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ABSTRACT
Modern mobile operating systems such as Android and Apple iOS
allow apps to access various system resources, with or without
explicit user permission. Running multiple concurrent apps is also
commonly supported, although the OS generally maintains strict
separation between apps. However, an app can still get access to
another app’s private information, such as the user input, through
numerous side-channels, mostly enabled by having access to per-
missioned or permission-less (sometimes even unrelated) resources,
e.g., inferring keystroke and swipe gestures from a victim app
via the accelerometer or gyroscope. Current mobile OSes do not
empower an app to defend itself from such implicit interference
from other apps; few exceptions exist such as blocking screenshot
captures in Android. We propose a general mechanism for apps
to defend themselves from any unwanted implicit or explicit in-
terference from other concurrently running apps. Our AppVeto
solution enables an app to easily configure its requirements for a
safe environment; a foreground app can request the OS to disallow
access—i.e., to enable veto powers—to selected side-channel-prone
resources to all other running apps for a certain (short) duration,
e.g., no access to the accelerometer during password input. In a
sense, we enable a finer-grained access control policy than the
current runtime permission model, and delegate the responsibil-
ity of the resource access decision (for vetoing) from users to app
developers. We implement AppVeto on Android using the Xposed
framework, without changing Android APIs. Furthermore, we show
that AppVeto imposes negligible overhead, while being effective
against several well-known side-channel attacks.

CCS CONCEPTS
• Security and privacy → Mobile platform security.
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1 INTRODUCTION
Modern smartphones are commonly equipped with various hard-
ware sensors to learn and interact with the physical world (e.g.,
microphone, GPS, light sensor, and accelerometer). Smartphones
also have access to personal and security-sensitive user informa-
tion such as the contact list, photos, and passwords. Accessing
these sensors/resources and user information by third-party apps
is controlled by the mobile platform operating systems (OSes), and
sometimes access is granted only with explicit user approval at the
install-time of the app or during its runtime (e.g., see [1, 16]). Strict
separation of app data is also enforced by the leading OSes. Cur-
rent permission models enable app developers and OSes to offload
many security-critical decisions to users, who usually can barely
understand the privacy and security implications of such decisions.
Permission models have been studied in detail, and unsurprisingly
found to be inadequate in terms of protecting users’ privacy and
security [5, 36]. Even for runtime permissions, once a permission
is granted, an app can use it until the app is uninstalled. On the
other hand, resources that are considered to pose little or no se-
curity/privacy risks, such as the accelerometer or the gyroscope,
can be used by any app without the user’s knowledge or consent.
Many side-channel attacks have been demonstrated using these
so-called non-dangerous or normal resources [40, 45, 48], as well as
resources that require explicit user consent [34, 41]. Current user-
approval based permission models cannot tackle these stealthy but
highly-effective attacks; even if the user is asked for permission
while accessing these resources, it would be infeasible for a typical
user to understand the possibility of such side-channel attacks.

Vendors of operating systems have started to provide some lim-
ited defences against these side-channel attacks. As of Android 9.0,
apps by default can no longer access sensors, such as the accelerom-
eter and the gyroscope, the microphone, and the camera if they are
running in the background [9]. To access these resources from the
background, apps need to launch a special component, a foreground
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service [20]. Users are notified of the presence of this service with
an icon. However, if the user does not notice this icon, then the user
will remain unaware of the resources accessed by the foreground
service. The AudioPlaybackCapture API in Android 10 will allow an
app to capture audio from another app [46]. Similar to screenshot
blocking, this API also has defences against accessing sensitive
audio through opt-out methods with which an app can prevent
other apps from accessing its audio. As another defence, Android
grants access for the camera and microphone to only one app at
each point in time. However, this restriction does not prevent a
malicious app from exploiting these resources in a side-channel
attack if the victim app does not require access to these resources.

It has also been suggested to introduce noise or reduce the sam-
pling rate of information that might be exploited in a side-channel
attack before providing the sensor data to an app [28, 31, 33, 38, 39,
43]. However, it is difficult to determine the right amount of noise or
sampling rate that will guarantee that a side-channel attack will fail
while keeping the sensor output useful for apps that legitimately
access the output in the background, e.g., a step counter. Adding too
much noise will lead to a legitimate app making a wrong conclusion
and, in turn, misleading the user. Other defences, such as random-
izing the layout of a keyboard to make it difficult for a malicious
app to figure out the key corresponding to the position where a
key press has taken place [31, 41, 43, 52], have poor usability, and
defend only against a particular type of side-channel attacks. Block-
ing access to resources that could be exploited in a side-channel
attack while the victim app is displaying a keyboard, or asks for a
PIN/unlock pattern [2, 3, 28, 39, 41, 52], is similarly limited. Tem-
porarily blocking other apps while the victim app is running [51]
can severely limit the usefulness of legitimate background apps
for long-running victim apps. Introducing permissions that protect
access to sensor resources [28, 33, 49] is unlikely to work given the
inadequacies of current explicit permission-granting approaches.

