
Self Managing Top-k (Summary, Keyword) Indexes in XML Retrieval

Mariano P. Consens Xin Gu Yaron Kanza Flavio Rizzolo
University of Toronto

{consens, xgu, yaron, flavio}@cs.toronto.edu

Abstract

Retrieval queries that combine structural constraints
with keyword search represent a significant challenge to
XML data management systems. Queries are expected to be
answered as efficiently and effectively as in traditional key-
word search, while satisfying additional constraints. Sev-
eral XML-retrieval systems support answering queries ex-
haustively by storing both structural indexes and a key-
word index. Other systems answer top-k queries efficiently
by constructing indexes in which keyword scores, for some
structural elements, are stored in relevance order, enabling
approaches such as the threshold algorithm (TA).

In this paper we describeTReX, an XML retrieval sys-
tem that can exploit multiple structuralsummaries(includ-
ing newly defined ones).TReX can also self-manage small,
redundant, indexes to speed up the evaluation of workloads
of top-k queries. The redundant indexes are maintained to
enableTReX to select an evaluation strategies among three
(and potentially more) retrieval methods. We provide exper-
imental evidence that using several strategies improves the
efficiency of query evaluation, since none of the retrieval
methods outperforms the others in all cases.

1. Introduction

In XML documents, structure and content are insepa-
rable. Thus, several languages for XML retrieval, which
have been recently developed, allow specifying structural
constraints in addition to keywords. An example of such
language is NEXI [18], which has been developed in the
context of INEX, an initiative that provides a forum for re-
searchers to demonstrate retrieval capabilities on collections
of XML documents.

NEXI. In NEXI (Narrowed Extended XPath I), queries
combine keywords with structural constraints. A query an-
swer is a ranked list of XML elements that (1) contain at
least one of the keywords, and (2) satisfy the constraints.
Each implementation of NEXI has its own ranking crite-
ria, which generally use well-established IR techniques, for

content scoring, in addition to extensions that account for
the structural constraints.

NEXI is built upon XPath [1]. On one hand, it narrows
XPath by excluding some function symbols and some axes
of XPath. On the other hand, it extends XPath by adding to
it the functionabout() . Theabout() function is used
for filtering elements based on their relevance to a specified
list of keywords.

Example 1.1 Consider the following NEXI retrieval query:
//article[about(., XML)]//sec[about(.,
query evaluation)] . This query specifies a search,
for sections that deal with “query evaluation” and appear
in an article that is about “XML”. Theabout() function
specifies the keywords for the search.

There are two possible interpretations to NEXI queries.
Under a strict interpretation, the structural constraints
should be satisfied precisely. Under avague interpretation,
the structural constraints are relaxed and need to be only
loosely satisfied. The answer to a retrieval query consists
of elements that satisfy the structural constraints—strictly
or vaguely according to the interpretation—and contain at
least one of the specified keywords. The elements in the an-
swer are ranked according to their relevance to the search.
For instance, under a strict interpretation, the answer to the
query of Example 1.1 consists ofsec elements that are de-
scendants ofarticle elements,i.e., elements that are in
the answer to the XPath expression//article//sec .
Thesec elements in the answer should be ranked accord-
ing to their relevance to the keywords “query” and “eval-
uation”, and the relevance of their ancestorarticle el-
ements to the keyword “XML”. Under a vague interpre-
tation, the answer to the query is similar except that the
article andsec tags can be replaced by any other tag
names, presumably having the same meaning.

There are two main challenges when implementing a re-
trieval language such as NEXI. First, ranking answers as
close as possible to a ranking performed by a human. Pro-
viding such ranking is beyond the scope of this paper. The
second challenge, which is addressed in this paper, is com-
puting retrieval queries efficiently.

The TReX System. In this paper we describeTReX—
a system for efficient evaluation of vague NEXI queries.
TReX can either find all the answer to a query or only the
top-k answers. It employs three retrieval methods, namely
exhaustive, TA andmerge, in order to choose the best one
according to the query. Each method requires its own in-
dexes. But, when disk space is limited, only some of the
indexes should be created and stored. One of the novel-
ties ofTReX is self-managing the creation of indexes used
by the TA and merge algorithms, for efficient evaluation of
queries according to a givenworkload.

