
Ranking Query Results using Context-Aware Preferences

Arthur H. van Bunningen, Maarten M. Fokkinga, Peter M.G. Apers
Centre for Telematics and Information Technology

University of Twente, The Netherlands
{bunninge,fokkinga,apers}@cs.utwente.nl

Ling Feng
Department of Computer Science & Technology

Tsinghua University, China
fengling@tsinghua.edu.cn

Abstract

To better serve users’ information needs without requir-
ing comprehensive queries from users, a simple yet effective
technique is to explore the preferences of users. Since these
preferences can differ for each context of the user, we intro-
duce context-aware preferences. To anchor the semantics
of context-aware preferences in a traditional probabilistic
model of information retrieval, we present a semantics for
context-aware preferences based on the history of the user.
An advantage of this approach is that the inherent uncer-
tainty of context information, due to the fact that context
information is often acquired through sensors, can be eas-
ily integrated in the model. To demonstrate the feasibility
of our approach and current bottlenecks we provide a naive
implementation of our technique based on database views.

1. Introduction

Nowadays, more and more information becomes avail-
able in digital form. To be able to guide users through
this wealth of information, a possibility is to adapt the pro-
vided information to the current situation (i.e.,context) of
the user. Research in this area ofcontext-awarenessorig-
inates from the vision of Mark Weiser that the machines
should fit human environment instead of forcing humans to
enter theirs [18]. From a database perspective this implies,
among others, adapting query results to the context of the
user at the time of querying [8]. Challenges raised by this
implication are to express the preferences of the user in dif-
ferent contexts and to score tuples based on these prefer-
ences. These challenges become especially difficult since
most context information results from sensors and is there-
fore uncertain. Moreover, the preferences of the user might

differ in strength.

In the field of context-awareness, previous research fo-
cused on simple preferences in small scale systems using lit-
tle context information, whereas in the database field, most
research on preferences focused on hard-coded preferences,
without addressing the demands of context-aware systems
such as reasoning, traceability, uncertainty etc. [16]. In
this paper we investigate how to score the results of a
database query based on the context of the user, leading to a
ranked list of results. To deal with the demands of context-
awareness, we base our approach on our previous work to
represent contextual features as concept expressions in De-
scription Logics. Furthermore, we use event expressions
to deal with the uncertainty of context [17]. The approach
results in an explanatory scoring method for documents,
which we relate to traditional, non context-aware, informa-
tion retrieval.

As a an example, consider a new kind of media player,
calledTVTouch, which is able to play both (recorded) tele-
vision programs and movies. The system is context-aware
in a sense that it can provide the user with a list of suggested
programs based on the current context of the user. We imag-
ine a usage scenario in which a user Peter usesTVTouchto
provide him each morning with a list of suggested programs
containing traffic bulletins, weather bulletins, news, enter-
tainment etc. based on his activities that day and the impor-
tance of the separate items (e.g., if there is news about a sub-
ject in which Peter is interested, it should be recommended).
To be able to realize such a scenario, many research ques-
tions have to be resolved, such as automatically tagging the
news items with subjects, sensing context information, and
scoring programs. The contribution of this paper is to deal
with the third research question and to present a technique
which is able to provide a motivated score for the programs
based on the preferences and context of Peter. In this exam-

ple we could imagine the following typical query from the
TVTouchsystem to the underlying database:

SELECT name, preferencescore
FROM Programs
WHERE preferencescore > 0.5
ORDER BY preferencescore DESC

where the underlying context-aware database would dy-
namically assign a preference score to each program, based
on the context of the user. The goal of our system is to pro-
vide a motivated value of the “preferencescore”-attributefor
each tuple.

The rest of the paper is organized as follows. First, we
explain how context-aware retrieval relates to traditional
probabilistic information retrieval in Section 2. In Section 3
we then present our probabilistic model of context-aware
relevance. To realize this model we need a way to describe
the relation between the context and preferences of the user,
which we achieve usingscored preference ruleswhich are
explicated in Section 4. Using our probabilistic model we
present a naive implementation in Section 5. We end with
discussions on improvements in Section 6 and conclude the
paper in Section 7.