We propose AppVeto, a generic approach that augments the cur-
rent permission models and empowers apps against side-channel
attacks on mobile platforms. AppVeto promotes application self-
defence, assuming app developers are aware when their application
is handling security-critical information, and hence can communi-
cate their veto needs to the OS so that other concurrent apps are
disallowed from accessing selected resources that may leak private
information. In particular, AppVeto enables a foreground app to
override resource access rights of background apps at certain times,
e.g., during password input. Through an app’s meta-data such as
the Android manifest file, it can inform AppVeto about its veto
requirements while the app is visible on the display. In particular,
we enable the following veto powers to block any concurrently
running apps from accessing: (i) resources that are well-known to
be exploited for certain side-channel attacks as defined in AppVeto,
(ii) resources selected by the app developer that may interfere with
the app’s specific security needs, and (iii) resources that are being
used by the requesting app, i.e., allowing exclusive access rights.

We have implemented a prototype for our framework onAndroid.
In particular, we have used the Xposed framework [47] to develop
an AppVeto prototype, so that it can be easily distributed, and se-
curity enthusiasts and researchers can install and test it on major
Android distributions. Resources that we currently enable vetoing
include: all built-in sensors [19], camera, and microphone—which

have been exploited in real-world and proof-of-concept attacks,
as we found in our survey of such attacks. To control resource
access dynamically through the Xposed framework, we hook the
Android application framework APIs. We currently do not modify
the Android source. However, these hooks can be easily incorpo-
rated into the Android source for production distribution. Our code
is available on GitHub.1

Contributions. Our contributions can be summarized as follows:
(1) We design and implement AppVeto, a mobile application

self-defence framework that complements important limita-
tions of existing permission models. It enables finer-grained
resource allocation compared to current models. The ap-
proach is developer-centric and user-agnostic—i.e., AppVeto
empowers app developers to control resource access by other
simultaneously running apps without explicit user decisions.
Apps can communicate their special security and privacy
needs, if any, to the OS, which will then be enforced by
AppVeto in a fair manner.

(2) AppVeto enables app developers to comprehensively pro-
tect their apps against known and anticipated side-channel
attacks. Developers can block all commonly exploited re-
sources for side-channel information leakage during e.g.,
sensitive user input or output, or they can selectively block
a specific resource (according to their needs). AppVeto thus
promotes a new paradigm for application self-defence. Both
permissioned and permission-less resources can be blocked,
or exclusively accessed by a requesting app, while the app is
in the foreground.

(3) Our current AppVeto prototype has been implemented on
Android using the Xposed framework, without modifying
the OS source code. Our implementation is open-source,
which can be easily distributed, deployed, tested and ex-
tended by the community, without replacing stock Android
distributions. Enabling an app to benefit from AppVeto re-
quires very minor modifications—only updating its Android
manifest file, i.e., no source code needs to be modified. Sim-
ilarly, other apps installed on the system can remain un-
changed.

(4) We evaluated the performance and efficacy of AppVeto by
testing AppVeto-enabled apps against relevant known side-
channel attacks. Based on our experimental results, AppVeto
can indeed effectively prevent such attacks originating from
sensor devices, camera and microphone; other resources can
be easily incorporated. As AppVeto runs all the time along
with other OS components, we also measured its overhead
on the system itself and other apps. The measured CPU and
memory overheads are low (e.g., 0.43% CPU overhead on a
Pixel 3) and should not deter real-world deployment.

2 BACKGROUND
In this section, we present a few definitions that we use throughout
the paper, and provide a brief overview of Android resource access
and the Xposed framework.

A resource is an end-point where an application can get access to
information that is not provided by the application itself. Accessing
1https://github.com/tousifosman/app-veto
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these end-points to get relevant information is termed as accessing a
resource. An Android Activity is considered as a foreground activity
as long as it has focus and is visible on the device’s display. As
soon as the activity loses focus, leaves the screen, or the screen is
turned off, the activity loses its state as a foreground activity. We
consider any application as a foreground application whenever any
of its activity becomes a foreground activity. Similarly, a background
application is any application that has no foreground activity on
the device’s display.

2.1 Android Resources
Android is composed of various components starting from local
files, audio/video sources to on-board sensors. We consider all these
components as the resources under Android OS, which an app can
access on demand (cf. Android’s definition of resources [7]). Below
we discuss resources available in Android mobile platform that can
lead to side-channel attacks.

2.1.1 Android Sensor Framework. Most Android phones come with
various built-in sensors. These sensors generally interact with the
surrounding physical world, and do not involve any (explicit) per-
sonal information. These sensors are categorized as motion sensors,
environmental sensors, and position sensors. Applications access
these sensors using the sensor framework [19]. Fig. 1 depicts a sim-
plified workflow of sensor access by an app. Apps use the Android
SDK to access the Android sensor framework, and create an in-
stance of a service called the sensor service [19]. Using this service,
apps need to register a callback, called SensorEventListener [18],
to receive sensor data. On request, the sensor service then registers
the callback in the sensor framework, which accesses the Hard-
ware Abstraction Layer (HAL [13]) to link an app with the sensor.
Whenever there is some new data available for the given registered
sensor, the callback method is invoked, and the the app is notified
with the sensor data.