Related Work. Several proposals in the literature extend
the traditional keyword-style retrieval to the XML model
[5, 8, 9]. Vague structural conditions were introduced in
[16] and complemented with full-text conditions in [2, 3].
A query algebra for IR style processing of XML data was
introduced in [4]. Efficient evaluation of keyword top-k
queries was considered in XRANK [8]. Other recent pro-
posals for XML ranked retrieval include [11] and [13]. The
former uses dataguides and TA-style top-k algorithms [6],
but differs from our work in that their experiments are lim-
ited to DB-like queries rather than XML retrieval ones. In
contrast, [13] focuses on efficient evaluation of approximate
structural matches without considering keyword search.

Contributions. The main contributions of this paper are as
follows.

• A novel use of summaries for efficient XML retrieval
is presented (Section 2).

• The approach of materializing top-k indexes for effi-
cient evaluation of top-k queries using different strate-
gies investigated (Section 3).

• It is shown how to self-manage materialized redundant
(element, tag, score) indexes for increasing the effi-
ciency of query evaluation while minimizing the use
of disk space (Section 4).

• Experiments are provided to show the benefits of us-
ing different strategies for evaluating different queries
(Section 5).

2. Summaries and Retrieval Indexes

Two basic data structures to support efficient XML re-
trieval inTReX areinverted listsandstructural summaries.
Inverted lists support retrieval of elements that contain spe-
cific keywords, while summaries support retrieving ele-
ments that satisfy certain structural conditions. In this sec-
tion we shortly describe these data structures.

Figure 1. Summary fragments for INEX IEEE

2.1 Structural Summaries

Structural summaries are data structures used for locat-
ing specific fragments of the data, such as nodes and sub-
trees, according to structural constraints. They group to-
gether elements that are indistinguishable with respect to a
query or a class of queries in some XML query language.
By accessing relevant data directly they help to avoid se-
quential scans of entire documents during query evaluation.
In addition, they can be used todescribean instance by
keeping record of its structural properties, such as hierar-
chical relationships, degree of nesting, and label paths.

A typical summarization of the structure of an XML doc-
ument is alabeled treethat describes, in a concise way, the
labels and edges of the document. Each node in the sum-
mary tree has one such equivalence class (usually calledex-
tent in the literature) associated to it.

The partition can be induced by different criteria. For
instance, thetag summaryclusters together nodes with the
same tag (same label). The tag summary has as many ex-
tents as different tags are in the XML document. Thein-
coming summary, in contrast, partitions nodes based on the
label paths from the root to them,i.e., the incoming label
paths. Thus, nodes with the same incoming label path will
belong to the same extent. It is easy to see that the ex-
tents of the incoming summary are in fact a refinement of
the tag summary extents: in order for two nodes to have
the same incoming label path they also need to have the
same label. The left-hand side of Figure 1 shows a frag-
ment of the incoming summary tree for the INEX IEEE col-
lection. The numbers below the nodes aresummary node
identifiers, or sids for short. For instance, all the XML
nodes, in the example, that are reachable from the root by
the pathbooks/journal/article belong to the same
incoming-summary extent and have sid 7.

In an XML retrieval environment, oftentimes different
elements with different tags represent the same type of in-
formation. For instance, article sections in the IEEE col-

lection are in some places referred to assec and in some
others asss1 or ss2 . Sincesec , ss1 andss2 are se-
mantically the same, we would like our summary to reflect
that fact. Therefore, we make use of thealias mappingpro-
vided by INEX to replace all synonyms by their alias (sec
in our example). The right-hand side of Figure 1 shows a
fragment of thealias incoming summarytree for the INEX
IEEE collection. For the IEEE collection, the complete
incoming summary with no aliases has 11563 nodes. For
the tags summary, the number of modes is 185. The total
size of the alias incoming summary is 7860. The alias tag
summary has 145 nodes.

For efficiency, TReX uses only summaries in which
there are no two XML elements in the same extent where
one encapsulates the other. That is, every pair of ancestor-
descendant elements have different sids. Using alias map-
pings this can be easily guaranteed.