1.1. Related work

Research in the area of ranking query results in databases
can be devided into three levels. On the lowest level, we find
research on the optimization of query ranking techniques
using special database operators, such as the work of Ilyas
et al. in their paper on rank-aware query optimization [12].

On a higher level, we find research on explicit specifica-
tion of the way in which tuples are ranked. For example,
the work on preferences in databases from Kießling [13]
and Koutrika and Ioannidis [14].

On the highest level we find techniques to estimate the
ranking of tuples automatically, for example by looking at
database and/or access log statistics [2, 5].

The research presented in this paper extends upon the
second level as it addresses a way to make explicit, not only
the preference of the user, but also the dependency of the
preference on contextual factors.

The most closely related research to the work presented
is the work of Holland and Kießling [11] on situated pref-
erences. Their approach is founded on preferences as strict
partial ordering whereas we picture preferences as scores.
Our scores can be expressed as a score-function in their
framework but in this paper we will only eleborate and fo-
cus on preferences as scores since it allows us to more eas-
ily relate preferences to probabilities of choices of the user
in the past. Furthermore the two approaches differ in their
modeling of situations where they have an ER-based meta-
model for context and we chose a model based on Descrip-
tion Logics for reasons we have explicated elsewhere [16].

2. Traditional information retrieval

2.1. An ideal document

To be able to address ranked retrieval in relational
databases based on context information, we first look at
traditional query based ranking methods and how context
information could influence the results of these methods.
For this we choose the conceptual model of information
retrieval from Berger and Lafferty [3] who in their model
generalize the language modeling approach to information
retrieval from Ponte and Croft [15]. The main reason why
we chose to extend on this approach is because it not only
delivers good results for traditional information retrieval but
also presents a conceptually simple probabilistic model, that
already incorporates some hints on the influence of context
information.

Berger and Lafferty imagine that when a user uses an
information retrieval system, he starts with an informa-
tion need. This information need could be presented as a
fragment of an “ideal document”. The user translates this
ideal document fragment (in his head) into a compact query
which is posed to the system. The task for the retrieval sys-
tem is, given the query and a model of how the information
need is translated into a query, to retrieve back the most
likely document given the query. In other words, to deter-
mine for which documentd, P (D=d|Q=q ∧ U=u) is the
highest. HereP (D=d) is the probability thatd is the ideal
document,P (Q=q) is the probability that queryq is ob-
served, andP (U=u) is the probability that the user is (de-
scribed by)u. By Bayes’ lawP (D=d|Q=q∧U=u) can be
rewritten as:

P (Q=q|D=d ∧ U=u)P (D=d|U=u)

P (Q=q|U=u)
(1)

Since the retrieval process should result in a ranked list
of documents and the denominator,P (Q=q|U=u), is for
each document the same, it can be ignored, resulting in the
following equation consisting of a query-dependent and a
query-independent part:

P (Q=q|D=d ∧ U=u)
︸ ︷︷ ︸

query−dependent

· P (D=d|U=u)
︸ ︷︷ ︸

query−independent

Berger and Lafferty suggest that the query-independent
part can be used to adapt the result to the users needs and in-
terests, but take it to be uniform for all documents. In their
paper they focus on the query-dependent part; the probabil-
ity that queryq was posed by the user, given that document
d was the ideal document.

2.2. The relevance of a document given its features

To be able to determine the probabilityP (Q=q|D=d ∧
U=u) we assume that the query and document can be both

represented using features. Suppose functionF returns the
features for a document:

F (d) = {f1, . . . , fn}

Since it could be the case that we do not know if a docu-
ment has a certain feature, we can talk about the probability
thatF (d) returns a certain feature:

P (f ∈ F (d)) (2)

Now suppose we assume that the query that the user
generates from a document is equal to the set ofall the
features of this document. In this case we could rewrite
P (Q=q|D=d ∧ U=u) as:

P (Q=q|D=d ∧ U=u)

