
A Quick Introduction to Data Compression Through Learning

Francisco Claude

David R. Cheriton School of Computer Science
University of Waterloo, Canada
fclaude@cs.uwaterloo.ca

ABSTRACT
We present an introduction to data compression with an example of a simple technique based on Bayesian Inference,
which achieves compression ratio similar to known compression programs in practice. We relate this method to
known compression techniques. The main goal is to show data compression from a learning point of view and
encourage further research on compression of biological sequences.

1 Introduction

Data compression aims at representing a sequence using as little space as possible. Compression algorithms can be
roughly divided into two groups: dictionary based and statistical.

Dictionary based methods can be explained as representing the sequence, based on previously seen substrings.
Some examples of such algorithms are LZ77 [1], LZ78 [2] and Re-Pair [3] 1.

Statistical compressors rely on predicting the next symbolto appear in the sequence, encoding this information
and the predictive model in an efficient way. Classical examples are Huffman [4] and arithmetic coding [5]. In some
cases, transforming the sequence allows to achieve better compression with simple methods, such an example is the
Burrows-Wheeler transform [6, 7].

We first discuss some necessary background in Section 2; then, in Section 3, we show a simple and direct way
to use Bayesian inference to compress data. In Section 4 we show experimental results obtained by the methods
proposed in Section 3, aiming at giving some empirical feeling to the reader. Then, we discuss the connection of our
proposal to existing work (Section 5), and finally we conclude mainly presenting a simple open problem (Section 6).

2 Data Compression

The efficiency of a compression method is usually measured bycomparing the length of the resulting sequence with
the entropy of the source.

DEFINITION 2.1 (ENTROPY [4]). The entropy of a sequence S of length n, drawn from an alphabetΣ of sizeσ,
is defined as

H(S) =− ∑
c∈Σ

P(c) logP(c),

where P(c) is the probability of seeing a symbol c in S.

If we consider each symbol independent from each other, the resulting value for the entropy is called zero-order
entropy (H0) and it is a lower bound on a symbol-based coder. This means that we can not compress a sequenceS
to less thannH0(S) if we give a single code to each symbol of the alphabet ignoring the context in which it appears.
Another definition, very useful in practice, is thek-th order entropy [4],Hk, it considers contexts of lengthk and is
defined as

Hk(S) =− ∑
s∈Σk

P(s) ∑
c∈Σ

P(c|s) logP(c|s).

In a practical setting this definition is expressed using frequencies,P(c) =C(c)/n, whereC(c) is the number of
timesc appears in the sequence. This corresponds to the definition of empirical entropy[7].

A simple approach to achieve compression close to thek-th order entropy is to model the symbols distribution
for each possible context of lengthk, assign zero-order codes to each model and then compress thesequence using

1The last two have a straightforward grammar-representation and are sometimes referred as grammar-based compressors.

them. This method is simple and seems that it could achieve a good compression ratio, but it hides a huge overhead
in storing the models. There areσk contexts of lengthk that have to be stored, each of them with their corresponding
model.

For the rest of this work we will assume the sequence we want tocompress to be generated by a stationary
Markov process in which each symbol depends only on the pastk symbols seen. So, for our purposes,H(S) and
Hk(S) are the same. We make use of then-gram model used for natural language processing (NLP) [8].

It is clear that there will be a trade off between the complexity of the model, the space required to store it, and the
compression ratio achieved. From the pure compression point of view, it is interesting to have a model that adapts
itself over the part of the sequence already seen. This allows the encoder and the decoder to adapt their model in a
similar way and by doing so encode and decode without storingmuch of the model (only the initial assumptions or
priors). A compression method that works this way is Prediction by partial matching (PPM) [9]. The main idea is to
adapt the model based on the context seen, and if that contexthas not been seen before, the (de)compressor tries to
find a shorter context seen before in order to predict the nextsymbol.

In this work we will rely on Arithmetic compression (AC) [5].Given a probability distribution of a set of
sequences, AC maps the probability of a given sequence to a range in[0,1), and allows to represent that sequence
with a number in that range. In order to avoid the assumption of infinite precision, many authors (see [10] for
further details) have showed how to handle the intervals using finite precision for the numbers and improve upon
coding efficiency. The most important property of AC for our work is that the encoding process is separated from
the probability model we use for the source, and thus it allows us to modify it as we learn from the sequence and not
having to deal with the problems presented by other codification methods like Huffman [11] for this scenario. It has
been shown that AC achieves compression close to the entropyof the sequence, in particular, we have the following
theorem:

THEOREM 2.2 (ARITHMETIC CODING OPTIMALITY [5]). Let S be a sequence of length n, drawn from an
alphabetΣ of sizeσ. Consider L to be the length of encoding S using arithmetic coding (with the right probability
distribution). Then, L satisfies

|S|H(S)< L < |S|(H(S)+2).

