
Integrating OLAP and Ranking: The Ranking-Cube Methodology∗

Dong Xin Jiawei Han
Department of Computer Science

University of Illinois at Urbana-Champaign

Abstract

OLAP (On-Line Analytical Processing) and Rank-
ing are currently separate technologies in the database
systems. OLAP emphasizes on efficient multi-
dimensional data analysis and ranking is good for ef-
fective data exploration in massive data. In this paper,
we discuss the problem of integrating OLAP and rank-
ing, such that ranking serves as a function block for
data analysis and exploration in the OLAP environ-
ment. Towards this goal, we present the ranking cube:
a semi off-line materialization and semi online com-
putation model. This paper discusses the framework,
the implementation issues and the possible extensions
of the ranking cube.

1 Introduction

OLAP (On-Line Analytical Processing) and Rank-
ing are currently separate technologies in the database
systems. OLAP refers to a set of data analysis
tools developed for analyzing data in data warehouses
since 1990s [7]. A data warehouse stores a multi-
dimensional, logical view of the data, and supports
management’s decision-making process. A point in a
data cube stores a consolidated measure of the cor-
responding dimension values in a multi-dimensional
space. OLAP operations, such as drill-down, roll-up,
pivot, slice, and dice, are the ways to interact with the
data cube for multi-dimensional data analysis. Rank-
ing is a way to filter the query results and retain partial
but high-quality answers. With the increasing integra-
tion of the database systems with Web search, infor-
mation retrieval, multimedia, and data mining appli-
cations, database query processing has been evolving
from finding the complete set of answers to finding
top-k answers. This leads to the popularity in research

∗Work supported in part by the U.S. National Science Foun-
dation NSF IIS-05-13678/06-42771 and NSF BDI-05-15813. Any
opinions, findings, and conclusions or recommendations ex-
pressed here are those of the authors and do not necessarily
reflect the views of the funding agencies.

into ranked query processing [4, 3, 8, 10, 13, 11, 12].
A ranked query (or top-k query) asks for the best k
results according to a user-specified preference.

The traditional OLAP provides the high-level data
statistics, whereas an equally important task is to view
and manipulate the low-level featured data records
with respect to multi-dimensional group-bys. With the
mounting of an enormous amount of data in business,
ranking becomes prominent for effective data analysis
and exploration. Example application scenarios are il-
lustrated as follows.

Example 1. (Multi-dimensional data exploration)
Consider an online used car database (e.g., car.com)
that maintains the following information for each car:
(type, maker, color, price, milage). Users may want to
explore the data with respect to their own preferences
among subsets of data confined by multi-dimensional
values. For instance, a user may ask for top-k answers,
among a subset of cars with type = “sedan” and color
= “red”, by the ranking function f = (price− 10k)2 +
(milage− 10k)2 (e.g., the price is close to 10k and the
milage is close to 10k).

Example 2. (Multi-dimensional data analysis)
Consider a notebook comparison database (e.g.,
bizrate.com) with schema (brand, price, CPU, mem-
ory, disk). Suppose a function f is formulated on CPU,
memory and disk to evaluate the market potential of
each notebook. An analyst who is interested in dell
low-end notebooks may first issue a top-k query with
brand = “dell” and price ≤ 1000, and then rolls up
on the brand dimension and checks the top-k low-end
notebooks by all makers. By comparing two sets of
answers, the analyst will find out the position of dell
notebooks in the low-end market.

To meet the requirement of online analytical pro-
cessing, the database system has to return the user-
preferred answers from any data groups, in a very effi-
cient way. The dynamic nature of the problem imposes
a great challenge for the database research community.
In this paper, we address this problem from an inte-

1

grated viewpoint. On the one hand, OLAP requires off-
line pre-computation so that multi-dimensional analy-
sis can be performed on the fly; on the other hand, the
ad-hoc ranking functions prohibit full materialization.
A natural proposal is to adopt a semi off-line mate-
rialization and semi online computation model. This
paper discusses the design principles, implementation
issues and possible extensions.

The rest of the paper is organized as follows. Sec-
tion 2 discusses related work. Section 3 presents our
proposal for the semi off-line materialization and semi
online computation model: ranking cube. We discuss
the extensions, as well as the challenges in Section 4,
and conclude the study in Section 5.

