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ABSTRACT
Automating protein structure analysis is useful to understand their function, especially as structure data grows.
Developing methods of elucidating protein motions from the multitude of data currently available, and doing it in
a way that allows non-experts to easily perceive protein movement can lead to heightened levels of understanding
and hypothesis generation. We apply principal component analysis to examine major modes of motion for protein
conformations. We show that a few principal components of the conformation matrix can capture the majority of the
motions, and present a visual depiction of one mode of calmodulin.
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1 BACKGROUND
As datasets from wet-lab experiments on protein structure grow in size and number, the interpretation of these results
becomes difficult. X-ray Crystallography experiments are able produce a large amount of data about crystallized
protein structure[1]. For example, there are over 150 conformations of the protein HIV-1 Protease available on
the Internet. Due to its pharmaceutical importance (as a drug target in HIV research), it is a valuable endeavor to
understand the main modes of movement of this protein. Principal Component Analysis (PCA) has been applied to
HIV-1 Protease before, with results showing a similar mobility to movement determined experimentally. It has also
been used in conjunction with singular value decomposition (SVD) to that same end with other protein sets[2, 3].

Nuclear Magnetic Resonance (NMR) is another method of attaining structural protein data[4]. Here, the structure
of protein is taken from protein in solution, which allows for more variability in the data collected. Consequently
NMR can create even more data than X-ray Crystallography. Many solution-NMR experiments have resulted in
multiple models, each presenting a different conformation for the protein in question. With many such models
within a file, and with many such files, it becomes imperative to develop automated methods of discerning major
protein motions in a cost efficient way. PCA is a possible solution to this issue.

Other methods, such as normal mode analysis (NMA), are also applicable to finding protein motions. NMA
considers harmonic motions and involves energy minimization. This makes NMA a more biologically relevant
type of analysis when compared with PCA. However, NMA suffers from computationally demanding steps, and the
results of PCA and NMA can be comparable[5].

In this paper, we implement an automated PCA based strategy for finding principal modes of motion of a protein
set[2]. We develop Python code for use with UCSF Chimera[6] to present possible principal modes of motion for a
given set of protein conformations, and we apply it to the protein calmodulin.

1.1 Principal Component Analysis
PCA is a dimensionality reduction technique which allows for high dimensional variables to be embedded into a
low dimensional space where they are uncorrelated. These reductions in the lower dimension, known as principal
components, are linear combinations of the original high dimensional variables. Each principal component is con-
structed to cover as much variance in the original data as possible; this allows for the mapping from high to low
dimensional space to maintain information of the high dimensional system in very few principal components. It
is possible to obtain as many principal components as there are original variables, but PCA is intended as a way of
finding the smallest number of uncorrelated principal components which cover a large percentage of total variation in
the original data. Even though this means some information is lost in the process, the trade-off between representing
information through less variables may be beneficial in many applications. One such area is the study of molecular
motions.
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1.2 Singular Value Decomposition
Singular Value Decomposition (SVD) is a common method in linear algebra in which a matrix is factored into a
diagonal matrix, and two eigenvector matrices[7]. The SVD method allows the creation of a pseudoinverse for
matrices which are close to being singular, but it also allows for extraction of important information from a matrix in
a way similar to PCA[3]. It can be an efficient way of obtaining principal components. The SVD of an m×n matrix
A is defined as:

A = UDV T (1)

where U and V are orthogonal left and right eigenvector sets of A respectively, and D is a nonnegative diagonal
matrix with elements being the singular values of A. For our purposes, the trace of D is the total variance in A, while
the square of each singular value represents the variance of the data in A along the corresponding vector in U[2].

2 METHODS: APPLYING PRINCIPAL COMPONENT ANALYSIS TO PROTEIN
CONFORMATION

We will use SVD to gain the principal components of a set of molecular structures, thereby getting the principal
modes of movement[2]. First, we acquire a set of l structures of the same protein. Each atom in the protein model
has Cartesian coordinates (xi,yi,zi). Initially, we must complete a rigid least squares fit on all models with respect to
one of the structures, which removes translational and rotational degrees of freedom[8].

We represent the entire protein model by creating a conformational vector of the form

mi = (∆x1,∆y1,∆z1,∆x2,∆y2,∆z2, ...,∆xn,∆yn,∆zn) (2)

which is a concatenation of the displacement of n atom coordinates from the arithmetic mean along the Cartesian
axes[3]. Since the structures are superimposed after the least squares fit, this requires finding the average confor-
mational vector and subtracting it from the conformational vector of the given protein model. Using all the atoms
in the model is possible and may be desired for some experiments, but increases calculation time. We limit the
conformation vectors to alpha carbons on each residue in the model only, which allows an examination of backbone
motion specifically. Others have shown that the principal components are useful when considering atoms in binding
sites alone[3].

Once each conformation vector m for all l models are acquired, the matrix A is created by column-wise concate-
nation of the l conformation vectors:

A = [m1|m2|...|ml ],A ∈ R3n×l (3)

where each m is the conformation vector representation of a model defined above.
After creating the matrix A, we proceed with the SVD of A as presented by Equation (1). The matrix of left

eigenvectors U has columns ui, and it is these columns which are the principal components of A. Each ui shows
the mode of motion of the atoms which were used in building the conformational vectors. One can think of ui as
a collection of direction vectors for n atoms, each representing their mode of motion at time point i of l[3]. Since
this is a PCA approach, each column vector ui will hold the general directions where most of the variability in atom
position occurs. For example, the first three elements of u1 would define the vector of the first principal component
of motion of the first atom under consideration.

