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ABSTRACT
Security and usability issues with pass-locks on mobile de-
vices have prompted researchers to develop implicit authen-
tication (IA) schemes, which continuously and transparently
authenticate users using behavioural biometrics. Contem-
porary IA schemes proposed by the research community are
challenging to deploy, and there is a need for a framework
that supports: different behavioural classifiers, given that
different apps have different requirements; app developers
using IA without becoming domain experts; and real-time
classification on resource-constrained mobile devices. We
present Itus, an IA framework for Android that allows the
research community to improve IA schemes incrementally,
while allowing app developers to adopt these improvements
at their own pace.

We describe the Itus framework and how it provides: ease
of use: Itus allows app developers to use IA by chang-
ing as few as two lines of their existing code—on the other
hand, Itus provides an oracle capable of making advanced
recommendations should developers wish to fine-tune the
classifiers; flexibility: developers can deploy Itus in an
application-specific manner, adapting to their unique needs;
extensibility: researchers can contribute new behavioural
features and classifiers without worrying about deployment
particulars; low performance overhead: Itus operates
with minimal performance overhead, allowing app develop-
ers to deploy it without compromising end-user experience.
These goals are accomplished with an API allowing individ-
ual stakeholders to incrementally improve Itus without re-
engineering new systems. We implement Itus in two demo
apps and measure its performance impact. To our knowl-
edge, Itus is the first open-source extensible IA framework
for Android that can be deployed off-the-shelf.

Categories and Subject Descriptors
D.4.6 [Security and Protection]: Authentication
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1. INTRODUCTION
Smartphones contain a wealth of personal data includ-

ing banking information, contacts, photos, videos, texts and
emails. Smartphones that are used as bring your own de-
vices (BYODs) may also contain confidential corporate data.
In order to protect confidential data on smartphones from
unauthorized access, primary authentication mechanisms (in-
cluding PINs, pass-locks, draw-a-secret, fingerprint- or facial-
recognition systems) are used. Organizations also use mobile
device management (MDM) solutions to enforce password
policies on BYODs to protect corporate data.

However, a recent survey found that 56% of smartphone
owners do not configure PINs or pass-locks on their de-
vices [24]. Since smartphone sessions tend to be short and
frequent, all-or-nothing pass-locks reduce usability [4, 19].
While MDM solutions can enforce password policies, they
aggravate the usability issues. According to a prediction
by Gartner, 20% of enterprise BYOD programs will fail by
2016 due to overly restrictive policies of MDMs [36]. In
addition to usability issues, pass-locks have also been sub-
ject to operating system flaws [39], smudge attacks [3] and
shoulder surfing attacks. The limitedly available fingerprint-
and facial-recognition systems have also been shown to be
vulnerable to attacks [41].

These limitations have prompted researchers to develop
implicit authentication (IA) schemes as a second line of
defense to mitigate security and usability issues with ex-
plicit authentication mechanisms (such as pass-locks) [9].
IA schemes for smartphones authenticate a user by using
distinctive, measurable patterns of device use that are gath-
ered from the device users without requiring deliberate ac-
tions [9]. These IA schemes allow enterprises to relax pass-
lock policies and complement them with IA. In case an ad-
versary bypasses a pass-lock, IA may be able to detect it
and lock the device or alert the user via email. Similarly,
smartphone owners who do not wish to use pass-locks due
to inconvenience can use IA to get limited protection from
unauthorized use. Despite this utility and the reasonable
performance of contemporary IA schemes, they are not de-
ployed in practice. The lack of IA adoption is due to the
challenges involved in creating an IA framework that is flex-
ible enough to be used by a general audience. To date, there
is no publicly available implementation of such a framework
addressing these challenges.
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Since contemporary IA schemes require the interception of
user input events, some researchers have proposed including
IA mechanisms at the platform level [14, 23], such that the
operating system or app framework is responsible for pro-
viding IA to all apps on the system in an app independent
manner. However, this approach has its own limitations in
terms of flexibility and extensibility. First, different apps
have different characteristics and a generic platform-level
behaviour-based classifier may not be suitable for different
apps. For example, a classifier based on keystroke behaviour
may not be suitable while using a banking app where the
user interacts through swipes. A classifier that constantly
monitors all possible kinds of input would be problematic
in terms of performance and battery life. The difference in
app characteristics can also severely reduce the accuracy of
IA schemes by as much as 20% [11, 22]. Furthermore, IA
performed at the platform level would not be able to distin-
guish which activities within an app require protection by
an authentication mechanism [22]. For example, the bank-
ing app may have a “locate ATM” feature that anyone using
the device would be permitted to use (without the annoy-
ance of triggering an IA rejection). Secondly, platform-level
IA mechanisms would need to be managed by the platform
developers or some central authority. However, IA is a rel-
atively new area that still experiences radical revisions due
to the research findings in such areas as the use of novel
sensors or wearable devices for IA [28, 35], and the research
findings on the usability and acceptance of IA schemes. The
platform developers in this case are more inclined toward
accepting mature contributions, which will lock out many
developers.

These usability and flexibility limitations can be circum-
vented by enabling the apps themselves (that require IA)
to implicitly authenticate users. By delegating IA to apps,
we provide: usability—an app would only require authen-
tication of a user while he is using the app, and since the
app is in the foreground, it has access to event data and
can launch an activity to lock the functionality in case of
misuse—and flexibility: app developers can choose the be-
havioural classifier that is suitable for their app. However,
the app developer requires domain-specific knowledge (e.g.,
of suitable behavioural classifiers, underlying machine learn-
ing algorithms, and their parameterization) and significant
effort to provide IA support. An IA library could ease the
burden of the app developers by abstracting away most of
the details with a convenient API.

The challenges to creating such a framework include mak-
ing the resulting library easy to use for app developers who
are interested in providing IA to their users without the need
to become domain experts. On the other hand, it should
also be flexible enough to cater for app-specific functionality.
Moreover, it must be extensible by the researchers develop-
ing novel IA schemes. Finally, it should not have a noticeable
impact on performance or battery life to end-users, espe-
cially given the computational constraints of smartphones.

