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Abstract content scoring, in addition to extensions that account for
the structural constraints.

Retrieval queries that combine structural constraints NEXI is built upon XPath [1]. On one hand, it narrows
with keyword search represent a significant challenge to XPath by excluding some function symbols and some axes
XML data management systems. Queries are expected to bef XPath. On the other hand, it extends XPath by adding to
answered as efficiently and effectively as in traditional key- it the functionabout() . Theabout() function is used
word search, while satisfying additional constraints. Sev- for filtering elements based on their relevance to a specified
eral XML-retrieval systems support answering queries ex- list of keywords.
haustively by storing both structural indexes and a key-
word index. Other systems answer top-k queries efficientlyExample 1.1 Consider the following NEXI retrieval query:
by constructing indexes in which keyword scores, for some//article[about(., XML)]//sec[about(.,

structural elements, are stored in relevance order, enabling query evaluation)] . This query specifies a search,
approaches such as the threshold algorithm (TA). for sections that deal with “query evaluation” and appear

In this paper we describ&@ReX, an XML retrieval sys- in an article that is about “XML". Theabout() function
tem that can exploit multiple structurabmmarieginclud- ~ specifies the keywords for the search.

ing newly defined onesTReX can also self-manage small, o ) ,
redundant, indexes to speed up the evaluation of workloads | "€re are two possible interpretations to NEXI queries.
of top-k queries. The redundant indexes are maintained tOUnder a strict interpretation the structural constraints
enableTReX to select an evaluation strategies among three Should be satisfied precisely. Undevague interpretation
(and potentially more) retrieval methods. We provide exper- the structural constraints are relaxed and need to be only

imental evidence that using several strategies improves thd0Sely satisfied. The answer to a retrieval query consists
efficiency of query evaluation, since none of the retrieval of elements that satisfy the structural constraints—strictly

methods outperforms the others in all cases. or vaguely according to the interpretation—and contain at
least one of the specified keywords. The elements in the an-

swer are ranked according to their relevance to the search.
For instance, under a strict interpretation, the answer to the
query of Example 1.1 consists séc elements that are de-
, scendants oérticle elementsj.e., elements that are in

In XML documents, structure and content are insepa- yo answer to the XPath expressitarticle//sec
rable. Thus, several languages for XML r'etr.|eval, which Thesec elements in the answer should be ranked accord-
have be_en Tece”“_V. developed, allow specifying structural ing to their relevance to the keywords “query” and “eval-
constramt; in addition to kfaywords. An example of_such uation”, and the relevance of their ancesasticle el-
language is NEXI [18], which has been developed in the ements to the keyword “XML". Under a vague interpre-

context of INEX, an initiative that provides a forum for re- tation, the answer to the query is similar except that the
searchers to demonstrate retrieval capabilities on coIIectionsarticle andsec tags can be replaced by any other tag

of XML documents. names, presumably having the same meaning.

NEXI. In NEXI (Narrowed Extended XPath),l queries There are two main challenges when implementing a re-
combine keywords with structural constraints. A query an- trieval language such as NEXI. First, ranking answers as
swer is a ranked list of XML elements that (1) contain at close as possible to a ranking performed by a human. Pro-
least one of the keywords, and (2) satisfy the constraints.viding such ranking is beyond the scope of this paper. The
Each implementation of NEXI has its own ranking crite- second challenge, which is addressed in this paper, is com-
ria, which generally use well-established IR techniques, for puting retrieval queries efficiently.

1. Introduction



The TReX System. In this paper we describ&@ReX—

a system for efficient evaluation of vague NEXI queries. l l

TReX can either find all the answer to a query or only the /l\ I

top-k answers. It employs three retrieval methods, namely o™ R
exhaustive TA andmerge in order to choose the best one /1\ Q/l\m
according to the query. Each method requires its own in- l\ l\ l\ l\
dexes. But, when disk space is limited, only some of the P 4 2w
indexes should be created and stored. One of the novel- | /N, /\ | | | S~ L]
ties of TReX is self-managing the creation of indexes used f 1 BoA R 1 l il f T 77
by the TA and merge algorithms, for efficient evaluation of # % & ¥ oA
gueries according to a givemorkload ncoming summary alias incoming summary

