures which can be used for ranking inconsistent ontologies and incoherent
terminologies. We showed that such measures met the normalization, variation, appli-
cability principles. In the future, we intend to study other distance functions like Haus-
dorff distance and other aggregation functions such as the averaging function. More
importantly, we intend to develop algorithms for computing our distance-based mea-
sures and investigate them in practice.
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Abstract.  A fragment of type theory with OWL class constructions for types 
and binary properties is used to formalize SysML Structural Block Diagram 
models. A structural SysML block diagram model is a model that does not have 
behavior in the sense that values of properties do not change.  A structural 
model may include properties, variables and operations.  Individuals are a 
special case of operators with no arguments. Type theory is chosen as the 
target semantic formalism as SysML constructions correspond closely to type 
theory term constructions.  The type theoretic semantics defined in terms of 
introduction and elimination fits well with the informal SysML semantics.  An 
abstract version of a structural model, called an Abstract Block Diagram 
(ABD), is introduced. An ABD is a theory closed under specific type, property, 
and operator constructions with additional axioms.  The ABD corresponding to 
the SysML model contains axioms in the form of equations for types, and 
properties, and operators. This formalism captures the syntactic constructons 
of the SysML models and the type theoretic semantics appears to be in accord 
with the informal semantics, as documented in the OMG specification. ABD 
theory gives an explicit mechanism for introducing instances for types defined 
by property restrictions. This construction is useful for parts decompositions. 
ABD theory constructions have a limited kind of property union used to 
construct parts decompositions. An ABD determines a Description Logic (DL) 
closed under union, intersection, and existential type constructions and 
property constructions restricted by typing relations.  The ABD constructions 
are useful in identifying potential extensions for SysML and may be useful, as 
well, for adding operator terms to Description Logic. 

Keywords: Description Logic, Ontology, OWL, Product Model, SysML, Type 
Theory, UML. 

1 Introduction 

The systems engineering language SysML [3] is a natural starting point for 
developing a formal logic for product modeling.  SysML is sufficiently expressive to 
represent complex product structure such as occurs in aircraft and automobiles [4], 
has a graphical syntax, engineers can use it, and it has good commercial tool support.  
There is no other language in this category.  The SysML graphical syntax uses several 
kinds of diagrams which are all views of a single SysML model. Providing SysML 
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with a formal semantics allows engineers to work with the tools they use today and 
apply formal reasoning to the results. 

A fragment of type theory with OWL class constructions for types and binary 
properties is used to formalize SysML Structural Block Diagram models. A structural 
SysML block diagram model is a model that does not have behavior in the sense that 
values of variables do not change.  A structural model may include variables and 
operations.  Type theory is chosen as the target semantic formalism as SysML 
constructions correspond closely to type theory term constructions.  The semantics of 
a type theory, presented in terms of introduction and elimination rules, is close to the 
informal semantics of SysML.  An abstract version of a structural model, called an 
Abstract Block Diagram (ABD), is introduced. An ABD is a theory closed under 
specific type, property, and operator constructions with additional axioms.  The ABD 
corresponding to the SysML model contains axioms defined in terms of equations for 
type, and properties, and operators.   

The constructions in an ABD are needed for modeling product structural properties 
such as parts decompositions and (horizontal) relationships between product 
components.  In an ABD each property P is typed with a domain and range type.  
ABD properties are closed under composition, inverse, restriction, and union, 
provided the typing conditions are met. The use of typed properties enables an 
exposition of typed “parts” properties [19,20,21]. The type theory semantics provides 
an explication and semantics for the "dot" notation to provide a fully qualified name 
for a part whose existence is guaranteed by an existential restriction.  For example for 
a typed property P(A,B) and an individual a:A, the ABD contains a term a.P which 
has type B. Operators while not fully exploited in static models are never the less 
useful in that they allow value properties to be defined on a type algebraically.  For 
example, the weight can be define as the sum as the weight of the product’s 
components. 

OWL2 [16] has been used as a formalism for capturing the structural part of a 
block diagram model [8,9,10]. The correspondence between SysML and OWL 
constructions is well known [16]. While SysML does not have all of the type 
constructions found in OWL2, these constructions are needed to capture the semantics 
of a SysML model. SysML properties are typed with a domain and range types; they 
can be represented as OWL2 properties with axioms which express that the domain 
and range properties.  Information regarding subtype and equality relations between 
types implicit in SysML models is translated into OWL2 axioms [10]. A structural 
SysML model without operators and variables can be translated into an OWL KB in a 
semantics preserving way. However, operators are not included in OWL2. The 
translation into OWL KB requires explicit axioms for the domain and range classes 
for each property in the SysML model.  

However, a type theory with type constructions closely modeled on OWL2 class 
constructions and typed property constructions provides SysML with semantics which 
is not currently supplied by OWL2. The ABD formalism simplifies the 
characterization of those SysML models which represent structural SysML models. 
ABD constructions include typed operators and variables as they are used in SysML. 
The ABD formalism suggests possible extensions for SysML block diagram models 
and a method for adding operators with variables to Description Logics.   
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2 Abstract Block Diagrams 

An Abstract Block Diagram (ABD) consists of a finite set of basic type, property, and 
operator symbols with constructions for each kind of term. Property and operator 
terms symbols have type signatures. The syntax of an ABD theory is characterized by 
a recursive definition, in which the constructors that can be used to form terms are 
stated. The ABD types are closed under intersection, union, finite enumeration types, 
existential restriction, and have type constants for top and bottom types.  A property 
symbol P has a type signature P(A, B) where A and B are types. The ABD properties 
are closed under property composition, inverse, restriction, and union, provided the 
typing conditions are met. An operator symbol has a signature f(A1,…,An):B where 
A1,…,An, B are types; operators may have variables are closed under composition, 
and variable substitution. Types are closed under products. An operator f() with no 
arguments is identified with an individual. Constructors for forming products, tuples 
and case properties are used.   

Type, property, and operator terms have rules for determining which equations are 
valid. The operator and property terms are recursively constructed the signature using 
term constructors introduced below. Formulas within an ABD theory are constructed 
from equation, subtype, subproperty, and operator type relations. An ABD may have 
as axioms equations and typing assertions. 

Each inference rule is depicted as a fraction; the inputs to the rule are listed in the 
numerator, and the output in the denominator. The inputs to the rules may be terms or 
other theorems. Inference rules state that equality between terms and types is reflexive 
and transitive. Rules of inference allow one to substitute new terms for the free 
variables in a theorem and allow one to substitute new types for the type variables in a 
theorem. The inference rules provide mechanisms for defining new constants and new 
types. The usual presentation of introduction rules within logic uses a line to separate 
an antecedent condition above a line and the term introduced below the line. In the 
following A, B, C, and D are types and P, Q, and R are properties, and lower case letters are 
operators. 

