
Cost-Aware Skyline Queries in Structured Overlays

[Work-in-Progress]

Marcel Karnstedt, Jessica Müller, Kai-Uwe Sattler
Department of Computer Science and Automation,

TU Ilmenau, Germany

Abstract
Recently, systems providing access to extremely large

data collections, managed in a distributed manner, gain
emerging attention. A promising approach to implement the
physical layer of such systems are structured overlays based
on the peer-to-peer paradigm. On the level of query expres-
siveness, ranking queries like skyline queries are predesti-
nated for providing a fast but concise overview of the data.
The problem is that structured overlays are able to handle
dynamic and unreliable environments, but usually support
only limited query processing capabilities, which are very
improper for processing such sophisticated queries. In this
work, we propose three variants of a skyline operator and
two extensions, especially suitable for efficient determina-
tion of skylines in the before mentioned overlay systems.
Additionally, we back the introduced approaches on an ap-
propriate cost model, ready for implementing adaptive cost-
based query optimization.

1. Skyline Queries in Distributed Data Systems
In recent time, there is a raising need in applications

allowing for managing data provided by separate users of
large communities. In most cases, these applications par-
ticularly demand for distributed data management follow-
ing the peer-to-peer (P2P) paradigm. Examples of systems
based on the idea of P2P on several different application lev-
els are recently popular folksonomies, file-sharing systems,
scientific knowledge bases, communication platforms and
desktop data collections. The latter are an example of data
systems where special needs for managing structured data,
possibly enriched by semantic data, arise.

A foundation of such systems is to provide access to
extremely large and often heterogeneous data collections.
Based on this background, providing capabilities for pro-
cessing ranking queries become especially important. Popu-
lar representatives are top-N queries and skyline queries [3].
Queries of these types allow for providing a fast and com-
pact, but concise view over large data, optimized for one or
preferential multiple ranking functions.

On the physical layer, structured overlay systems, e.g.,
Distributed Hash Table (DHT) based overlays like P-
Grid [1], CAN [10] or CHORD [11], offer highly devel-
oped and well-performing functionalities for achieving scal-
ability and robustness mandatory in the introduced applica-
tions. They provide structures ready to build loosely cou-
pled and widely distributed, but stable environments. In
general, these overlays provide capabilities for efficiently
inserting and deleting data, as well as processing exact-
match lookups and latterly range queries. But, usually
these approaches lack capabilities for processing sophisti-
cated queries like structured queries and the before men-
tioned ranking queries.

In this work, we analyze approaches for processing sky-
line queries on structured data in structured overlays. We
specifically base our considerations on UniStore, a triple-
based universal storage [6, 7] on top of the P-Grid DHT
overlay system. We propose a skyline operator for UniStore
and discuss several extensions tailor-made for highly dis-
tributed management of structured data as introduced be-
fore. Additionally, we introduce accurate cost formulas for
the implemented algorithms, allowing for adaptive high-
performance query processing. Note that, despite UniStore
is based on P-Grid, the applied principles could also eas-
ily be implemented on top of other DHTs like CAN or
CHORD. Following, the skyline algorithms presented in this
work are applicable to structured overlays (and other suit-
able types of distributed systems) in general.

Skyline queries are intensively researched in the database
community [3, 8, 9, 2, 12]. A well-known definition is based
on the dominance relation: given two or more ranking func-
tions, the skyline of a data set is formed by all points of the
set not dominated by any other point, i.e., a skyline mem-
ber is ranked higher than a non-member in at least one di-
mension of the skyline. In mathematics and economy this
set is known as the Pareto optimum. Members of a skyline
represent best possible trade-offs between all ranking goals,
which is for instance extremely helpful in decision making
tasks.

Skylines are easy to exemplify in recommender and



business-to-people systems, e.g., hotel recommender sys-
tems or economical applications like car trading. A popular
example, easy to understand for the non-initiated reader, is
to ask for all hotels which are preferably close to the beach
(min(distance)) and preferably cheap (min(price)). In fig-
ure 1 we show (a part of) an alternative example schema
for author data in a public data management scenario. The
figure shows several entities and their attributes, as well as
relations between them. On the physical level, entities could
be represented by tuples holding the attribute values. An ex-
ample query in this scenario could ask for the skyline of au-
thors that reaches from the youngest authors to those authors
published the most publications. In this work, we focus on
the most popular ranking functions minimize and maximize.
Note that, skyline queries become even more powerful in
conjunction with advanced querying features like similarity
queries. For example, a user could be interested only in au-
thors published at ICDE workshops – considering possible
data heterogeneities it could be useful to allow an edit dis-
tance of up to 2 to the term ’ICDE’ in order to ignore typos
and similar.