= P (q=F (d))

= P (
∧

f∈q

f ∈ F (d) ∧
∧

f∈F (d)

f ∈ q)

A more realistic assumption would be that the user gen-
erates a query from a document by only enumeratingpart
of the features of the document. In this case a query could
be generated from a document if all features of the query
are contained in this document, but they do not have to span
the whole document:

P (Q=q|D=d ∧ U=u) = P (
∧

f∈q

f ∈ F (d))

The language modeling approach from Ponte and
Croft[15] is concerned with retrieving text documents, so
they consider their features to be terms. Furthermore they
make two extra assumptions:

• The probability that the user generates a feature from a
document is related to the frequency of the term in the
document; to model this, they introduce a probability
distributionP (·|d) over terms.

• The probability that a certain term is contained in the
document is independent of the other terms in the doc-
ument.

Since we already have a probability distribution for fea-
tures given a document in equation (2), we assume we can
adapt this model to incorporate the frequency of the terms.
If we then make the same assumptions as Ponte and Croft
we can simplify the calculation of the probability of a query
given a document to:

P (Q=q|D=d ∧ U=u) = P (
∧

f∈q

f ∈ F (d))

=
∏

f∈q

P (f ∈ F (d))

Given that we have the probability distributionP (· ∈ F (d))
this is enough to rank documents based on a query, which is
the core of the language modeling approach to information
retrieval.

2.3. The effects of context

Since we not only want to rank documents based on the
user query but also based on the context of the user, we
shall revisit equation (1) and look how context plays a role
in influencing the different terms of the equation. Since the
user was already present in the original model and we are
only interested in how the context influences the informa-
tion need for the user of the system, we incorporate the con-
text of the user in the model by considering the user as being
situated(i.e., having a certain context). We indicate this by
replacingu with usit, by which our new equation becomes:

P (D=d|Q=q ∧ U=usit) =

P (Q=q|D=d ∧ U=usit)P (D=d|U=usit)

P (Q=q|U=usit)
(3)

As can be seen, context has its effect in three places. First,
it affects the denominator, suggesting that if a user poses a
query which is less likely considering its context, the doc-
uments matching this result should be considered more rel-
evant. Since this does not affect the ranking of the docu-
ments we do not address it in this paper. We imagine, how-
ever, that this term could be used to determine the general
relevance of query results in a context-aware system, for ex-
ample to determine how query results should be displayed
(since it is important not to flood the user with results).

Second, context affects the “query generation” term
P (q|d∧Usit), this could be used to account for different in-
put methods under different contexts leading to a different
formulation of a query even though the “ideal document”
is the same. Notwithstanding the fact that we can for ex-
ample imagine a user posing different query terms when he
uses his phone rather than his desktop PC, we assume in this
paper that the influence of context on this term can be ne-
glected compared to the effect of context on another term:
the query-independent part.

In the previous section it was assumed that the query-
independent part,P (D=d|U=usit), was the same for each
document. However, the essence of context-awareness is
that documents have different relevance, depending on the
context of the user, which is why we will look in the rest
of this paper, how to determine this probability. In other
words; we will try to determine the probability of a docu-
ment being the ideal document (for the user) in a specific
context.

3. A model for context-aware relevance

3.1. An ideal document

To be able to calculate the probability of a document be-
ing the ideal document in a specific context, we first have to
define the notion of an ideal document for a context. If the
user did not specify any preferences for documents in con-
texts our best guess would be to consult the history of the
user to determine the ideal document. The thought behind
this reasoning is that in many cases the user is not willing to
specify preferences for each context, so looking at his his-
tory might be the only way to acquire his preferences. Fur-
thermore, this reasoning allows us to integrate preferences,
history and uncertainty of context in a natural way.

Considering that both documents and context can be de-
scribed by features, we define the ideal document for the
user in the current context as:The document which has the
same features as documents that the user chose before in
contexts with the same features as the current context.

