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ABSTRACT 
Elastography image reconstruction techniques typically involve displacement or stress field calculation of tissue 

undergoing mechanical stimulation that can be done by Finite Element (FE) analysis. However, traditional FE 

method is time-consuming, and hence not suitable for real-time or near real-time applications. In this article, we 

present an alternate accelerated method of stress calculation that can be incorporated in elastography 

reconstruction algorithms. Shape is an essential input of FE models that is considered in conjunction with material 

stiffness and loading to yield stress distribution. The essence of the proposed technique is finding a function 

between shape and stress field. This function takes the shape parameters as input and outputs the stress field very 

fast. To develop such a function principal component analysis (PCA) is used to obtain the main modes of shape 

and stress fields. As such, the shape and stress fields can be described by these main modes weighted by a small 

number of weight factors. Then, an efficient mapping technique is developed to relate the weight factors of shape 

to those of the stress fields. We used Neural Network (NN) for this mapping, which is the sought function required 

to input shape and output stress field. Once the mapping function is obtained it can be used for analyzing shapes 

not included in the NN training database. We employed this technique for prostate tissue stress analysis. For a 

typical prostate, our results indicate that analysis using our technique takes less than 0.07 seconds on a regular 

desktop computer irrespective of the model size and complexity. This analysis indicates that stress error of the 

majority of the samples is less than 5% per node.  
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1  INTRODUCTION 
Prostate cancer is the most common cancer in Canadian men. Prostate tumors usually grow slowly, and if detected 

early, it can often be cured or managed successfully [1]. For many years Digital Rectal Examination (DRE), 

Prostate-Specific Antigen (PSA) and Trans Rectal Ultra Sonography (TRUS) have been the primary techniques for 

prostate cancer detection [2]. However, these conventional methods have low sensitivity and specificity for 

prostate cancer detection [3]. For instance, comparison of TRUS-based diagnosis of prostate cancer to pathological 

evaluation (gold standard) found that ultrasound based diagnosis has a sensitivity of 52% and a specificity of 68% 

[4]. In contrast, it has been shown that there is a strong correlation between pathological and mechanical properties 

of soft tissue [5]. As such, based on the fact that variations in tissue elastic properties are associated with the 

presence of cancer [6], elastography in conjunction with US imaging can detect prostate cancer with a higher 

sensitivity [7].   

Ultrasound elastography is a novel imaging technique in which elastic properties of tissues are reconstructed 

and displayed. Elastography image reconstruction techniques typically involve displacement or stress field 

calculation of tissue undergoing mechanical stimulation. This can be done by Finite Element Method (FEM), 

which is time-consuming, hence is not suitable for real-time or near real-time applications. In this work, we 

present an alternate accelerated method of tissue stress calculation that can be incorporated in real-time 

elastography reconstruction algorithms. This method develops a mapping scheme between shape space (e.g. 

different prostate shapes) and stress space. This mapping function can calculate the tissue stress field in real-time 

or near real-time fashion.  

 

 

                                                           
1 Corresponding author. E-mail: smousav8@uwo.ca, Telephone: +1(226)374-4776. 
 



  

 

(a) (b) (c) 

Figure 1.  2D TRUS Images (a) before compression and (b) after compression. Points on the green line are free to move while 

points on the red lines are almost fixed. (c) Sample prostate-tumor model. 

2  METHODOLOGY 

2.1 Modeling  
In order to calculate a displacement or stress field of tissue undergoing mechanical stimulation, FEM modeling can 

be used which requires the geometry and biomechanical properties of the tissue and boundary conditions. In this 

work, 2D TRUS images were used to construct the model. Based on these images (Fig. 1), mechanical stimulation 

is applied to the bottom of the prostate using ultrasound probe, which compresses the prostate and its surrounding 

tissue. The prostate tissue along with a block of surrounding tissue is incorporated in the model since the effect of 

the probe compression becomes insignificant at points far away from its application region. Hence, as shown in 

Fig. 1c, our model contains the prostate with a tumor inside a rectangular area mimicking the surrounding 

connective tissue. All points on the rectangle‟s edges are fixed except some points in the middle of the bottom 

edge where the probe applies compression. Different Young‟s moduli were assigned to the three regions of the 

tumor, prostate and surrounding tissue, and the model is discretized into a FE mesh. As the load acts in the plane 

of the 2D model (with small thickness) the problem is idealized as a plane stress problem. 

2.2 FE Mapping Function  
FEM is a time-consuming method; therefore, it is not suitable for real-time elasticity reconstruction. Tissue stress 

or displacement calculation can be accelerated if FEM is substituted by a mapping function that maps prostate 

shape into displacement and stress fields for a given loading. Establishing such a mapping function is possible 

because inter-patient prostate shape variability is modest while tissue deformation and stress distribution patterns 

under a given clinical mechanical stimulation are expected to be similar. Each prostate-tumour configuration can 

be represented by a set of points located on the boundary of the prostate and on the boundary of the tumour, called 

“landmarks”. In order to compare equivalent points from different shapes, all shapes are aligned by scaling, 

rotation and translation with respect to a set of axes. Considering n  landmarks, each shape in the shape space is 

given as follows: 

 NiyxyxyxX niniiiiii ,...,1,,...,,,, ,,2,2,1,1,  (1) 

where ( ii yx , ) are the coordinates of each landmark and N is the number of shapes in the shape space. As 

discussed earlier, each model should be meshed to be suitable for FE analysis. In this work, each shape was 

discritized using a common TFI-based FE mesh with quadrilateral elements [8], resulting in m  elements for each 

shape. Conventional FE analysis provides accurate stresses at the elements‟ centroids [9]. Hence, different stress 

fields of each shape (e.g. yy ) obtained from FE analysis can be given as follows: 

 NiSSSS imyyiyyiyyiyy ,...,1,...,, ,2,1,,  (2) 

Because of the large array size of X and S, it is not efficient to establish a mapping function directly between 

vectors of 2n-D shape space and their corresponding vectors in m-D stress space. This may result in a complicated 

mapping function with a large number of parameters to be tuned. In order to have an efficient mapping, we find 

the main modes or principal components of both shape space and stress space, and then map the weight vectors of 

each space to their stress weight vectors counterparts.  