HAL

Events
Social Inbox

Smart Content

SDK

Layer 2

Android
Applications

Layer 1

HAL

Layer 4

Sensor
Hardware

Hardware Manufacturer
Layer

HAL
Implementation

Framework

Layer 3

Figure 1: Simplified workflow of an Android app’s sensor ac-
cess.

Android’s HAL is the single client for accessing a sensor. The
sensor framework performs multiplexing to allow multiple apps
to access a sensor concurrently. To link the hardware with the
Android OS, hardware manufacturers need to provide the actual
implementation of HAL’s C header sensors.h [23], the device dri-
ver, and other intermediate components. This abstraction makes the
Android OS implementation independent of these hardware device
specifications. However, as the hardware specific components are
implemented by the hardware manufacturers, these components
are device dependent. Hence, hooking or altering these compo-
nents at run-time or even at compile-time is impractical as the
modifications will be device and hardware specific.

2.1.2 Android Camera API. Like the sensor framework, Android
uses a similar architecture for its camera API. This API also has
a HAL that creates an interface between the camera hardware
and the Android application framework. The components of this
HAL, and the device drivers are also implemented by the hardware
manufacturers. However, in Android API level 21, Android 5.0 , a
newer API—camera APIv2—was introduced, and the older Camera
APIv1was deprecated. Currently, both of these APIs are available in
the latest released distribution of the OS (Android 9.0). Furthermore,
camera APIv1 is still used by many popular apps.

Android
Applications

Layer 1

Camera
Service HAL

Layer 3

SDK 
& 

Framework
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HAL

Events
Social Inbox

Smart Content

Media Server

Layer 3 Component

Figure 2: Simplified workflow of camera APIs (v1 and v2).

Unlike the sensor framework, multiple applications cannot use
the camera hardware at the same time. Apps also cannot directly
access the camera. Android runs a native service called the media
server. A component of this service is called the camera service,
which acts as an interface to the camera hardware.

Fig. 2 shows a simplified workflow for camera access. When an
app uses camera APIv2 to access the camera, it first needs to create
a session with the camera service. After having a session, the app
can make a request to the camera service, to use the camera, and the
service will capture the image for the application. In case of APIv2,
apps cannot directly get the captured image. Rather, when making a
request, apps must specify an Android Surface component, where
the captured image will be placed. This surface component can
point to a UI or a file. Then the surface is passed to the native
camera service, which then writes the captured camera data on it.
When an app wants to crate a preview for the camera, it needs to
bind a UI component with the surface, and when saving the file, the
app needs to make a new request with a surface bounded to a file.

On the other hand, the camera APIv1 has less control and flex-
ibility over the camera. However, with APIv1, apps can get the
captured data bytes. Apps also need to make requests to the camera
service when using APIv1, and register a callback to receive the
captured data; in addition, apps can provide a Surface for preview.
Nevertheless, APIv1 and APIv2’s implementations are independent
and reside in their own packages.

2.1.3 Android Audio Record. Android offers the AudioRecord class
to allow apps to access microphones [8]. This class is one of the ap-
plication interfaces to access the microphone. Similar to the camera,
the media server is also responsible for microphone access. Apps
can read audio data using the AudioRecord class. The application
needs to start recording, and after that, the AudioRecord class al-
lows the app to get audio data in three formats: byte array, short
array, and ByteBuffer [30], using three function calls. It is strictly
recommended in the Android developer’s documentation that after
recording, apps must release the audio resources. Otherwise, no
other app will be able to access that audio resource.
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2.1.4 Android Media Recorder. Android offers another application
interface — the MediaRecorder class – to access both the camera
and microphone. This class is independent of other access methods
and is used for recording audio and video. The workflow of this class
is very similar to AudioRecord: apps can specify the camera and
microphone source, and their recording needs (audio, video). Also,
apps must specify a file location and output format for the recording.
The MediaReorder next must be initialized to camera, microphone
or both to allocate resources. Afterwards, the MediaRecorder must
be started and it will then interact with the media server to start
recording the specified media. Finally, the media server will process
the record instruction and save the recording in the specified file. It
is also strictly recommended that apps must release the resources
after the recording is complete, or else these resources cannot be
used by other apps.

2.2 The Xposed Framework
Xposed [47] provides a set of APIs with which other applications
can hook Android run-time method calls. It allows modules to be
developed that can be installed using Xposed management applica-
tions. Users need to install the Xposed framework on their phone
to be able to use any Xposed module. The Xposed requires a rooted
phone and the latest version of it needs to be installed from the
recovery mode of Android [25]. Official versions of Xposed are
available for Android 5.0 to Android 8.1 (unofficial versions are also
available for Android 9 [27]). Xposed modules are invoked when
the system boots up. These modules can register hooks for any Java
methods of any app on the phone. Next, when an app is executed
on the Android Runtime (ART), the Xposed framework intervenes
the method call for the registered hooks. Xposed allows a module
to entirely replace a method with a new one, call a different method
after the original method call, or call a different method before in-
voking the hooked method. It currently can only hook Java method
calls. When a hooked method is invoked, it is executed within the
same process as the original method.