Since a specific context will never occur more than once,
and probably the user will most of the time not be interested
in exactlythe same document as the last time when a sim-
ilar context occurred, we should be careful how to choose
our features and be sure that they are able to generalize well
over different documents and contexts. For example, sup-
pose a user watches each workday morning the traffic bul-
letin. In this case we may assume that on the next workday
morning he is again interested in traffic bulletin. The user
is, however, probably not interested in watching the same
traffic bulletin every day but only in most recent bulletin.
Hence, it is important that each recorded traffic bulletin has
at least a feature which identifies it as such. How to de-
termine the right kind of features is out of scope for this
paper, since this is specific for each retrieval problem, but
in many cases features might be provided by data suppliers
(e.g., television guides, IMDB) or determined from sensor
readings (e.g., localization techniques, activity recognition).

3.2. Finding the most relevant document

The definition of the ideal document above still assumed
that, on a high level, a user would each time choose the
same kind of document in the same kind of context. In
many cases, however, an ideal document cannot exist, sim-
ply because the user did not choose a document with the
same features each time in the same context. For example,
some workday morning the user might decide not to watch
the traffic bulletin but watch the weather bulletin instead.

For this reason we define the probability that a document
d is the ideal document asthe probability that if we take a
random context in the past with the same features as the
current context, the user chose a document with the same

T r a f f i c b u l l e t i n
W e a t h e r b u l l e t i n

F e a t u r e s T i m e

5 0 % 1 0 0 %

Figure 1. Graphical display of the distribution
of video features on a workday morning.

features asd. The motivation is that a document would be
ideal if it was chosen each time in the same context. If, how-
ever, the features of the chosen documents varied, there can
exist multiple ideal documents, all with a specific probabil-
ity. For example, in Figure 1 we graphically displayed an
abstraction of the history of a user who watched on work-
day mornings, in80% of the cases, programs containing
the traffic bulletin and, in60% of the cases, programs con-
taining the weather bulletin. Now, the probability that on a
new workday morning a program which neither contains the
traffic bulletin nor the weather bulletin is the ideal program
is (1−0.8) · (1−0.6) = 0.08.

To calculate the probability that this document is ideal
we assume that the choices of the different features of a
document by the user are independent of each other. This
seams reasonable for most cases. An example of an unlikely
violation would be that a user likes thriller movies and likes
the actor Guy Pearce, but does not like Guy Pearce if he
plays in thriller movies. If, however, in a certain domain the
dependency of choices is very strong, one could consider
designing a model which takes features of the document as
context features, but this is out of scope for this paper.

Because we determine the probability that a document is
ideal in a certain context based on the features of the context
and the document, what we want to calculate is the prob-
ability that a document is ideal given the situated userand
the knowledge that the document can be represented by fea-
ture vectorf and the context can be represented by feature
vectorg. For this we introduce, similar to the functionF
from Section 2.2, also a functionG to get from contexts to
features.

Now, we can introduce a relationH (“History”), which
indicates which document features in past have been cho-
sen in which context; it contains pairs(g, f) with document
featuref and context featureg. Furthermore we introduce
a score functionσ, which gives for each pair(g, f) in H a
score,∈ 0..1. Using this relation, we define the probability
that a document is the ideal document in a certain context,
given the feature vectors, as follows:

P (D=d|U=usit, F (d)=f, G(usit)=g) (4)

=
∏

(g,f)∈H

1 , if g /∈ g
σ(g, f) , if g ∈ g ∧ f ∈ f
1 − σ(g, f) , otherwise

Because of the reasons we explained above, the score func-

tion σ(g, f) is defined as the probability that if we take a
random context in history with featureg, the user chose a
document with featuref .

In the example of Figure 1 we assumed that the contain-
ment of a traffic and/or weather bulletin were properties of a
television program but we could also imagine that they are
two disjoint properties of television programs in general;
a television program is either a traffic bulletin, or a weather
bulletin, or something else. This is an example of a situation
where the independence assumption for the choice of the
user is clearly violated, since the useris not ableto choose
traffic and weather independently. For dealing with this dis-
jointness we extend the definitionσ(g, f) as the probability
that if we take a random context in history with featureg
and the user was able to choose a document with featuref
given the other features of the document, the user actually
chose a document with featuref .

