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Optimal schedules for 2-guard room search
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Abstract

We consider the problem of searching a polygonal room
with two guards starting at a specified door point.
While maintaining mutual visibility and without cross-
ing the door, the guards must move along the boundary
of the room and eventually meet again. We give an
O(n3) algorithm for finding a search schedule that min-
imizes the total distance travelled by the guards and an
O(n6) algorithm that minimizes the time required for
the search by solving L1 shortest path problems among
curved obstacles in a polygon.

1 Introduction

The two-guard room search problem is a variation on
the problem of searching for a mobile intruder inside
a polygon, introduced in [14]. The present variation
was first proposed by Park et al. [13] and involves two
guards walking along the boundary of a polygonal re-
gion. Given a room (P, d) the guards start at point
d (the door) on the boundary of polygon P , and they
are allowed to walk along the boundary of the room, ini-
tially going in opposite directions, without ever crossing
the door point. The goal is for the guards to maintain
mutual visibility at all times and meet again somewhere
else on the boundary of the room, at which point the
whole room has been searched for a mobile intruder.
We consider the problem of finding a shortest or fastest
search schedule dictating the motion of the guards sub-
ject to these conditions.

The first paper on this problem [13] gave anO(n log n)
time algorithm to determine if a room can be searched.
This was improved to O(n) by Bhattacharya et al. [1].
Neither paper considers the time or distance required to
search the room.

In an earlier variant of the problem called “searching
a corridor” the final meeting point of the guards is spec-
ified as well as the initial point, and the guards may not
cross either of these points. Room search is not solvable
by testing all possible final meeting points, since there
are rooms that can be searched only by allowing the
guards to cross the final meeting point [13]. For search-
ing a corridor, Icking and Klein [7] find a search schedule
of minimum total length in time O(n log n + k) where
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k ∈ O(n2) is the size of the output. Our optimization
approach is quite different.

There is also a wealth of research on versions of the
problem with different numbers of guards and differ-
ent types of visibility—see [8] and [10] for the case of
one guard; Lavalle et al. [6] for “visibility-based pursuit-
evasion” with multiple guards; and Efrat et al. [5] for a
chain of k guards.

In this paper, we present an algorithm that will find
optimal search schedules, if they exist, using two differ-
ent notions of optimality: the shortest distance travelled
and the shortest length of time required to search the
room. The shortest distance schedule is found in O(n3)
time and the fastest schedule is found in O(n6) time.
This algorithm makes use of a search space that is a
visibility diagram describing the valid positions for the
two guards to maintain mutual visibility. The concept
was first discussed in [8] and later modified by Zhang
[15]. To maintain relevance to the current problem, we
use the latter version, which assumes that two points
on a single polygon edge are mutually visible.

The rest of the paper is presented as follows. In sec-
tion 2 we give the background information describing
the visibility diagram, its relationship to the problem,
and how to create it. In section 3, we relate paths in
the visibility diagram to search schedules of the room
and discuss optimality of search schedules. In section
4, we examine what types of curves can appear on the
visibility diagram and we discuss how the visibility dia-
gram can be constructed. In section 5, we discuss how
to solve the shortest paths problems in the visibility
diagram, giving the optimal schedules. Section 6 is a
summary of the work presented here.

2 Preliminaries

For any room (P, d), the visibility diagram [8] encodes,
for any pair of points on the boundary of P , whether
or not the points are mutually visible. We will consider
a reduced visibility diagram from [1] as the V-diagram,
containing the minimum amount of relevant information
for the room search problem. The diagram’s boundary
is a right triangle with the left and top sides equal in
length to the perimeter of P . With the top left corner
(0, 0) representing d, the x (resp. y) coordinate repre-
sents the distance along the border of P from the door in
the clockwise (resp. counterclockwise) direction. Then
we can associate any point (x, y) in the diagram with
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Figure 1: Room and its V-diagram from [1]

positions of the two guards on the border of P . To
represent the mutual visibility of pairs of points, any
point (x, y) in the V-diagram is shaded iff the corre-
sponding positions are not mutually visible in the poly-
gon. Figure 1 shows an example of this, where 0 is the
door point. Any point on the diagonal corresponds to
a meeting point of the two guards. Then any path π
in the V-diagram from the top-left corner (the door) to
the diagonal (the goal) that does not cross any shaded
areas (obstacles) corresponds to a valid search schedule
s of P ; we say that s = S(π).