2.1 Type constructions 

ABD types and individuals have a tuple construction.  For any types A1,…,An and 
any individuals a1,…,an with ai: Ai, the expression (A1,…,An) is a type and 
(a1,…an) is an individual with (a1,…an):(A1,…An). We write proji for the projection 
constructors defined for products which project an individual t with t:(A1,…An) onto 
the ith coordinate. ABD types have a finite union construction with case constructors.  
ABD types are closed under finite enumeration types which will be written as {a1,…, 
an} including integers. For a finite sequence of types A1,…An, the expression 
Union(Ai,0,..n) is a type.  We write case for the properties which have typing 
case(Union(Ai,0,..n), {0,…,n}).  For a property P with P(A,B) and C subtype B, then 
(P some C) is a type with (P some C)(A,C).  The rules for existential types and 
numeric restriction types are accompanied by an individual introduction rule which 
uses a “dot” notation.  The expression a.P is an individual with a.P:C. ABD provides a 
“dot” notation and semantics for ``fully qualified names”. The “dot” constructor is 
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used to introduce terms dependent on an individual. When P(A,B) the abbreviation (P 
exactly 1) is used for (P exactly 1 A). The inference rule for (P exactly 1) introduces 
for an individual a with a:A an individual a.P1.  Similarly the notation a.Pk is used for 
(P exactly k).   

 
Inference Rules   

Thing a: A 
------------ 
a : Thing 

 

NoThing a: NoThing 
--------------- 
a: A 

 

Enumeration  a1:A, …,an:A 
-------------------------------------- 
{a1,…an} Subtype A,ai:  

b:{a1,…an} 
------------------------- 
b = ai:A, for some i 
 

A and B a:A, a:B 
---------------- 
a: (A and B) 

a: (A and B) 
----------------- 
a:A, a:B 

A Subtype B is 
defined as 

(A and B) = A  

Union(Ai, 0,…n) a: A 
------------------------- 
a: Union(Ai, 1,…n) 

a: Union(Ai, 1,…n),  
 <a,i>: case, for some i 
-------------------------------- 
a: Ai 

case  
----------------------------------  
case:(Union(Ai,1,…n), {0,…,n}) 

 

tuple t:(A1,…,An) 
--------------------------------------------- 
Proji(t):Ai, t = (proj1(t),…,projn(t) 

a1 :A1,...,an:An 
---------------------------- 
(a1,…,an):(A1,…,An) 

P some C P(A,B) C subtype B,  
a:A, c:C, (a,b):P 
----------------------- 
a:(P some C) 

P(A,B) C subtype B,  
a:(P some C) 
----------------------- 
a.P1:B, (a, a.P1):P 

P exactly k C P(A,B) C subtype B,  
a:A, c:C, (a, c):P 
---------------------- 
a:(P exactly k C) 

P(A,B) C subtype B,  
a:(P exactly k) 
----------------------- 
a.Pk:B, (a, a.P):P 

A disjoint B 
is defined as 

A intersection B = NoThing  

2.2 Property constructions 

ABD properties are closed under composition, inverse, restriction, and union, 
provided the typing conditions are met. Properties are used to represent parts 
properties as well as properties such as the property that an engine in a vehicle drives 
the front wheels of the vehicle that the engine is part of.     
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Property Instances t:P(A,B) 
---------------------------------------- 
first(t):A and second(t):B,  
t = ( first(t),second(t)):P. 

 

Composition P(A,B), Q(B,C) 
---------------------- 
QoP(A,C) 

(a,b):P, (b,c):Q 
 ----------------------- 
 (a,c): QoP 

Inverse t:P(A,B) 
----------------- 
(second(t),first(t)):P* 

 

Intersection 
 

P(A,B), Q(C,D) 
-------------------------------------- 
(P and Q)(A and C, B and D) 

(a,b):P and (a,b):Q 
------------------------ 
(a,b):(P and Q) 

subproperty is 
defined as  

(P and Q) = P  

Property 
Restriction 

P(A,B), A1 sub A, B1 sub B 
----------------------------- 

 P|A1,B1(A1,B1) 

t:P, first(t):Ai, second(t):Bi 
--------------------------------- 
t :P|A1,B1 and conversely  

Property Union Pi(A,Bi),  i:{0,…n} 
--------------------------------- 

 Union(Pi)(A,Union(Bi), i:{0,…n}) 

t:Pi 
---------------------------------- 
t: Union(Pi, i:{0,…n}) 

 
Note that any ABD type defined by restriction properties which are unions or 
restriction properties does not introduce any new types.  For example, consider a 
restriction class (P some C) where P = Union(P1,P2) is a union property.  Then 

 
 a:Union(P1,P2) some C 

and 
 a: (P1 some C) or a:(P2 some C) 

so 
 a: (P1 some C) union (P2 some C). 
 

2.3 Parts decomposition structure 

The informal concept of a parts decomposition structure is made precise using a 
collection of typed properties called a decomposition structure. In the informal 
concept a decomposition structure of a product is specified by a product design. The 
design specifies a root class in a parts decomposition and what parts are necessary to 
have a product. In this concept specific part instances may be replaced by other 
instances of the required type.  An individual instance of the root type has a parts 
decomposition which determines the type of specific parts and may determine the 
number of parts provided the parts properties specify exact cardinality. The existence 
of an instance of the root depends on the existence of the parts in its decomposition. 
However, individual parts may be replaced, and so extensionality does not in general 
hold for a parts decomposition. The individuals in a parts decomposition are 
irrefliexive and antisymmetric. Product identity is generally defined in terms of a 
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unique identification number. The concept of a detailed design is that any two 
individuals of root type, i.e., a1:Root, a2:Root have the same parts decomposition.   

A parts decomposition structure for an ABD is defined as a family of (typed) 
properties P for which the signature S  of the ABD and the family P  is an irreflexive, 
antisymmetric, acyclic, connected graph. The types that occur in the typing of the P in 
P  are assumed to be disjoint. If P(A,B) is in P  there is no P1 in P  with P1(A,A) and 
no P1(B,A). Since there is exactly one P(A,B) for each pair of types A and B in the 
signature of the ABD, we can, by abuse of notation, use the same symbol for each P 
in the family P .  If the S and P form a tree with root V, then the ABD is called a 
design. The concept of parts decomposition structures can be used to characterize the 
ABD theories which describe designs in the sense that they have a well defined parts 
decomposition. An ABD may have multiple parts decomposition structures.  We use a 
decimal index notation P(i…j) for these compositions obtained by starting at the root. 
For a design ABD with a parts decomposition S  and P  we add the axioms that 

 
 Root Subtype (P(1) some B) and (P(1.1) some C1) and …. 
 