We present Itus1, a framework that separates the domain
knowledge of IA from its deployment. Itus has been de-
signed to enable app developers to effortlessly provide IA
support in their apps by modifying as few as two lines of
code. At the same time, we provide app developers with
an oracle that bridges the domain knowledge gap by form-

1Itus, Greek god of protection

ing recommendations on optimal sets of behavioural features
and classifiers tailored for their particular apps. Itus is de-
signed with extensibility in mind, allowing IA developers to
iteratively contribute improvements to the framework. To
demonstrate this we port three existing IA schemes to Itus.
We demonstrate ease of use by adding Itus to two demo apps
and we perform empirical evaluations to demonstrate Itus’
low performance overhead. We hope that Itus will enable
the research community to collaborate better to further the
research in the IA domain.

The main contributions of this paper include:

1. We provide2 the first IA framework for Android that
can be used by app developers with minimal effort.
It is implemented as a library at the user level and
thus can be used right away without the need to root
any devices or be added to the OS, although it could
become part of mobile platforms in the future.

2. We provide researchers with an open-source, fully im-
plemented system for rapid prototyping and deploy-
ment of new IA schemes. This is exemplified by the
fact that we are able to implement three prominent IA
schemes [5, 12, 14] using Itus.

3. We provide the Itus Oracle, a tool for app developers to
automatically determine appropriate behavioural clas-
sifiers, suitable sets of features and optimum operat-
ing points of various configuration parameters for their
apps. The Oracle also provides a way for us to cu-
rate the availability of IA schemes without hindering
the ability for other developers and researchers to con-
tribute to Itus.

4. We show that flexible and adaptable IA is possible on
smartphones with acceptable performance overhead.

2. MOTIVATION
We consider our audience to be two-fold: the app develop-

ers who wish to incorporate IA into their apps, and the IA
developers who wish to improve existing IA schemes. In this
section, we first discuss some sample apps and the motiva-
tions their developers might have for including IA support.
We then discuss the community of app developers that Itus
targets in § 2.1, and the community of IA developers in § 2.2.

We consider the following apps as potential candidates for
using IA:

An Enterprise Email Client: Provides employees ac-
cess to corporate emails from their mobile devices.

A Web Browser: Provides all the standard web browser
features including a password manager.

The email client app gives access to large amounts of sen-
sitive corporate data. If employees were to install the app on
their personal devices, the risk of information leakage is sig-
nificantly increased. Adding IA at the app level allows the
employer to ensure only authorized users are accessing sen-
sitive data without disincentivizing users from installing the
app on their own devices due to inconvenient security mech-
anisms. The developers of the browser, on the other hand,
might be interested in providing their users the convenience
of a password manager with the increased security of IA. The
web browser could be used by anyone for non-sensitive sites

2https://crysp.uwaterloo.ca/software/itus/
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(e.g., lending the device to a friend to check the weather).
When a site with a stored password is accessed, the pass-
word manager might then hand over a password only if IA
decides that the user’s recent activity pattern is as expected.
Otherwise, the password manager will explicitly ask for the
user’s master password.

2.1 App Developers
Next, we refine our model of the spectrum of involvement

by the app developers adding support for IA. In particular,
we consider two levels of developer interest in IA frame-
works:

Cursory interest: app developers who only want to add
support for IA to their apps without tuning its accuracy
or providing any application-specific behaviour. There are
several types of app developers that may fall into this cate-
gory. In the most trivial case, an app developer may simply
be interested in experimenting with IA and wants to add it
to their app without spending significant time on configura-
tion and re-engineering of their app. Or, the app developer
may be developing an app that contains such generic tasks
that the default behaviour is “good enough” out-of-the-box.
For example, consider the email client described above—
user typing cadence tends to be unique enough [12] that the
default keystroke classifier can easily deal with most usage
scenarios of this app.

Significant interest: app developers who wish to fine-
tune Itus for accuracy and performance. Such developers
might do one or more of the following: restricting calcu-
lation of behavioural features to some subset to minimize
computational overhead; configuring parameters of machine
learning algorithms; experimenting with beta users to deter-
mine which configurations work best and retaining the data
gathered during this phase for later training. It is impor-
tant that Itus be able not only to support these developers
in their efforts but to facilitate them by providing tools to
assist and automate in these scenarios.

2.2 IA Developers
We now discuss the other class of audience— the devel-

opers who wish to contribute to Itus’ IA schemes. To this
end, we consider two representative scenarios.

Consider first those developers who wish to improve ex-
isting IA schemes (for example, investigating a novel set
of behavioural features or simply tuning parameters). To
demonstrate the efficacy of their proposal, they need to de-
velop a prototype and evaluate its performance. Ideally,
they should have access to an existing framework, giving
them the necessary components to perform tasks common
to all IA schemes (e.g., data storage, training, classification)
without re-engineering. Itus should allow these developers
to rapidly prototype their ideas without having their contri-
butions moderated.

Secondly, consider developers who want to add support for
behavioural classification modules that the core Itus frame-
work does not anticipate. Specifically, the framework should
allow for new machine learning classification algorithms and
new sensor-derived behavioural features to be included along-
side the core framework.

Itus should support these stakeholders and provide them
with interfaces so that they can use or contribute to the
framework as smoothly as possible.

3. DESIGN GOALS
In the previous section we highlighted the two-fold audi-

ence we consider while developing the Itus framework: app
developers and IA developers. Both groups of developers
are important for a successful IA framework to be adopted
and remain relevant over time. In this section, we outline
our design goals for Itus’ framework for IA, and how they
support both groups of developers in their efforts to provide
usable IA to end users.

Separation of roles: Performing end-user authentica-
tion in a secure, usable manner is a challenging task that
involves collaboration between IA developers and app de-
velopers. Our IA framework should synergize the efforts of
different stakeholders to protect user data on mobile devices.
In this spirit, we aim to incorporate a clear separation of
roles that distinguishes between app developers, who may
not be domain experts in the mechanisms underlying the
system, from the IA developers or researchers working to
improve the system.

Ease of Use: Our framework should not simply permit
app developers to provide IA support in their apps, but also
provide the app developer with an API to do so with min-
imal effort. App developers should be rewarded for their
extra attention to user security, not punished with a bur-
den of extended development time. Our goal is for Itus to
be deployable in a reasonable default configuration with the
absolute minimum number of lines of code changed as pos-
sible. The API should also allow configuration directives to
be provided in as straightforward a manner as possible.