We will assume that each guard can travel indepen-
dently at varying speeds in the range [0, 1] both for-
wards and backwards (without crossing the door point).
For any search schedule s, let D(s) denote the distance
travelled by the guards during s, and let T (s) denote the
time required for s. It should be noted that minimiz-
ing each of these may result in different search sched-
ules. Figure 2 shows an example of a room, with a door
at 0, where the two notions of optimal schedule give
two different search schedules. The shortest distance
is achieved if one guard travels from 0 to 2, while the
other guard waits at 5, resulting in a total distance trav-
elled equal to 24 (the perimeter of the polygon). This
schedule takes over 19 time units. The quickest search
schedule involves one guard travelling along 0, 5, 4, 3,
and 2 while the other guard must go from 0 to b and
back to a to maintain mutual visibility. This requires
backtracking from b to a, which results in a total dis-
tance travelled that is greater than 24, but it takes less
than 15 time units to complete the entire search.
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Figure 2: Optimal schedules are different

3 Correspondence Between Paths in the V-diagram
and Search Schedules

The V-diagram can be used to construct optimal sched-
ules for searching the room. We first describe a rela-
tionship between the length of a path in the V-diagram
and the distance/time of the corresponding room search
schedule.

Lemma 1 Let π be a path in the V-diagram for a room
and s = S(π) be the corresponding search schedule of
the room. Then |π|1 = D(s) and |π|∞ = T (s).

Proof. This is mostly a matter of defining D(s) and
T (s) more formally. First consider the L1 metric. If the
path π is a line segment from a to b then |π|1 = |a−b|1 =
|(a − b)x| + |(a − b)y|. This represents the sum of the
distances travelled by the two guards, so |π|1 = D(s).
More generally, if π is a polygonal line joining points
a0, . . . , ak then |π|1 =

∑k
i=1 |ai − ai−1|1. Since D(·) is

also additive, we again have |π|1 = D(s). Finally, for
a general curve π = π(t), t ∈ [0, T ], the length of π is
defined to be sup(

∑k
i=1 |π(ti)− π(ti−1)|1 where the sup

is taken over partitions t0, . . . , tk of [0, T ]. (We only
consider rectifiable curves, where by definition the sup
exists.) This is the only sensible way to define D(s).
Hence |π|1 = D(s).

Now consider the L∞ metric. If the path π is a line
segment from a to b then |π|∞ = |a− b|∞ = max{|(a−
b)x|, |(a− b)y|}. Since both guards have the same max-
imum speed of 1, assume that the guard travelling the
greatest distance travels at speed 1 to minimize the time
spent, which is then that guard’s distance. We have
|π|∞ = T (s). More generally, if π is a polygonal line
joining points a0, . . . , ak then |π|∞ =

∑k
i=1 |ai−ai−1|∞.

Since T (·) is also additive, we again have |π|∞ = T (s).
Finally, for a general curve π, the length is defined via
a sup similar to the above and this is the only sensible
way to define T (s). Hence |π|∞ = T (s).

�

Corollary 2 The search schedule requiring the short-
est amount of distance to travel along the room bound-
ary corresponds to the shortest path in the L1 metric
from the door to the goal in the V-diagram. The quick-
est search schedule for a room (P, d) corresponds to the
shortest path in the L∞ metric from the door to the goal
in the V-diagram.

4 V-diagram Construction

We now discuss the creation of the V-diagram by exam-
ining the nature of the diagram.

Theorem 3 The border of each obstacle in the V-
diagram is piecewise hyperbolic.
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We begin with an intermediate result that is proved
in the appendix.