Related Work. Several proposals in the literature extend
the traditional keyword-style retrieval to the XML model
[5, 8, 9]. Vague structural conditions were introduced in
[16] and complemented with full-text conditions in [2, 3].
A query algebra for IR style processing of XML data was
introduced in [4]. Efficient evaluation of keyword top-k .
queries was considered in XRANK [8]. Other recent pro- | Structy_ral summaries are data structures used for locat-
posals for XML ranked retrieval include [11] and [13]. The NG specific fragments of the data, such as nodes and sub-
former uses dataguides and TA-style top-k algorithms [6], {€€S, according to structural constraints. They group to-
but differs from our work in that their experiments are lim- gether elements that are |nq|stlngU|shabIe with respect to a
ited to DB-like queries rather than XML retrieval ones. In duery or a class of queries in some XML query language.
contrast, [13] focuses on efficient evaluation of approximate BY accessing relevant data directly they help to avoid se-

structural matches without considering keyword search. guential scans of entire documents during query evaluation.
In addition, they can be used ttescribean instance by

Contributions. The main contributions of this paper are as keeping record of its structural properties, such as hierar-
follows. chical relationships, degree of nesting, and label paths.
A typical summarization of the structure of an XML doc-
e A novel use of summaries for efficient XML retrieval ument is dabeled treethat describes, in a concise way, the
is presented (Section 2). labels and edges of the document. Each node in the sum-
mary tree has one such equivalence class (usually aailed
e The approach of materializing top-k indexes for effi- tentin the literature) associated to it.
cient evaluation of top-k queries using different strate-  The partition can be induced by different criteria. For
gies investigated (Section 3). instance, theag summaryclusters together nodes with the
same tag (same label). The tag summary has as many ex-
e |tis shown how to self-manage materialized redundant tents as different tags are in the XML document. Time
(element, tag, score) indexes for increasing the effi- coming summaryin contrast, partitions nodes based on the
ciency of query evaluation while minimizing the use label paths from the root to theme., the incoming label
of disk space (Section 4). paths. Thus, nodes with the same incoming label path will
belong to the same extent. It is easy to see that the ex-
e Experiments are provided to show the benefits of us- tents of the incoming summary are in fact a refinement of
ing different strategies for evaluating different queries the tag summary extents: in order for two nodes to have
(Section 5). the same incoming label path they also need to have the
same label. The left-hand side of Figure 1 shows a frag-
ment of the incoming summary tree for the INEX IEEE col-
lection. The numbers below the nodes arenmary node
identifiers or sids for short. For instance, all the XML
Two basic data structures to support efficient XML re- nodes, in the example, that are reachable from the root by

Figure 1. Summary fragments for INEX IEEE

2.1 Structural Summaries

2. Summaries and Retrieval Indexes

trieval in TReX areinverted listsandstructural summaries  the pathbooks/journal/article belong to the same
Inverted lists support retrieval of elements that contain spe-incoming-summary extent and have sid 7.
cific keywords, while summaries support retrieving ele- In an XML retrieval environment, oftentimes different

ments that satisfy certain structural conditions. In this sec-elements with different tags represent the same type of in-
tion we shortly describe these data structures. formation. For instance, article sections in the IEEE col-



lection are in some places referred tosee and in some  der, the first positiondocID andoffset fields) in each
others asssl or ss2. Sincesec, ss1 andss2 are se-  fragmentis part of the key.
mantically the same, we would like our summary to reflect  For technical reasons, we add raaximal dummy
that fact. Therefore, we make use of #i@s mappingpro- position denoted m-pos to the end of the last
vided by INEX to replace all synonyms by their alize¢ postingDataEntry list of each term. The posi-
in our example). The right-hand side of Figure 1 shows a tion m-posis maximal in the sense that no real position can
fragment of thealias incoming summariree for the INEX exceed it. This is done in order to facilitate the handling of
IEEE collection. For the IEEE collection, the complete the case where the end of the posting list is reached.
incoming summary with no aliases has 11563 nodes. For A relevance posting list (RPL) of a termstores all
the tags summary, the number of modes is 185. The totalthe elements that contaif with their relevance scores.
size of the alias incoming summary is 7860. The alias tag TReXstores RPLs in the tabld®PLs andERPLs. These
summary has 145 nodes. tables differ in the order by which elements are kept. In
For efficiency, TReX uses only summaries in which RPLs elements are sorted in descending order of relevance,
there are no two XML elements in the same extent where while in ERPLs elements are sorted by position.
one encapsulates the other. That is, every pair of ancestor- Each tuple, in eitheRPLs or ERPLs, holds a term and
descendant elements have different sids. Using alias mapsome (not necessarily all) of the elements that contain the
pings this can be easily guaranteed. term. The fieldrplDataEntry  holds a list of 5-tuples,
TReX uses the alias incoming summary where the ex- where each 5-tuple identifies an element and consists of
tents are described using XPath expressions. Most of the(1) a relevance scor€2) an sid,(3) a document identifier,
summaries proposed in the literature can in fact be de-(4) an offset to end position, ar(8) a length.
scribed using XPath expressions and be usetReX. Ex- TReX uses RPLs for computing the top-k answers to a
amples of such proposals are dataguides [7], the T-indeXgiven query. Suppose the translation of a given query is the
family [14], ToXin [15], A(k)-index [12], F&B-Index and |ists sid;, ..., sid,, of sids and the listy, . .., t, of terms.