3 RELATEDWORK: KNOWN ATTACKS AND
SOLUTIONS

In this section, we first review relevant attacks exploiting Android
resources, which is also necessary to understand our design choices
(Sec. 5). We then discuss a few existing solutions.

3.1 Attacks Based on Resource Access
Shen et al. [37] analyzed the characteristics of Android’s accelerom-
eter and magnetometer sensors, and designed a system that can
infer a user’s touch input. They collected 32,400 keypresses from
their studied participants on numeric and alphanumeric virtual
keyboards. Then they used this data to train a machine learning
model using SVM, KNN, Random Forest, and Neural Network. With
this model, they could infer user input with an accuracy up to 83.9%.
Aviv et al. [2] showed that in addition to the input taps, the swap ges-
ture of Android pattern locks can be inferred from the accelerometer
data. They used logistic regression, and combined it with Hidden
Markov Models [26] to train their system. Spreitzer [44] exploited
a less obvious resource, the ambient light sensor of an Android
smartphone, to infer a user’s PIN. The author first observed that a

minor change in the orientation of the phone results in a notable
change in the data captured by the ambient light sensor. Next, this
leakage in the sensor data was exploited to gain a significant success
rate when guessing the user PIN. Logistic regression, discriminant
analysis, and KNN were used to train data, and an accuracy of 65%
was achieved with only five guesses.

Simon and Anderson [41] demonstrated a system named PIN
Skimmer, using the video camera and microphone of a smartphone,
to predict PINs from software keyboards. They observed move-
ments from a video to detect the part of the screen that has been
used while typing the PIN. They also recorded sound from the touch
pad using a microphone, and combined this audio and video data
to train their system. An accuracy of 30% was achieved with two
guesses (50% accuracy for five guesses). Raguram et al. [34] also
exploited the video camera, but from a different perspective. They
found that it is possible to reconstruct the text typed on a virtual
keyboard just by observing the reflection of the phone’s screen (e.g.,
reflection on the victim’s sunglasses). They demonstrated that even
with a low-cost camera, this side-channel attack can be launched.
They used image processing and a Bayesian framework for their
attack. An accuracy of 92% was achieved for retrieving text from a
victim’s sunglasses. Hasan et al. [24] exploited the magnetic sensor
to establish a hidden communication channel with other devices
and exchange information without a user’s consent.

3.2 Defences
Song et al. [43] proposed two defenses against motion-based key-
stroke inference attacks. They found that reducing the accuracy of
the motion sensors can significantly reduce the accuracy of these
attacks. They also observed that the majority of these attacks rely
on the fixed layout of the virtual keyboard, and therefore, randomiz-
ing the layout can successfully prevent these attacks. However, the
input time on such a randomized keyboard can increase by three
times compared to a regular keyboard.

Shrestha et al. [38] introduced Slogger to defend against sensor-
based keystroke inference attacks, which is similar to the solution
proposed by Song et al. [43]. In contrast to reduced accuracy, Slog-
ger injects personalized random noise to sensor data. Slogger also
avoids customizing the OS source. It uses an app to take sample
inputs from the user when launched and calculates some threshold
values. It then injects random noise in between the range of pre-
calculated thresholds in the accelerometer and gyroscope sensor
data readings.

Demetriou et al. [4] presented a new security system called
SEACAT, which extends the current security module of Android,
SEAndroid [42]. They demonstrated several flaws of the existing
permission model, and showed how an attacker can exploit these
flaws to gain access to personal data. As a solution, they extended
the Android OS and proposed a new policy management that can
permanently bind external resources (i.e., smart accessories) with a
specific application and can provide mutually exclusive access to
those resources from the bounded application only.

Xu et al. [48] demonstrated several flaws in the implementation
of the Android Bluetooth security mechanism, by showing that
Bluetooth peripherals have the capability to change their device
profile with the help of a malicious application running on the
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device. Then a malicious app can allow a Bluetooth peripheral to
communicate with the Android OS without any user consent. They
introduced a new policy management system in the Android OS as
a solution.

SemaDroid [50] has been proposed as a privacy-aware sensor
management framework. SemaDroid relies on users to monitor
sensor usage, and manually control sensor access. Furthermore,
SemaDroid is implemented by hooking the Android source code,
as opposed to hooking the run-time system. SemaDroid essentially
allows advanced users to put restrictions on resource misuse. On
the other hand, AppVeto introduces a general purpose resource
access policy by delegating the responsibility of decision making
from users to app developers. Note that manual access management
for privacy-concerning resources is available in the latest Android
distribution. SemaDroid also allows users to manually define con-
ditions, e.g., location, and time, on which defined constraints on
resource access should be enforced. It can return mock data (user
defined results), add noise to data, reduce the accuracy of data, or
keep the sensor data unaltered for different resource access.

