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ABSTRACT
Discrimination of Outer Membrane Proteins (OMP) from other types of membrane and globular proteins is an
important step in their secondary and tertiary structure prediction. Moreover, a reliable discrimination method can
be used for whole genome analysis and hence discovery of new OMPs. In this paper, we propose an SVM-based
protein discriminator for OMPs (SPiD) from other types of proteins, i.e., globular and inner membrane proteins.
This approach uses amino acid and amino acid pair composition values, the length of protein sequence, and a newly
defined feature called β-barrel score. When applied to a dataset consisting of 1,087 proteins, SPiD achieves an
overall accuracy of 96%; to the best of authors’ knowledge, this is higher than the accuracy of other previous studies.
When SPiD is trained to pick up only outer membrane β-barrels, it reaches an overall accuracy of 99%.
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1 INTRODUCTION
The most remarkable fact about Gram-negative bacteria is their cell envelopes. It consists of two layers: Inner Mem-
brane (IM) and Outer Membrane (OM), which are separated by periplasm. IM is in direct contact with cytoplasm and
periplasm while OM is in contact with extracellular environment and periplasm [1]. Integral IM proteins span the
membrane by α-helices while integral OM proteins span the membrane by β-strands and form a β-barrel. OM Pro-
teins (OMPs) have diverse functions and are divided into several families: selective active and passive transporters
of molecules, enzymes, defense proteins, structural proteins, and toxins.

Several methods for discrimination of OMPs have been proposed in the recent years. These methods can be
divided into three major groups: methods using sequence alignment information and/or HMM [2, 3, 4, 5, 6], methods
based on amino acid composition values [7, 8, 9], and methods using amino acid sequence properties like estimated
folding pseudo-energy or average hydrophobicity [10, 11, 12]. In this paper, we propose an SVM-based protein
discriminator for OMPs (SPiD), using amino acid and amino acid pair composition values, sequence length, and a
feature especially tailored for β-barrels.

2 Materials and methods
2.1 Datasets
The dataset used here is the same as in [9], since it is one of the most challenging and comprehensive available
datasets. Moreover, the authors report the best results to date and it facilitates the fair comparison of our results
with those of previous studies. This dataset primarily consists of 377 OMPs and 268 α-helical membrane proteins
extracted from PSORT-B database [13], and 674 globular proteins from the PDB40D 1.37 database of SCOP [14,
15]. It is filtered for sequence identity of less than 40% using CD-HIT algorithm [16]. The resulting dataset has
208 OMPs, 206 α-helical membrane proteins, and 673 globular proteins consisting of all-α, all-β, α+β, and α/β

proteins. Herein after, we will define the following notation for the dataset used for discrimination: the set of outer
membrane proteins (OMP), the set of α-helical membrane proteins (TMH), the set of globular proteins (GLB), and
the set of non-OMPs (NOM).

In order to verify the capability of the proposed approach in discrimination of transmembrane β-barrels from α-
helical membrane and other non-β-barrel proteins, we also used TMPDB alpha non redundant and TMPDB beta no-
n redundant datasets [17]. These datasets consist of proteins with experimentally known structures that are filtered
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for sequence similarity of less than 30%, using CLUSTALW version 1.81 [18]. TMPDB alpha non redundant
contains 231 and TMPDB beta non redundant contains 15 proteins.

2.2 Features
In a protein sequence of length N, for amino acids a and b, the peptide (amino acid) and dipeptide (amino acid pair)
composition values are defined by

Ca =
na

N
, Dab =

pab

N−1
, (1)

where na and pab are the number of occurrences of amino acid a and amino acid pair ab in the sequence, respectively.
OMPs usually have longer amino acid sequences than some of globular proteins, since for example forming a β-barrel
structure requires a minimum number of amino acids, so it was added too. We denote peptide composition value
features by C, dipeptide features by D, and sequence length feature by L. There are 20 “C” and 400 “D” features.

We define a new feature called β-barrel score whose original idea is taken from [4]. Every amino acid in the
membrane spanning section of the protein sequence can be either Lipid Exposed (LE) or barrel Interior Exposed
(IE). The β-strand score for every position i, Bi, is defined as [4]:

B1
i = ∑ j∈E L(ai+ j|ai+ j ∈ IE)+∑ j∈O L(ai+ j|ai+ j ∈ LE), (2)

B2
i = ∑ j∈E L(ai+ j|ai+ j ∈ LE)+∑ j∈O L(ai+ j|ai+ j ∈ IE), (3)

and Bi = max(B1
i ,B

2
i ); where in equations (2) and (3), L(ai+ j | ai+ j ∈ IE) = log(Pr{ai+ j|ai+ j ∈ IE}), which is

estimated from the real data; the same is true for the LE case. Moreover, the set of even and odd shifts are defined as
E = {0,2,4,6,8} and O = {1,3,5,7,9}. When summing L(ai+ j|ai+ j) values, we actually multiply the corresponding
probabilities. If we assume independence between consequent residues, Bk

i , k = 1,2 values are the logarithm values
of the probability that a β-strand starts at residue i with different assumptions, whether it is IE or LE. It turns out that
a window size of ten is optimum. After calculating Bi for all residues 1 to N− 9; we form the new feature called
β-barrel score (B) which is defined as B = 1

N−9 ∑
N−9
i=1 B2

i .
In Table 1, mean values of 20 peptide composition values, sequence length, and β barrel score features are listed

for GLB, TMH, NOM, and OMP datasets. To perform feature selection, we used backward elimination-forward
selection (BE-FS) method. Since running backward elimination on 400 dipeptide features is not feasible, we only
ran forward selection on them.