There have been other approaches for estimating the probability of a symbol given the history seen in the se-
quence. In particular, an interesting work that plugs AC with their modeling system was presented by Davies and
Moore [12], where they show how to train a Bayesian Network inorder to estimate the probability distribution of
the next symbol.

One of the best compression methods, considering compression ratio, is PPM [9]. The main idea is to model the
source and predict the next symbol based on the symbols seen previously. Usually, we have to define a model for
predicting the next symbol and this model is application-dependent [13]. The classical implementation works in a
similar way to the two examples shown in this survey, we comment on this in Section 5.

3 Simple Statistical Compressor

In general, then-gram model for NLP is used over words. In our case, we will apply this over symbol. The same
ideas are valid for word-based compressors, which in practice have shown to achieve better compression ratios for
natural language [14].

Let S= s1s2 . . .sn be a sequence of lengthn, drawn from an alphabetΣ = {1,2, . . . ,σ} of size σ. We will
consider contexts of lengthk. Our goal is to estimateP(sj |sj−1sj−2 . . .sj−k). For estimating the probability of
P(sj |sj−1sj−2 . . .sj−k), we will use a very simple maximum likelihood estimator [8, 15], where we model
P(sjsj−1 . . .sj−k) asC(sj sj−1 . . .sj−k)/(N+B); N is the number of training instances,B is the number of possi-
ble classifications for the training text, andC(s) corresponds to the frequency ofs. For estimating the probability
P(sj |sj−1sj−2 . . .sj−k) we have:

P(sj |sj−1sj−2 . . .sj−k) =
P(sjsj−1sj−2 . . .sj−k)

P(sj−1sj−2 . . .sj−k)
=

C(sj sj−1sj−2 . . .sj−k)

C(sj−1sj−2 . . .sj−k)

This estimation has problems with zero frequencies, the probability of seeing a new symbol after a context is
zero. For fixing this issue, we will use two different methods:

• M0: Laplace Law’s results by adding one to the frequency count, obtaining

PLap(s1s2 . . .sn) =
C(s1s2 . . .sn)+1

N+B
.

By using this, we actually obtain the value of the Bayesian estimator that assumes a uniform prior over the
symbols in the sequence [8].

• M1: As a second approach, we will consider a special symbol representing an unseen symbol of the alphabet.
For the coding purposes, each time we see a symbol whose probability is zero, we emit this special symbol
and then we encode the symbol using⌈logσ⌉ bits. Then we update the frequency counters and the probability
distribution for the context.

For both methods, as in general with AC, we add a special symbol to the sequence that represents the end of the
string, which is the symbol that tells the decoder when to stop decoding.

4 Experimental Setup

We compare the two models with AC2 (M0 and M1) against the compression ratios reported in Pizza&Chili 3 for
bzip2, gzip, andppmdi. Bzip2 is based on the Burrows-Wheeler Transform [6],gzip is based on the Lempel-Ziv
family [1, 2], andppmdi is an implementation of PPM [9]. In this test we consider the file dna.50MB. Bzip2 achieves
25.98%;gzip 27.05%;ppmdi achieves 23.84%; finally M0 and M1 achieve 23.84% and 23.82% respectively. This
shows that in this case the methods are competitive with general purpose compressors.

The second test considers the fileHemo4. We compare the result of compressing this file against compressors
designed for the specific task of compressing biological data, using the results provided in [16].XM [17]5 achieves
7.64%,dna2 [18] achieves 9.65%, andComrad [19] achieves 12.68%. The best lines achieved by M0 and M1 are
17.75% and 17.18%. As a guideline, gzip and bzip achieve 10.81% and 10.77% respectively.

Next, we study the effect ofk, the length of contexts, in the compression. Figure 1 (left and middle) shows the
compression ratio, as a fraction of the text, for differentks. It can be seen that the function described reaches a
minimum and then it starts growing. The problem here is that when we divide the training set into too many bins,
which is the case for large contexts, the number of elements hitting the bins are few and the prediction looses. With
more data it would be possible to achieve better results for larger contexts, but it is given by a trade off on how
much we can collect from the sequence we are compressing. As an example to illustrate this, we consider the DNA
file and generate 3 prefixes of it: 10, 30 and 50MB. Each prefix iscompressed with differentks and we evaluate
the compression ratio achieved. Figure 1 (right) shows the results. As it can be seen, the prediction for largerks
improves in the larger files, and the longer the file, the better the compression tends to be.