F+B-Index [10]. The top-k answers of the query can be computed by select-
_ ing from the RPLs ot4, . .., t, the elements in the extents
2.2 Indexes in TReX of sidy, ..., sid,, and merging the result liste,g.,using a

merge algorithm or a threshold algorithm.
In TReX, a structural summary and inverted lists are

stored in two indexed tables namdflements and 3. Retrieval Strategies

PostingLists . Two additional indexes that store triplets

of term, element and ranking score aetevance posting

lists (RPLs) andelement-relevance posting liSiSRPLS). In this section we describe the evaluation of queries in
The Schemes Of these tab|es are as fo”ows_ TReX and present the I’etl’ieva| methOdS that are Used.
Elements (SID, docID , endPos, length )

PostingLists  (token , docID , offset , postingDataEntry ) 3.1 Query Evaluation USing Summaries

RPLs(token , iR, SID, docID , endPos, rplDataEntry )
ERPLs(token , SID, docID , endPos, iR , erplDataEntry )

Evaluation of a NEXI query inTReX is done in two
Primary keys are underlined. For each table, an index onphases: translation and retrieval. In the translation phase,
the primary key provides a sequential access to the tuples. each pathy in the query from the root to ambout()  func-

The Elements table contains an entry for each ele- tion is translated to a set of sids and a set of terms.H,gt
ment in the corpusSID is the summary id of the element. be the set of elements in the result of evaluagiran all the
doclID is the id of the document in which the element ap- documents in the corpus. Then, the set of sids consists of
pears. ThendPos is the position, in the document, where all the summary nodes whose extent has a non-empty in-
the element ends, aength is the length of the element.  tersection withE,,, whereas the set of terms consists of all

The PostingLists table holds the inverted lists. For the terms that appear in tladout() function at the end
each term, stored in thioken field, the table holds in  of p. For example, consider the query in Example 1.1 over
thepostingDataEntry field all the positions where the  the INEX IEEE collection, and the incoming summary with
term appears. A position is represented by a pair of docu-aliases shown on the right-hand side of Figure 1. Then, the
ment identifier and an offset from the beginning of the doc- set of sids for the patHarticle//sec is {46, 82, 89,
ument. Since the posting list might be too long for storing 493, 607, 619, 630,761, 1995, 2239The set of terms is
it in a single tuple, it is divided and stored in several tu- {query, evaluatioh. For the path/article that also
ples whenever needed. In order to access the fragments of &eads to arabout()  function, the set of sids i§7} and
posting list that has been divided, according to position or- the set of terms i$XML }.



In the retrieval phase, elements are retrieved according| gra((sids, .. ., sidm), (t1, .- ., tn))
to the sets of sids and terms generated in the translation| ,pu Alist of sids and a list of terms

phase_ For each Sﬁjdh e Sidm of sids and sety,...,t, Output: The relevant elements with their term frequencies
. . 1: let L be a new empty list
of terms, the system retrieves the elements (ﬂ:}mre in 2: let C[m][n] be an array of sizen x n having 0 in all the cells

the extent of a node with sid amongd,, ..., sid,,, and 3:fori = 1tomdo
(2) contain at least one of the termls, t Retrieval create a new iteratdfs; 4, over elements in the extent std;
R

i i e; « Is;iq, firstElement)
strategies are discussed next. end for

for j = 1tondo
create a new iteratcﬁ,,j over the positions of ;
9 pos; — I+, .nextPositiort ; )
10: end for
11: repeat
12:  letx be the index for whiclpos, = min{pos, ..., pos, }, and lett,,
be the term that starts in positipos,