3 Results and Discussion
3.1 Implementation
We have used the LIBSVM software package1, which is both very fast and reliable. In each scenario, we repeated
each experiment for 100 times and each time randomly changed the permutation of proteins. The standard deviation
of the calculated results is approximately 0.1%. In order to optimize the RBF kernel parameters, we have used grid
optimization technique in two coarse and fine steps. It turned out that optimal values for penalty parameter and
kernel width were 10 and 2, respectively.

3.2 Performance evaluation
In order to participate all data points in the performance evaluation process, we use 5-fold cross validation. In order
to compare SPiD’s results with previous studies, we use measures that have been widely used before. Suppose TP,
FP, TN, and FN denote true positive, false positive, true negative and false negative assignments, respectively. By
positive we mean a correctly classified protein, and by negative we mean an incorrectly classified protein. We use
the following widely-used performance measures:

SEN = TP
TP+FN , SPC = TN

TN+FP , ACC = TP+TN
TP+FP+TN+FN , (4)

where SEN, SPC and ACC stand for sensitivity (ability to discover OMPs, a small sensitivity value indicates that
many OMPs will not be discovered), specificity (ability to correctly sift OMPs from non-OMPs), and overall accu-
racy which is an indicator of overall performance. Moreover, we use the Matthew’s correlation coefficient (MCC)
which is a better performance measure defined as follows [19]:

MCC = TP×TN−FP×FN√
(TP+FP)(TP+FN)(TN+FP)(TN+FN)

(5)

MCC value is zero for a completely random assignment and one for a perfect discrimination.

1Available at http://www.csie.ntu.edu.tw/˜cjlin/libsvm



Table 1. Mean values of features
Feature GLB TMH NOM OMP

L 183 424 240 552
B 0.82 1.06 0.88 1.32

Ala 8.42 10.27 8.86 9.37
Arg 5.05 4.45 4.91 5.23
Asn 4.40 3.06 4.09 5.44
Asp 5.84 3.32 5.25 5.88
Cys 1.47 0.85 1.32 0.41
Gln 3.94 3.21 3.77 4.71
Glu 6.72 3.74 6.02 4.86
Gly 7.65 8.33 7.81 8.69
His 2.20 1.68 2.08 1.25
Ile 5.77 7.50 6.17 4.72
Leu 8.50 12.72 9.49 8.94
Lys 6.17 3.38 5.52 4.89
Met 2.19 3.58 2.52 1.66
Phe 3.77 5.49 4.17 3.75
Pro 4.47 4.29 4.43 3.74
Ser 5.77 5.88 5.79 8.04
Thr 5.71 5.20 5.59 6.31
Trp 1.34 2.05 1.51 1.24
Tyr 3.42 2.82 3.28 4.13
Val 7.20 8.19 7.43 6.75

All composition values are in percentile.

Table 2. OMP-GLB discrimination results
Features SEN SPC ACC MCC

L+20C+B 89.3 98.4 96.1 0.896
L+9C+B 89.0 98.9 96.5 0.904
L+9C+2D+B 89.9 98.8 96.6 0.908

Table 3. OMP-TMH discrimination results
Features SEN SPC ACC MCC

L+20C+B 95.9 93.2 94.6 0.892
L+10C 96.3 94.7 95.5 0.910
L+10C+3D 98.2 96.3 97.3 0.945

Table 4. OMP-NOM discrimination results
Features SEN SPC ACC MCC

L+20C+B 86.2 97.7 95.4 0.855
L+13C+B 85.0 98.3 95.6 0.861
L+13C+3D+B 87.0 98.2 96.0 0.872

SEN, SPC, and ACC are in percentile.
The best results are shown in bold.
First line, shows the performance measures without
dipeptide features; second line after backward elim-
ination; and the third line after forward selection ran
only on dipeptide composition features.

3.3 Discrimination of OMPs
We experimented discrimination of OMPs in three scenarios: from globular proteins (OMP-GLB), from α-helical
membrane proteins (OMP-TMH), and from non-OMPs (OMP-NOM).

3.3.1 OMP-GLB and OMP-TMH discrimination
In Table 2, performance results of OMP-GLB discrimination are listed. Initial ACC and MCC values are better than
previous studies’ results; while backward elimination and forward selection even more improved these results. After
backward elimination, remaining amino acids were aromatic (Trp and Tyr) and polar residues (Cys, Gln, Pro, His
and Thr). The added dipeptide composition features were Asp-Phe and Tyr-Asn, both a combination of a polar and
an aromatic residue, which are abundant in OMPs.