2.2.1 Principal Component Analysis (PCA) 

In PCA, main modes are specified by calculating the eigenvectors and eigenvalues of the covariance matrix of a 

space. Considering a space with N points, the covariance matrix of it is defined as: 
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Eigenvectors of Cov  are the orthogonal components of this space and their corresponding eigenvalues show how 

significant they are. The larger the eigenvalue the more significant is the corresponding eigenvector. Hence, based 

on the eigenvalues of the shape space, the L most significant eigenvectors )...( 21 LpppP are adopted as the 

main modes of the shape space such that the ratio of the sum of the corresponding L eigenvalues to the sum of all 

eigenvalues is more than 0.99. Similarly, the T most significant eigenvectors of the stress space 

)...( 21 TqqqQ are adopted as the main modes of that space.  According to PCA, the vectors of each space are 

mapped to its main modes resulting in vectors of weight factors: 
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In which P and Q are the pseudo-inverse matrices of P and Q , respectively. 

Stress field of tissue undergoing mechanical stimulation depends on both shape and Young‟s modulus 

distribution. Therefore, the Young‟s moduli of tissues are added to the weight factors of points in the shape space 

and the mapping function is established between the resulting augmented vectors ( ][ ii Eb ) and vectors of weight 

factors in the stress space ( ic ).  

2.2.2 Mapping Function Computation 

We use Neural Networks (NN) to relate shapes and stress fields. The NN we used for this purpose is a multi-layer 

feed-forward back propagation neural network. In general, Multilayer Feed Forward Neural Network (FFNN) [10] 

is widely used in function approximation applications. Such networks consist of an input layer, which conducts the 

inputs to the next layer, a number of hidden layers and an output layer. Hidden and output layers include a number 

of neurons. Each neuron receives a number of weighted inputs as well as a bias and yields an output. To compute 

its output, each neuron uses a transfer function over the sum of its weighted inputs and bias. During the training 

phase, the network finds an optimum mapping relationship between the input and output vectors using training 

samples, i.e. a number of input vectors and their corresponding known output vectors. This is carried out by the 

network through adjusting its neurons‟ weights and bias values to minimize the differences between the network‟s 

known responses to their respective input samples. The most common training algorithm used in FFNN is the 

back-propagation algorithm, which is based on the gradient descent method. The term back-propagation refers to 

the manner in which the gradient is computed for nonlinear multilayer networks. In the simulation phase, the 

trained network responds to new input vectors based on its knowledge achieved during the training phase to 

produce the output. In this study, a three-layer feed-forward back-propagation neural network was applied for 

function approximation. The NN‟s topology was chosen such that the input layer has the size of input vector 

][ ii Eb  with one hidden layer consisting of 15 neurons in addition to the output layer. The output layer includes 

as many neurons as the size of ic . All the neurons used „tansig‟ as their transfer function except the output neurons 

that used „purelin‟ as transfer function. 

3  RESULTS 
A database of 1000 prostate-tumour configurations was produced to evaluate the proposed method. The fitting NN 

was trained with 800 out of the 1000 samples. 200 additional samples were then used to test the mapping function. 

Results were validated by FE analysis results obtained by ABAQUS (commercial FEM software).  Figure 2 shows 

the average error per node for 200 test samples. Figure 2 indicates that the majority of the samples have errors of 

less than 5% while only very few samples encounter errors larger than 10%. The latter ones are the ones that 

correspond to very small stress values, hence their percentage error is amplified. Stress fields resulting from 

conventional FE analysis and from FFNN function for a typical test sample are depicted in Fig.3. This figure 

shows a very good agreement between these fields. Figure 4 shows the difference of the two result sets. It indicates 

that the difference in regions near the contact nodes and boundaries of prostate and tumor is higher than other 

regions.  

 



 

Figure 2. Percentage average error per element of stress field for 200 test samples (using 800 training samples). 

 

 

  
(a) (b) 

Figure 3. Stress field resulted from (a) FEM and (b) FFNN mapping function. 

4  CONCLUSION AND DISCUSSION 
In this paper, we presented a fast method for estimating stress field of tissue under specified loading conditions. 

The proposed method establishes a mapping function to relate shape space and stress space. Due to the large 

number of variables required to define the shape and stress spaces, PCA was employed to reduce the dimensions 

by projecting both the shape and stress spaces to their main modes. The resulting compact spaces were then 

interrelated via a neural network model. The proposed method is both fast and accurate for calculating stress field 

of the same class of objects. Further work is under way to use this mapping for our new real-time elastography 

modulus reconstruction technique in which prostate and tumor moduli are updated iteratively using strain images 

acquired from an ultrasound imaging system and stress field estimated with the proposed method.  
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Figure 4. Difference of Stress fields resulting from FEM and FFNN mapping function. 
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