 0.235

 0.236

 0.237

 0.238

 0.239

 0.24

 0.241

 0.242

 0.243

 1 2 3 4 5 6 7 8

r
a
t
i
o

(
f
r
a
c
t
i
o
n

o
f

t
h
e

t
e
x
t
)

k (length of the context)

DNA

M0
M1

 0.17

 0.18

 0.19

 0.2

 0.21

 0.22

 0.23

 0.24

 0.25

 1 2 3 4 5 6 7 8 9

r
a
t
i
o

(
f
r
a
c
t
i
o
n

o
f

t
h
e

t
e
x
t
)

k (length of the context)

Hemo

M0
M1

 0.235

 0.236

 0.237

 0.238

 0.239

 0.24

 0.241

 0.242

 0.243

 1 2 3 4 5 6 7

r
a
t
i
o

(
f
r
a
c
t
i
o
n

o
f

t
h
e

t
e
x
t
)

k (length of the context)

DNA

M0 50MB
M1 50MB
M0 30MB
M1 30MB
M0 10MB
M1 10MB

Figure 1. Compression ratio, as fraction of the text, for DNA and Hemo using methods M0 and M1. The leftmost picture shows
that the methods achieve better compression as they see moreexamples.

5 Connection to Other Compression Methods

There is direct connection between the method explored in this work and PPM [9]. The main difference is how
PPM handles the non-existing contexts or zero frequencies.The solutions used by PPM is quite similar, if it finds
a context that has not been seen before, it tries with a shorter one. It keeps doing this until reaching the point of a

2Using the implementation of [5].
3http://pizzachili.dcc.uchile.cl/
4http://ww2.cs.mu.oz.au/∼kuruppu/comrad/hemoglobin.fa.gz
5Which uses a much more sophisticated modeler in a similar approach, keeping many modelers and combining them by the

use of learning algorithms. In general the compression of biological data is hard because contexts of lengthk are not a good
predictor.

context of length 0 or finding a context that allows to model the next symbol. This seems to be an alternative to the
previous model that considers more information for modeling. If a short sequence is very rare, it can be used as a
context instead of trying to embed this rare sequence insidea larger context, where it is very likely that we will not
find many training examples and thus lose prediction capabilities.

All these methods, the ones presented here, PPM, etc., are just different methods for predicting the next symbol
in a sequence plugged with arithmetic coding. This means, weare just trying to find a good alternative for the
modeler. In the case of DNA and protein sequences this has been proven to be a very challenging problem.

6 Conclusions and Open Problems

We showed a simple relationship between learning/inference and data compression. This connection is not new, it
was previously stated by Cover and Thomas [4], where they relate a good data compressor with a good gambler. In
principle the idea is the same, but in our case we limited our selfs to Bayesian gamblers.

The option of exploring more general or powerful estimationmethods and applications-dependent priors is an
exciting path to work further in this topic. Another attractive direction is based on the convergence of the model
to the real distribution. A common measure to quantify the closeness between two probability distributions is the
Kullback-Leibler distance. In the strict sense it is not a distance, but it is always positive and evaluates to 0 only if
the two probability distributions are the same.

DEFINITION 6.1 (KULLBACK -LEIBLER DISTANCE[4]). The Kullback-Leibler (KL) Distance between two
probability distributions P(x∈ X) and Q(x∈ X) is defined as:

D(P||Q) = ∑
x∈X

P(x)
P(x)
Q(x)

It would be really interesting to see how fast can we approachthe real probability distribution of the symbols.
Given this result, and the following theorem, we could give abound on the compression achieved by our method.

THEOREM 6.2 (WRONG CODE[4]). The expected length under P(x) of the code assignment with lengths l(x) =
⌈

1
Q(x)

⌉

satisfies:

H(P)+D(P||Q)< EPl(x)< H(P)+D(P||Q)+1

Finally, another path to explore is to build a transformation based on the estimations made. The main idea is that
when processing positionℓ+1, we have seens1s2 . . .sℓ and we can try to predictsℓ+1. If we write down the number of
trials required to predict this next symbol. We can recreatethe original sequence from this one by running a decoder
that does the inverse process. If our predictor is good, we will have a sequence biased on to small numbers, and
thus we could aim at compressing it very well. This could leadto similar results as the Burrows-Wheeler transform,
where simpler compression methods applied over the transformation achieve competitive results.