A number of questions about parts decompositions while not expressible within an 
ABD theory can be answered regarding a parts decomposition structure. For a design 
ABD with root V the parts for a design instance v of V are represented as an 
enumeration class 

 
{v, v.P(1),…,v.P(i….j),…}  
 

where the P(i….j) are the compositions of are properties in the parts decomposition 
structure with V as the root. The parts decomposition is a tree, the cardinality of the 
enumeration set is the number of parts in an implementation.  Since each part has a 
typing, the number of distinct types used by the decomposition can be determined as 
can the number of occurrences of a given type.  For an arbitrary property the 
collection of individuals reachable from a given individual can be determined.  A 
detailed design is a design ABD which does not use any subclass axioms between the 
basic types and all of the parts properties have an exact numeric restriction. All of the 
parts decompositions for a detailed design have the same graph structure. 

The union construction can be used to define the property which is the union of 
composition of parts properties within a parts decomposition whose starting point is 
the root. Two parts decompositions of a root can be made disjoint by adding an axiom 
that insures that if an individual is in two decompositions then the instances of the 
root are equal. The restriction construction can be used to start with a property such as 
Drives within a vehicle ABD and define restrictions such as Drives|Vehicle,Engine. 
For example, a vehicle ABD may want to represent a drive property for an engine that 
represents both driving wheels and driving a generator. Both drivesFrontWheel and 
hasFrontWheel are subproperties of Drive.  
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2.4 Variables and Operators 

Having operators and variables is useful even in the absence of an ABD having 
behavior is useful.  It enables a type to describe that its instances have properties such 
as weight without having to bind the variables.  The model theoretic semantics of an 
operator term with variables is defined is defined as a function defined on product 
domains.  An operator symbol f has a type signature f(A1,…,An):B where A1,…,An, 
B are types. An operator symbol a():B is written a:B. Operator terms are constructed 
using the constructions in the table below.  

 
Operator 
Expression 
Constructions 

Syntax  

hasOperator hasOperator(A,B) Parts property structure used to 
introduce operators and associate them 
with an individual 

hasVariable hasVariable(A,B) Parts property structure used to 
introduce variables and associate them 
with an individual 

Variable 
declaration 

x1: C1,…xn : Cn The symbols x1,…xn are variables and 
xi is said to have type Ci 

Operator 
Declaration 

f(x1: C1,…xn : Cn):B The symbols x1,…xn are variables and 
xi is said to have type Ci 

Composition f(g1,…,gn)  Where f has arity n 
Substitution t[t1/x1,…,tn/xn] Replaces distinct variables with 

operator expressions 
Tuple (t1,…,tn) Where t1,…tn are operator expressions 

 
In an ABD theory variables (SysML value properties) and operators are all 

introduced using the same dot construction as is used for parts properties. An operator 
is always declared as belonging to an individual a. The association of variables to an 
individual provides a state description for the individual. For example, the state of a 
vehicle, v1, is a list of attributes (variables) of v1 and of its components. The value of 
the vehicle state is a substitution or binding of values to variables.  Substitution of 
values for variables provides the foundation for the concept of ``evaluating” the state 
of an individual. Usual rules for substitution of variables by terms, equality, and 
typing statement hold. We will write a.x for the term a.hasVariable1. For two 
instances a1 and a2 of A, note that a.x and a2.x are distinct variables. The sequence 
(x1, x2, f1,f2) of parts of an instance a of A is represented by  

 
 (a.x, a.y, a.f) 
 

which is equivalent to 
 

a.(x:X, y:Y, f(x:X):Y) 
 

using the rules for tuples.  
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4 The correspondence between an ABD and a SysML Block 
Diagram  

The graphical syntax of a SysML block diagram model identifies a collection of basic 
symbols sorted into types, properties, and operations, called the signature of the block 
diagram. The graphical representation of a SysML block diagram model uses 
rectangles for blocks (types).  A directed line between P between two blocks, A and B 
is a property with domain A and range B.  SysML uses properties to represent 
connections between blocks. A SysML structural model can be used to construct an 
ABD. The ABD starts from the signature of types, properties, and operators in the 
structural model.  SysML employs several “parts” properties that satisfy the 
properties of a parts structure as defined above. 

vehicle
«block»

itsEngine:Engine1

itsFuelSystem:FuelSystem1

itsPump:Pump1

pumpPort:

itsTank_1:Tank1

pumpPort:
fuelPort:

itsTank_2:Tank1

pumpPort:

fuelPort:

Vehicle::vehicle.has:Frame1

 

Fig. 1 The Internal Block Diagram illustrates a simplified specification for a Vehicle. The 
diagram uses blocks: Vehicle, Engine, Frame, FuelSystem, Pump, Tank, and properties 
itsEngine, itsFrame, itsFuelSystem, itsPump, itsTank1, and itsTank2. This diagram also has 
flowports with associations between them. The ports are distinct parts of the blocks that they 
are attached to. The diagram specifies that a vehicle has exactly 1 FuelSystem and a 
FuelFsystem has exactly two tanks.  The tanks are connected through ports with a specific 
connection.  The itsTank1 and itsTank2 are properties that specify that the fuel system has two 
tanks.   

In an internal block diagram, such as Figure 1, the number and kind of parts of a 
block are described by the parts decomposition structure. itsFuelSystem is one of the 
part properties in this structure. The range type of itsFuelsystem is the type 
Fuelsystem, and the number of instances that satisfy itsFuelsystem for a vehicle 
instance is 1. Multiple occurrences of a rectangle with a given block are used to 
specify multiple occurrences for a part of an individual instance of the enclosing 
block. In Figure 1 the block containment relationships are defined using part 
properties.  In the header of a block on the diagram such as itsEngine:Engine, 
itsEngine is a property with domain Vehicle and range Engine.     

The semantics of the vehicle system block diagram model is defined in terms of its 
parts and their connections. The informal notion of a vehicle implementation is a parts 
decomposition and a description of how the parts fit together. In Figure 1 a vehicle 
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instance v has a parts decomposition consisting of an engine, a frame, a fuel system, 
where the fuel system has three parts.  

If a SysML structural model has an arrow P connecting A to B then the ABD has a 
property P(A,B) with a numeric restriction k. While SysML does not have a 
restriction type construction the ABD restriction constructions is used to capture the 
meaning of the property within the context of a SysML model.  The meaning of a 
block diagram arrow P drawn from A to B with a restriction of 1 on B is that any 
instance of A has only one P connection to B. this can be represented using the axiom 

 A SubType (P exactly 1) 

In this approach block diagrams translate directly into subtype relations. The axiom 
that A is a subtype of the restriction (P exactly k ) captures the meaning that for any a: 
A then there are k instances of B implied by the property with (a,bi):P, for i:{1,..,k}. 
The restriction construction can be used to represent user defined relations.  The 
explicit interpretation of ABD type and properties captures the informal, semantics of 
a SysML structural block diagram model. 