Another situation which often happens in context-aware
systems is that the user is not so much interested in a single
document but in a group of documents. For example, in the
case ofTVToucha person could choose to watch both the
weather and the traffic bulletin at the same workday morn-
ing. In this case one should take the whole workday morn-
ing as one context where the user chose two documents.
Therefore, the features of both documents should be related
to this context.

3.3. Incorporating uncertainty of context and doc-
ument features

Now consider that we are not certain about the features
of the documents we have to score and neither we are cer-
tain about the contextual features.

For the calculation of the relevance of a document given
a situated user,P (D=d|U=usit), this means looking at all
possible combination of features that the current context can
have (given the measurements) together with their probabil-
ities. Similarly, we have to look for all possible features that
the document can have. This leads to the following compu-
tation:

P (D=d|U=usit)

=
∑

G(usit)=g

P (G(usit)=g) · P (D=d|U=usit, G(usit)=g)

=
∑

G(usit)=g

P (G(usit)=g)

· (
∑

F (d)=f

P (F (d)=f)

· P (D=d|U=usit, F (d)=f, G(usit)=g))

=
∑

G(usit)=g

P (G(usit)=g)

· (
∑

F (d)=f

P (F (d)=f)

·
∏

(g,f)∈H

1 , if g /∈ g
σ(g, f) , if g ∈ g ∧ f ∈ f
1 − σ(g, f) , otherwise

)

If we combine this formula with a way to extract features
from contexts and documents, and information about their
relation (by means ofH andσ), we have enough informa-
tion to score documents based on the context of the user.
In the next section we will provide a method to express fea-
tures of contexts and documents together with a way of pro-
viding a relation between them which leads to an example
application of our formula.

4. Modeling the relation between context and
preferences

4.1. Scored preference rules

The computation method described in the previous sec-
tion could be used for all kinds of features (in more or less
efficient manner). Nevertheless, to be able to deal with
structured information in a way that focuses on reasoning
and traceability and has close relation to the database world,
we choose to model our features using Description Logics
(DL) as argued in our previous work [16].

Furthermore, to address the uncertainty of both context
and document features we developed in [17] a context un-
certainty model. Since, in the scope of our study, we re-
gard correlations and constraints that exist among concept
and roles highly desirable (e.g., a person can only be at a
single place at one moment), it is important to capture and
model these correlations without approximations. For this,
we assign each context measurement a probability and a ba-
sic event expression. Calculation of the probability of high
level context events (e.g., a certain activity) can be done by
combining event expressions from measurements attribut-
ing to this event as described in [9]. Another advantage of
the use of event expressions is that they provide data lineage
which could help making the system more traceable.

With this model to represent features of contexts and
documents, which allows for the calculation of probabili-
ties, we can define a way to couple context and preferences
in a way that is traceable for the user. For this we will use
preference rules as we introduced in [16] which consist of a
tuple of the form (Context,Preference) where bothContext
andPreference are DL concept expressions. However, to
be able to incorporate the ideas presented in this paper we

extend the tuple with a scoreσ. We will call rules of the
extended formscored preference rules.

As an example consider a scored preference ruleR1 of a
user called Peter:

Context :Weekend

Preference :TvProgram⊓

(∃hasGenre.{HUMAN -INTEREST})

σ :0.8

The semantics of the scoreσ is exactly the same as the func-
tion σ(g, f) in Section 3.2. In other words, the semantics of
this rule is that the probability that whenever we take a ran-
dom context in the past during the weekend, if Peter was
able to choose a television program on human interest, the
chance that in this context he would actually choose a tele-
vision program on human interest was0.8.

The idea behind the scored preference rules is that they
form an abstraction/generalization of the history of the user.
They could really be mined from the history but also defined
by the user or system designer. Together, they can form
the basis for a context-aware application. And, because the
semantics of the scoring function for all rules is the same as
defined above, they provide an explanatory way for scoring
documents.