TReX uses the alias incoming summary where the ex-
tents are described using XPath expressions. Most of the
summaries proposed in the literature can in fact be de-
scribed using XPath expressions and be used inTReX. Ex-
amples of such proposals are dataguides [7], the T-index
family [14], ToXin [15], A(k)-index [12], F&B-Index and
F+B-Index [10].

2.2 Indexes in TReX

In TReX, a structural summary and inverted lists are
stored in two indexed tables namedElements and
PostingLists . Two additional indexes that store triplets
of term, element and ranking score arerelevance posting
lists (RPLs) andelement-relevance posting lists(ERPLs).
The schemes of these tables are as follows.
Elements (SID , docID , endPos , length)

PostingLists (token , docID , offset , postingDataEntry)

RPLs(token , iR , SID , docID , endPos , rplDataEntry)

ERPLs(token , SID , docID , endPos , iR , erplDataEntry)

Primary keys are underlined. For each table, an index on
the primary key provides a sequential access to the tuples.

The Elements table contains an entry for each ele-
ment in the corpus.SID is the summary id of the element.
docID is the id of the document in which the element ap-
pears. TheendPos is the position, in the document, where
the element ends, andlength is the length of the element.

ThePostingLists table holds the inverted lists. For
each term, stored in thetoken field, the table holds in
thepostingDataEntry field all the positions where the
term appears. A position is represented by a pair of docu-
ment identifier and an offset from the beginning of the doc-
ument. Since the posting list might be too long for storing
it in a single tuple, it is divided and stored in several tu-
ples whenever needed. In order to access the fragments of a
posting list that has been divided, according to position or-

der, the first position (docID andoffset fields) in each
fragment is part of the key.

For technical reasons, we add amaximal dummy
position denoted m-pos to the end of the last
postingDataEntry list of each term. The posi-
tion m-posis maximal in the sense that no real position can
exceed it. This is done in order to facilitate the handling of
the case where the end of the posting list is reached.

A relevance posting list (RPL) of a termt stores all
the elements that containt with their relevance scores.
TReXstores RPLs in the tablesRPLs andERPLs. These
tables differ in the order by which elements are kept. In
RPLs elements are sorted in descending order of relevance,
while in ERPLselements are sorted by position.

Each tuple, in eitherRPLs or ERPLs, holds a term and
some (not necessarily all) of the elements that contain the
term. The fieldrplDataEntry holds a list of 5-tuples,
where each 5-tuple identifies an element and consists of
(1) a relevance score,(2) an sid,(3) a document identifier,
(4) an offset to end position, and(5) a length.

TReX uses RPLs for computing the top-k answers to a
given query. Suppose the translation of a given query is the
lists sid1, . . . , sidm of sids and the listt1, . . . , tn of terms.
The top-k answers of the query can be computed by select-
ing from the RPLs oft1, . . . , tn the elements in the extents
of sid1, . . . , sidm and merging the result lists,e.g.,using a
merge algorithm or a threshold algorithm.

3. Retrieval Strategies

In this section we describe the evaluation of queries in
TReX and present the retrieval methods that are used.

3.1 Query Evaluation Using Summaries

Evaluation of a NEXI query inTReX is done in two
phases: translation and retrieval. In the translation phase,
each pathp in the query from the root to anabout() func-
tion is translated to a set of sids and a set of terms. LetEp

be the set of elements in the result of evaluatingp on all the
documents in the corpus. Then, the set of sids consists of
all the summary nodes whose extent has a non-empty in-
tersection withEp, whereas the set of terms consists of all
the terms that appear in theabout() function at the end
of p. For example, consider the query in Example 1.1 over
the INEX IEEE collection, and the incoming summary with
aliases shown on the right-hand side of Figure 1. Then, the
set of sids for the path//article//sec is {46, 82, 89,
493, 607, 619, 630,761, 1995, 2239}. The set of terms is
{query, evaluation}. For the path//article that also
leads to anabout() function, the set of sids is{7} and
the set of terms is{XML }.

In the retrieval phase, elements are retrieved according
to the sets of sids and terms generated in the translation
phase. For each setsid1, . . . , sidm of sids and sett1, . . . , tn
of terms, the system retrieves the elements that(1) are in
the extent of a node with sid amongsid1, . . . , sidm, and
(2) contain at least one of the termst1, . . . , tn. Retrieval
strategies are discussed next.