5 The Correspondence between an ABD, Description Logics, and 
axiomatizations of higher order logic in FOL 

ABD type constructions correspond directly to DL constructions while not all DL 
class constructions are used.  The property constructions contain standard DL 
property constructions which are restricted by property typing rules.  However, the 
use of ABD property construction in defining types does not add any new types to the 
DL. As with Description Logics in general not all of the constructions are logical 
constructions in FOL.  Some constructors are related to logical constructors in first-
order logic (FOL) such as intersection or conjunction of concepts, union or 
disjunction of concepts, negation or complement of concepts, universal restriction and 
existential restriction. Other constructors have no corresponding construction in FOL 
including restrictions on roles for example, inverse, transitivity and functionality. 
However, the full set of constructions can be axiomatized within a multi-sorted FOL 
where the sorts are type of the ABD theory.  The FOL axiomatization of ABD is 
similar to a FOL axiomatization of Cartesian closed category.  

For each type A and each Property P of the ABD the FOL generated by the ABD 
contains a unary predicate and a binary predicate.   By abuse of notation we use the 
same symbol for both the type and predicate.  The context of use will make the usage 
clear.   

 
A For any a. A(a) 
P For any a,b. P(a,b) 
a:A There exists x. A(x) 
a:(A and B) (A(a) and B(a)) 
A = B For any a. A(a) implies B(a) and for any a. B(a) implies A(a) 
a:(P exactly 1) For any a. there exists a unique b with P(a.b) and B(b) 
t:P(A,B) P(first(t),second(t)) and A(first(t)) and B(second(t)) 

486 Logic for Modeling Product Structure



 

 
In the correspondence all judgments derivable from the ABD axioms are provable 

in the generated FOL theory.  Conversely, any theorem provable in the FOL using the 
logical axioms is a derivable judgment in the ABD. However, the ABD theory 
provides an explicit term constructions for restriction types rather than just an 
existence statements. A model for an ABD is defined in the same way as a model for 
the FOL theory using the axioms for the term constructions.  Any non-empty model 
of a design ABD will contain an implementation of the root in the sense that any 
model will contain a parts decomposition of the root.  

6 Conclusions 

The ABD term constructions represent constructions needed for structural modeling 
of products.  These constructions are used within SysML block diagrams.  An ABD is 
an abstraction of SysML structural block diagrams. An ABD can be generated from 
the signature of the SysML model. ABD has both a type theoretic semantics defined 
in terms of the inference rules that appear to be in accord with the informal SysML 
semantics. A model theoretic semantics can be defined as well. The importance of 
establishing a logical formalism for SysML is that the reasoning required in 
engineering tasks for design and analysis can be formalized.  Automated reasoning 
techniques can be employed or at least arguments can be automatically checked. The 
translation of a restricted SysML Block Diagram model into an ABD which preserves 
the intended semantics is a first step toward integrating product development with 
formal reasoning.  The result provides a formal semantics for a fragment of SysML. 
Conversely, SysML graphical syntax can be used to develop ABDs.  

ABDs can be used to represent parts and connectivity structure.  An ABD with a 
root class under a part decomposition structure has a parts decomposition graph. The 
parts decomposition structure does not depend on restricting the models as is done in 
the Description Graph extension to OWL2. An ABD can be used to answer questions 
such as what parts two designs have in common, and what kinds of transformations 
and parts replacements to an implementation produce a valid implementation. For 
product development one would like to characterize ABDs (SysML models) all of 
whose models have some predetermined similarities.   The realization of these goals 
requires a much richer logical system than has been presented here.  However, in 
order to assess the impact of changing a part in a design on the properties of the 
design, one needs to be able to define value properties using variables which are 
recomputed as the value of the variables change. For example, one wants to define the 
total weight of a product as the sum of the weights of its components and have the 
total weight change as the parts are changed. An extended version of the type theory 
presented is a candidate formalism for SysML. Further, an ABD can be viewed as a 
DL which is sufficient for representing product structure. The next step in the 
development of the ABD formalism is to add behavior in the form of state charts.   
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Abstract. Semantic interoperability is essential on the Semantic Web
to enable different information systems to exchange data. Such interop-
erability can be achieved by identifying similar information in heteroge-
neous ontologies. In this paper, we describe the Knowledge Organisation
System Implicit Mapping (KOSIMap) framework, which differs from ex-
isting ontology mapping approaches by using description logic reasoning
(i) to extract implicit information as background knowledge for every
entity, and (ii) to remove inappropriate mappings from an alignment.
The results of our evaluation show that the use of Description Logic in
the ontology matching task increases coverage.

1 Introduction

Semantic interoperability enables distributed information systems to exchange
data, knowledge, or resources based on common terminologies. These terminolo-
gies are often expressed in the form of ontologies as they provide a explicit
and server-stored conceptualization of a domain based on well-defined seman-
tics. However, the development of OWL ontologies relies on knowledge engineers
to interpret data from domain experts. As a result, two knowledge engineers
may interpret the same data differently. This leads to heterogeneity, such as dif-
ferences in naming and conceptualization, that hinders interoperability among
distributed information systems.

Semantic interoperability is essential on the Semantic Web to both provide
and create services, and perform complex tasks without prior knowledge of avail-
able resources or how to acquire them. Ontology mapping has been recognised as
a viable solution for this problem. Given two ontologies O1 and O2, the task of
mapping one ontology to another is that of finding an entity (i.e. classes, proper-
ties, and instances) in O1 that matches an entity in O2 based on their intended
meaning. Although mappings can be derived manually, this process is time con-
suming and error prone especially as the size and complexity of ontologies in-
crease. Therefore, it is necessary to develop methods to (semi-)automatically
discover similar entities in heterogeneous ontologies. Several surveys reviewing
ontology matching techniques, and tools have been carried over the years [4,
3]. These surveys show that most successful approaches combine different lex-
ical and structural similarity measures to cover lexical descriptions as well as
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the descriptive information provided by semantic relations. For instance, Ctx-
Match [2] (and its successor SMatch [7]) creates logical formulae by mapping
classes in two ontologies to synsets in WordNet [6]. These logical formulae are
then processed by a SAT solver to extract semantic mappings between classes
in two ontologies. Alternatively, the OLA (OWL-Lite Alignment) framework [5]
measures the similarity between two entities in OWL-Lite ontologies based on
their features (e.g. labels, super-classes, properties). However, these approaches
disregard the role of description logic reasoning to extract implicit information
(i.e. logical consequences) about entities as a source of background knowledge.

In this paper, we describe the Knowledge Organisation System Implicit Map-
ping (KOSIMap) framework, which differs from existing approaches by using
description logic reasoning (i) to extract implicit information as background
knowledge for every entity, and (ii) to remove inappropriate mappings from an
alignment. Note that this paper differs from [13] by describing the KOSIMap
framework in detail rather than reporting the results of the Ontology Alignment
Evaluation Initiative (OAEI) 2009 campaign. The rest of the paper is organised
as follows. In section 2, we review some related approaches on ontology map-
ping. Section 3 presents how KOSIMap extracts mappings between entities from
two ontologies. The results of the evaluation testing the core assumptions of
KOSIMap are reported in section 4, while the final section discusses our results
and outlines future work.