Flexibility: While ease of use is critical for adoption
of IA by the broader audience of app developers, it is also
important to make considerations for developers who have
unique app needs or who wish to fine-tune the accuracy or
performance of the IA scheme to their app. For example,
for the web browser example discussed in § 2, the devel-
oper might be interested in making authentication decisions
in a heavily context-aware manner. To this end, he might
decide that after users start playing an embedded video,
they are likely to hand off the device to another person and
thus it would be undesirable for the IA mechanism to inter-
rupt viewing with an explicit authentication prompt. In the
case of the enterprise email client, the company’s IT depart-
ment may wish to invest heavily to provide high accuracy
to ensure data security. In this case, the app developers
should be able to configure Itus with pre-recorded training
data or parametrize the classifier to improve its accuracy.
We consider design features that allow for such examples of
app-specific functionality when providing flexibility to app
developers.

Extensibility: Extensibility is a prerequisite design goal
of any system that is to be adopted by the community. In-
dividual IA developers should be able to create and evaluate
prototypes for various subcomponents of the Itus framework
without any dependence on a centralized authority, and they
should be able to distribute successful IA schemes indepen-
dently from the core Itus framework. Ideally, this leads to a
situation in which IA developers are able to deploy iterative
improvements to the IA schemes while simultaneously al-
lowing app developers to adopt these improvements at their
own, perhaps asymmetric, rate. Our framework should allow
each of these groups to make contributions without becom-
ing embroiled in the specifics of framework subcomponents
unrelated to their particular tasks.

509



Performance: Finally, performance in terms of compu-
tational overhead and power consumption is important to
both the app developers and the researchers working on IA.
App developers are especially concerned with any perfor-
mance penalty that is going to be imposed on their apps, as
this has a direct effect on their end-users’ experience. There-
fore, it is important that the framework itself consumes min-
imal resources so as to allow the behavioural classification
subcomponents as much time as possible to perform their
tasks before the end user is able to discern any differences.

4. ARCHITECTURE
This section gives an overview of the Itus system archi-

tecture. The core architecture of Itus, illustrated in Fig-
ure 1, is as follows: app developers extend a customized
Android activity called SecureActivity, provided by the
Itus library. Itus is then able to intercept user interaction
events, which are passed through feature extractors called
Measurements to obtain feature vectors. The Itus Agent
gathers these feature vectors and hands them to the clas-
sification algorithms for training and classification. In the
event a classifier returns a negative result (failed authenti-
cation), the Itus Agent then either notifies the parent app
of the failure or independently switches the app view to a
lock screen. In what follows, we will elaborate on how each
of these links in the chain fit into the Itus framework.

4.1 SecureActivity
Interactive Android apps are composed of one or more“ac-

tivities”, which are app components that present the device
user with a user interface to the app’s functionality. When
a developer creates a new Android app, one of the first steps
is to create a subclass of Android’s Activity class. Itus pro-
vides its own subclass of Activity called SecureActivity.
To add IA to an app using Itus, a developer simply changes
any classes that extend Activity to extend SecureActiv-

ity instead. This provides an incredibly simple way for de-
velopers to add Itus to their existing apps, supporting our
ease-of-use goal discussed in § 3. It also makes it trivial for
developers to partition apps composed of multiple activities
into those that require authentication and those that do not
(for example, a banking app may not want to authenticate a
person when he is locating a nearby ATM); this supports our
flexibility goal. This implementation puts our framework in
an ideal place to intercept user interaction events with the
app in order to then use them as behavioural features for
classification.

4.2 Measurement and subclasses
Behavioural biometrics research examines a broad array

of sensor values that may be useful for distinguishing be-
tween different device users. Examples include touch-screen
input [5, 10, 11, 14, 23, 33], keystrokes on a physical or ren-
dered keypad [8, 12, 20, 27, 40], and readings taken from
an on-board accelerometer [13, 15]. In the Itus framework,
we generalize these widely varying channels to say that be-
havioural features are generally calculated using some form
of measurements taken from some on-board sensor. Thus we
provide an abstract class in Itus called Measurement, sub-
classes of which are intended to extract measurements from
any source accessible within the Android API (or exten-

SensorManager 

Accelerometer Gyroscope 

InputEvent 

TouchEvent KeyEvent 

Android Framework 

Android App 

Dispatcher 

SecureActivity 

SecureActivity 

FeatureVector 
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kNN SVM … 
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Figure 1: Itus framework architecture. Subclasses that are
intended to be contributed by IA developers are in dark blue
dotted boxes. The interfaces exposed to app developers are
in red font.

sions). To further our examples of sensor values, Itus might
contain subclasses of Measurement called Touch, Keystroke,
and Movement, respectively.
Measurement objects can register to receive events allow-

ing them to process input data, which are subsequently
passed to them via a callback method called procEvent().
There are two types of sensor readings: event-driven inputs
and continuous readings. Event-driven inputs are intuitive
to handle; registered handlers are called to process an event
as soon as it occurs. The touch and keystroke examples are
cases of event-driven inputs. Continuous readings, in which
a sensor provides measurements any time it is polled (e.g.,
the accelerometer), are more subtle to handle. To deal with
these, we create Periodic events, which function similarly
to clock timer interrupts. Measurement objects analyzing
continuous feedback sensors are then invoked periodically
at parameterizable intervals. Some Measurements may pro-
vide feature values calculated from an aggregate of sensor
readings and not at every regular time interval; for these
objects, we allow the event-processing function to simply
consume data and indicate that it is not yet ready to pro-
vide any feature values.

4.3 Dispatcher
In the last subsection, we said that events are given to

various Measurement subclasses for feature extraction. In
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keeping with our performance goals outlined in § 3, it would
not be efficient to invoke the procEvent method of every sin-
gle Measurement for every single event. Instead, we create a
Dispatcher class, which is responsible for delegating event
processing to any configured Measurement objects. When
Itus is configured at run-time to use a given Measurement

subclass, an initialisation method is run from within that
class. The primary purpose of initialisation method is to
register with the Dispatcher and specify which events the
Measurement would like to receive. Any events handled by
Itus—either intercepted from user input by SecureActiv-

ity or generated periodically—are thus given to the Dis-

patcher, which in turn looks up the event type in a table
to see which Measurements have registered for it, optionally
adds context information, and passes them the event data
via procEvent().