3.2 Exhaustive Retrieval Algorithm

The exhaustive retrieval algorithm (ERA) evaluates
queries using theElements andPostingLists tables.
The main code is presented in Figure 2.ERA computes
queries using two types of iterators over the indexes. For
each given sid,ERA creates an iterator that returns all the
elements in the extent of this sid. The elements are re-
trieved from theElements table. Each element is identi-
fied by the position where it ends (the values in the fields
docID , endPos of Elements). Suppose that an iter-
ator Is is created for a given sids. Then, the function
call Is.firstElement() returns the first tuple inElements
whose sid is equal tos. (Remember there is an index
on the key that provides a sequential access to the tu-
ples ofElements .) Given a positionp, the function call
Is.nextElementAfter(p) returns the element with the low-
est position greater thanp among the elements in the ex-
tent of s. If no element is found then a dummy element
is returned—an element with end position equal tom-pos
and length equal to zero. This function is implemented as
a search over the index ofElements . Iterators over the
postings (positions) of a given term are also being used. For
each given termt, an iteratorIt over the posting list oft is
created. FunctionIt.nextPosition() returns the next position
in the posting list oft.

Using ERA, TReX can compute all the answers to a
given query. TReX also usesERA for generating or ex-
tending theRPLs andERPLs tables.

3.3 Threshold Algorithm

One of the methods implemented inTReX is the thresh-
old algorithm (TA) [6] in a version similar to the imple-
mentation that has been used in TopX [17]. Essentially,TA
generates, for each given termt of the query, a term iterator
It over theRPLs table. The iteratorIt returns the elements
that containt sorted according to their score, where ele-
ments that do not have an sid among the sids provided in
the query are skipped. For each element,TA combines the
scores from the iterators, and eventually, for some givenk,
returns thek elements with the top score combinations.

ERA((sid1, . . . , sidm), (t1, . . . , tn))

Input: A list of sids and a list of terms
Output: The relevant elements with their term frequencies
1: let L be a new empty list
2: let C[m][n] be an array of sizem× n having 0 in all the cells
3: for i = 1 to m do
4: create a new iteratorIsidi

over elements in the extent ofsidi

5: ei ← Isidi
.firstElement()

6: end for
7: for j = 1 to n do
8: create a new iteratorItj

over the positions oftj

9: posj ← Itj
.nextPosition(tj)

10: end for
11: repeat
12: let x be the index for whichposx = min{pos1, . . . , posn}, and lettx

be the term that starts in positionposx
13: for i = 1 to m do
14: if posx < start(ei) then
15: {do nothing}
16: else ifstart(ei) < posx < end(ei) then
17: C[i][x]← C[i][x] + 1
18: else ifend(ei) < posx then
19: if there is a non-zero cell in the rowC[i][1, . . . , n] then
20: create a new listtfei

from then valuesC[i][1, . . . , n]

21: add(ei, tfei
) to L

22: reset all the cellsC[i][1, . . . , n] to 0
23: end if
24: ei ← Isidi

.nextElementAfter(posx)

25: if start(ei) < posx < end(ei) then
26: C[i][x]← C[i][x] + 1
27: end if
28: end if
29: end for
30: posx ← Itx .nextPosition()
31: until for all the terms, the maximal positionm-poshas been reached
32: return L

Figure 2. The ERA algorithm.

3.4 Merge Algorithm

TheMerge algorithm is presented in Figure 3. WhileTA
iterates over RPLs,Merge evaluates queries using ERPLs.
The algorithm generates iterators for the given terms using
the tableERPLs. It then combines the scores from the it-
erators and eventually sorts the elements according to the
combined scores.

4. Self-Managing Retrieval Indexes

TReX evaluates a given query by choosing a method
from the three evaluation methods that were presented in
Section 3.ERA can be used for evaluating any given query,
provided that the inverted lists and the structural summary
exist; however, as we show in Section 5, for many queries
Merge andTA are much more efficient thanERA. For using
Merge, the system should maintainERPLs, and for using
TA, the system should storeRPLs.