2 Related Work

OLA [5] relies on OWL-Lite constructs (e.g. rdfs:label, rdfs:subClassOf)
to map entities from two ontologies. More specifically, it first calculates a lo-
cal similarity score by combining the measure of different constructs through a
weighted sum. For instance, the similarity between two classes aggregates the
score for their names, superclasses, and properties. OLA then propagates the
local similarity score to its neighbours. This iterative process ends when the ap-
proximated similarity score does not increase between two iterations. Similarly,
Janowicz [9] computes the similarity between two classes based on the overlap of
their respective ALCNR descriptions in the domain of GIScience. In SIM-DL,
a similarity value of 1 indicates that compared concept descriptions are equal
whereas 0 implies total dissimilarity. For example, the similarity between two
classes is computed by the Jaccard similarity coefficient applied to their sets of
subclasses, while the similarity between two restrictions ∃r .C and ∃s.D is based
on the similarity between the involved roles (i.e. r and s) and fillers (C and D).
Note that none of these approaches use description logic reasoning to extract
implicit information about entities.

Some approaches have also added a debugging component to improve the
quality of the mappings. For example, ASMOV [10] first computes a pre-alignment
from the matrix that results from the similarity calculation by adding mappings
that are maximal within a threshold ζ. This pre-alignment is then subjected
to semantic validation, which detects inappropriate mappings and their causes
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based on asserted axioms in the two ontologies. Alternatively, Meilicke et al. [12]
provide non-standard reasoning based on Distributed Description Logic (DDL)
to support the revision of mappings. In this case, mappings are encoded as bridge
rules (e.g. O1:A

≡−→ O2:B) and DDL reasoning is applied on these bridge rules
to determine inconsistent mappings.

3 KOSIMap

In this section, we present the KOSIMap framework that aligns entities in ontol-
ogy O1 and ontology O2 based on the application of description logic reasoning.
KOSIMap first extracts logical consequences embedded in both ontologies using
a DL reasoner (§3.1). Next, KOSIMap computes three different types of similari-
ties for every pair of entities (§3.2). We then build a matrix storing the combined
values from which a pre-aligment is extracted (§3.3). Finally, we remove inap-
propriate mappings from the pre-alignment. Note that KOSIMap performs each
step consecutively. The source ontology, denoted Os, is described in Example 1
and is based on the Pizza tutorial [8].

Example 1. Suppose we have an ontology Os defined by the following OWL state-
ments:
Namespace(pizzaA: <http://www.owl-ontologies.com/pizza#>)
Ontology (

Class(pizzaA:Pizza Topping partial)
Class(pizzaA:Cheese Topping partial pizzaA:Pizza Topping)
Class(pizzaA:Mozzarella Topping partial intersectionOf(pizzaA:Cheese Topping

restriction(pizzaA:hasSpicyness someValuesFrom(pizzaA:Mild))))
Class(pizzaA:Pepperoni Topping partial intersectionOf(pizzaA:Pizza Topping

restriction(pizzaA:hasSpicyness someValuesFrom(pizzaA:Medium))))
Class(pizzaA:Tomato Topping partial intersectionOf(pizzaA:Pizza Topping

restriction(pizzaA:hasSpicyness someValuesFrom(pizzaA:Mild))))
Class(pizzaA:Pizza partial restriction(pizzaA:hasBase someValuesFrom(pizzaA:Pizza Base)))
Class(pizzaA:Americana Pizzas partial intersectionOf(pizzaA:Pizza

restriction(pizzaA:hasTopping someValuesFrom(pizzaA:Mozzarella Topping))
restriction(pizzaA:hasTopping someValuesFrom(pizzaA:Tomato Topping))
restriction(pizzaA:hasTopping someValuesFrom(pizzaA:Pepperoni Topping))
restriction(pizzaA:hasTopping allValuesFrom(

unionOf(pizzaA:Mozzarella Topping pizzaA:Tomato Topping
pizzaA:Pepperoni Topping))))

Class(pizzaA:Cheesy Pizza complete intersectionOf(pizzaA:Pizza
restriction(pizzaA:hasTopping someValuesFrom(pizzaA:Cheese Topping))))

ObjectProperty(pizzaA:hasBase)
SubPropertyOf(pizzaA:hasBase pizzaA:hasIngredient)
ObjectProperty(pizzaA:hasTopping domain(pizzaA:Pizza) range(pizzaA:Pizza Topping))
SubPropertyOf(pizzaA:hasTopping pizzaA:hasIngredient)
ObjectProperty(pizzaA:topped inverseOf(pizzaA:hasTopping))

)

3.1 Pre-Processing

We first process lexical descriptions of each entity (e.g. labels and names) using
Natural Language Processing (NLP) techniques. We apply three types of NLP
techniques. Firstly, we remove characters, such as ’.’, ’ ’, ’-’ and ’ ’, from the
string. Secondly, We used the Pling-Stemmer from [16] to stem plural words.
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Finally, we ensure that every string is in lower case. For example, the name of
Americana Pizzas is converted to “americanapizza”.

Entities are not only defined by lexical descriptions, but also by the semantics
provided by the axioms in the ontology. For example, the subsumption relation
links two classes according to the genus/species classification. In KOSIMap, we
extract implicit information about every class and object property from the
asserted axioms in the ontologies using a DL reasoner (e.g. FaCT++ [18]). The
set of all named classes occurring in an ontology O is denoted by CNO, while RNO
refers to the set of all named object properties in O.

Classes. The set of subsumers of a class A ∈ CNO, denoted by Sc(A), con-
tains every (implicit and explicit) super-classes and equivalent classes of A
following the classification of the ontology O by a DL reasoner. In Example
1, Sc(Americana Pizzas) = {Americana Pizzas, Cheesy Pizza, Pizza},
whereas the set of explicit parents is {Americana Pizzas, Pizza}.

Table 1. Rules to extract properties associated with classes.