4.4 FeatureVector
As discussed previously, Measurement subclasses are re-

sponsible for taking data from events and turning them into
useful feature values. When procEvent() is called to deliver
event data to a Measurement object, the Measurement object
will signal the Dispatcher if it has a new set of feature values
ready to be exported. After receiving the signal, the Dis-

patcher will invoke the getFeatureVector() method of the
Measurement subclass to retrieve these values. Specifically,
the feature values are stored in a class called FeatureVec-

tor. This class is a 2-tuple made up of an array of double

values and a boolean representing the class of the feature
vector (valid/invalid user).

4.5 DataStorage
A FeatureVector, as obtained above, is processed as fol-

lows: if training has already been performed, then we simply
classify this most recent sample. If training has yet to be per-
formed, the FeatureVector should be stored until enough
data is collected to perform training. In both cases, the
Dispatcher will hand the FeatureVector over to a DataS-

torage object, which will store the FeatureVector in a list
(hereafter called a“bin”) depending upon the classifier state.
In the former case, when training is complete, the Feature-

Vector will be placed into a bin labeled bin recent, which
can have an upper limit imposed on its size; this results in
a sliding window, or FIFO queue, in which older data is
discarded after consumption by the classification module or
upon arrival of newer data. In the latter case, when training
is pending, the FeatureVector is placed in the longer-term
bin training to be used for training once the bin reaches
sufficient size.

The DataStorage object is also used to store classifier
models once they have been trained. It has get() and put()

methods allowing arbitrary data to be stored, allowing IA
developers to use it as a convenient storage mechanism via
the app’s internal storage.

4.6 Itus Agent
Now that we have discussed the basic modules of our

framework, we provide details of how the actual invoca-
tion of training and classification are coordinated. These are
done by a class called Itus, which we refer to as the ‘Itus
Agent’. The Itus Agent runs in a separate thread from the
main app. It is the main object that an app developer will
interact with when they are adding the Itus framework to

their app and configuring it. An instance of the Itus Agent
class performs the configuration for all subcomponents of the
Itus framework, including which Measurement subclasses are
used and which classifiers are employed (see § 4.8). The Itus
Agent drives the periodic events described in § 4.2, enforces
the authentication policy with training/classification and,
where necessary, locks the app in the event of a failure to
implicitly authenticate.

In more detail, once training has been completed and a
classifier has been obtained, the Itus Agent then simply runs
it periodically against the recent FeatureVectors stored in
bin recent. If a classifier returns a negative result rep-
resenting an unauthorized user, the Itus Agent reacts by
performing its configured (or default) lock-screen action. If
training has yet to be completed, the Agent explicitly au-
thenticates the user in order to establish the ground truth
for training data.

4.7 Itus Oracle
While we separate the domain knowledge of IA from its

deployment by providing app developers with a high-level
API to provide IA support in their apps, we understand the
importance of correct selection of behavioural classifiers and
suitable parametrization of the underlying machine learn-
ing algorithms. To bridge the gap between app developers’
inexperience with IA schemes and the need for advanced
configurations, we provide the Itus Oracle to automatically
determine the right classifier and optimal configuration pa-
rameters.

To use the Itus Oracle, the app developer deploys Itus in
’configuration mode’. In this mode, Itus collects and logs all
feature vectors and gathers other measurements concern-
ing the data collection and performance of the app, such
as timestamps, data sources, and processing times. After
multiple sessions of beta use in the configuration mode, the
developer then connects the device to a development com-
puter and runs the Itus Oracle. The Itus Oracle downloads
the logged data from the device and analyzes it. It exper-
iments with various machine learning tools, including any
classification algorithms compatible with Itus, and provides
suggestions based on its analysis to the app developer. Fi-
nally, it repackages the data and configurations as a stan-
dalone Itus library that the developers can then import di-
rectly to their app. Repackaging also enables the Itus Oracle
to bundle only the required Itus Prefabs which reduces the
runtime memory footprint of the Itus library. More informa-
tion about the implementation of the Itus Oracle is provided
in § 6.

4.8 Machine Learning Toolkit
The number of viable candidates for machine learning al-

gorithms for classifying behavioural feature sets is continu-
ally expanding. This is due not only to the ongoing research
in the field but also due to the fact that a classifier may work
well in combination with a certain feature set, while other
classifiers may perform much better in cases where it is weak.
Therefore, it is highly desirable that the Itus framework be
able to add support for many classification algorithms with-
out the development overhead of coupling them tightly with
the rest of the IA framework.

Itus does this by defining a Classifier interface with two
self-documenting methods: train(List<FeatureVector>)

and classify(FeatureVector). The classify() method
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should return boolean value true for the positive class (au-
thorized user) and false for the negative class (unautho-
rized user). More fine-grained control, such as interacting
with confidence values, can be obtained by accessing Clas-

sifier objects directly. The learned classifier is transpar-
ently loaded to and from disk between app launches via the
DataStorage object. We initially provide Itus with an imple-
mentation of the k-nearest-neighbours (kNN) classifier, and
a wrapper that allows the Java version of libSVM (Support
Vector Machines) [6] to be used as Classifiers.

Finally, the machine learning toolkit also contains statis-
tics tools to measure correlation and divergence between fea-
tures to determine effectiveness of features of behavioural
classifiers. The Itus Oracle uses these tools to generate rec-
ommendations on features which should be used for an app.

5. WORKFLOW
In this section we outline the workflow that app developers

must follow to provide IA support in their apps using Itus.
We also discuss how IA developers can benefit from Itus and
in return how they can contribute.

5.1 App Developers
As discussed in § 2.1, we broadly consider two types of

app developers: those who want to use IA out-of-the-box,
and those who want to tune the accuracy or performance
of Itus. For the former type, Itus can be effortlessly im-
ported and used in their apps. The app developer simply (i)
identifies activities that should be protected, (ii) extends the
activities from Itus’ SecureActivity class, and (iii) starts
the main thread of an Itus object. Training and classifica-
tion are performed automatically at this point (see § 6 for
details).