Person

String

Number
name
phone

String

office

String
email

Publication

String

Date

Conferencetitle
published_in

year

has_published

Bookmark

interested_in

has_friend

Research 
Area

belongs_to

classified_in

String

series

String

confname

Number

age

Number

num_of_pubs

Figure 1: Example schema

UniStore is a universal storage platform particularly pro-
viding such query capabilities whilst implementing a highly
scalable and robust high-performance distributed data sys-
tem. Thus, in the next section we briefly introduce the gen-
eral architecture our approach is based on by introducing the
principles behind UniStore. Afterwards we discuss efficient
skyline algorithms in section 3. A brief overview of a corre-
sponding cost model is provided in section 4. We conclude
our work by discussing current and open issues in section 5.

2. Data Management
We base our approach on the idea of vertically parti-

tioned data, similar to the idea of the Resource Description
Framework (RDF). Assume structured data, e.g., relational
data, where tuples consist of multiple values correspond-
ing to attributes defined in a schema. Each tuple t with
attributes a1, . . . , an is decomposed into a set of n triples
(OIDt, ai, vi), i = 1 . . . n, where OIDt is a system gener-
ated object ID unique for each tuple, ai is an attribute iden-
tifier and vi the corresponding value of that attribute. The
resulting set of triples is distributed among all peers in the

underlying overlay system. In DHT-based overlays, a peer
is responsible for a partition of the key space generated by
applying the hash function(s), which results in the responsi-
bility for the hashed triples. We assume the existence of sev-
eral indexes, built by applying hash function(s) h on chosen
parts of all or some triples. Thus, a triple is stored (possibly
multiple times) at a corresponding peer responsible for the
resulting hash key or keys. We specifically assume two in-
dexes: The first is based on h(OID). Thus, different OIDs
are distributed among different peers, but an original tuple
can be completely materialized at one responsible peer. The
second index is based on h(a). In this way, different at-
tributes reside on different peers. In several structured over-
lays all triples of one attribute will map to a closed range of
hash keys and therefore reside in a partition of peers close
to each other with respect to the constructed overlay. For
example, in P-Grid, which constructs a binary prefix tree
on the key space with peers located on the leaf level of this
tree, all peers responsible for an attribute a are located in
a common sub-tree. Consequently, we assume the support
of efficient range queries in order to query for triples of a
single attribute.

In a distributed data system following the general ideas
of database systems, queries are represented by query plans
consisting of different operators. For efficient processing
in dynamic environments, an according optimizer should be
able to decide between different implementations for one
logical operator. Thus, an appropriate cost model is needed.
Following this approach, we provide different skyline oper-
ators and define according cost formulas for each of them.

3. The Frame-Skyline Operator
Due to the triple-based storage and the special re-

quirements of large-scaled distributed systems, centralized
skyline algorithms like Block-Nested-Loops (BNL) [3],
Divide-and-Conquer [3], Nearest-Neighbor [8] or Branch
and Bound Skyline (BBS) approach [9] cannot be applied
directly, at least not in a satisfyingly efficient manner. Re-
search of skyline processing in distributed systems resulted
in only a few approaches until now. [2] proposes an algo-
rithm that exploits the TA principle of sorted lists for pro-
cessing skylines for web information systems. There are
three major drawbacks: first, a specialized network struc-
ture where the processing node has direct access to all other
nodes. Second, this approach requires sorted lists of all ob-
jects. And third, it would not scale with large networks. An-
other work that considers skyline processing in distributed
environments is DSL [12]. It progressively computes con-
strained skylines using a CAN built on top of the dimensions
of later skyline queries. Thus, this approach is not general
enough. Efficient skyline processing for unstructured P2P
systems, enriched by the option to determine relaxed sky-
lines, is introduced in [5]. This approach utilizes specialized
spatial index structures and is based on different principles



and systems than the work presented here.
In order to reduce bandwidth consumption, network load

and answer times the Frame-Skyline operator proposed in
this work aims for minimizing the set of skyline candidates
from the beginning of processing. In the following, we ex-
emplary consider a two-dimensional skyline query looking
for the minimum in each dimension. Elements from the data
set that are minimal in one dimension are definitely part of
the skyline – they cannot be dominated by any other item.
In parallel, these elements narrow the search space for the
second attribute. Figure 2 illustrates this: the point minimal
in dimension y (marked with a circle) provides the maximal
value for dimension x we have to consider. Any other point
revealing a higher x-value cannot be part of the skyline, be-
cause it is definitely dominated in both dimensions. Based
on the values of points minimal in one dimension, we can
thereby narrow the search space for all attributes as illus-
trated by the pictured frame.