2 Related Work

Our work is closely related to the data cube and
ranked query processing. Data Cube has been play-
ing an essential role in implementing fast OLAP op-
erations [7]. The measures in the cube are generally
simple statistics (e.g., sum). Some recent proposals in-
troduce more complex measures, such as linear regres-
sion model [6] and classification model [5]. The multi-
dimensional ranking analysis using data cube was pro-
posed by our recent work [15]. This paper extends the
framework and points out several future directions.

Recent studies on efficient processing rank-aware
queries include (1) the rank-aware materialization ap-
proach [3, 10, 13], which maintains views or special in-
dexes to speed up the response time for ranked queries;
(2) the rank query transformation approach [4], which
maps the k nearest neighbor queries to range queries;
and (3) the rank-aware query optimization approach
[11, 12], which hacks a traditional query executer with
a rank aggregation algorithm [8]. Our work is differ-
ent from previous work in that we study the ranking
problem in the OLAP environment.

3 Ranking Cube

A preliminary study of the ranking cube can be
found in [15]. Here we extend the original proposal
by abstracting the framework and presenting various
implementation issues.

3.1 Framework

We classify the dimensions in a relation R into
boolean dimensions A1, A2, . . . , Ab, and ranking dimen-
sions N1, N2, . . . , Nr. The two sets of dimensions are
not necessarily exclusive. OLAP is performed on the
boolean dimensions and the ranking analysis is con-
ducted on the ranking dimensions.

OLAPing ranked queries is essentially a task to ef-
ficiently find top answers (according to a function f)
with a set of multi-dimensional boolean predicates, B.
To do this, an algorithm can first filter data tuples by
B and then compute the top-k results, or first search
data tuples according to f and verify B on each can-
didate. Both approaches may retrieve data that will
be pruned by the other criterion later, and thus are
not efficient. Ranking cube is a way to simultaneously
combine both ranking and boolean pruning. The whole
framework consists of three components.

1. To facilitate rank-aware data retrieval, data is par-
titioned into n blocks according to ranking di-
mensions. We refer the data partition as P =
{b1, b2, . . . , bn}, where bi = {t1i , t2i , . . . , tli} is the
ith data block, and tji is the jth tuple in bi.

2. For each B, we compute a measure
M(P |B) = {m(b1|B),m(b2|B), . . . , m(bn|B)},
where m(bi|B) = {δ(t1i |B), δ(t2i |B), . . . , δ(tli|B)}
and δ(tji |B) = 1 if the tuple tji satisfies B. The
ranking cube C pre-computes and stores the
measure M for all possible dimensional values.

3. Guided by C, the query processing algorithm S
searches for top answers over P such that a block
bi is retrieved if and only if bi may contain tu-
ples better than the current top-k results, and
m(bi|B) 6= 0.

3.2 Implementation Issues

In the framework presented above, the data parti-
tion P and ranking cube C contain the semi off-line
materialization, and the search algorithm S conducts
the semi online computation. In this subsection, we
discuss two typical implementations: the grid partition
with neighborhood search and the hierarchical partition
with top-down search. In each implementation, we will
discuss the partition scheme, the measure composition,
and the query algorithm.

3.2.1 Grid Partition
Partition Scheme: We demonstrate the grid partition
by the method used in [15]. For each ranking dimen-
sion (e.g., X and Y in Table 1), we partition the domain
into L bins by equi-depth partitioning. In our sample
database (Table 1), suppose A and B are boolean di-
mensions, and X and Y are ranking dimensions. Each
ranking dimension is partitioned into 4 bins, and the
data is partitioned into 16 blocks (Figure 1). We store
the tuples with the values on ranking dimensions, cell
by cell, in a block table. The bin boundaries of the
equi-depth partition are stored in the meta table.

2

tid A B X Y
t1 a1 b1 0.0 0.4
t2 a2 b2 0.2 0.6
t3 a1 b1 0.3 0.7
t4 a3 b3 0.5 0.4
t5 a4 b1 0.6 0.0

...