PR1 If ≥ 1 r ⊑ C ∈ O, r ∈ RNO, C ∈ CNO, & r /∈ Pc(C)
then Pc(C) := Pc(C)

S {r}
PR2 if C ⊑ ∃r .X ∈ O, r ∈ RNO, C ∈ CNO, & r /∈ Pc(C)

then Pc(C) := Pc(C)
S {r}

PR3 if C ⊑ ∀r .X ∈ O, r ∈ RNO, C ∈ CNO, & r /∈ Pc(C)
then Pc(C) := Pc(C)

S {r}
PR4 if C ⊑ = 1r .X ∈ O, r ∈ RNO, C ∈ CNO, & r /∈ Pc(C)

then Pc(C) := Pc(C)
S {r}

PR5 if C ⊑ ≥ 1r .X ∈ O, r ∈ RNO, C ∈ CNO, & r /∈ Pc(C)
then Pc(C) := Pc(C)

S {r}
PR6 if C ⊑ ≤ 1r .X ∈ O, r ∈ RNO, C ∈ CNO, & r /∈ Pc(C)

then Pc(C) := Pc(C)
S {r}

Classes are also described in terms of properties, which provides informa-
tion about the characteristics of a class. Most existing approaches only consider
properties that are explicitly associated with classes. In more expressive ontol-
ogy languages, such as OWL DL, class characteristics can be embedded in the
axioms or be inherited from their subsumers. As a result, we have devised several
rules to extract the properties associated with a class (Table 1). The first rule
(PR1) states that the domain of a named property is a property of that class.
In Example 1, this rule would infer that hasTopping is a property of Pizza.
Rules PR2 to PR6 process every general concept inclusion in the ontology of
the form A ⊑ Rest(r).B, where Rest(r) is a restriction (e.g. someValuesFrom,
allValuesFrom, and minCardinality). Based on these types of general concept
inclusion, we are able to extract the implicit object properties associated with
A. In Example 1, the application of rule PR2 infers that hasBase is a property
of Pizza.

Object Properties. The rdfs:subPropertyOf construct defines the property hi-
erarchy by stating that a property is a subproperty of another. For example,
ontology Os states that hasTopping is a sub-property of hasIngredient. Thus, a
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reasoner can deduce that if an individual is related to another by the hasTopping ,
then it is also related to the other by the hasIngredient property. The set of super-
properties of a property r ∈ RNO, denoted Sp(r), includes all the super-properties
of r .

Table 2. Extension rules for binary relation

ER1 If (X , Y ) ∈ R(r), r ≡ r− ∈ O, & (Y , X) /∈ R(r)
then R(r) := R(r)

S {(Y , X)}
ER2 If (X , Y ) ∈ R(r), r ≡ r−◦ ∈ O, & (Y , X) /∈ R(r−◦ )

then R(r−◦ ) := R(r−◦ )
S {(Y , X)}

ER3 If (X , Y ) ∈ R(r), r ⊑ s ∈ O, & (X , Y ) /∈ R(s)
then R(s) := R(s)

S {(X , Y )}
ER4 If (X , Y ) ∈ R(r), (Y , Z) ∈ R(s), r ◦ s ⊑ t ∈ O, & (X , Z) /∈ R(t)

then R(t) := R(t)
S {(X , Z)}

The set of binary relation of an object property r , denoted R(r), is a collection
of ordered pairs of elements on CNO. More specifically, the set R(r) is a subset of
the Cartesian product CNO × CNO. For instance, the statement (A,B) ∈ R(r) is
read as A is r -related to B, and A and B is called the domain and the range of
r respectively. In Example 1, R(hasTopping) contains the binary relation (Pizza,
Pizza Topping). In EL+ [1], we can not rely on OWL semantics to express the
domain and range of an object property r (i.e. ≥ 1 r ⊑ C and ⊤ ⊑ ∀r .C respec-
tively) as number and universal restrictions are not allowed. In this case, the
binary relation (A, B) is contained in R(r) if and only if the axiom A ⊑ ∃r .B is
found in the ontology. In Example 1, R(hasBase) contains (Pizza, Pizza Base).
We have extended standard reasoning with four rules to extract implicit binary
relations (Table 2). The first rule covers symmetric object properties and adds
the inverse binary relation to the set if it has not already been added. The second
rule is similar to the first rule but deals with inverse object properties. In Ex-
ample 1, R(topped) contains (Pizza Topping , Pizza) as topped is the inverse
property of hasTopping and that (Pizza, Pizza Topping) ∈ R(hasTopping).
The last two rules were proposed by [1] and cover role hierarchies and property
chain axioms, such as transitive object properties.

3.2 Similarity Generator

The similarity generator computes three kinds of similarities; namely label sim-
ilarity, property-based similarity, and class-based similarity. We describe each
measure in more detail by calculating the similarity between entities in ontology
Os and entities in Ot (Example 2). Finally, we describe how individual scores
are combined to provide an aggregated value for each pair of entities.

Example 2. Suppose we have an ontology Ot defined by the following OWL state-
ments:
Namespace(p: <http://www.owl-ontologies.com/pizzaB#>)
Ontology (

Class(pizzaB:Topping partial)
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Class(pizzaB:CheesyTopping partial pizzaB:Topping)
Class(pizzaB:Mozzarella partial intersectionOf(pizzaB:CheesyTopping

restriction(pizzaB:hasSpicyness someValuesFrom(pizzaB:Mild))))
Class(pizzaB:Tomatoes partial intersectionOf(pizzaB:Topping

restriction(pizzaB:hasSpicyness someValuesFrom(pizzaB:Mild))))
Class(pizzaB:JalapenoPeppers partial intersectionOf(pizzaB:Topping

restriction(pizzaB:hasSpicyness someValuesFrom(pizzaB:Hot))))
Class(pizzaB:Pepperoni partial intersectionOf(pizzaB:Topping

restriction(pizzaB:hasSpicyness someValuesFrom(pizzaB:Medium))))
Class(pizzaB:AmericanHot partial intersectionOf(pizzaB:Pizza

restriction(pizzaB:hasGarnish someValuesFrom(pizzaB:Mozzarella))
restriction(pizzaB:hasGarnish someValuesFrom(pizzaB:Tomatoes))
restriction(pizzaB:hasGarnish someValuesFrom(pizzaB:JalapenoPeppers))
restriction(pizzaB:hasGarnish someValuesFrom(pizzaB:Pepperoni))))

Class(pizzaB:PizzaWithCheese complete intersectionOf(pizzaB:Pizza
restriction(pizzaB:hasGarnish someValuesFrom(pizzaB:CheesyTopping))))

ObjectProperty(pizzaB:hasBase domain(pizzaB:Pizza) range(pizzaB:Base))
SubPropertyOf(pizzaB:hasBase pizzaB:hasIngredient)
ObjectProperty(pizzaB:hasGarnish)
SubPropertyOf(pizzaB:hasGarnish pizzaB:hasIngredient)

)

Label Similarity. The most basic feature of entities is their labels, which are
defined through the rdfs:label construct. Labels are human identifiers (i.e.
words) expressed in a vocabulary usually shared by experts in the same domain.
Therefore, we assume that equivalent classes are likely to be modelled using sim-
ilar labels (or names). In KOSIMap, we support several string similarity (e.g. Q-
Gram [17] or SMOA [15]) to calculate the label similarity for each pair of entities.
For example, the label similarity between Americana Pizzas inOs and Amer-
icanHot in Ot based on the Q-Gram similarity (i.e. Q-Gram(“americanapizza”,
“americanhot”)) is 0.571.