To determine a score for a document based on the avail-
able preference rules we consider only those features impor-
tant for relevance that are mentioned in the preference rules.
In this way, our relationH and score functionσ, as intro-
duced in Section 3.2, are completely defined by the prefer-
ence rules and we could, if we are certain about all features,
apply equation (4) to calculate the “abstracted” probability
that a document is ideal in a certain context.

Equation (4) however, only provides useful results if
there is at least one rule inH applicable in the current con-
text (otherwise it results in a score of 1). For this reason, in
case the context of querying is not covered by any prefer-
ence rule, the retrieval system is unable to return any mean-
ingfull probability for the relevance of the query answers.
As a solution, one could cover these situations by having
“default” preference rules, which are valid in any context.

4.2. An example

In this section we will provide an example of how the
scored preference rules can lead to a probability per docu-
ment.

Suppose ourTVTouchsystem has, next to the ruleR1 as
defined in Section 4.1, a second ruleR2 which states that,
if Peter is having breakfast, he prefers to watch television

programs about the news:

Context :Breakfast

Preference :TvProgram⊓

(∃hasSubject.{News})

σ :0.9

Now, suppose we have to score the four television pro-
grams in Table 1 when the context is that the user is having
breakfast during the weekend. For simplicity, we assume
that the context is certain (and hence the factor

∑

G(usit)=g

in the formula of Section 3.3 equals 1 and will be left out
below). Furthermore we assume that features of documents
are independent so we are able to construct all probabilities
from Table 1.

In this case, based the formula from Section 3.3, the
probability thatChannel 5 newsis the ideal document is:

∑

F (d)=f

P (F (d)=f)

·
∏

(g,f)∈H

1 , if g /∈ g
σ(g, f) , if g ∈ g ∧ f ∈ f
1 − σ(g, f) , otherwise

= P (F (d)={Humaninterest, weather})R1σR2σ

+ P (F (d)={Humaninterest})R1σ(1 − R2σ)

+ P (F (d)={weather})(1 − R1σ)R2σ

+ P (F (d)={})(1 − R1σ)(1 − R2σ)

= (0.95 · 0.85) · (0.8 · 0.9) + (0.95 · 0.15) · (0.8 · 0.1)

+ (0.05 · 0.85) · (0.2 · 0.9) + (0.05 · 0.15) · (0.2 · 0.1)

= 0.6006

Similarly, we can calculate the probabilities for
the other documents. This results in the follow-
ing probabilities for them being the ideal document:

Channel 5 news = 0.6006
Oprah (0.85 · 1) · (0.8 · 0.1)

+(0.15 · 1) · (0.2 · 0.1) = 0.071
BBC news (1 · 1) · (0.2 · 0.9) = 0.18
MPFS (1 · 1) · (0.2 · 0.1) = 0.02

If, without considering context, all documents where
equally relevant to the user’s query, these scores also de-
termine their context-aware ranking.

5. Naive implementation

To show how our ideas could be used in practice, we im-
plemented a naive system that is able to rank results based
on the preference rules of the user. To do this we extended
PostgreSQL with a datatype for event expressions. Further-
more, since the basic elements of Description Logics are
concepts and roles, we view each concept as a table, which

Program Genre Probability Subject Probability
Oprah human interest 0.85 - -
BBC news - - weather bulletin 1.0
Channel 5 news human interest 0.95 weather bulletin 0.85
Monty Python’s Flying Circus - - -

Table 1. Available television programs.

uses the concept name as the table name and has anID at-
tribute and an event expression attribute. Similarly, we view
each role as a table, with the role name as its table name and
containing three attributes;SOURCE, DESTINATION, and
an event expression. For each tuple of the table, the role
relates theSOURCEindividual with theDESTINATIONin-
dividual. We adapted the approach of [4] to express DL
concept expressions using SQL queries and added support
for the propagation of event expressions.