In OMP-TMH scenario (results listed in Table 3), backward elimination improved ACC and MCC by 0.9% and
0.018, respectively; and removed β-barrel score and half of the peptide composition values. The remaining residues
were good α-helix formers (Ala and Met), bad α-helix formers (Gly, Pro, Ser, Tyr), and Asp, His, Ile and Lys.
Forward selection added Gln-Ala (polar-aliphatic), Asp-Ala (charged-aliphatic), and Glu-Phe (charged-aromatic),
and boosted ACC and MCC values by 1.8% and 0.035, respectively.

3.3.2 OMP-NOM discrimination
OMP-NOM discrimination is more important than other scenarios, therefore, we elaborate more on it. Discrimina-
tion accuracy using all 20 amino acid composition values, length of protein sequence, and β-barrel score was quite
acceptable and better than all previous studies. Backward elimination, did not improve the performance so much but
reduced the number of features from 22 to 15; most of the omitted features had close mean values. Forward selection,
added 3 dipeptide features: Asp-Ala (charged-aliphatic), Glu-Phe (charged-aromatic) and Asn-Lys (polar-charged);
These added features boosted ACC and MCC values from 95.6% and 0.861 to 96% and 0.872, respectively. It is
important that sensitivity was improved from 85% to 87%. Detailed performance measures are listed in Table 4.
The relation between MCC and SEN values for different values of SPC for OMP-NOM discrimination is depicted
in Figure 1. It can be seen that MCC value nearly grows linearly with the growth of SEN value.

In order to better analyze the performance, for each protein, the probability of being classified incorrectly is
estimated by running the discrimination experiment 500 times and counting the number of times that any protein
is classified incorrectly, whenever it is in the validation dataset. The estimated probabilities are depicted in Figure
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Figure 1. MCC values vs. sensitivity for different values
of SPC for OMP-NOM discrimination.
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Figure 2. Estimated probability of error for all proteins.

2. It is interesting that some proteins (mostly OMPs) are always misclassified, i.e., their estimated probability of
error is one and some proteins (mostly globular proteins) are never misclassified. The detailed results of estimated
misclassification error probabilities are listed in Table 7.

3.4 Discrimination of β-barrels
In a more specific discrimination scenario, we apply our approach to discrimination of transmembrane β-barrels from
other types of proteins. To do so, we have used the TMPDB alpha non redundant, TMPDB beta non redundant and
GLB datasets. It is interesting that the mean β-barrel score feature of β-barrels (1.79) is nearly twice as other datasets
(0.81 for GLB, 0.98 for TMH, and 0.85 for α-helical membrane and globular proteins dataset), and has a very large
mean difference in all scenarios. It is mainly because this feature is especially tailored for β-barrels. We use the same
set of features that are found after performing backward elimination-forward selection in OMP-NOM discrimination.
Performance results are listed in Table 6. In all cases discrimination accuracy is very high.

Table 5. Comparison with other studies.

Method Scenario SEN SPC ACC
SPiD OMP-GLB 89.9 98.8 96.6
(SVM) OMP-TMH 98.2 96.3 97.3

OMP-NOM 87.0 98.2 96.0

[7] OMP-GLB 85.5 92.5 92.1
(Linear Classifier)

[9] OMP-GLB 88.0 90.4 94.4
(SVM) OMP-TMH 99.0 92.7 95.9

OMP-NOM 90.9 94.7 93.9

[12] OMP-GLB 83.7 97.6 94.3
(Neural Network) OMP-TMH 91.8 91.7 91.8

OMP-NOM 81.3 97.5 94.4

Table 6. Results of β-barrel discrimination.

Scenario SEN SPC ACC MCC
BB-GLB 75.3 99.6 98.9 0.782
BB-AA 95.8 100 99.6 0.974
BB-NBB 80.0 99.8 99.3 0.829

BB: TMPDB beta non redundant
AA: TMPDB alpha non redundant
NBB: AA + GLB

Table 7. Estimated probability of error analysis.

Dataset size Pe = 0 0 < Pe < 1 Pe = 1
GLB 673 0.96 0.04 0.00
TMH 206 0.93 0.05 0.02
OMP 208 0.78 0.13 0.09

Total 1087 0.92 0.06 0.02

4 Discussion and Conclusion
In this study, we poposed SPiD, a new SVM-based approach for discrimination of OMPs and in a more specific case,
transmembrane β-barrels. By adding two features to the peptide and dipeptide composition values and performing
feature selection, SPiD was proved to be very accurate. Park et al. proposed a method based on amino acid and amino
acid pair composition values and reported an accuracy of 93.9% in a set of 208 OMPs that was calculated using 5-
fold cross validation [9]. Gromiha and Suwa developed a method based on amino acid properties and reported a
prediction rate of 94.4% [12]. In comparison to the aforementioned studies, SPiD achieved OMP-GLB, and OMP-
TMH, OMP-NOM discrimination accuracies of 96.6%, 97.3%, and 96.0%, respectively. When trained to pick only
β-barrels, SPiD was able to reject 913 out of 919 non-β-barrels and cover 12 out of 15 β-barrel families. Moreover,



by performing error probability analysis, it turned out that some proteins were always misclassified because they
were more similar to non-OMPs.
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