FlaskDroid [3] has been proposed as a mandatory access control
architecture for Android. It can prevent sensors from being accessed
while the phone is in a user-defined security-sensitive state, such as
when the keyboard/PIN pad is displayed. However, keyboard input
is not always sensitive. AppVeto lets an app developer decide when
to block resource access.

App Guardian [51] temporarily blocks suspicious apps while a
protected app is running. Suspicious apps are detected based on
certain activities, e.g., a recording activity or frequent CPU usage.
Blocking an app is rather heavy-handed. AppVeto selectively pre-
vents resource access, and parts of a background app unrelated to
the vetoed resources can continue to function properly.

PINPOINT [35] provides virtualized per-app sensor services to
allow returning perturbed or no sensor information to certain apps.
PINPOINT relies on the user to set up virtualized sensor services,
which fails to protect users who are unaware of the possibility of
side-channel attacks. AppVeto instead relies on app developers to
protect their sensitive apps.

AuDroid [32] detects and resolves unsafe information flows in-
volving a phone’s speaker or microphone. It prevents two different
processes from accessing the speaker and microphone at the same
time to prevent e.g., an app with microphone access from learning
the output of another app that is using the speaker (e.g., what is
being played by a music player app). AppVeto is a more generic
approach to control resources, and also allows the establishment of
this type of exclusive access policies. For example, the developer
of an app that outputs potentially sensitive information over the
speaker can veto apps that want to access the microphone at the
same time.

4 THREAT MODEL, GOALS AND
ASSUMPTIONS

We currently implement AppVeto through the Xposed framework,
which is assumed to be trusted. Ideally, we would want AppVeto to
be incorporated in the OS source, enforced fromwithin the OS itself,
and thus need to trust only the OS.We are currently limited to hook-
ing an app’s Java code only due to our use of Xposed, which, on the

other hand, enables easy deployment and testing. However, native
code can be easily addressed e.g., by modifying the Android source.

AppVeto treats all apps equally and fairly, and limits abuse by
respecting veto powers of foreground apps alone (i.e., apps that
are being used actively), restricting the period of denying access or
exclusive access, and notifying users if the defined period is crossed.
AppVeto-enabled apps distrust all other concurrent apps, and we
expect developers to understand their apps’ security and privacy
requirements, and correctly specify their veto needs within the
Android manifest file.

AppVeto enables a developer the following capabilities: (i) spec-
ify any or all sensors, camera and microphone (as well as other
resources) for exclusive access or denying access to other apps;
and (ii) specify certain classes of known side-channel attacks that
an app needs protection from. AppVeto can be extended to cover
any resource, when a new side-channel attack exploiting a new
resource is discovered. With these new capabilities, the following
goals can be achieved:

(1) Prevent malicious apps from inferring sensitive information
that a user enters into a to-be protected (victim) app.

(2) Prevent malicious apps from inferring sensitive information
output by a to-be protected app.

A to-be protected app is an app that is protected with AppVeto
while running in the foreground.

5 DESIGN OPTIONS
One possible approach to defend against inference attacks is to rely
on detection and then removal of malicious apps (cf. traditional
antivirus programs) [29]. However, this approach may fail against
new variants of old malware and novel attacks.

Alternatively, concurrent apps can be temporarily suspended
from running while the user is entering sensitive information into
the to-be-protected app [51], and while the app is outputting sensi-
tive information. However, this may affect functionality of benign
apps that legitimately run in the background (e.g., a music player).
In addition, it is a heavy-weight approach that blocks even activities
of concurrent apps that are not related to accessing resources, like
a stopwatch app counting time.

We can also make static information exploited in inference at-
tacks dynamic and inaccessible to apps. For example, randomize
the keyboard layout to defend against input inference attacks [43].
However, with this approach, usability suffers, e.g., the time to enter
information increases [43].

Additionally, we can perturb dynamic information exploited in
inference attacks before delivering it to apps, e.g., reduce the sam-
pling rate or add noise to a sensor [38], blur the video or audio
stream delivered to an app, or introduce fake tap sounds [39]. How-
ever, finding the right amount of perturbance is non-trivial. Benign
apps that legitimately run in the background may also infer wrong
results (e.g., wrong step count) from the perturbed information,
which in turn may confuse the user.

Finally, we can block dynamic information exploited in inference
attacks from being delivered to apps [3]. Blocking access is arguably
better than perturbing information since well-designed apps should
be able to deal with lack of information. For example, Android
delivers information from sensors via callback functions so apps
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should be able to deal with non-triggered callback functions. The
drawback of this approach is that it may affect the functionality
of benign apps that legitimately run in the background and access
blocked information.

We choose the last approach for our solution to limit the negative
impact on apps; we also allow blocking only for a short configurable
duration to avoid denial-of-service. Note that the to-be protected
app suffers no usability or performance penalties.