The right eigenvectors vi found in V , are projections of A on the ui vectors in the U matrix. As the A in our case
is a protein conformation matrix, the elements of vi are the locations of each atom along its principal component ui.
They can also be used to discern preferred protein conformations[3].

3 RESULTS OF APPLICATION TO CALMODULIN DATA
To test the methodology presented above, we applied the SVD based PCA to models of calmodulin created by Zhang
et al. (1995)[9]. Calmodulin is a protein involved in a variety of cellular functions, including protein synthesis,
gene regulation, cell motility, and cellular secretion[10]. It is composed of two main domains tethered with a loop
which allows for fluctuation in protein structure for target binding[11]. The large amount of displacement between
conformations of calmodulin makes it an excellent example of the effectiveness of this method. The experimental
data from Zhang et al. (1995) has 30 models discerned by NMR.

In Figure 1, we show the amount of variance each principal component exhibits on total variance in the original
dataset. The largest singular value shows that the first principal component accounts of 29% of the total variance. To
achieve 90%, 11 principal components must be taken into account.

In Figure 2, we visualize the mode described by the first principal component for each alpha carbon in calmod-
ulin. The cylinders indicate the vector of the most important mode along which an atom will move, with the rounded
end pointing in the direction of movement.



Figure 1.
Amount (%) of total variance of matrix A explained by specific singular values of A.

4 DISCUSSION
Previous work in this area has used the PCA to compare bound and unbound structures of ligand binding protein, and
in the majority of cases, has been limited to data generated by X-ray Crystallography studies of proteins and their
ligands[2]. Such research allowed for the principal modes of movement during binding to be understood. However,
to our knowledge, NMR experiment data on unbound motions of a single protein have not yet been examined with
this approach. The results suggest that the method is useful to discover transient motions in protein in solution by
using multiple NMR models. By transient movement, we meant movement that is unrelated to binding specifically,
but constitutes normal fluctuations in structure while a protein is in solution.

As Figure 1 shows, a majority of the modes of motion can be captured through a number of principal components
much smaller than that of the models used in the analysis.

Even with the implied freedom of an unbound structure, the PCA method elucidated modes of movement similar
to movement known as biologically relevant for calmodulin[11]. In Figure 2, we see the modes of one of the
domains pointing in a direction where the folding movement may initially occur. Consecutive principal components,
while not shown, suggest the same directions for the domain, while the ’anchored’ domain shows very little mode
activity at any point in time (according to the right eigenvectors). All of the atom modes seem to point in similar
directions on the domain whose coordinate changes explain the movement of calmodulin. This is not visible in the
’anchored’ domain: the principal components do not seem to point in similar directions, nor are they scaled by the
right eigenvectors to the extent that the other domain is. This implies that it would be improbable for this domain
to experience major movement in any particular direction, relative to the coordinate system of the original data.
It is important to note that this is because the principal components are calculated relative to the protein structure
coordinates of the original data: the data was pre-fitted around one of the domains, making it appear as though it
is immobile to the PCA analysis. This anchoring provides a clearer view of the mobility of the other domain, but
should not lead the reader to think the domain is somehow immobile in reality.

Overall, the principal motions of calmodulin in solution are based around the two domains coming closer and
moving apart by the folding and extending activity of their tether. Based on the data from Zhang et al. (1995)[9], this
’flopping’ action occurs along a plane, which is why most of the modes seen in this work are close to being parallel
directions (that is, if we were to translate them all to the axis along which this movement of calmodulin occurs, they
would be as close to being on the plane itself).

5 CONCLUSION
Both the range of variability description found within the initial principal components, as well as the visualized
modes show that the method can be used to better understand protein movement in solution. We used data on
calmodulin in solution, whose ’domains on a tether’ structure allows for various conformational possibilities in solu-
tion which fluctuate along a limited space of substates; they cannot behave without submitting physical and energy
constraints. This is supported by the PCA analysis of the dataset, which suggest that major modes of movement



Figure 2.
The backbone of calmodulin with the first principal components, or modes of motion (left eigenvectors of A) in-
dicated by the thin cylinders. The spherical end of the cylinder represents the positive direction of motion. The
principal components are scaled by the right eigenvectors of A.

restrict motion of the protein along a specific path. We also show that the majority of said modes can be described
with a few principal components found from the original data.

In the future, larger datasets should be used in order to find more modes. The limitation of structures derived
from NMR experiments is that they are all found at the same experimental conditions. Combining multiple NMR
experiment files to create input to PCA analysis may elucidate new modes of motion not found with a dataset from
only one experiment. As well, this work only examined backbone movement; others have completed the PCA on all
atoms, including those of residue sidechains[2]. Including sidechains in the analysis may shed light on more detailed
movement of a protein in solution.

We used UCSF Chimera[6] to visualize the modes of calmodulin in a static fashion, but programs such as
Chimera can be used to animate proteins undergoing changes along their principal components. Automated anima-
tion of structures about their main modes of movement would allow for quick analysis of probable protein mobility
by non-experts.

Finally, PCA is a linear method of dimensionality reduction. Non-linear methods may improve results in dimen-
sionality reduction applications. Analyzing main modes of motion may result in different outcomes if non-linear
methods are used, such as locally linear embedding[12], Laplacian eigenmaps[13], or even kernel methods[14].
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