An important remark here is that we provide a uniform
tabular view towards both static and dynamic contexts, even
though the later (e.g., location, surrounding people, etc.)
must be acquired real-time from external sources/services
like sensor networks. This is in line with the efforts of
the sensornet community which has embraced declarative
queries as a key programming paradigm for large sets of
sensors [7]. Here, we take the SQL query language as a
uniform interface to the contexts. Another reason for doing
this is that we can later use the context history for analysis
purposes to achieve smartness [1].

With the mapping mechanism introduced in [16], we can
construct a database view for each concept expression con-
taining all tuples that are included in the concept expression,
together with an event expression as a measure of the prob-
ability by which they are included. Since both context and
preference in a preference rule are concept expressions we
can both represent them as views on the database.

All preference rules together are stored as rows in a
repository table consisting of the name of the preference
view, the name of the context view, and the score of the
rule.

Furthermore, to calculate the probability
P (D=d|U=usit) for each tuple, we use the formula
from Section 3.3 to provide a big preference view. This
view contains all preferred tuples together with the proba-
bilities that they are ideal based on the current context and
preference rules in the repository. The nice part of having
such a view is that, as the current context develops, the
probabilities of containment of tuples in the view changes
accordingly. To get an idea of the complexity, one can look
at our manual calculation in Section 4.2, which even was
a simplification since context was considered to be certain
and document features independent.

Finally we have to adapt the query results of the user by
ordering the tuples in the result, based on the probability

from the big preference view. This is done by doing a union
of the preference view and the results of query of the user,
where the results are ordered by the probabilities in the pref-
erence view. This step brings us back to the integration of
contextual relevance and query relevance from which we
started in Section 2.3, where in this naive approach, the
probability of the query-dependent part is either1, if the
tuple was contained in the user query, or0 if it was not.

We have to make one important remark for this imple-
mentation. Since for each new rule, both the amount of
possible combinations of context features and the amount
of possible combination of tuple features (for which the
probability should be calculated) are doubled, this leads to
highly exponential query times. To verify this we gener-
ated a test database of context and documents containing
around 11000 tuples; around 1000 persons, 300 TV pro-
grams, 12 genres, 6 subjects, 4 activities, 5 rooms and their
relations. We created a series of rules on this test database
where we measured query times for an increasing number
of rules. Our results confirm our suspicion; for one till four
rules, query times are still acceptable (query time less than
1 second). Five to six rules take 4-20 seconds, but as we we
arrive at seven rules, our query did not finish within half an
hour. For this reason our implementation shows, next to the
applicability of the approach, also its current bottleneck.

6. Discussions

This paper covers a first step towards a ranking method
for query results based on context information. As became
clear from the previous sections, there are still many chal-
lenges to overcome. In this section we will highlight the
ones which we think are the most salient.

• Performance:If anything became clear from the im-
plementation, it is that the naive implementation will
not scale to a useful number of rules. There are possi-
ble ways to address this challenge, if we can prune the
amount of applicable rules and candidate documents in
early stages.

• Evaluation of ranking: Next to an improvement in
speed, it should be tested whether the assumptions we
made about the preferences of the user hold in prac-
tice by conducting user studies. An interesting area

to explore in this light, would be the weighting of the
query-independent and query-dependent part of equa-
tion (3), using smoothing methods.

• Explanation of results:One of the reasons for the in-
troduction of preference rules based on Description
Logics, was to make our approach traceable (i.e., to
make it easy for the user to understand the choices of
the system). To put this into practice we should prefer-
ably not require the user to look at the preference rules
himself, but provide the user with a motivation for the
“context based” answer. An interesting research area
would be to determine what kind of explanation (such
as rules, features, or scores) would give the user a good
insight to the system while still being unobtrusive. Re-
lated research in this area is the ordering of attributes
of query results by Daset al. [6].

• Mining/learing preferences:Since our scoring method
gives a semantics for the score of a document based
on the history of user choices, a legitimate question
to ask is, how well the actual user preferences would
be predicted by mining the history of the user using
exactly these semantics. Related research in the area
of mining preferences can be found in [10].