Theoretically, a system can store for each pair of term
and sid both an RPL and an ERPL. Then, given a lists of
termst1, . . . , tm and a list of sidssid1, . . . , sidn, evalua-
tion can be done in two steps. First, for each given term

Merge(L1, . . . , Ln)

Input: ERPLsL1, . . . , Ln of the termst1, . . . , tn;
Output: A list V of merged elements sorted by score.
1: V ← ∅
2: for i = 1 to n do
3: create an iteratorIi over the elements ofLi

4: ci ← Ii.firstElement()
5: end for
6: repeat
7: m ← The minimal position among the positions of the elements in

c1, . . . , cn

8: let e be the element in positionm
9: score← 0
10: for i = 1 to n do
11: if the position of the element inci is m then
12: add the score ofci to score
13: if Ii.hasNext()then
14: ci ← Ii.next()
15: else
16: ci ← dummy element
17: end if
18: end if
19: end for
20: add(e, score) to V
21: until for 1 ≤ i ≤ n, ci is thedummy element, i.e., for all the iteratorsIi

the end has been reached
22: sortV using QuickSort
23: return V

Figure 3. The Merge Algorithm.

ti, scored elements from then RPLs inERPLs that corre-
spond toti andsj (for j = 1, . . . , n) are merged. Secondly,
the lists that were generated in the first step are merged us-
ing Merge. A similar computation can be done usingRPLs
andTA. If the two computations are being done in parallel,
the system can return the answer from the computation that
finishes first.

In practice, storing an RPL and an ERPL for each sid,
term pair requires a lot of disk space. Thus, a system should
store only the lists that contribute the most to the efficiency
of handling a givenworkload. In the rest of this section we
will consider the problem of which indexes to store.

We assume that there is a set of typical queries that are
frequently being posed to the system. A workload expresses
these queries and their frequencies.

Definition 4.1 (Workload) A workloadis a list of top-k re-
trieval queriesQ1, . . . , Ql, where each queryQi is associ-
ated with a frequency0 < fi ≤ 1, such thatΣl

i=1fi = 1.

Given a workload, we need to decide for each query
whether to generate and store RPLs or ERPLs for the
terms and sids of this query. This depends on the speedup
gained by the additional indexes and the available disk
space. Consider a top-k queryQi whose translation is the
lists t1, . . . , tm andsid1, . . . , sidn. Let Te be the time it
takes to evaluateQi using ERA. Let Tm and Tta be the
times for computingQi usingMerge andTA, respectively.
Then, thesaving gained byMerge, denoted∆m(Qi), is
max{Te − Tm, 0}. The saving gained byTA, denoted

∆ta(Qi), is max{Te − Tta, 0}.
Storing an index (RPL or ERPL) requires disk space. We

denote bySRPL(Qi) the required space for storingRPLs
that support the evaluation ofQi usingTA. Note that only
the part of theRPLs that is needed for computing the top-
k elements must be stored,i.e., the part thatTA reads till
reaching the stopping condition. We denote bySERPL(Qi)
the disk space that is used when storing theERPLsrequired
for computing the answer toQi. We present now two ap-
proaches for choosing the lists to store, given that no more
thand disk space should be used. Our goal is to maximize
the time saving, for the different queries, weighted accord-
ing to the frequencies in the workload.

4.1 Using Linear Programming

We describe now a mechanism for choosing indexes us-
ing boolean linear programming. Given a workload of
queriesQ1, . . . , Ql with frequenciesf1, . . . , fl, we gener-
ate the following set of linear equations.

Let xi1 be 1 when an ERPL is generated forQi and 0
otherwise. Similarly, letxi2 be 1 when the system stores an
RPL for Qi, and be 0 otherwise. Our goal is to maximize
the weighted sum

Σl
i=1(xi1fi∆m(Qi) + xi2fi∆ta(Qi))

subject to

xi1 + xi2 ≤ 1 (1)

Σl
i=1(xi1SRPL(Qi) + xi2SERPL(Qi)) ≤ d (2)

xij ∈ {0, 1}, for 1 ≤ i ≤ l, j = 1, 2 (3)

This linear-programming problem can be solved using
known techniques such as the branch-and-cut or branch-
and-bound algorithms. The actual time savings and disk
space for typical queries should be measured experimen-
tally and assigned in the formulas.