Degree of Commonality Coefficient. The property-based and class-based simi-
larity is calculated based on the degree of commonality coefficient (Definition 1).
The DoCCoeff between two sets Ss and St is defined as the sum of the maximum
similarity for each element in source set (i.e. Ss). Note that the coefficient returns
an asymmetric measure to reflect the coverage of the first set by the second.
This follows the observations made by [19], who argues that the similarity be-
tween sets of complex objects is directional and asymmetric.

Definition 1 (Degree of Commonality Coefficient). Given two sets Ss and
St, the degree of commonality coefficient between them, denoted DoCCoeff(Ss, St)
is defined as:

DoCCoeff(Ss, St) =
1

max(|Ss|, |St|)
∑

ei∈Ss

max
ej∈St

sim(ei, ej) (1)

where Ss is the source set, St is the target set, and sim(ei, ej) computes the
similarity between pair of elements in the two sets.

Property-based similarity computes the similarity between two entities based on
the set of properties associated with them. KOSIMap first calculates the overlap
between set of super-properties for each pair of properties. Let’s compute the
property-based similarity between hasTopping in Os and hasGarnish in Ot. In
this case, the sets of super-properties for each property is:
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– Sp(hasTopping) = {hasIngredient}
– Sp(hasGarnish) = {hasIngredient}

We then calculate the DoCCoeff based on the label similarity (i.e. Q-Gram). In
this case, the property-based similarity is 1. Secondly, we calculate the overlap
between two classes based on their respective sets of inherited properties, which
are generated based in the rules in Table 1. Let’s now consider the similarity
between Americana Pizzas in Os and AmericanHot in Ot. In this case, the
set of inherited properties for each class is:

– Pc(Americana Pizzas) = {hasBase, hasTopping}
– Pc(AmericanHot) = {hasBase, hasGarnish}

We then calculate the DoCCoeff between the two sets. In this case, the similarity
between two elements (i.e. object properties) is computed based on the property-
based similarity between their sets of super-properties. Thus, the property-based
similarity between Americana Pizzas and AmericanHot is 1 as sim(hasBase,
hasBase) = 1 and sim(hasTopping , hasGarnish) = 1.

Class-based similarity computes the similarity between two entities based on
the set of classes associated with them. KOSIMap first computes the overlap
between two classes based in their sets of subsumers. Let’s compute the class-
based similarity between Americana Pizzas and AmericanHot. In this case,
the set of subsumers for each class is:

– Sc(Americana Pizzas) = {Americana Pizzas, Cheesy Pizza, Pizza}.
– Sc(AmericanHot) = {AmericanHot, PizzaWithCheese, Pizza }.

We then calculate the DoCCoeff between the two sets based on the label sim-
ilarity (i.e. Q-Gram). In this case, the class-based similarity between Amer-
icana Pizzas and AmericanHot is 0.706. Secondly, we calculate the class-
based similarity between pairs of object properties based on their set of binary
relations. Let’s now consider the overlap between hasTopping in Os and has-
Garnish in Ot. In this case, the set of binary relations for each object property
is:

– R(hasTopping) = {(Pizza, Pizza Topping), (Americana Pizza, Tomato Topping),
(Americana Pizza, Mozarella Topping), (Americana Pizza, Pepperoni Topping)}.

– R(hasGarnish) = {(AmericanHot, Pepperoni), (AmericanHot, JalapenoPeppers),
(AmericanHot, Mozzarella), (AmericanHot, Tomatoes)}

We then calculate the DoCCoeff between the two sets. As we are dealing with
binary relations, the DoCCoeff between two sets of binary relations combines
the similarity between the first element of two binary relations with the sim-
ilarity between their second elements. In this case, the similarity between two
elements (i.e. classes) is computed based on the class-based similarity calcu-
lated between two classes. For example, the degree of commonality coefficient
between (Pizza, Pizza Topping) and (AmericanHot, Pepperoni) is 0.333
as sim(Pizza, AmericanHot) = 0.333 and sim(Pizza Topping , Pepperoni)
= 0.333. The class-based similarity between hasTopping and hasGranish is 0.593.
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Similarity Aggregation combines the score of the above three types of similarity
to obtain a more complete measure of similarity. The combined score for each
pair of entities is then stored into a similarity matrix (Definition 2), where each
entity in the source ontology corresponds to a row and each entity in the target
ontology corresponds to a column.

Definition 2 (Similarity Matrix). A similarity matrix, denoted SIMst, is a
matrix with dimension n*m, where n and m are the number of entities in the
source and target ontology respectively. The entries rst ∈ [0,1] denotes the sim-
ilarity between es and et, where es is an entity in the source ontology and et is
an entity in the target ontology.

In KOSIMap, the global similarity (i.e. simg) is computed through a linear
function that balances the impact of each measure by giving it a weight wk and
is defined as:

simg(e1, e2) =
n∑

k=0

wk ∗ simk(e1, e2) (2)

where n is the number of similarity measures considered and wk ∈ [0,1]. Suppose
we assign a weight of 0.3 to the label similarity, 0.2 to the property-based sim-
ilarity and 0.5 to the class-based similarity, then the global similarity between
Americana Pizzas in Os and AmericanHot in Ot is 0.3 ∗ 0.571 + 0.2 ∗ 1 +
0.5 ∗ 0.706 = 0.724. The global similarity for each pair of entities is then stored
into a similarity matrix.

3.3 Mapping Extraction and Refinement

The goal of the final step is to extract a set of mappings from the similarity
matrix. This is normally achieved by discarding all candidate mappings below a
threshold ζ. However, this method may return multiple mappings for each entity
in the source ontology.

As a result, we propose a two-step approach to extract mappings, where
an entity in the source ontology is associated with at most one entity in the
source ontology. The approach first extracts a pre-alignment (i.e. Apre) from the
similarity matrix. A mapping ⟨es, et,≡, rst⟩ is added to Apre if rst is the highest
value for es and if it is bigger than a threshold ζ. Note that if two elements e1

t

and e2
t have a similarity value such that simg(es, e

1
t ) = simg(es, e

2
t ), then both

⟨es, e
1
t ,≡, simg(es, e

1
t )⟩ and ⟨es, e

2
t ,≡, simg(es, e

2
t )⟩ are added to Apre.

This pre-alignment is then passed through a refinement process, which elim-
inates inappropriate mappings. In KOSIMap, we identify two types of inap-
propriate mappings, namely redundant and inconsistent mappings. Redundant
mappings are encountered when mappings in a pre-alignment Apre can be in-
ferred from existing mappings, while inconsistent mappings occur when a class
in the source ontology is mapped to several classes in the target ontology that are
defined as disjoint. [14] argues that direct siblings (i.e. entities having the same
parent) are disjoint unless it introduces conflicts. As KOSIMap assumes that
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the local ontologies are consistent, we consider direct siblings as disjoint entities.
Table 3 shows the final set of mappings between Os and Ot with a threshold
ζ = 0.2. This approach differs from ASMOV [10] in that it checks whether the
information inferred by the mappings can be proven by both the explicit and
implicit knowledge available in the local ontologies.