Lemma 4 When a single reflex vertex obstructs visi-
bility between two edges in the polygon, the curve on
the corresponding region of a shaded portion of the V-
diagram is hyperbolic.

We now prove Theorem 3.

Proof. Each obstacle in the V-diagram is a union of
barriers, where a barrier represents the guard positions
blocked by one reflex vertex. A barrier has a horizontal
and vertical side determined by the two edges adjacent
to the reflex vertex [15]. The remainder of the barrier
boundary is defined by the pairs of points on the poly-
gon that are connected by a line that also goes through
the reflex vertex. For example, obstacle A in Figure 1 is
composed of two barriers, associated with reflex vertices
9 and 10. The box in the figure shows the portion of the
barrier where vertex 9 would obstruct the view between
guards on edges (6,7) and (0,13).

From the above lemma, we know that a single re-
flex vertex obstructing visibility between two edges of
the polygon corresponds to a hyperbolic portion of a
barrier in the V-diagram. When the endpoint of one
edge is reached, a new edge is reached, so a new hyper-
bolic portion of the barrier is begun. So each obstacle
is piecewise hyperbolic. �

To construct the V-diagram we need to accurately
describe all of the obstacles. To do this, we must, for
each of the reflex vertices:

1. Find the two points at which the projections of the
adjacent edges through the vertex first intersect the
polygon again. This takes O(n) time.

2. Starting at one of these points and working along
the polygon towards the reflex vertex, for each edge
of the polygon that is encountered, find the curve of
the V-diagram representing the pairs of points on
the polygon that have a line of visibility through
the reflex vertex. This takes O(n) time.

Therefore, with O(n) reflex vertices, the exact visibil-
ity diagram can be described in O(n2) time.

5 Finding Shortest Paths in V-diagram

We have now reduced the problem of finding optimal
search schedules with respect to distance and time to
the problem of finding shortest paths in the L1 and L∞
metrics among curved obstacles in the plane that are
piecewise hyperbolic.

We note the following two properties of L1 and L∞
shortest paths:

1. Between any two points there is a shortest L1 path
that is rectilinear. This remains true in the pres-
ence of curved obstacles, except in the situation –
that doesn’t arise for us – where the shortest path
travels between two abutting curved objects.

2. The L1 and L∞ norms are related by a linear map-
ping; in particular we can find shortest L∞ paths
by rotating the plane and its obstacles by 45◦ and
scaling, and then finding shortest L1 paths. This
is justified in [9]. Thus it suffices to find shortest
L1 paths, either among the original obstacles, or
among the obstacles rotated by 45◦.

There is considerable work on finding shortest L1

paths among polygonal obstacles in the plane [2, 12].
There is also work on “curvilinear” computational ge-
ometry [4] which has led to shortest path algorithms
among “splinegons” [11]. However, there appears to
be no solution in the literature to finding shortest L1

paths among curved obstacles. There are two basic ap-
proaches to solving this problem. The continuous Di-
jkstra approach is used by Mitchell [12] for polygonal
obstacles. Alternatively, the problem may be modelled
as a graph shortest path problem [3]. The former ap-
proach will likely lead to a more efficient solution, but
we will simply claim a polynomial time algorithm via
modelling the problem on a graph.

Lemma 5 There exists a shortest path among obsta-
cles in the L1 metric such that the only points on the
path that intersect obstacle boundaries are local extreme
points of the obstacles in either the horizontal or vertical
direction.

Proof. The proof is included as an appendix. �

Now to find the shortest path, we will convert the
relevant points from the V-diagram (extreme points of
obstacles and the door point) into vertices of a weighted
graph, where edge weights represent the L1 distances
between the points.

The graph has an edge between a pair of V-diagram
points iff there is a path between the points that is
monotone in both x and y, and the pair of points is
minimal in the sense that no such path goes through a
third V-diagram point. The weight of the edge is the
L1 length of the path. Let N be the number of extreme
points. Since there are O(n) barriers each with O(n)
extreme points, thus N is O(n2). In the case where the
obstacles are not rotated by 45◦ (the original L1 case)
we obtain a tighter bound of N ∈ O(n) because the
curved parts of the barriers in the V-diagram are mono-
tone in both x and y, so there are only 3 extreme points
per barrier.