4.2 The Greedy Approach

Since boolean linear programming is known to be in-
tractable, it should be used only when the number of queries
in the workload is small. For other cases, we present a
greedy algorithm that may not provide the optimal solution,
but is guaranteed to provide a 2-approximation of the opti-
mal solution.

In the greedy approach, we iteratively add indexes. Each
time we add the index that seems to provide the largest im-
provement,i.e., the highest ratio of the reduction in time
to the addition of space. Suppose thatI is the current set
of stored indexes (RPLs and ERPLs). Consider a query
Qi that cannot be evaluated using merelyI. Let I ′m be the
minimal addition toERPLs such thatQi can be computed

usingI andI ′m. Let I ′ta be the minimal addition toRPLs
that enables the evaluation ofQi over the indexes (i.e., us-
ing I andI ′ta). Given thatd is the available disk space, the
gain-cost ratioof supportingQi for Merge is fi

∆m(Qi)
|I′

m|
if

|I ′m| ≤ d and it is 0 otherwise (we denote by|I ′m| the size
of I ′m). Similarly, the gain-cost ratio forTA is fi

∆ta(Qi)
|I′

ta|
if

|I ′ta| ≤ d and it is 0 otherwise.
In the greedy approach, in each iteration, the index that

is added is the one that provides the highest, non zero, gain-
cost ratio. Indexes are added until all the queries are sup-
ported or all the possible gain-cost ratios are zero.

Given a workloadW , a setIo of indexes isoptimal if
(1) |Io| ≤ d (i.e., Io fits into the disk spaced), and(2) for
eachI ′ with |I ′| ≤ d holds

Σl
i=1fi · Time(Qi, Io) ≤ Σl

i=1fi · Time(Qi, I
′)

where Time(Qi, I) is the time for evaluatingQi using the
set of indexesI.

The following theorem shows that the greedy algorithm
provides time saving that is, at the worst case, half the time
saving provided by the optimal index creation. That is, the
greedy algorithm is a 2-approximation algorithm.

Theorem 4.2 Given a workloadW , let Io be the optimal
set of indexes forW , generating time savingTo = Σl

i=1fi ·
(Te(Qi) − Time(Qi, Io)) w.r.t. ERA. Let IG be the set of
indexes produced by the greedy algorithm, providing time
savingTG = Σl

i=1fi · (Te(Qi)−Time(Qi, IG)) w.r.t. ERA.
Then,To ≤ 2 · TG.

5. Experimental Evaluation

We report below the performance of using different eval-
uation methods inTReX to show that none of the methods
outperforms all the others.

5.1. Experimental Setup

We implementedTReX in Java and used BerkeleyDB
(BDB) for the indexed tables. Our experiments were con-
ducted over two collections of documents. One corpus is
the IEEE collection provided in the INEX 2005 benchmark.
This collection contains 16819 XML documents, and it has
a size of 0.76 GB. For the IEEE collection, the sizes of the
tablesElements andPostingLists , stored in BDB,
are 1.52 GB and 8.05 GB, respectively. A second corpus is
the Wikipedia collection provided in the INEX 2006 bench-
mark. The Wikipedia collection contains 659388 XML doc-
uments and has size of 4.6 GB. For Wikipedia, the sizes
of the tablesElements andPostingLists , stored in
BDB, are 3.91 GB and 48.1 GB, respectively.

We testedTReX on many INEX queries; however, we
report here only the results of seven arbitrary queries that
represent different behaviors of the evaluation methods. For
measuring the running times of query evaluation, we con-
ducted five separate runs starting with a cold Java Virtual
Machine (JVM), for each query. The best and worst times
were ignored and the reported runtime is the average of the
remaining three times. The experiments were carried on a
Windows XP Virtual Machine running on a 2.4GHz dual
Opteron server, and the JVM was allocated 1 GB of RAM.

5.2. Experimental Results

The seven queries for which we present the evaluation
performances of our methods are shown in Table 1. For
each query, its ID is the ID used in INEX.

The graphs in Figures 4–6 show the evaluation times of
queries, for the different methods. Each graph contains the
evaluation time for computing all the answers to the query
using ERA and Merge. In addition, the evaluation time
for computing the top-k answers usingTA, as a function
of k is presented. The graphs also include a fourth method,
denotedITA, that refers to aTA with an ideal heap man-
agement. We presentITA because the management of the
heaps inTA has a substantial influence on the running time.
In ITA, we consider the operations of inserting an element
to a heap or removing an element from a heap as being done
in zero time (i.e., we pause our time measure during these
operations).