Figure 2: Frame-skyline approach

Based on this, we can use the overlay’s query processing
capabilities to efficiently contact only those peers responsi-
ble for elements included in the resulting frame. We devel-
oped three basic algorithms: central, distributed, and hybrid.
Each of them starts by determining the minima, maxima re-
spectively, for all queried dimensions and building the corre-
sponding tuples. From these tuples ranges for each attribute
are determined. From this point on, the three versions differ.

The central version queries these ranges using range
queries. From the result those tuples are determined that oc-
cur in all dimensions, which build a first skyline. In multi-
dimensional (> 2) skyline queries also projections to the
search space may be part of the result. Thus, in this case
all elements of the sub-spaces of the search space are de-
termined from the range queries’ results and the complete
tuples are materialized. A central BNL algorithm finally
computes the global skyline.

In the distributed variant we try to overcome problems re-
sulting from the “get all data and compute locally” character
of the central variant and the waiting states in it. After de-
termining the frame borders separate local skyline queries
are sent to all peers responsible for the resulting range of
an attribute. In analogy to the central version, each con-
tacted peer uses range and materialize queries to collect the
remaining attributes and computes local skylines. The re-
sults are sent back to the initiating peer, which computes the

final global skyline. In contrast to the central version, the
distributed approach comes along with higher communica-
tion efforts, but provides, due to the distributed processing,
better query answer times. See figure 3 for illustration of the
approach.

4321

min(y)

min(x)

y

x

minimize x
minimize y

Target functions:

Figure 3: Distributed skyline processing

The hybrid processing is similar to the distributed ver-
sion, but is aimed for avoiding the querying of one object
ID multiple times. This occurs during the last state of pro-
cessing when all local candidates are materialized, because
triples with the same ID reside on different peers. Only the
object IDs from all additional candidates of all sub-spaces
are sent to the query initiator. There, duplicates are removed
and the final tuples are materialized. Based on the local
skylines and the materialized candidates, the final skyline
is computed. This reduces the communication overhead at
costs of answer times, because tuples are not materialized
multiple times.

An important challenge in loosely coupled and in places
unreliable systems is to avoid depending on waiting states.
In the introduced operators, there are several situations
where sub-queries are initiated and answered by multiple
replies, e.g., determining the range of a dimension using
range queries. This leads to the difficult question of how
long to wait for replies, as there is no reliable knowledge
about how many peers are contacted and how many will re-
ply to these sub-queries. One idea is to use constant waiting
times, which is not satisfyingly efficient. Another approach
could be based on estimating result sizes and completeness
of query results. But, such estimations are very hard and
often inaccurate. We propose two extensions of each of the
three, as introduced blocking, operators: online and evolv-
ing.

In the online extension parts of the skyline are transmit-
ted to the user as soon as it is certain that they belong to
the final skyline. This first skyline can be determined af-
ter receiving all range query answers. In the evolving ver-
sion even elements are transmitted which could finally be
replaced by dominating elements determined later – the sky-
line may evolve. This can be done after receiving any range
query answer. Both extensions are tailor-made for dynamic
and unreliable environments as P2P systems are.

4. Cost Estimation
It is not possible to state that one of the introduced ap-

proaches is best-suited in general for the aimed applications.



Each of them bears several advantages and disadvantages,
and the best choice depends on the current environment, par-
ticularly on the data distribution, size of the overlay, num-
ber of peers responsible for a certain attribute etc. These
circumstances are preferably covered by an optimizer which
utilizes an appropriate cost model [6]. Using this cost model
to estimate costs a priori, the query processor is able to adap-
tively decide at each peer which is the cost-optimal choice
to continue. In this section, we briefly discuss cost formulas
for the introduced skyline operators.

In a structured overlay system such as P-Grid, the most
relevant cost factors are the number of messages and hops
needed to process a query and the amount of bandwidth
consumed during processing. Another important aspect are
anticipated query answer times – but, times are predictable
very hard in such environments and usually are reflected by
the number of hops. As each sophisticated query is based
on the routing and lookup mechanisms of the underlying
overlay, we base cost estimations for skyline queries on sta-
tistical values and costs provided by it.