To represent the goal line of the V-diagram, we extend
the V-diagram and add one more point g, equidistant
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from every point on the goal line; this point is the reflec-
tion of the door point in the goal line. Then any path
from the door point to g goes through the goal line fol-
lowed by a direct path to g. Thus the minimal path to
the goal line is contained within a minimal path to g.

Now we need to determine which edges to include in
the graph. For every pair of points ρ and ψ, add an edge
between them in the graph iff no other extreme points lie
in the interior of the rectangle with ρ and ψ at opposite
corners and no obstacles cross the entire length or width
of this rectangle. This can be accomplished in O(N3)
time using brute force.

On the constructed graph, Dijkstra’s algorithm finds
a shortest path from the door vertex to g in O(N2)
time. This provides us with the points along the short-
est path in the V-diagram. To find the actual path in
the V-diagram, it suffices to find, for any two consecu-
tive points ρ and ψ a path that is monotone in x and
y. This can be done by following the boundary of the
rectangle containing ρ and ψ, detouring around any en-
countered obstacles. Correctness follows from our rule
about which edges were added to the graph.

Finally, the V-diagram path from the door to the goal
yields the room search schedule.

6 Conclusion

We have shown how to use a visibility diagram of a
room to create an optimal schedule to search the room
with two guards. By solving a shortest L1 path problem
among curved obstacles, a shortest distance schedule
can be found in O(n3) time and a fastest route sched-
ule can be found in O(n6) time. While this technique
has not yielded remarkably fast running times, it is a
novel approach that may be applicable to finding opti-
mal schedules for other mobile guard problems.
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Figure 3: Reflex vertex

A Proof of Lemma 4

Without loss of generality, assume that one of the end-
points of one of the edges is (0, 0), and the direction
along that side is represented by the vector (0, 1). Then
let R = (r1, r2) be the reflex vertex, let (a1, a2) be
one endpoint of the other edge, and let (v1, v2) be the
normalized vector representing the direction along the
other edge. Let C = (0, 0) + s(0, 1) be any point along
the first edge and letD = (a1, a2)+t(v1, v2) be any point
along the second edge. The barrier of the shaded region
has a curve corresponding to the points along the edges
where the visibility line along the edges goes through P
(that is, when CR and DR are parallel). Then by treat-
ing the points as points in three dimensions, we can use
the vector cross product to decide that two points along
the edges give a point on this curve whenever
CR×DR = 0
⇐⇒ (((0, 0) + s(0, 1))− (r1, r2))× ((a1, a2) + t(v1, v2)−
(r1, r2)) = 0
⇐⇒ (−r1, s− r2)× (a1 + tv1 − r1, a2 + tv2 − r2) = 0
⇐⇒ −r1a2− r1tv2 +sa1 +stv1−sr1 + r2a1+ r2tv1 = 0
⇐⇒ −s(a2 + tv2 − r2) = −r1a2 − r1tv2 + r2a1 + r2tv1

⇐⇒ s = r1a2+r1tv2−r2a1−r2tv1
a1+tv1−r1

Thus the relationship between the movement along
one edge and the movement of the projection of the line
of sight along another edge of the polygon is given by
the equation of a hyperbolic curve.

B Proof of Lemma 5

By note (1) at the beginning of section 5, there is a
shortest path that is rectilinear. Suppose π is a short-
est rectilinear path that contains obstacle intersection

Figure 4: Intersection of path and obstacle

points that are not local extreme points. Let q = π(t)
be the first such point on π.

If π does not change direction at q then q is a local
extreme point. Otherwise π makes a right angle turn
at q, and we can alter the path as shown in 4. The
revised path has the same length, and if the detour is
small enough, the revised path intersects no obstacles.
Applying this inductively yields the desired path.


