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ABSTRACT 
A common weakness of most conventional imaging modalities is that although they can detect the presence of 
pathological tissues, they are incapable of classifying tumors and determining whether they are malignant. To 
address this major issue, elastography has been developed. This is an imaging technique that provides the spatial 
distribution of tissue stiffness. The main idea behind elastography is the fact that tissue pathological changes such 
as those associated with cancer trigger significant changes in the tissue mechanical properties. The mechanical 
behavior of a tissue can be described by parameters characterizing its linear or nonlinear behavior. While soft 
tissues demonstrate linear behavior under small strains, many clinical applications including elastography involve 
large strains rendering linear models inaccurate for tissue simulation. Among existing nonlinear models, the 
Veronda-Westman model has gained much interest because of its exponential form that is consistent with soft 
tissue mechanical response. However, in elastography where the spatial distribution of this model’s parameters 
must be determined by solving an inverse problem, the exponential form poses serious challenges such as 
convergence and computation time. To solve the inverse problem, previous methods involved using time-
demanding optimization/regularization routines. In this work, we propose a novel technique that does not involve 
optimization/regularization. 
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1  INTRODUCTION 
According to statistics, cancer is the second leading cause of death worldwide. There are many types of cancer 
humans can develop among which breast cancer is the second most common type in women [1]. Another common 
cancer is liver cancer, which is the fifth most common type worldwide, and has the highest mortality rate of 97% 
in diagnosed patients [2]. The most important factor in the treatment of all types of cancers is early detection and 
diagnosis. If the cancerous tissue is diagnosed at early stages, there is a greater chance of treating it with little risk 
to the patient’s health. Currently, medical imaging is the most common way to detect cancerous lesions. While 
sufficient for detecting pathology, many conventional imaging modalities (e.g. CT, MR) suffer from low 
specificity. This means that although the presence of a tumor within the tissue can be detected, such imaging 
modalities provide very limited information about the type of the detected abnormality, and most importantly 
whether it is malignant. To address this, researchers have proposed several methods including elastography, which 
images tissue stiffness. This is an important development, as data indicate that various pathological tissues exhibit 
different stiffness characteristics. 

2  THEORY 

2.1 Elastography 
Elastography is an imaging technique in which tissue stiffness is imaged and used to detect or classify tumors. In 
this work, we focus on the classification capability of elastography, as the presence of tumor can be ascertained 
using other conventional imaging modalities. Elastography was first introduced by J. Ophir et al [3]. The basic 
idea behind elastography is the fact that tissue pathological changes often trigger substantial stiffness changes. The 



core of elastography techniques is their inverse problem of stiffness parameter reconstruction. Reconstruction 
techniques are based on elasticity constitutive models that are selected to model the forward problem. These are 
divided into linear and nonlinear (hyperelastic) models. Linear elasticity assumes that the relationship between 
stress and strain is linear, and uses two parameters (Young’s modulus and Poison’s ratio) to describe the 
mechanical behavior of tissue. However, given that most soft tissues exhibit nonlinear characteristics under the 
mechanical stimulation of elastography procedures, we employ a hyperelastic formulation. Moreover, tissue 
hyperelastic parameters can be used for cancer diagnosis. The constitutive relationship of incompressible 
hyperelastic materials is as follows: 

        (1) 

In this equation  is the deviatoric stress,  indicates the deviatoric part, and  is a strain energy function. 
Other parameters ( , , ,  and ) are functions of displacements and can be calculated using the acquired 
displacement data. 
 

2.2 Veronda-Westman Model 
One of the best nonlinear models in terms of providing a very close fit to typical stress-strain curves of soft tissues 
is the Veronda-Westman model, which was originally introduced in 1970 [4]. It has been recently used by several 
researchers in modeling soft tissues [5, 6, 7]. This model has an exponential form, and uses three parameters 
( ,  and ) to describe tissue nonlinear behavior: 

    1 3     (2) 

3  METHODS 

3.1 Problem Definition 
We need to solve an inverse problem where the tissue displacement data is available to reconstruct the tissue 
hyperelastic parameters. To form the inverse equations we substitute the Veronda-Westman energy function 
(Equation (2)) in Equation (1) to obtain: 

       (3) 

This equation is nonlinear in terms of  and ; therefore, simple matrix-based system inversion is not 
possible. Previous inversion techniques have used optimization and/or regularization steps for parameter 
reconstruction [5, 6]. The novelty of this work is the development of a new approach where no optimization or 
regularization is necessary. With this approach, the complexity and computation time are reduced drastically. 
 