ONO G A

3.2 Exhaustive Retrieval Algorithm

The exhaustive retrieval algorithmERA) evaluates 13: fori— 1tomdo
queries using thElements andPostingLists tables. 14 if pos, < start(e;) then
. . . . 15: {do nothing
The main code is presented in Figure BRA computes 16:  elseifstart(e;) < pos, < ende;) then
queries using two types of iterators over the indexes. For| 17 Cli][z] < Clil[=] + 1
R - R 18: elseifende;) < pos, then
each given sidERA creates an iterator that returns all the | 19 if there is a non-zero cell in the ro@[3][1, . . . , n] then
elements in the extent of this sid. The elements are re- 205 create a new listf, . from then valuesC'i][1, .. ., n]
trieved from theElements table. Each element is identi- ;; ‘:‘;’jeiealli;e)c;’é . oo
fied by the position where it ends (the values in the fields | 53: end if - "
docID , endPos of Elements ). Suppose that an iter- 24 ei  Isia; .nextElementAftépos, )
ator I, is created for a given sid. Then, the function |32 ") < pos, < enfles)then
call I, firstElement) returns the first tuple ifElements 27: end if

whose sid is equal ta. (Remember there is an index |55 o0

on the key that provides a sequential access to the tu-| 30: pos, — I, .nextPositior) »
ples of Elements ) Given a positiorp, the function call g% ;Jerltljlrr:ozall the terms, the maximal position-poshas been reached
I;.nextElementAftép) returns the element with the low-
est position greater thgm among the elements in the ex-
tent of s. If no element is found then a dummy element Figure 2. The ERA algorithm.
is returned—an element with end position equabtgos
and length equal to zero. This function is implemented as
a search over the index &lements . Iterators over the
postings (positions) of a given term are also being used. For
each given term, an iteratorl, over the posting list of is
created. Functiot,.nextPositior) returns the next position
in the posting list of.

Using ERA, TReX can compute all the answers to a
given query. TReX also useERA for generating or ex-
tending theRPLs andERPLstables.

3.4 Merge Algorithm

The Merge algorithm is presented in Figure 3. Whil&
iterates over RPLSMerge evaluates queries using ERPLSs.
The algorithm generates iterators for the given terms using
the tableERPLs. It then combines the scores from the it-
erators and eventually sorts the elements according to the
combined scores.

4. Self-Managing Retrieval Indexes

3.3 Threshold Algorithm
TReX evaluates a given query by choosing a method
from the three evaluation methods that were presented in
One of the methods implementediReX is the thresh-  Section 3.ERA can be used for evaluating any given query,

old algorithm (TA) [6] in a version similar to the imple-  provided that the inverted lists and the structural summary
mentation that has been used in TopX [17]. Essentidly, exist; however, as we show in Section 5, for many queries
generates, for each given terrof the query, a term iterator ~ Merge andTA are much more efficient thaZRA. For using
I over theRPLs table. The iteratol, returns the elements  Merge, the system should maintaBRPLs, and for using
that containt sorted according to their score, where ele- TA, the system should stoRPLs.
ments that do not have an sid among the sids provided in  Theoretically, a system can store for each pair of term
the query are skipped. For each elem@it,combines the  and sid both an RPL and an ERPL. Then, given a lists of
scores from the iterators, and eventually, for some given termsty,...,t,, and a list of sidssidy, ..., sid,, evalua-
returns the: elements with the top score combinations. tion can be done in two steps. First, for each given term



Merge(L1,...,Ly) Ata (Qi)v is maX{Te - Ttaa 0}
Input: ERPLSL1, . .., Ly, of the termsty , . . ., tn: Storing an index (RPL or ERPL) requires disk space. We
Output: Alist V of merged elements sorted by score. denote bySRPL(Qi) the required space for storir@PLs
1.V —0 . .
2 fori—1tondo that support the evaluat|_on @J; using TA. Note_that only
3:  create an iteratof; over the elements af; the part of theRPLs that is needed for computing the top-
B G dufirstElement) k elements must be storeie., the part thatTA reads till
6: repeat reaching the stopping condition. We denoteSa%p(Q:)
7: m <« The minimal position among the positions of the elementg in R ; H ;
o e the disk space that is used when storingERPPLsrequired