In terms of when to trigger blocking of resources, one approach
can be relying on the OS to infer potentially vulnerable situations—
e.g., when the keyboard or a password box is prompted [3], or
sensitive information such as a credit card number is displayed.

When the keyboard is used for a while such as writing a long
email, other apps may suffer. It is also difficult to distinguish be-
tween sensitive and non-sensitive information being output or
input (from the OS perspective). One may also involve the user
for explicit blocking requests, e.g., before entering a credit card
number or accessing her banking app; this will entail both negative
security and usability impacts. Instead, we choose to block when
developers ask for it, assuming that developers of security-sensitive
apps (like banking apps) should be familiar with their security
requirements—at least more familiar than average users.

6 DESIGN AND IMPLEMENTATION
In this section, we present the details of AppVeto and our prototype
implementation.
Overview. AppVeto enables a resource access policy that allows
an application in the foreground to have privilege over resource
access. When the foreground activity leaves the screen and be-
comes a background activity, the app’s veto powers are removed.
App developers can select an activity or a group of activities, and
define what resource access should be prevented for background
applications when the selected activity or activity group comes to
the foreground. Developers can also simply specify what known
side-channels should be prevented when the selected activity is in
the foreground. Developers specify these constraints through An-
droid application meta-data [6, 15], i.e., the AndroidManifest.xml
file. A constraint on a resource can be introduced by using any
of the keys shown in Table 3 (Appendix A) as meta-data name
and fully-qualified target activity class names concatenated with
the pipeline character (“|”) as the meta-data value. We have pro-
vided a code-snippet in the listing 1 (Appendix B). When an app
is loaded, AppVeto checks the defined meta-data and constructs
the veto needs to be applied on resource access, when the app is in
the foreground. We implemented AppVeto as an Xposed module,
which allows our code to be easily integrated with the Android
runtime (ART). Fig. 3 shows an overview of AppVeto. Below we
detail the resource access and system calls that we hook to imple-
ment AppVeto. We use a Nexus 4 phone with Android 5.0 for our
primary development and testing. We also use a Pixel 3 phone with
Android 9.0 for evaluation (with EdXposed [27]).

6.1 Method Hooks
We traverse the Android Open Source Project (AOSP) to understand
the workflow of the resources of our interest, for both Android 5.0
(released in 2014) and 9.0 (2018). We rely on Java Reflections and

hooks in the run-time to learn the object structures in the An-
droid source. We then construct our method hooks and implement
them in our framework. Developing these hooks in a backward-
compatible manner is non-trivial as some data fields and system
level method declarations are no longer the same in Android 9.0
compared to Android 5.0, even though the released APIs in the Ap-
plication Framework remained unchanged. Additional effort may
be needed to make AppVeto fully compatible with other commonly
available Android versions.

6.1.1 Sensor Hooks. As discussed in Sec. 2, the sensor service
keeps track of the registered sensor listeners. This service acts as
the primary interface to all sensors, and SensorEventListener
is called for all sensor callbacks. However, this common call-
back method does not distinguish the individual callbacks from
each sensor. From the AOSP, we found a system level class
called SystemSensorManager [22] with an inner class called
SensorEventQueue, which queues the SensorEventListeners
calls and passes them to the native implementation. This class
has a method called dispatchSensorEvent, which is invoked
by the native code whenever there is some new data available
for any sensor. This method receives an integer value called
handle. The SystemSensorManager class has a data field called
mHandleToSensor, which is a HashMap with handle as key and
a Sensor [17] object as value. Using this map, SensorEventQueue
can distinguish between callbacks of different sensors. Hence, we
hook dispatchSensorEvent, and replace it with our method.

6.1.2 Camera APIv2 Hooks. For the camera, the callback method
of CaptureRequest [12] does not have the data, and preventing it
from being invoked does not stop the media server from taking a
picture. However, to access the camera using camera APIv2, an
app must make a capture request. Cancelling this request prevents
apps from accessing the camera. Apps must call CaptureRequest
using the CameraCaptureSession [11] class of camera APIv2.
This class has the following methods to make a capture request:
(1) capture, (2) captureBurst, (3) captureBurstRequests,
(4) captureSingleRequest, (5) setRepeatingRequest,
(6) setRepeatingBurst, (7) setRepeatingBurstRequest,
and (8) setSingleRepeatingRequest.

We hook all these methods and replace them with our own
code. Four of these capture methods are used to make capture
requests to make the camera take pictures repeatedly. A com-
mon use case for these methods is to display the camera view
before capturing an image; they also enable a background app
to repeatedly capture images without making a new capture re-
quest. Therefore, our framework needs to stop these repeating
requests when a foreground app defines a constraint over camera
access. CameraCaptureSession offers the abortCapturesmethod
to abort any ongoing capture requests. We thus hook the construc-
tor of the CameraCaptureSessionImpl (system level implementa-
tion of the abstract CameraCaptureSession class), and whenever
a new object of this class is initialized, we store it in a HashSet for
each app. We iterate through all the active sessions for all apps, and
invoke the abortCaptures method to terminate existing capture
requests when necessary.
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Figure 3: AppVeto overview.