• Modeling multiple users:In our case we only dealt
with the preferences of one user. In some cases we
might have to deal with ranking results for multiple
users (for example if multiple users want to watch TV
together). We conjecture that this could be naturally
addressed with the model presented here, but this is
still open for research.

7. Conclusions

We have presented a novel explanatory approach of look-
ing at context-aware relevance by defining the context-
aware relevance of features as a probabilistic function of
past choices.

We showed that this approach goes well together with
traditional probabilistic information retrieval and uncer-
tainty of context information and demonstrated a naive im-
plementation.

The main outstanding issues are the improvement of the
scalability of the approach and the measurement of the ef-
fect on retrieval performance. We believe that these issues
can be solved and will lead to an approach to context-aware
ranking that is both explanatory and results in answers that
better serve the information needs of users.

References

[1] Echise. first international workshop on exploiting context
histories in smart environments, May 2005.

[2] S. Agrawal, S. Chaudhuri, G. Das, and A. Gionis. Auto-
mated ranking of database query results. InCIDR, 2003.

[3] A. L. Berger and J. D. Lafferty. Information retrieval as
statistical translation. InSIGIR ’99, pages 222–229. ACM,
1999.

[4] A. Borgida and R. J. Brachman. Loading data into descrip-
tion reasoners. InSIGMOD ’93, pages 217–226, New York,
NY, USA, 1993. ACM Press.

[5] S. Chaudhuri, G. Das, V. Hristidis, and G. Weikum. Prob-
abilistic ranking of database query results. InVLDB ’04,
pages 888–899. Morgan Kaufmann, 2004.

[6] G. Das, V. Hristidis, N. Kapoor, and S. Sudarshan. Ordering
the attributes of query results. InSIGMOD ’06, pages 395–
406. ACM, 2006.

[7] A. Deshpande, C. Guestrin, S. R. Madden, J. M. Hellerstein,
and W. Hong. Model-driven data acquisition in sensor net-
works. InVLDB ’04, pages 588–599, 2004.

[8] L. Feng, P. M. G. Apers, and W. Jonker. Towards context-
aware data management for ambient intelligence. InDEXA
’04, pages 422–431, 2004.

[9] N. Fuhr and T. Rölleke. A probabilistic relational algebra
for the integration of information retrieval and database sys-
tems.ACM Trans. Inf. Syst., 15(1):32–66, 1997.

[10] S. Holland, M. Ester, and W. Kießling. Preference mining:
A novel approach on mining user preferences for personal-
ized applications. InKnowledge Discovery in Databases:
PKDD 2003, pages 204–216. Springer, 2003.

[11] S. Holland and W. Kießling. Situated preferences and prefer-
ence repositories for personalized database applications. In
23rd International Conference on Conceptual Modeling (ER
2004), pages 511–523. Springer-Verlag, November 2004.

[12] I. F. Ilyas, R. Shah, W. G. Aref, J. S. Vitter, and A. K. Elma-
garmid. Rank-aware query optimization. InSIGMOD ’04,
pages 203–214. ACM, 2004.

[13] W. Kießling. Foundations of preferences in database sys-
tems. InVLDB ’04, pages 311–322, 2002.

[14] G. Koutrika and Y. E. Ioannidis. Personalized queries under
a generalized preference model. InICDE ’05, pages 841–
852. IEEE Computer Society, 2005.

[15] J. M. Ponte and B. W. Croft. A language modeling ap-
proach to information retrieval. InSIGIR ’98, pages 275–
281. ACM, 1998.

[16] A. H. van Bunningen, L. Feng, and P. M. G. Apers. A
context-aware preference model for database querying in an
ambient intelligent environment. InDEXA ’06, pages 33–
43. Springer, 2006.

[17] A. H. van Bunningen, L. Feng, and P. M. G. Apers. Mod-
eling Uncertain Context Information via Event Probabili-
ties. InProceedings of the 2nd Twente Data Management
Workshop on Uncertainty in Databases, pages 25–32. CTIT,
2006.

[18] M. Weiser. The computer for the 21st century.Scientific
American, 265(3):94–104, 1991.