8: lete be the element in positiom for computing the answer tQ;. We present now two ap-
9. score— 0 f ; f
10 fori — 1tomn do proache_s for choosing the lists to store, glve_n that no_m_ore
11:  if the position of the element iry is m then thand disk space should be used. Our goal is to maximize
12: add the score of; to score ; : B : ;
15 it I, hasNext(then Fhe time saving, for thg different queries, weighted accord-
14: ¢; — I;.nexq) ing to the frequencies in the workload.
15: else
16: c; < dummy element . . .
17: end if 4.1 Using Linear Programming
18:  endif
19: end for ) ) . )
%2: a_tli?(e7szor®<tov < e | e orallthe Y We describe now a mechanism for choosing indexes us-

L unt 1 3 5 ISt ti.e., the iterats i . . . .

the end has been reached T element.e. for alline ferator ing boolean linear programming. Given a workload of
%gr sortV’ L‘I/sing QuickSort queriesQq, ..., Q; with frequenciesfi, ..., f;, we gener-

. ret . . .

retum ate the following set of linear equations.

Let z;; be 1 when an ERPL is generated fgf and O
otherwise. Similarly, let:;> be 1 when the system stores an
RPL for Q;, and be 0 otherwise. Our goal is to maximize
the weighted sum

Figure 3. The Merge Algorithm.

t;, scored elements from theRPLs inERPLs that corre- .
spond ta; ands; (for j = 1,...,n) are merged. Secondly, Yic1 (@i fidn(Qi) + wia fila(Q4))
the lists that were generated in the first step are merged us-

ing Merge. A similar computation can be done usiR§Ls subject to

andTA. If the two computations are being done in parallel, zh+ze < 1 (1)

the system can return the answer from the computation that

finish):as first P 2 (2 Sreu(@i) + 2 SerrL(Qs)) < d - (2)
In practice, storing an RPL and an ERPL for each sid, zi; €{0,1}, forl <i<i, j=1,2 @)

term pair requires a lot of disk space. Thus, a system should This linear-programming problem can be solved using
store only the lists that contribute the most to the efficiency | | .. techniques such as the branch-and-cut or branch-
of handling a giverworkload In the rest of this section we and-bound algorithms. The actual time savings and disk

will consider the problem (.)f which mdex_es to sto_re. space for typical queries should be measured experimen-
We assume that there is a set of typical queries that aretally and assigned in the formulas

frequently being posed to the system. A workload expresses

these queries and their frequencies. 4.2 The Greedy Approach
Definition 4.1 (Workload) Aworkloadis a list of top% re- ) _ o )
trieval queriesQs, ..., Q;, where each quer); is associ- Since boolean linear programming is known to be in-

tractable, it should be used only when the number of queries
in the workload is small. For other cases, we present a
Given a workload, we need to decide for each query greedy algorithm that may not provide the optimal solution,
whether to generate and store RPLs or ERPLs for thebut is guaranteed to provide a 2-approximation of the opti-
terms and sids of this query. This depends on the speedupnal solution.
gained by the additional indexes and the available disk Inthe greedy approach, we iteratively add indexes. Each
space. Consider a top-k quef}; whose translation is the time we add the index that seems to provide the largest im-
lists tq,...,t, andsidy,...,sid,. LetT, be the time it provement,.e. the highest ratio of the reduction in time
takes to evaluaté); using ERA. Let T;, and T}, be the to the addition of space. Suppose tlias the current set
times for computingy; usingMerge and TA, respectively. of stored indexesRPLs and ERPLs). Consider a query
Then, thesavinggained byMerge, denotedA,,(Q;), is Q; that cannot be evaluated using merélyLet I, be the
max{T, — T,»,0}. The saving gained byfA, denoted minimal addition toERPLs such that); can be computed

ated with a frequency < f; < 1, such that:l_, f; = 1.



usingl andI/,. Let I, be the minimal addition t&RPLs We testedTReX on many INEX queries; however, we

that enables the evaluation €f over the indexesi.g., us- report here only the results of seven arbitrary queries that
ing I andIj,). Given thatd is the available disk space, the represent different behaviors of the evaluation methods. For
gain-cost ratioof supporting@; for Merge is f; AT}EQli) if measuring the running times of query evaluation, we con-
I | < danditis O otherwise (we denote b, | the size ducteq five separate runs starting with a cold Java ertual
of I'.). Similarly, the gain-cost ratio fofA is f; Ara(Qi) if Machine (JVM), for each query. The best and worst times