On the other hand, if the developer wants to tune the per-
formance or the accuracy of a classifier, he uses the Itus Or-
acle to determine the best configurations for his app. To this
end, the app developer (i) identifies activities that require
implicit authentication and extends them from SecureAc-

tivity, (ii) starts Itus in configuration mode and gives de-
vice(s) to beta users for data collection, (iii) connects the
device to the Itus Oracle (on the desktop) so that it can an-
alyze data and generate recommendations, (iv) chooses from
the recommended configurations so that the Itus Oracle can
repackage the library, and (v) adds the repackaged library
to the app and disables configuration mode.

Most classifiers require negative (non-owner) training data
in order to provide high accuracy. For this, an app can either
use default negative instances included with Itus, or it may
package a subset of data collected during configuration mode
as negative training data. Since data collected during the
configuration mode is labeled against each user, the negative
training set of a user is created by excluding his data. We
anticipate that after Itus is released in the public domain,
it will also benefit from IA datasets that have been made
publicly available by the research community [13, 14, 31,
37].

5.2 IA Developers
§ 2.2 presented two types of IA developers we envision

contributing to Itus. Itus provides deliberate separation for
contributions to the IA mechanism. In § 4.2 we described
how new sensor features are added to Itus by extending the
Measurement class. Similarly, § 4.8 described how new classi-

fication algorithms are added to Itus be extending the Clas-

sifier class. These subclasses can be contributed to Itus in-
dependently by the second group of IA developers discussed
in § 2.2.

§ 4.6 explained how app-specific configurations are stored
in an Itus object. Itus can provide for a variety of de-
fault configurations by simply distributing pre-built Itus

objects. In the Itus framework, we call such objects Prefabs
and implement them by deriving subclasses of Itus. These
subclasses inherit all the functionality of the default Itus
Agent, and simply need to add a constructor that performs
any configuration directives that would normally be added
by the app developer. These Prefabs can be compiled and
distributed separately from the Itus framework, allowing the
first group of developers discussed in § 2.2 to propose new
configurations or even modified behaviour of the Itus Agent
without needing their contribution to be accepted upstream
by the core Itus framework.

6. IMPLEMENTATION
We implemented the Itus framework in Android Java and

the Itus oracle in Python. Itus is currently about 22,000 lines
and has been released in open source. Itus is distributed as
a standalone library of 773KB and it can be imported and
used by any Android project that supports Android version
2.23 and above. This allows Itus to support the majority of
the Android devices in use today (98.8% Android devices in-
the-wild as of March, 2014 [16]). In this section, we discuss
some of the significant implementation decisions of Itus.

Event Interception: The API of Itus has been designed
to abstract away the underlying low-level event collection
from the app developer. While there exist mobile sensor
collection frameworks such as SoundSense [25] and Jigsaw
[26], unfortunately these frameworks exist for Nokia and
Apple iOS and not for the Android OS. For event han-
dling in Android Activities, Android provides EventLis-

tener and EventHandler to the app developers. Every user
activity in an app is derived from the Android Activity

class and these events are first delivered to Activity.dis-

patchTouchEvent(). We provide the SecureActivity class,
which extends the Activity class and additionally provides
constructs to optionally intercept and copy events before
delivering them to the users. App developers who want to
provide IA support in their apps are expected to extend
SecureActivity for transparent event interception.

Data Storage: For permanent storage, Itus uses an app’s
internal storage. We chose internal storage since: an app’s
internal storage can only be accessed by the app itself and a
malicious app cannot gain access to the training model; and
accessing an app’s internal storage space does not require
any explicit permissions. We require the training model
classes be Serializeable so they can be written and subse-
quently read from the permanent storage automatically.

Training Set Size and Retraining: To perform train-
ing when the user first interacts with a new app, a sufficient
amount of data must be collected. The definition of ‘suffi-
cient’ here has some room for interpretation, and so we pro-
vide two distinct ways for developers to specify the training
data threshold: absolutely and empirically. In the absolute
case, the developer sets the minimum threshold to some in-
teger value (N), and when bin training receives N samples
of FeatureVectors, training is triggered. In the empirical
case, the developer specifies some minimum accuracy level
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to be attained during training before considering training
to be complete. Here, the Itus Agent runs training period-
ically and evaluates accuracy using x-fold cross-validation
(where x is another parameter) and stops when it achieves
the desired target accuracy. This second method is obviously
significantly more performance-heavy than simply training
at N instances, so the oracle tool in § 4.7 helps developers
determine appropriate values of N .

In order to improve the user experience by reducing false
rejects, Itus provides app developers with the option to au-
tomatically retrain the classifier to improve its accuracy.
To this end, Itus first temporarily stores the FeatureVec-

tors that are classified as non-owner’s by the behavioural
classifier. It then triggers the lockout activity to explic-
itly authenticate the user. If the user successfully authen-
ticates, Itus uses the misclassified feature vectors to retrain
the behaviour-based classifier. While retraining improves
the user experience, in addition to training overhead, it re-
quires additional storage space to save misclassified Fea-

tureVectors.
Lockout Action: In case of authentication failure, the

app developer may launch the device’s default authentica-
tion mechanism (PINs/pass-locks). However, a large num-
ber of device owners do not configure pass-locks on their
devices and furthermore, if the attacker has gained access
to the device, he has already compromised the primary au-
thentication mechanism. Therefore, to support our off-the-
shelf design goal, Itus provides app developers with a de-
fault PasswordConfigure activity, which is displayed when
the app is launched for the first time to configure a pass-
word that should be used for explicit authentication in case
the IA scheme detects misuse. Itus also provides a Lock-

outActivity to lock the app when misuse is detected. The
LockoutActivity is also used during the training phase to
establish the ground truth during data collection. The Lock-
outActivity overrides the onBackPressed method of Ac-

tivity to ignore in-app navigation attempts.
In addition to this, we provide the app developer with

a more flexible option to deal with authentication failures.
The app developer registers a callback object, implementing
our AuthFailedListenter interface. This interface specifies
a single onAuthFailed method, which will be called when-
ever a classifier fails to implicitly authenticate the user. The
app developer is then able to handle authentication failure
in any manner desired, supporting our flexibility goal from
§ 3. For example, a browser might choose to delete the ses-
sion cookies for any websites the user is currently logged in
to.