Table 3. The mapping resulting from the alignment between the two ontologies.

Entity1 Relation Entity2 Strength
Os:Americana Pizza = Ot:AmericanHot 0.724
Os:Cheese Topping = Ot:CheesyTopping 0.567
Os:Cheesy Pizza = Ot:PizzaWithCheese 0.75
Os:Medium = Ot:Medium 0.8
Os:Mild = Ot:Mild 0.8

Os:Mozarella Topping = Ot:Mozzarella 0.487
Os:Pepperoni Topping = Ot:Pepperoni 0.533

Os:Pizza = Ot:Pizza 1.0
Os:Pizza Topping = Ot:Topping 0.533

Os:hasBase = Ot:hasBase 0.861
Os:hasIngredient = Ot:hasIngredient 0.626
Os:hasSpicyness = Ot:hasSpicyness 0.61
Os:hasTopping = Ot:hasGarnish 0.534

4 Evaluation

In this section, we assess the impact of Description Logic reasoning on the compu-
tation of the similarity between two entities and on the extraction of appropriate
mappings.

4.1 Method

This evaluation is carried out on a subset of the OAEI Conference track3. Note
that we only consider the ontologies for which a reference alignment is provided
(i.e. EKAW, SOFSEM, SIGKDD, IASTED, CMT, ConfOf and EDAS). The
advantage of the conference track is that it includes ontologies that share the
same domain of discourse (i.e. conference organisation) and that are rich in
various types of axioms. The evaluation consists of two experiments:

1. Explicit vs. Implicit Hierarchy: This experiment compares the role of
description logic in determining the class hierarchy. The first alignment is
computed by applying the class-based similarity to the set of super-classes
for each class in two ontologies. The set of super-classes for a class A is
obtained by traversing the asserted hierarchy from the class itself to the
root node of the ontology. The second alignment is obtained by applying the
class-based similarity to the set of subsumers of each class (§3.1). Note that
the reference alignment only includes mapping between classes.

3 http://nb.vse.cz/~svabo/oaei2009/
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2. Disjointness vs. Siblings: The alignment extraction method relies on dis-
jointness to determine inconsistent mappings. This approach has been ex-
tended to consider direct siblings as disjoint entities. This evaluation focuses
on the impact of siblings on the alignment extraction process. The first
alignment is computed by only considering the explicit disjointness, while
the second alignment is obtained by considering direct siblings. Note that
the direct sibling are computed based on the classified ontology. In both
cases, the weights for label similarity, property-based similarity, and class-
based similarity are set to 0.4, 0.1 and 0.5 respectively. Note that because
we are focusing on the extraction step the similarity measure does not have
an impact on the results.

4.2 Results

The first experiment compares two methods to obtain the class hierarchy. The
first method relies on the explicit class hierarchy, while the second method uses
DL reasoning to extract set of subsumers. We applied the class-based similarity
on the respective sets to compute 21 pairs of alignments. Generally, the highest
f-measure is achieved at the same threshold for the implicit hierarchy as for the
explicit hierarchy. The implicit hierarchy achieves better f-measure in 15 cases.
In 6 of these 15 case, the recall achieved by the two methods is the same, but
the implicit hierarchy yields a better precision. This suggests that the use of
the implicit hierarchy (as background knowledge) improves the coverage of the
ontology mapping task.

Table 4 shows the harmonic mean (H-Mean) f-measure score of each approach
across different thresholds for the 21 tests in the conference test case. We can
see that the use of the implicit hierarchy consistently yields better results than
the use of the explicit hierarchy. Thus, this further suggests that the use of the
implicit hierarchy improves the coverage of the ontology mapping task.

Table 4. H-Mean f-measure at different threshold for the Explicit vs. Implicit Hierarchy experiment.

Threshold 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Implicit Hierarchy .34 .37 .40 .44 .45 .47 .43 .42 .38
Explicit Hierarchy .29 .32 .35 .36 .40 .44 .42 .40 .37

The second experiment to evaluate the impact of using asserted disjointness
(i.e. explicitly stated in axioms) compared to using implicit disjointness. The
implicit disjointness is obtained by considering direct siblings as disjoint entities
based on the classified ontology. In KOSIMap, the disjointness is only used dur-
ing the alignment extraction process, and thus does not have an impact when
calculating the similarity between two entities. In 15 out of the 21 tests, the use
of direct siblings achieves the same results as those achieved by using the explicit
disjointness. This can be explained by the fact that the set of direct siblings is
identical to the set of disjoint entities for the entities being mapped.
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Table 5 shows the harmonic mean f-measure score of each approach across
different thresholds for the 21 tests in the conference test case. We can see that
the use of direct siblings consistently yields better results than the use of disjoint-
ness. We have also performed this experiment by combining both approaches and
have found that this approach always achieves the best result.

Table 5. H-Mean f-measure at different threshold for the Disjointness vs. Siblings.

Threshold 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Disjoint .26 .33 .43 .52 .57 .57 .42 .34 0

Siblings .27 .34 .45 .54 .59 .58 .43 .34 0

5 Conclusion

In this paper, we presented the KOSIMap framework, which uses Description
Logic reasoning (i) to extract implicit information (i.e. logical consequences)
about every entity, and (ii) to remove inappropriate mappings from an alignment.
The framework first extracts logical consequences embedded in both ontologies
using an OWL DL reasoner. Next, KOSIMap computes three different types
of similarities for every pair of entities. We then build a matrix storing the
aggregated values for every pair of entities from which mappings are extracted.
Finally, we remove inappropriate mappings from the set of all possible mappings.
Note that each step is performed in an ordered and consecutive manner.

The results of our evaluation showed that the use of the implicit hierar-
chy consistently yields better overall f-measure on the OAEI conference track.
We also observed that the use of the implicit hierarchy improves the coverage.
Secondly, we checked whether the use of direct siblings during the alignment
extraction process had a negative impact on the coverage. The overall f-measure
showed that the use of direct siblings consistently yields better results than the
use of disjointness during the alignment extraction process.

Although these results are encouraging, we realise that the approach can be
further improved. For example, the pre-alignment process phase could be im-
proved by iteratively considering another entity in the target ontology when a
mapping has been removed during the mapping refinement phase. Moreover, the
refinement process could be improved by not only considering local logical incon-
sistencies, but by also considering logical inconsistencies in the distributed on-
tologies. For example, Meilicke et al. [12] provide non-standard reasoning based
on DDL to support the mapping revision process.
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