Table 1. A Sample
Database

X

t6

t8

t3

t4
t2

t1

t7

t5

Y

Figure 1. Grid Partition

ROOT

N1 N2

t1

t6

t8t2

t4

t5

t7

t3

N1

N3 N4

N5

N6

N2

N3 N4 N5 N6

t7 t8t5 t6t3 t4t1 t2

Y

X

Figure 2. Hierarchical Partition

Measure Composition: Following the above example,
suppose the block on the ith row and jth column in
Figure 1 is b4i+j (i, j = 0, 1, 2, 3). Given a boolean
predicate B = a1b1, only b1 = {t3} and b4 = {t1, t2}
contain tuples satisfying B (i.e., t1, t3). Consequently,
m(b1|B) = {1}, m(b4|B) = {10} and m(bi|B) = 0 for
all the other bi. We point out two important issues in
implementing M(P |B). First, by merging all m(bi|B),
M(P |B) is basically a bit-array and can be compressed
by many compression methods. Secondly, M(P |B) can
be decomposed into several smaller parts (while pre-
serving neighboring bi together), each of which is re-
trieved from the ranking cube only when necessary.

Query Algorithm: Given a ranked query with f and
B, the query algorithm searches for blocks that are (1)
promising with respect to f , and (2) containing tuples
satisfying B. To begin with, we define f(bi) as the
minimal value of f over the region covered by block
bi

1. Given the bin boundaries stored in the meta table,
the search algorithm is able to sort all bi according
to f(bi), and retrieves bi one by one. The algorithm
skips a bi if m(bi|B) = 0 since it contains no tuple
satisfying B. To avoid enumerating all blocks, one may
first locate the blocks that contain the extreme points,
and progressively search over their neighboring blocks.
Among the neighboring blocks, the algorithm will first
examine the block with minimal value of f(bi). We
refer this search method as neighborhood search, and it
assumes that the ranking functions are convex.

3.2.2 Hierarchical Partition

Partition Scheme: For hierarchical partition, we use
R-Tree as an example [9]. R-Tree splits space with
hierarchically nested and possibly overlapping boxes.
Each node stores the pointers to child nodes and the
bounding box of child nodes. The leaf node stores the
tids and the values on ranking dimensions. Figure 2
shows a sample R-Tree, where the root node contains
pointers to child nodes N1 and N2, and so on.

1In this paper, we assume minimal top-k is requested.

Measure Composition: Each node Ni in the R-
Tree partition corresponds to a block in the rank-
ing cube framework, and we define m(Ni|B) =
{δ(n1

i |B), δ(n2
i |B), . . . , δ(nl

i|B)}, where nj
i is a child

node or a tuple. δ(nj
i |B) = 1 if and only if nj

i con-
tains a tuple satisfying B.

Query Algorithm: Given the hierarchical partition, the
algorithm follows the branch-and-bound principle to
progressively retrieve data nodes. Specially, the search
process first inserts the root node into a heap h. At
each step, the algorithm fetches the node N appearing
at the top of h (i.e., with minimal value of f(N)), and
inserts all child nodes nj of N to h if m(nj |B) 6= 0.
The query processing halts when f(N) is no less than
the current top-k results. We refer this search method
as top-down search.

3.2.3 Comments on Partition Schemes

We have presented a general framework for ranking
cube, and demonstrated it by both grid and hierarchi-
cal partitions. The grid partition is simple and easy to
implement. However, the query performance may be
sensitive to data distribution, since the there may be
many dead (i.e., empty) cells for skewed data. The hi-
erarchical partition is more robust with respect to data
distribution. But it may incur additional cost to build
and traversal over the partition. In real application,
one may choose different partition scheme accordingly.

4 Extensions and Challenges

4.1 High-Dimensional Ranking Cube

In some applications, the number of dimensions is
large. With high boolean dimensions, a full mate-
rialization of the ranking cube is too space expensive.
Observing that many real life ranked queries are likely
to involve only a small subset of attributes, we can care-
fully select the cuboids which needs to be materialized.
A baseline solution is to materialize only those atomic
cuboids that contain single dimensions. Given a set
of arbitrary boolean predicate B that consists of B1,

3

B2, . . . , Bn atomic predicates, one can online assemble
m(bi|B) = ∩n

j=1m(bi|Bj) for each block bi.
With high ranking dimensions, the partitioning

methods are not effective. A possible solution is to
create multiple data partitions, each of which consists
a subset of ranking dimensions. The query processing
may need to conduct search over a joint space involving
multiple data partitions. There exist two challenges:
(1) the search space for f grows exponentially with the
number of partitions, and (2) the satisfactory of B for
a joint block is difficult to determine.