Managing Timeouts: Itus provides app developers with
the ability to pause and resume IA to reduce performance
overheads and to save battery life. Itus also provides app
developers with the functions to configure timeout intervals
so that once a user is successfully authenticated, Itus pauses
feature collection and training for the specified interval and
resumes its operations when interval times out. App devel-
oper can also specify whether they want to reset timeouts
and resume IA in case of a screen-off event.

Multi-measurements and Multimodal Classifiers:
For advanced IA scenarios, we enable the app developers to
use multi-measurements by employing feature samples from
different measurement modules. For example, the Silent-
Sense classifier [5] uses events from touch input and data
from the motion sensor. Itus provides constructs that can

Figure 2: Itus Oracle utility

be used by the app developer to define relationships between
measurement data from different sources (MultiMeasurement
in Figure 1). The app developer simply defines the causal re-
lationship between two events and the resultant FeatureVec-
tor is automatically generated. Similarly, Itus provides high-
level constructs to the app-developer to use multiple be-
havioural classifiers. These constructs can be used by the
developers to combine the authentication score from dif-
ferent behavioural classifiers in a pre-condition or majority
score setting. For example, the enterprise email client might
use a location-based classifier as a pre-condition to trigger a
touch-based classifier.

Itus Oracle: The Itus Oracle identifies suitable classi-
fiers, optimal feature sets, and operating threshold recom-
mendations for the app developer. It determines an appro-
priate classifier by evaluating the accuracy of Itus Prefabs
on the data collected during the configuration mode. This
decision also takes into account the availability of data for
different Itus Prefabs. The optimal feature set for a partic-
ular app is determined by calculating information gain for
each feature on collected data. For example, for a naviga-
tion app, Itus would automatically detect that the direction
of a swipe is not a good feature (due to its high variance on
sampled data). Finally, the Itus Oracle provides the app de-
veloper with the optimum threshold values by determining
the operating point with the highest accuracy.
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We provide a screenshot of the Itus oracle in Figure 2.
The summary and recommendations generated by the Itus
Oracle are shown in the text box. For now, this information
(such as confidence intervals and cross-validation results) is
simply displayed in raw form to the developer, which may
require some statistics knowledge to interpret. In future
iterations, we aim to parse these results for more concise
recommendations. Based on the recommendations, the Itus
Oracle also generates an Itus library that the app developer
can readily use in his app.

Prefabs Selection: In the future, we envision using the
Oracle as a method of curating the implementations of IA
presented to app developers. This will allow us to prevent
malicious schemes from entering the ecosystem, such as an
IA developer creating a keystroke Measurement that also
functions as a keylogger. However, as running the Oracle or
accepting its recommendations are not necessary steps in or-
der to use Itus, this approach allows for researchers to freely
experiment with IA, and for IA developers to distribute stan-
dalone extensions to Itus. For now, we want to provide a
diverse set of prefabs with Itus to demonstrate its exten-
sibility. To this end, we choose a keystroke classifier [12],
a classifier based on touch behaviour (Touchalytics) [14]
and a classifier based on the micro-movements of the mo-
bile device caused by touch (SilentSense) [5]. The keystroke
classifier and Touchalytics only use user generated events
(KeyEvent and TouchEvent, respectively) while SilentSense
uses data that merges user generated events (TouchEvent)
with periodic events (accelerometer data). Furthermore, the
keystroke classifier and Touchalytics use kNN for classifica-
tion while SilentSense employs SVM for classification.

7. PERFORMANCE EVALUATION
To provide a seamless user experience, it is critical for

Itus to have minimum performance overhead. Furthermore,
since smartphones are power constrained devices, high bat-
tery consumption of Itus may reduce its utility. In this sec-
tion, we first discuss the experimental setup that we use for
performance evaluation and we then provide the results of
our evaluation.

7.1 Experimental Setup
Device Selection: For performance evaluations, we use

an HTC Nexus 1 and an LG Nexus 4. The HTC Nexus 1
has Android OS v2.23 (Gingerbread) on a 1GHz processor
with 512MB of RAM. The LG Nexus 4 has Android OS
v4.4 (KitKat) on a quad-core 1.5 GHz processor with 2GB
of RAM. Our selection of these diverse devices supplies an
overview of Itus performance on both old and recent hard-
ware.

Performance Metrics For empirical evaluations, we are
only interested in the performance of Itus and we do not
evaluate the accuracy of the IA schemes employed. We re-
fer interested readers to the original papers [5, 12, 14] for
the accuracy evaluations and default parameters used here
(such as window sizes and sampling rates). For performance
evaluations, we measure the performance overhead in terms
of elapsed CPU time and heap size of the app. We also eval-
uate the battery consumption overhead of Itus. Finally, we
evaluate the impact of Itus on user experience by measur-
ing the relative performance overhead of Itus with our demo
apps.

(a) Using a Prefab to provide IA support

(b) Using low-level constructs to provide IA support

Figure 3: Itus’ development overhead for Zirco Browser

Demo Apps For demo apps to evaluate for performance
purposes, we choose: (i) Zirco Browser3: an open-source
browser with between 50,000 and 100,000 installs at the
Google Play Store; and (ii) TextSecure4: a popular open-
source encrypted communication app with between 100,000
and 500,000 installs at the Google Play Store. These apps
were selected as our demo apps for two reasons: (i) both
apps manage private data of the user, and (ii) usage of these
apps results in different event types (TouchEvent for Zirco
and KeyEvent for TextSecure), which allows us to test the
different classifiers discussed in § 6.

7.2 Evaluation Results
Development Overhead: For a developer who is em-

ploying Itus Prefabs, the development overhead is minimal.
While quantification of development overhead is a non-trivial
task, we herein provide our experience of adding Itus to the
demo apps. To avoid any bias due to the absence of a learn-
ing curve, we only report development overhead in terms
of the number of lines of code added/modified. To provide
default IA support in Zirco Browser and TextSecure, in ad-
dition to importing the Prefab class, we only modified 2 lines
of code. As discussed in § 5, the app developer extends the
SecureActivity class and launches a suitable Prefab (both
operations are highlighted in Figure 3a).