The evaluation times of the different methods for Query
202 appear in the left half of Figure 4 (the inset on the
left shows times in logscale for smallk values). For this
query, computing usingMerge an answer that contains all
the 72269 elements that are relevant for this query is done in
less than 10 seconds. Computing usingTA the top-k values,
for k between 50 to 30000, requires time of almost 1500
seconds. This time is close to the evaluation time needed for
computing all the answers to the query usingERA (about
2000 seconds) and thus may not justify the cost of storing
the additional redundantRPLs. Notice that having an ideal
heap management could improveTA dramatically in this
case. Also note that for large values ofk the evaluation
using TA is much more efficient than for small values of
k. This is because for largek values, the heap holding the
top-k values is large. Thus, most of the elements that are
inserted into this heap are not being removed from it later
on. This reduces the number of removal of element from the
top-k heap, and thus, reduces the heap-management costs.

For Query 203, the evaluation times are depicted in the
right half of Figure 4. HereTA is much more efficient than
ERA (around 1000 seconds for computing all the 35624 an-
swers usingERA versus around 100 seconds, at the worst
case, when usingTA. In this query, using an ideal heap

Query ID NEXI Expression Collection # sids # terms # answers

202 //article[about(., ontologies)]//sec[about(., ontologies case study)] IEEE 11 3 72269
203 //sec[about(., code signing verification)] IEEE 11 3 35624
233 //article[about (.//bdy, synthesizers) and about (.//bdy, music)] IEEE 2 2 1450
260 //bdy//*[about(., model checking state space explosion)] IEEE 2 5 26750
270 //article//sec[about(., introduction information retrieval)] IEEE 11 3 75309
290 //article[about(., ”genetic algorithm”)] Wiki 6 2 3257
292 //article//figure[about(., Renaissance painting Italian Flemish -French -German)] Wiki 1469 6 458

Table 1. NEXI queries we experimented with, the size of their translation and the size of the result.

Figure 4. Evaluation times for Query 202 (left) and 203 (right).

could improveTA to be almost as good asMerge and for
k values that are smaller than 10 even better thanMerge.
Thus, in this case ifRPLs to support the query already ex-
ist, additionalERPLsmay be redundant.

The evaluation times for Query 260 are shown on the left
side of Figure 5. In some sense, this query shows a typical
behavior of the methods. For very smallk values (here,
for k ≤ 10), TA is the most efficient method. For larger
values ofk, Merge is much more efficient thanTA—less
than 10 seconds to compute all the answers usingMerge
in comparison to about 300 seconds when usingTA for k
up to 15000. As the size ofk increases, the efficiency of
TA gets closer to the efficiency ofITA since the cost of
the heap management decreases. Except for smallk values,
the runtime ofITA is higher than the runtime ofMerge.
Also note that ask increases, the evaluation time ofITA
increases. Thus, for largek values,Merge is better than
ITA.

The graph on the right of Figure 5 shows that for
Query 270 the size ofk can drastically affect the running
times of TA. While for largek values (above 70000) the
evaluation time is around 20 seconds, it exceeds 800 sec-
onds for certaink values. Hence, the added value of main-
taining a redundant index for supporting a top-k query de-
pends heavily on the size ofk.

Figure 6 shows, from left to right, the graphs for
Query 233, Query 290 and Query 292. For Query 233,TA
andMerge are much more efficient thanERA. (They return
the answer in less than a second while usingERA requires
almost 1000 seconds.) Furthermore,TA is more efficient
thanMerge even when using a heap that is not ideal. Note
that the translation of this query contains only two sid’s and

only two terms. Query 290 is an uncommon case where
althoughMerge is usually more efficient thanTA, for k val-
ues that are larger than 2500 the runtime ofTA is smaller
than the runtime ofMerge. Query 292 has many sids but
only a few answers. Not surprisingly,ERA is very ineffi-
cient in this case,Merge andTA are very efficient, where
TA is slightly more efficient thanMerge.