I 1< dand itis 0 otherwi Zial were ignored and the reported runtime is the average of the
i < danditis 00 EIWISE. ) i ) remaining three times. The experiments were carried on a
In the greedy approach, in each iteration, the index thatWindows XP Virtual Machine running on a 2.4GHz dual

is added is the one that provides the highest, non zero, gai”bpteron server. and the JVM was allocated 1 GB of RAM.
cost ratio. Indexes are added until all the queries are sup- ’

ported or all the possible gain-cost ratios are zero.
Given a workloadlV, a setl, of indexes isoptimal if
1) |I,| < d (i.e., I, fits into the disk space), and(2) for

5.2. Experimental Results

eachl’ with |I’| < d holds The seven queries for which we present the evaluation
performances of our methods are shown in Table 1. For
Sl fi - Time(Q;, I,) < X, fi - Time(Q;, I') each query, its ID is the ID used in INEX.

The graphs in Figures 4—6 show the evaluation times of
where TiméQ);, I) is the time for evaluatingy; using the queries, for the different methods. Each graph contains the
set of indexed. evaluation time for computing all the answers to the query

The following theorem shows that the greedy algorithm using ERA and Merge. In addition, the evaluation time
provides time saving that is, at the worst case, half the timefor computing the top-k answers usirf, as a function
saving provided by the optimal index creation. That is, the of k is presented. The graphs also include a fourth method,
greedy algorithm is a 2-approximation algorithm. denotedITA, that refers to @A with an ideal heap man-

agement. We preseliTA because the management of the
Theorem 4.2 Given a workloadV, let I, be the optimal heaps inTA has a substantial influence on the running time.
set of indexes fofV/, generating time saving, = !_, f; - In ITA, we consider the operations of inserting an element
(T.(Q;) — TimgQ;, I,)) w.rt. ERA. Let I; be the set of  to aheap or removing an element from a heap as being done
indexes produced by the greedy algorithm, providing time in zero time {.e., we pause our time measure during these
savingTg = %, fi - (T.(Q;) — Time(Q;, I)) w.r.t. ERA. operations).
Then T, <2-Tg. The evaluation times of the different methods for Query
202 appear in the left half of Figure 4 (the inset on the
left shows times in logscale for smatl values). For this
guery, computing usin@ferge an answer that contains all
the 72269 elements that are relevant for this query is done in

We report below the performance of using different eval- |o5s than 10 seconds. Computing usTigthe top-k values,
uation methods ifReX to show that none of the methods  ¢,; 1. petween 50 to 30000 requires time of almost 1500

5. Experimental Evaluation

outperforms all the others. seconds. This time is close to the evaluation time needed for
_ computing all the answers to the query usifRA (about
5.1. Experimental Setup 2000 seconds) and thus may not justify the cost of storing

the additional redundamPLs. Notice that having an ideal
We implementedl’'ReX in Java and used BerkeleyDB heap management could impro#&a dramatically in this

(BDB) for the indexed tables. Our experiments were con- case. Also note that for large values lofthe evaluation
ducted over two collections of documents. One corpus isusing TA is much more efficient than for small values of
the IEEE collection provided in the INEX 2005 benchmark. k. This is because for large values, the heap holding the
This collection contains 16819 XML documents, and it has top-k values is large. Thus, most of the elements that are
a size of 0.76 GB. For the IEEE collection, the sizes of the inserted into this heap are not being removed from it later
tablesElements andPostingLists , stored in BDB, on. This reduces the number of removal of element from the
are 1.52 GB and 8.05 GB, respectively. A second corpus istop-k heap, and thus, reduces the heap-management costs.
the Wikipedia collection provided in the INEX 2006 bench- For Query 203, the evaluation times are depicted in the
mark. The Wikipedia collection contains 659388 XML doc- right half of Figure 4. HerdA is much more efficient than
uments and has size of 4.6 GB. For Wikipedia, the sizes ERA (around 1000 seconds for computing all the 35624 an-
of the tablesElements andPostingLists , Stored in swers usingERA versus around 100 seconds, at the worst
BDB, are 3.91 GB and 48.1 GB, respectively. case, when usindA. In this query, using an ideal heap