4.2 Multi-Relational Ranking Cube

When multiple relations exist in the database, rank-
ing cube can also be built crossing relations. A
multi-relational ranking cube is built by a join con-
dition and consists of a set of boolean dimensions
and ranking dimensions from each participating rela-
tion. The partition is performed on all ranking di-
mensions, and the ranking cube is built with respect
to all boolean dimensions. For space efficiency, the
measure can be computed in a way similar to join
indices [14]. That is, for each block bi, m(bi|B) =
{m(bi|B1, R1),m(bi|B2, R2), . . . , m(bi|Bn, Rn)}, where
Bj ⊆ B is the boolean dimension values in Rj , and
m(bi|Bj , Rj) is the original measure in relation Rj (see
Section 3.1). Unfortunately, the above method only
builds a ranking cube that works for one particular
join condition. It remains a challenging topic to have
a solution which works for dynamic join conditions.

4.3 Incremental Maintenance

In dynamic web environments, data changes fre-
quently. It is desirable to have an incremental method-
ology to efficiently maintain the ranking cube with the
data insertion or deletion. We illustrate some high-level
principles as follows. For grid partition, one can tem-
porally allocate new data according to pre-computed
blocks, and re-partition the data periodically. For hier-
archical partition, incremental data update on R-trees
can be first applied, and the structure changes can be
propagated to ranking cube. It is still a challenge prob-
lem to design and implement an efficient incremental
update method.

4.4 Extended Functionalities

Top-k queries are related to several other preference
queries, such as skyline query [2] and convex hulls [1].
Skyline query asks for the objects that are not domi-
nated by any other object in all dimensions. A convex
hull query searches a set of points that form a convex
hull of all the other data objects. The ranking cube

framework is also applicable to these queries. For in-
stance, the convex hull query algorithm developed by
[1] progressively retrieves R-tree blocks until the final
answers are found. Ranking cube can be integrated
into this search procedure by pruning some blocks that
do not contain tuples satisfying B.

It is also an interesting but challenging task to sup-
port top-k aggregate queries that consists of grouping,
ranking and boolean selections.

5 Conclusions

With the enormous amount and fast growth of data
in business, Web, and scientific applications, the inte-
gration of the OLAP and ranking provides an inter-
esting direction for exploring and analyzing this over-
whelming data. Towards this goal, we presents the
ranking cube methodology in this paper. Our future
work includes: (1) extending the framework to high
dimensional data, multi-relations, and other ranking
related functionalities; and (2) building a complete so-
lution for efficiently computing and maintaining the
ranking cube.

References

[1] C. Bohm et al. Determining the convex hull in large
multidimensional databases. In DaWaK’01.

[2] S. Borzsonyi et al. The skyline operator. In ICDE’01.

[3] Y. Chang et al. Onion technique: Indexing for linear
optimization queries. In SIGMOD’00.

[4] S. Chaudhuri and L. Gravano. Evaluating top-k selec-
tion queries. In VLDB’99.

[5] B. Chen et al. Prediction cubes. In VLDB’05.

[6] Y. Chen et al. Multi-dimensional regression analysis
of time-series data streams. In VLDB’02.

[7] S. Churdhuri and U. Dayal. An overview of data ware-
housing and data cube. SIGMOD Record, 26:65–74,
1997.

[8] R. Fagin et al. Optimal aggregation algorithms for
middleware. In PODS’01.

[9] A. Guttman. R-tree: A dynamic index structure for
spatial searching. In SIGMOD’84.

[10] V. Hristidis et al. Prefer: A system for the efficient
execution of multi-parametric ranked queries. In SIG-
MOD’01.

[11] I. F. Ilyas et al. Rank-aware query optimization. In
SIGMOD’04.

[12] C. Li et al. Ranksql: Query algebra and optimization
for relational top-k queries. In SIGMOD’05.

[13] P. Tsaparas et al. Ranked join indices. In ICDE’03.

[14] P. Valduriez. Join indices. ACM TODS, 12:218–246,
1987.

[15] D. Xin et al. Answering top-k queries with multi-
dimensional selections: The ranking cube approach.
In VLDB’06.

4