6.1.3 Camera APIv1 Hooks. With camera APIv1, Android apps
capture images by calling the takePicture method of the
Camera [10] class. Similar to APIv2, intercepting this method call
and preventing it from being called can prevent an application
from taking pictures. The Camera class has setPreviewDisplay
and setPreviewTexture methods to display a preview, the
startPreview method to start the preview, and the stopPreview
to stop the camera preview.

Preview of this API can also be used to create videos or take still
pictures [10]. Hence, we need to stop the preview for background
apps, when a foreground app vetoes camera access. The Camera
class has a method called open to create an instance of this class.
We hook this method and create a HashSet of Camera instances for
each app. Like APIv2, when a foreground app vetoes camera access,
our framework invokes the stopPreview method for all Camera
instances. When the veto on camera access is released, we restart
the preview (via startPreview).

6.1.4 AudioRecord Hooks. We hook the AudioRecord [8] class to
allow constraints on microphone access. With this class, apps need
to invoke one of the overloaded readmethods corresponding to au-
dio data in a specified format (see Sec. 2.1.3). Unlike the case for the

camera, AudioRecord has no continuous capture request. Hence,
intercepting the read method is sufficient to prevent microphone
access using AudioRecord, and therefore we hook all overloaded
methods for read. Apps must call the startRecording method to
make the microphone start recording. We also hook this method
so that apps are prevented from making the microphone from cap-
turing audio when the foreground app vetoes such requests.

6.1.5 MediaRecorder Hooks. The MediaRecorder [14] class allows
apps to record audio and video. When using this interface, apps
must invoke its start method to start recording, which will start
the media recording and save the data in the specified file path.
MediaRecorder provides the pause and resume methods to pause
and resume recording accordingly. Similar to the camera hooks,
we hook the constructor of this class and maintain a HashMap of
MediaRecorder instances for all running apps. If an app wants to
use this class to record audio or video, the app must set an audio
or video source accordingly. However, MediaRecorder provides
no method to output if a video source is set. Thus, we hook the
setCamera method (deprecated in API level 21) to know if the
instance of the MediaRecorder records video, and store this infor-
mation in the HashMap. When the foreground app puts constraints
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on camera or microphone access, we invoke the pause method of
the instances of MediaRecorder that access audio/video resources.
When the veto is released, our framework invokes the resume
method to re-enable resource access for other apps.

6.2 AppVeto Components
Extendability is a major design goal for AppVeto, so that constraints
on new resources can easily be incorporated as a new module to the
framework without changing its existing components. In addition
to restricting a specific resource, we also allow easy grouping of
resources that are often exploited for a specific side-channel (e.g.,
several sensors and microphone can be used to infer password
inputs). We add few groups, but new groups can be easily defined.
Below, we detail the major components of AppVeto.

6.2.1 Meta-data Manager. The meta-data manager is responsible
for defining meta-keys for different resources, and retrieving the
declared meta-data from apps installed on the system. Table 3 (ap-
pendix A) lists the meta instructions we have defined in the current
prototype. The meta-data manager is also responsible for mapping
meta-keys with associated resource access. Adding a new key is
as simple as adding a new enum field and a string identifier in the
meta-data manager. It also allows defining group meta keys that
will prevent resource access for group of resources when specified
in the Android manifest file. Defining a new group meta-key is
also as simple as defining a new enum field, a string identifier, and
previously defined meta-keys associated with certain resources.

6.2.2 Hook Manager. This is the entry point for our framework
into the run-time of the Android OS. It allows intercepting Android
function calls on the run-time, and augments the behavior of the OS
without modifying the OS source directly.Wemust knowwhich app
is in the foreground and what is the current foreground activity.
Every app window displayed on the screen is a subclass of the
Activity class. All children of Activity inherit a method named
onResume, which is called by the OS every time that activity appears
on the screen and gains focus [21]. Also, whenever an activity leaves
the screen or loses focus, the onPause method inherited from the
Activity class is called [21]. Hence, the hook manager intercepts
these two methods and injects our code before the original call.
Whenever an app window changes, our injected methods are called,
and AppVeto becomes aware of the current application and its
focused activity.

We also must intercept the resource access by all the apps to en-
force vetoes. We create separate modules in the the hook manager
for hooking resource components, containing the methods that are
to be injected in the hooked methods. The hook manager intercepts
dispatchSensorEvent (see Sec. 6.1.1) for capturing the sensor call-
backs. Whenever there is a call for this method from sensors, our
injected methods are executed first. The injected methods check if
the current foreground app has any veto on the corresponding sen-
sor callback; if not, the injected methods invoke the original hooked
methods. However, if a constraint is present on sensor access, then
only the injected methods are executed.