It has been proved thatTA is optimal in the sense that
its reads from theRPLs only the tuples that are necessary
for computing the top-k elements [6]. That is, any deter-
ministic algorithm will need to read from theRPLs at least
as many tuples asTA does, when computing the top-k ele-
ments of the result. So, why is it that in many casesMerge
is more efficient thanTA? A key point for understanding
why this happens is the fact that all the five queries over the
IEEE collection (202, 203, 233, 260, 270) read the entire
RPLs for k ≥ 10. The same is true for the queries over
the Wikipedia collection (290, 292), except that it happens
for k ≥ 50. When reading the entire lists, checking for the
stopping condition ofTA and managing the heap (for the
top-k elements) reduces the efficiency of the query. Thus,
TA is not as efficient asMerge in such cases.

6. Conclusion

We presentedTReX, an XML-retrieval system that uses
summaries, inverted lists and (sid, term, score) indexes for
efficient evaluation of retrieval queries. We have shown how
TReX evaluates NEXI queries using summaries and three
evaluation methods (ERA, TA andMerge). We have also
described an approach to self-managing indexes that en-
ables choosing efficient methods given a workload of top-k

Figure 5. Evaluation times for Query 260 (left) and 270 (right).

Figure 6. Evaluation times for Query 233 (left), 290 (center) and 292 (right).

NEXI queries, while minimizing disk space usage. Two al-
gorithms are presented for choosing which indexes to store.
One algorithm uses boolean linear programing for finding
the optimal solution. An efficient 2-approximation greedy
algorithm is also described. The experiments reported val-
idate that, for computing top-k queries, relying on a single
retrieval strategy is inferior to employing several strategies.

References

[1] XPath 1.0.http://www.w3. org/TR/xpath , 1999.

[2] S. Al-Khalifa, C. Yu, and H. V. Jagadish. Querying struc-
tured text in an XML database. InSIGMOD, 2003.

[3] S. Amer-Yahia, C. Botev, and J. Shanmugasundaram. Tex-
query: a full-text search extension to XQuery. InWWW,
2004.

[4] S. Amer-Yahia, L. V. S. Lakshmanan, and S. Pandit. Flex-
path: flexible structure and full-text querying for XML. In
SIGMOD, 2004.

[5] S. Cohen, J. Mamou, Y. Kanza, and Y. Sagiv. XSEarch: A
semantic search engine for XML. InVLDB, 2003.

[6] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation al-
gorithms for middleware. InPODS, 2001.

[7] R. Goldman and J. Widom. Dataguides: Enabling query for-
mulation and optimization in semistructured databases. In
VLDB, 1997.

[8] L. Guo, F. Shao, C. Botev, and J. Shanmugasundaram.
XRANK: Ranked keyword search over xml documents. In
SIGMOD, 2003.

[9] V. Hristidis, Y. Papakonstantinou, and A. Balmin. Keyword
proximity search on xml graphs. InICDE, 2003.

[10] R. Kaushik, P. Bohannon, J. F. Naughton, and H. F. Korth.
Covering indexes for branching path queries. InSIGMOD,
2002.

[11] R. Kaushik, R. Krishnamurthy, J. F. Naughton, and R. Ra-
makrishnan. On the integration of structure indexes and in-
verted lists. InSIGMOD, 2004.

[12] R. Kaushik, P. Shenoy, P. Bohannon, and E. Gudes. Exploit-
ing local similarity for indexing paths in graph-structured
data. InICDE, 2002.

[13] A. Marian, S. Amer-Yahia, N. Koudas, and D. Srivastava.
Adaptive processing of top-k queries in XML. InICDE,
2005.

[14] T. Milo and D. Suciu. Index structures for path expressions.
In ICDT, 1999.

[15] F. Rizzolo and A. O. Mendelzon. Indexing XML data with
ToXin. In WebDB, 2001.

[16] T. Schlieder and H. Meuss. Querying and ranking XML doc-
uments.JASIST 2002, 53(6):489–503, 2002.

[17] M. Theobald, R. Schenkel, and G. Weikum. An efficient and
versatile query engine for topx search. InVLDB, 2005.

[18] Andrew Trotman and Borkur Sigurbjornsson. Narrowed ex-
tended XPath I (NEXI). InINEX, 2004.