3.2 Novel Inversion Technique 
The main idea of the proposed approach is to use an approximation to the exponential term of the Veronda-
Westman energy function. Having this approximation, we use a change of variables technique, which changes the 
system of equations into an equivalent linear system of equations in terms of the new variables. Hence, we solve 
this linear system for the new variables. Finally, we determine the unknown ,  and  parameters using the 
obtained new variables. The whole procedure consists of three steps. In each step, one of the unknown parameters 
of ,  and  is reconstructed. 

In the first step, we use the first three terms of Taylor’s series to expand the exponential term, and then, to form 
the described linear system of equations. Since we used a gross approximation of the exponential term, we obtain 
rough estimations of  and  by solving this equivalent system; however, as Equation (3) is linear in terms of , 
we find the accurate value of  in this step. 

In the second step, we improve the estimated  values, as we have an estimation of  from the previous step, 
which enables us to obtain a much better approximation to the exponential term. One way to obtain such an 
approximation is to use the polyfit function in MATLAB, which uses the least squared errors measure to find the 
closest polynomial approximation to a given function. Fig. 1 shows the higher accuracy of the polyfit 
approximation compared to the Taylor’s series expansion.  Hence, once again the procedure in the first step is 
repeated, this time to find the accurate value of . 

To find , Equation (3) can be solved directly for  based on the obtained  and . This whole process 
takes less than a second to finish since no regularization or optimization steps are included. 

 
 
 
 



 
 
 
 
 
 
 
 
 
 
 

Figure 1. Comparison of two different approximations of polynomial fitting and Taylor’s series 

4  NUMERICAL PHANTOM VALIDATION 

4.1 2-D Numerical Phantom 
In this validation, we consider a breast undergoing ultrasound (US) elastography. We created a Finite Element 
(FE) model of a 2-D breast phantom (Fig. 2) to validate the proposed method. This phantom consists of three 
different layers: an elliptical inclusion, middle and outer layers which represent the tumor, fibroglandular and 
adipose tissues, respectively. We use ABAQUS software to perform a FE analysis where we apply 30% of 
compression to simulate the compression applied by a US imaging probe. To solve the inverse problem we assume 
that the hyperelastic parameters of the normal (adipose and fibroglandular) tissues are available [8]. Thus, we 
follow a constrained reconstruction procedure similar to the one presented by Mehrabian et al [6]. 

                                        
 
 
 
 
 
 
 
 

 
 
 

Figure 2. FE model of the phantom before applying deformation, and after applying ultrasound probe compression 

4.2 3-D Numerical Phantom 
In this example, a 3-D breast phantom undergoing MR elastography is studied. This phantom is similar to the 2-D 
counterpart. It has the same three layers (adipose and fibroglandular tissues, and a tumor). Different views of this 
phantom are shown in Fig. 3. 
 
 
 
 
 
 
 
 
                                         
 
 
 

Figure 3. FE model for 3-D breast mimicking phantom in pre-compression and post-compression states 



Again, we solve for the hyperelastic parameters of the tumor tissue assuming known parameters for the normal 
tissues. We use the same reconstruction algorithm here. The only difference is that the equations are formed 
considering three dimensions instead of a 2-D framework. 

5  RESULTS 
We tested the method on both 2-D and 3-D phantoms for a wide range of hyperelastic parameters on 100 different 
sets. These 100 sets of parameters were randomly selected such that they covered the entire range of hyperelastic 
parameters that O’Hagan [9] has reported for Veronda-Westman model of real breast tumor samples. As an 
indication, we have included reconstruction results for five sets of those 100 samples here. These five sets are 
shown in Table 1, and corresponding reconstruction results for 2-D and 3-D cases are shown in Tables 2 and 3, 
respectively. For the 2-D phantom, the maximum error we obtained was less than 4%, and the average error was 
1.93%. For the 3-D phantom, we observed a maximum error of less than 2%, and an average error of 1.11%. 