However, if the app developer wants to optimize the classi-
fiers, there would be more development overhead (depending

3https://play.google.com/store/apps/details?id=
org.zirco
4https://play.google.com/store/apps/details?id=
org.thoughtcrime.securesms
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Initialization Feature Extraction Training Classification

CPU(ms) Heap(kB) CPU(ms) Heap(kB) CPU(ms) Heap(kB) CPU(ms) Heap(kB)

N1

Keystroke 21 (2.08) 185(5.6) <1 ('0) <1 ('0) <1 ('0) <1 ('0) 0.2 ('0) 3.1 (0.19)

Touchalytics 5 (0.27) 17.3 (2.6) 0.27 ('0) 7.8 (0.03) 65 (2.16) 48.9 (1.4) 1.7 ('0) 51.3 (1.4)

SilentSense 1162 (81) 1236 (15) 0.75 ('0) 14.6 (1.1) 10384 (91) 2472 (18) 0.12 ('0) 3.7 (0.04)

N4

Keystroke 12 (0.95) 186 (2.3) <1 ('0) <1 ('0) <1 ('0) <1 ('0) 0.05 ('0) 2.9 (0.13)

Touchalytics 3 (0.27) 16 (0.62) 0.05 ('0) 11 (0.48) 15 (0.5) 53 (0.74) 1.08 ('0) 56 (5.11)

SilentSense 972 (67) 776 (34) 0.55 ('0) 16.8 (0.4) 5937 (329) 2453 (39) 0.07 ('0) 4.2 (0.28)

Table 1: Performance evaluation of different configurations of Itus. 95% confidence intervals are provided in parenthesis. N1:
Nexus 1 and N4: Nexus 4.

on the type of optimizations). The app developer can use
the Itus Oracle to perform optimizations automatically or
choose to manually perform optimizations in order to con-
trol certain aspects of IA scheme. In Figure 3b, we show one
of the possible workflows an app developer might follow to
manually employ touch behaviour features for IA using the
SVM classifier. The 10 lines of code (Line 132 - 144) in Fig-
ure 3b show how the developer: (i) instantiates Itus (Line
132); (ii) defines a list of feature that should be used by
the Measurement module (Line 133, 139, 140); (iii) config-
ures parameters of the SVM classifier (Line 135 - 137); and
(iv) configures Itus to use the Measurement and Classifier

objects, and starts the Itus Agent (Line 141 - 144).
Performance Evaluation of Itus: We instrument Itus

to measure its performance overhead in terms of elapsed
CPU time and size of heap memory for different runtime
configurations. Since the operations of Itus depend on events
that cannot be accurately controlled manually, for repeat-
able experiments we use Monkey scripts [2] to simulate event
generation. We repeat each experiment 15 times for three
different runtime configurations and report averages in Ta-
ble 1. Table 1 shows that both the keystroke classifier and
Touchalytics require much less CPU time and heap mem-
ory. More specifically, the feature extraction and classifi-
cation operations that are triggered for every input event,
take under 1 and under 2 ms for the keystroke and touch
classifiers, respectively on the Nexus 4 device. On the other
hand, SilentSense—which uses SVM—takes close to 1 and
6 seconds for initialization and training, respectively. The
CPU and memory overhead in the initialization process is
due to the loading of negative instances from an app’s inter-
nal storage. However, this overhead is incurred only once;
after the creation of the training model, feature extraction
and classification takes less than a millisecond for a swipe.
The execution results show that both devices are able to ex-
tract features, and classify in a reasonable amount of time.

Battery Consumption Overhead of Itus: We use
PowerTutor [42] to measure battery consumption overhead
by Itus. Micro-level overheads are recorded only during
individual user input events and are computed relative to
the individual demo apps, while macro-level overheads are
recorded across a longer period of usage and computed rela-
tive to the device. For reproducible experiments, we do not
perform any network operations (i.e., swipes are made on
pre-downloaded pages in Zirco and for TextSecure the typed
message is not transmitted). Finally, battery consumption
overhead results do not include the one-time training cost
of Itus prefabs.

Overhead on
the app

Overhead on the
device

Keystroke 38.6% (2.8) 1.23% (0.24)

Touchalytics 8.91% (0.64) 3.74% (0.53)

SilentSense 14.2% (0.95) 6.23% (0.89)

Table 2: Battery consumption overhead of Itus Prefabs on
demo apps with a Nexus 1 device. Standard deviations are
calculated across every hour of testing for each of 12 hours,
and are shown in parentheses.

For overhead at the micro-level, we measure the power
consumption of the Keystroke prefab by generating 160 key-
stroke events for classification. Similarly, we generate 40
swipe events for classification by the Touchalytics and Silent-
Sense prefabs. Our empirical evaluation results, provided in
the “overhead on the app” column of Table 2. The battery
overhead for TextSecure is significantly higher because the
battery consumption for normal operation is negligible (un-
like Zirco which requires relatively expensive graphic ren-
dering when swiped).

Computation of the macro-level overhead is a non-trivial
task due to the large number of variables involved, such as
the number of running apps, network connection (3G/WiFi)
and the usage of other apps by the device user. To mitigate
these variations, we create a simple setup in which Nexus 1
devices are only executing the demo app, the Google Mail
app, the Google Talk app and the Launcher app. These
devices are also executing the default supporting systems
Network Location, User Dictionary, Media Server and the
Radio and WiFi subsystems. Monkey scripts [2] were used
to generate 40 swipe and 160 keystroke events after every
10 minute interval for 12 hours. Table 2 provides the results
for the macro level overhead in the “overhead on the device”
column. It can be observed from these results that all Itus
Prefabs incur reasonably low overhead (1.23%, 3.74% and
6.23% for Keystroke, Touchalytics and SilentSense prefabs,
respectively) even on Android devices with a minimal set of
apps running.