It is interesting to notice that the transformation is very similar to the idea used originally by Shannon to estimate
the entropy (upper bound) of the English language [20, 21]. The estimation was later improved by Cover and King
[22], where they approach the problem as a gambling question, which helps to estimate a probability for the next
symbol and not only the order of possible symbols for the nextposition. An interesting discussion about this can be
found in the work presented by Teahan and Cleary [23].

Acknowledgements

The author would like to thank Gonzalo Navarro and Pascal Poupart for their useful comments.

References
[1] J. Ziv and A. Lempel, “A universal algorithm for sequential data compression,”IEEE Transactions on Infor-

mation Theory23(3), pp. 337–343, 1977.

[2] J. Ziv and A. Lempel, “Compression of individual sequences via variable length coding,”IEEE Transactions
on Information Theory24(5), pp. 530–536, 1978.

[3] J. Larsson and A. Moffat, “Off-line dictionary-based compression,”Proc. IEEE88(11), pp. 1722–1732, 2000.

[4] T. Cover and J. Thomas,Elements of information theory, John Wiley and Sons, Inc., 1991.

[5] M. C. E. Bodden and J. Kneis, “Arithmetic coding revealed- a guided tour from theory to praxis,” Tech.
Rep. SABLE-TR-2007-5, Sable Research Group, School of Computer Science, McGill University, Montréal,
Québec, Canada, May 2007.

[6] M. Burrows and D. Wheeler, “A block sorting lossless datacompression algorithm,” Tech. Rep. Technical
Report 124, Digital Equipment Corporation, 1994.

[7] G. Manzini, “An analysis of the Burrows–Wheeler transform,” Journal of the ACM48(3), pp. 407–430, 2001.

[8] C. D. Manning and H. Schtze,Foundations of Statistical Natural Language Processing, The MIT Press,
June 1999.

[9] J. Cleary and I. Witten, “Data compression using adaptive coding and partial string matching,”IEEE Transac-
tions on Communications32, pp. 396–402, Apr 1984.

[10] I. H. Witten, A. Moffat, and T. C. Bell,Managing Gigabytes: Compressing and Indexing Documents and
Images, Morgan Kaufmann Publishers, 1999.

[11] D. Huffman, “A method for the construction of minimum-redundancy codes,”Proceedings of the I.R.E.40(9),
pp. 1090–1101, 1952.

[12] S. Davies and A. Moore, “Bayesian networks for losslessdataset compression,” inProceedings of the Fifth
International Conference on Knowledge Discovery in Databases, pp. 387–391, AAAI Press, 1999.

[13] D. Mackay,Information Theory, Inference & Learning Algorithms, Cambridge University Press, June 2002.

[14] J. Adiego and P. de la Fuente, “On the use of words as source alphabet symbols in ppm,” inDCC ’06: Proceed-
ings of the Data Compression Conference, p. 435, IEEE Computer Society, (Washington, DC, USA), 2006.

[15] F. Peng and D. Schuurmans,Combining Naive Bayes and n-Gram Language Models for Text Classification,
vol. 2633, January 2003.

[16] F. Claude, A. Fariña, M. Martı́nez-Prieto, and G. Navarro, “Compressedq-gram indexing for highly repetitive
biological sequences,” inProc. 10th IEEE Conference on Bioinformatics and Bioengineering (BIBE), 2010. To
appear.

[17] M. Cao, T. Dix, L. Allison, and C. Mears, “A simple statistical algorithm for biological sequence compression,”
in Proc. DCC, pp. 43–52, 2007.

[18] G. Manzini and M. Rastrero, “A simple and fast DNA compression algorithm,”Soft. Pract. Exper.34, pp. 1397–
1411, 2004.

[19] S. Kuruppu, B. Beresford-Smith, T. Conway, and J. Zobel, “Repetition-based compression of large DNA
datasets,” inProc. 13th International Conference on Computational Molecular Biology (RECOMB), 2009.
Poster.

[20] C. E. Shannon,A Mathematical Theory of Communication, CSLI Publications, 1948.

[21] C. E. Shannon, “Prediction and entropy of printed English,” The Bell System Technical Journal30, pp. 50–64,
1951.

[22] T. M. Cover and R. C. King, “A convergent gambling estimate of the entropy of English,”IEEE Transactions
on Information Theory24, pp. 413–421, July 1978.

[23] W. J. Teahan and J. G. Cleary, “The entropy of english using ppm-based models,” inDCC ’96: Proceedings of
the Conference on Data Compression, p. 53, IEEE Computer Society, (Washington, DC, USA), 1996.