Table 1. Parameters used to construct both 2-D and 3-D phantoms 
 

Test No. 
Real  (  are in kPa,  is unitless) 

Adipose tissue Fibroglandular tissue Tumor tissue 
         

1 2.79 -1.12 1.11 5.38 -2.29 2.58 8.20 -2.15 3.39 
2 3.28 -1.51 2.23 5.26 -3.46 3.13 9.37 -2.33 4.25 
3 4.59 -1.60 1.29 7.67 -2.22 1.94 10.13 -3.66 2.81 
4 3.81 -0.49 1.54 5.83 -3.25 2.31 11.05 -2.41 3.72 
5 5.68 -1.47 1.34 8.25 -4.29 2.30 13.68 -3.72 3.38 

Table 2. Reconstructed tumor parameters for the 2-D phantom 
 

Test No. 
Reconstructed  (  are in kPa,  is unitless) 

 
(true) 

 
(solved) 

Error 
(%) 

 
(true) 

 
(solved) 

Error 
(%) 

 
(true) 

 
(solved) 

Error 
(%) 

1 8.20 8.29 1.10 -2.15 -2.09 2.79 3.39 3.35 1.18 
2 9.37 9.54 1.81 -2.33 -2.27 2.58 4.25 4.09 3.76 
3 10.13 10.24 1.09 -3.66 -3.63 0.82 2.91 3.01 3.43 
4 11.05 11.22 1.54 -2.41 -2.36 2.07 3.72 3.60 3.23 
5 13.68 13.37 2.27 -3.72 -3.58 3.76  3.38 3.42 1.18 

Table 3. Reconstructed tumor parameters for the 3-D phantom 
 

Test No. 
Reconstructed  (  are in kPa,  is unitless) 

 
(true) 

 
(solved) 

Error 
(%) 

 
(true) 

 
(solved) 

Error 
(%) 

 
(true) 

 
(solved) 

Error 
(%) 

1 8.20 8.06 1.71 -2.15 -2.18 1.40 3.39 3.44 1.47 
2 9.37 9.27 1.07 -2.33 -2.32 0.43 4.25 4.29 0.94 
3 10.13 10.01 1.85 -3.66 -3.62 1.09 2.91 2.86 1.72 
4 11.05 11.03 0.18 -2.41 -2.44 1.24 3.72 3.72 0.00 
5 13.68 13.54 1.02 -3.72 -3.67 1.34 3.38 3.40 0.59 

6  DISCUSSION AND CONCLUSION 
Elastography is a powerful technique that can be used to determine the types of breast tumors. While linear 
elastography lacks the capability to model soft tissues because of their nonlinear behavior, hyperelastic models are 
better suited for this purpose. Veonda-Westman is a hyperelastic model that has been used recently to model soft 
tissues, especially breast tissue. Its exponential form makes it capable of modeling nonlinear behavior of soft 
tissues highly accurately; however, its corresponding hyperelastic parameter reconstruction problem leads to a 
nonlinear system of equations. 

Previously proposed techniques involve regularization and/or optimization, which are very time-consuming 
and are not guaranteed to converge. In this work, we presented a novel solution to this nonlinear system which is 
much faster and yet reasonably accurate. This solution is straight-forward, as it does not use regularization or 
optimization. The technique was validated using 2-D and 3-D phantom studies where its performance in 
reconstructing tissue hyperelastic parameters was demonstrated. These studies indicated reconstruction errors of 
less than 4% and 2% in the 2-D and 3-D phantoms, respectively. In terms of speed, the proposed method reduced 
the computation time by 1/9 compared to Gokhale’s work [7], and by 1/3 compared to Mehrabian’s work [8]. 



Future work will involve experimental validation of the proposed technique using a tissue mimicking phantom. 
The phantom will be constructed using PVA-C which has been used widely in modeling soft tissues because of its 
nonlinear behavior. The phantom’s displacement data will be acquired using an ultrasound system. 
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