Performance Overhead on Demo Apps: In addi-
tion to the performance evaluation of standalone Itus, we
also measure the performance overhead imposed by Itus on
two demo apps. The objective of this evaluation is to show
that the relative performance overhead of Itus is negligible
enough to not compromise user experience. We instrument
and measure elapsed CPU time and heap memory size for
the demo apps with and without Itus. The experiment with
Zirco was conducted by accessing the BBC and CNN home-
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Figure 4: Itus’ CPU and memory overhead for demo apps. Error bars represent 95% confidence intervals.

pages using Zirco and swiping 20 times on each website with-
out any delays. The experiment with the TextSecure app
was conducted by composing a text message of 160 charac-
ters (network transmission was not included). Figures 4a, 4b
show the CPU overhead and memory overhead for demo
apps, respectively. It can be observed from Figure 4 that
the CPU and memory overhead for Itus is negligible and
Itus can be used without compromising user experience.

8. LIMITATIONS
Itus is part of our on-going research work. We have eval-

uated Itus on a variety of Android devices from different
manufacturers and found it to be robust. However, there
are a few limitations to deployment on old and low-end An-
droid devices. Processing intensive IA schemes on Android
devices with low-end processors might affect user experi-
ence. Similarly, for IA schemes that rely on sensor data
from different on-board sensors, the accuracy of Itus will be
negatively affected on some of the old devices with low sam-
pling rates. However, these are trivial limitations given the
high penetration of modern Android devices.

Another limitation of our approach is that each instance
of Itus executes in isolation from other instances on the
same device. Therefore, every app that uses Itus requires a
separate training model and an instance of the Itus library
in memory. This requires additional storage and increases
apps’ memory footprints (although it should be noted that
the Itus Oracle can be used to reduce the memory footprint,
as discussed in § 4.7). Finally, while independent execution
of multiple Itus instances precludes any information shar-
ing across these instances, this is by design to prevent any
potential security issues arising from malicious apps.

Itus deployment is of course subject to all the limitations
of existing IA mechanisms, including the requirement that
it be configured to track representative input data from the
current operator of a device. If, for example, an intruder
comes across a device resting on a stable surface and pro-
tected by the SilentSense prefab, there would be no move-
ment data available to classify him. Furthermore, it may
be possible for attackers to use mimicry attacks to defeat

IA [30] or to root a device. One of the benefits of providing
an extensible IA framework is that Itus can easily incorpo-
rate defences against mimicry attacks as soon as they are
proposed by security researchers. Attackers rooting a de-
vice are hard to defend against in general and not part of
our threat model.

9. RELATED WORK
Explicit authentication schemes (such as pass-locks, facial

and fingerprint recognition) are only partly related to our
work since we understand their importance as a primary
defense mechanism. We only advocate application of IA as
a second line of defense due to usability [4, 19] and security
issues [1, 41, 39] of explicit authentication schemes.

For IA on smartphones, various behaviour-based classi-
fiers have been proposed that employ users’ call / text pat-
terns [34], location patterns [38], keystroke patterns [8, 12,
20, 27, 40], proximity to known devices [21, 29], gait pat-
terns [13, 15], and touch screen input behaviour [5, 10, 11,
14, 23, 33]. Furthermore, some approaches have proposed
to combine behaviour-based classifiers and contextual infor-
mation from multiple sources [29, 32, 34] to implicitly au-
thenticate a user. We differ from these prior research efforts
in that our work places emphasis on the architecture and
deployment aspects of an IA approach, rather than the effi-
cacy of behaviour-based classifiers. In fact, any existing IA
scheme can be deployed using our architecture to mitigate
the limitations discussed in § 2.

Clarke et al. [7] proposed the design of a framework to sup-
port continuous and transparent authentication using facial,
voice and keystroke biometrics. Crawford et al. [9] proposed
a similar system that supports multimodal combination of
these biometrics. However, the focus of their work is to pro-
vide design guidelines of such a framework for an IA scheme
that operates at the device-level. Contrary to their ap-
proach, we propose a framework that enables app developers
to integrate continuous authentication in their apps directly.
Furthermore, the authors of [7, 9] only provide design guide-
lines for transparent and continuous authentication systems
and stop short of providing an implementation of their de-
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sign that can be used by device owners. Riva et al. [29] have
built a prototype to use face recognition, proximity, phone
placement, and voice recognition to progressively authenti-
cate a user. Their prototype on Windows phone reduces
the number of required authentications by 42%. While they
have a common goal with our work in terms of when to au-
thenticate, their scheme would require kernel-level support
to operate and therefore has the limitations discussed in § 1.

There are a few approaches that have a common goal with
ours in terms of providing an optimal trade-off between us-
ability and security. For example, Hayashi et al. [19] dis-
cuss the inefficiency of the all-or-nothing access model and
suggest that a user should be authenticated only when a
sensitive app is launched. They also discuss shared access
scenarios and propose an activity lock that can be used by
a device owner to share specific screens in an app or a group
account to share a specific set of apps between multi-user en-
vironments. In a related work, [17, 18] use multiple implicit
factors (from user context) to determine how to explicitly
authenticate a user. However, our work is different from
these approaches since in addition to allowing an app devel-
oper to selectively invoke an authenticating module based
on the type of an app, we delegate IA tasks to an app and
not to the device.

10. CONCLUSION
We have proposed Itus, a framework for providing IA sup-

port on smartphones, and provided an open-source imple-
mentation for Android. Itus separates the domain knowl-
edge of IA from its deployment to bridge the gap between
IA research and practice. The architecture of Itus is de-
signed with flexibility in mind for app developers, allowing
them choice between modular subcomponents implementing
different mechanisms for behavioural feature classification.
The Itus framework is easily extensible to allow IA develop-
ers to easily provide such subcomponents. Itus also provides
application developers with the ability to optionally config-
ure the behaviour of the IA mechanism to their application’s
needs by using an Oracle program to determine suitable clas-
sifiers and configuration parameters. The API of Itus has
been designed to trivialize the effort to provide IA in An-
droid apps. Empirical evaluations of Itus in real-world demo
apps show that it has minimum overhead. We have made
Itus publicly available in open-source for Android and we are
currently working on providing support for more IA schemes
in Itus. In future work, we will conduct usability studies to
determine the efficacy of IA on smartphones for users and
the utility of Itus for app developers. We hope that Itus
will enable the research community to collaborate better to
further research in the IA domain and also to enable the
adoption of IA.
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