[ Query ID [ NEXI Expression [ Collection | #sids [ #terms [ #answers |

202 Ilarticle[about(., ontologies)]//sec[about(., ontologies case study)] IEEE 11 3 72269
203 /Isec[about(., code signing verification)] IEEE 11 3 35624
233 /larticle[about (.//bdy, synthesizers) and about (.//bdy, music)] IEEE 2 2 1450
260 /Ibdy//*[about(., model checking state space explosion)] IEEE 2 5 26750
270 /larticle//sec[about( ., introduction information retrieval)] IEEE 11 3 75309
290 /larticle[about(., "genetic algorithm”)] Wiki 6 2 3257
292 /larticle//figure[about(., Renaissance painting Italian Flemish -French -German)] Wiki 1469 6 458

Table 1. NEXI queries we experimented with, the size of their translation and the size of the result.
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Figure 4. Evaluation times for Query 202 (left) and 203 (right).

could improveTA to be almost as good aderge and for only two terms. Query 290 is an uncommon case where

k values that are smaller than 10 even better thinge. althoughMerge is usually more efficient thaiiA, for k val-
Thus, in this case IRPLs to support the query already ex- ues that are larger than 2500 the runtimel®f is smaller
ist, additionaERPLs may be redundant. than the runtime oMerge. Query 292 has many sids but

The evaluation times for Query 260 are shown on the left only a few answers. Not surprisingliZRA is very ineffi-
side of Figure 5. In some sense, this query shows a typicalCient in this caseMerge and TA are very efficient, where
behavior of the methods. For very smalivalues (here, TA is slightly more efficient thanerge.
for k < 10), TA is the most efficient method. For larger It has been proved thaA is optimal in the sense that
values ofk, Merge is much more efficient thafiA—less its reads from thékPLs only the tuples that are necessary
than 10 seconds to compute all the answers usiegee ~ for computing the top-k elements [6]. That is, any deter-
in comparison to about 300 seconds when usiAgfor ministic algorithm will need to read from tHRPLs at least
up to 15000. As the size df increases, the efficiency of ~as many tuples a8A does, when computing the top-k ele-
TA gets closer to the efficiency dffA since the cost of ~ments of the result. So, why is it that in many cab&sge
the heap management decreases. Except for émallies, is more efficient tharfTA? A key point for understanding
the runtime ofITA is higher than the runtime dfferge. why this happens is the fact that all the five queries over the
Also note that as: increases, the evaluation time EfA IEEE collection (202, 203, 233, 260, 270) read the entire
increases. Thus, for large values, Merge is better than ~ RPLs for £ > 10. The same is true for the queries over
ITA. the Wikipedia collection (290, 292), except that it happens

The graph on the right of Figure 5 shows that for for k 2 50. Whgn reading the entirellists, checking for the
Query 270 the size of can drastically affect the running  StOPPINg condition offA and managing the heap (for the
times of TA. While for largek values (above 70000) the [OP- elements) reduces the efficiency of the query. Thus,

evaluation time is around 20 seconds, it exceeds 800 sec1A 1S not as efficient adferge in such cases.
onds for certairk values. Hence, the added value of main-
taining a redundant index for supporting a top-k query de- 6. Conclusion
pends heavily on the size &f

Figure 6 shows, from left to right, the graphs for We presented’ReX, an XML-retrieval system that uses
Query 233, Query 290 and Query 292. For Query 238, summaries, inverted lists and (sid, term, score) indexes for
andMerge are much more efficient thafRA. (They return efficient evaluation of retrieval queries. We have shown how
the answer in less than a second while ugiiRA requires TReX evaluates NEXI queries using summaries and three
almost 1000 seconds.) Furthermof® is more efficient  evaluation methodsHRA, TA and Merge). We have also
than Merge even when using a heap that is not ideal. Note described an approach to self-managing indexes that en-
that the translation of this query contains only two sid’s and ables choosing efficient methods given a workload of top-k
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[8] L. Guo, F. Shao, C. Botev, and J. Shanmugasundaram.

gorithms are presented for choosing which indexes to store.
One algorithm uses boolean linear programing for finding
the optimal solution. An efficient 2-approximation greedy
algorithm is also described. The experiments reported val-

idate that, for computing top-k queries, relying on a single [10]

retrieval strategy is inferior to employing several strategies.
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