Due to the complexity of our considerations, we exem-
plify the developed cost estimations by listing the (short-
ened) formulas for determining the worst-case number of
messages Cm for the central and the distributed variant of
skyline processing:

• central: Cm = 4 · a + 2 +
∑

i∈I 2 · ri

• distributed: Cm = 4 ·a+4 ·rA +rA ·
∑

i∈I∧i 6=A(2 ·ri)

The used variables symbolize the following values pro-
vided by P-Grid: a: number of skyline attributes, A: chosen
skyline attribute queried by range, I: set of all skyline at-
tributes, rX : number of peers responsible for attribute X .
An important message is, that the number of messages in
the distributed variant depends on rA (the number of peers
processing local skyline queries), whereby the central vari-
ant only depends on the number of skyline attributes. This
symbolizes the message overhead caused by the applied par-
allelism in the distributed approach. The formulas for the
number of hops would show the gain of parallelism, but we
omit them here due to space constraints.

In this form, the estimations are quite accurate. As not all
needed factors will be available, some of them will have to
be approximated. As in any other query optimizer, the point
is not to accurately determine costs but to determine accu-
rate relations between different alternatives. We developed
such formulas for the best-case, worst-case and average-
case for each operator and extension. A current issue is to
integrate them into UniStore’s cost model (among others the
actual determination/approximation of needed cost factors).

5. Open Issues
In this work, we presented three different operators and

sound extensions for efficiently processing skyline queries

on structured data in structured overlay systems. The most
current issue is to prepare an extensive evaluation, both in
LANs and PlanetLab [4] as a testbed especially made for
this purpose. The aim of this evaluation is to show the cor-
rectness of the introduced cost estimations and that all ap-
proaches are suitable for implementing scalable, dynamic
and robust query processing. Special concern is placed
on evaluating the online and evolving extensions, as they
promise to be best-suited for dynamic and unreliable P2P
environments.

Future issues include optimized processing of multi-
dimensional skylines, possibly aided by specialized multi-
dimensional index structures.

References
[1] K. Aberer, P. Cudré-Mauroux, A. Datta, Z. Despotovic,

M. Hauswirth, M. Punceva, and R. Schmidt. P-Grid: A Self-
organizing Structured P2P System. ACM SIGMOD Record,
32(3), 2003.

[2] W. Balke, U. Güntzer, and J. X. Zheng. Efficient Distributed
Skylining for Web Information Systems. In EDBT’04, pages
256–273, 2004.

[3] S. Börzsönyi, D. Kossmann, and K. Stocker. The skyline
operator. In ICDE’01, pages 421–432, 2001.

[4] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson,
M. Wawrzoniak, and M. Bowman. PlanetLab: An Over-
lay Testbed for Broad-Coverage Services. ACM SIGCOMM
Computer Communication Review, 33(3):3–12, 2003.

[5] K. Hose, C. Lemke, and K. Sattler. Processing Relaxed Sky-
lines in PDMS Using Distributed Data Summaries. In CIKM,
2006.

[6] M. Karnstedt, K. Sattler, M. Hauswirth, and R. Schmidt.
Cost-Aware Processing of Similarity Queries in Structured
Overlays. In Sixth IEEE International Conference on Peer-
to-Peer Computing, 2006.

[7] M. Karnstedt, K. Sattler, M. Richtarsky, J. Müller,
M. Hauswirth, R. Schmidt, and R. John. UniStore: Query-
ing a DHT-based Universal Storage. In ICDE’07 Demon-
strations Program, 2007. To appear.

[8] D. Kossmann, F. Ramsak, and S. Rost. Shooting stars in the
sky: An online algorithm for skyline queries. In VLDB’02,
pages 275–286, August 2002.

[9] D. Papadias, Y. Tao, G. Fu, and B. Seeger. An optimal and
progressive algorithm for skyline queries. In Proceedings of
the ACM SIGMOD Conference, pages 467–478, 2003.

[10] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A scalable content addressable network. In Pro-
ceedings of ACM SIGCOMM 2001, 2001.

[11] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Bal-
akrishnan. Chord: A scalable peer-to-peer lookup service for
internet applications. In Proceedings of ACM SIGCOMM,
pages 149–160. ACM Press, 2001.

[12] P. Wu, C. Zhan, Y. Feng, B. Zhao, D. Agrawal, and A. E. Ab-
badi. Parallelizing skyline queries for scalable distribution.
In EDBT’06, pages 112–130, 2006.