For camera APIv2, we first hook all the capture request meth-
ods (see also Sec. 6.1.2). Similar to the sensors, an injected method
checks for access restrictions; if there is no veto, the original hooked

method is called, otherwise the CameraAccessException with pa-
rameter CAMERA_DISABLED is returned. The hook manager mod-
ule receives a callback when the foreground activity changes. On
that callback, if the responsible module finds that the current fore-
ground activity has a veto on camera access, it will invoke the
abortCapture method (see Sec. 6.1.2). We also follow a similar
approach for camera APIv1. We prevent calls to takePicture, and
throw an Exception when camera access is disallowed. Further-
more, on a foreground activity change notification, the module
responsible for the camera hooks will call the stopPreview and
startPreview methods (see Sec. 6.1.3).

The hook manager uses a separate module for hooking the
read methods in AudioRecord (see Sec. 6.1.4). When access is
vetoed, the audio data is replaced with the null value, and
the error code ERROR_INVALID_OPERATION is returned; similarly,
calls to the startRecording method are also prevented and an
IllegalStateException is thrown.

We also have a module for MediaRecorder that hooks the rel-
evant methods (see Sec. 6.1.5). We hook the start method, and
when the foreground app vetoes the camera or microphone access,
the injected method prevents the original method from being called.
We also prevent background apps from recording audio/video using
the MediaRecorder API.

6.2.3 Control Service. Whenever the hook manager hooks a
method, the injected method is not called immediately. Rather, the
injected methods are called from the process of the hooked applica-
tion (i.e., not from the hook manager process). As a result, with our
injected methods, it is possible to know when an app is in the fore-
ground, which activity of the app is in the foreground, and when
the app is trying to access some specific resources only from the
process of that activity. However, other apps in the background can-
not get this information or the current restrictions being applied on
resource access. Therefore, we develop a control service for all apps
to communicate and stay informed about their present status. This
service also decides what policy to apply for the current foreground
activity, andmakes the policy available for all other apps running on
the system. Hence, this service requires Inter Process Communica-
tion (IPC) between processes. The Android Bound Service leverages
the Binder API and uses the Android Interface Definition Language
(AIDL) to provide IPC over application sandboxes. We create a two-
way communication channel between the control service and an
app, using two AIDL definitions: one for all apps to communicate
with the control service to receive/provide necessary information,
and the other AIDL for communicating with previously bounded
apps and notify them when the foreground activity changes.

6.2.4 Control Service Client. Our framework also offers a client
component that allows the injected methods to communicate with
the control service. This client also receives a notification from
the control service when the foreground app changes. The client
then delegates this notification to the hook manager (Sec. 6.2.2).
The client enables communication between the sandboxed Android
apps and the control service. The client module is passed into the
injected methods and it becomes a part of the hooked applications
when accessed by the injected methods. Injected methods then use
this client to communicate with the control service to inform it
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about the app’s status. Also, the injected methods use this client to
query about the policy to be applied on resource access.

7 EVALUATION
We tested the developed framework using both real-world and
test applications. We also evaluated its performance overhead on
Nexus 4 (Quad–core 1.5 GHz, 2GB RAM) and Google Pixel 3 (Octa–
core 4x2.5 GHz, 4GB RAM) devices.

7.1 Side-channel Evaluation
To perform our side-channel experiments, we developed a few test
applications that use AppVeto to defend themselves, and some apps
that access resources from the background. Our test results show
that the AppVeto framework successfully prevents background
applications from receiving sensor data when the protected ap-
plication becomes a foreground application. Figure 4 shows the
accelerometer data received by the background application. As in-
dicated by the flat region in the figure, no sensor data was received
by the background application when the protected application be-
came a foreground application, showing that the background apps
are indeed denied access to the data required for sensors-based
side-channel attacks.

We also developed a few apps that veto camera access, micro-
phone access, and both. We evaluated these apps with our test
background apps, as well as real-world apps (a few popular apps
from Google Play). We recorded audio and video with built-in
system apps and, as expected, recording and image capture were
interrupted. We also evaluated AppVeto while making video calls
on Facebook messenger, Skype, and WhatsApp. When the camera
veto was present, AppVeto successfully prevented the camera ac-
cess, as imposed by the foreground app. The video display of the
call was paused during the camera veto and then the video resumed
when the veto was released. We have used different recording apps,
including Audio Recorder by Sony, for testing the microphone veto.
We counted from one to ten, and the numbers uttered during the
microphone veto were missing in the recording. We have also tested
the microphone veto for well-known apps for audio calling. In gen-
eral, the results were as expected but there were a few exceptions
due to specific app implementations (e.g., Facebook messenger), or
the use of the Native Development Kit (see Sec. 8). We have also
tested and verified AppVeto by combining camera and microphone
access vetoes. We have tested AppVeto with a few step counting
apps, such as Pedometer by Pacer Health; a possible use case in
this scenario is to log in to an app while walking. Our preliminary
experiment shows that while walking, it takes about 30 seconds for
the login, and about 40 steps will be missed.

7.2 Performance Evaluation
We measured AppVeto’s overhead on CPU, memory usage, and
latency on sensor data access, using Pixel 3 and Nexus 4 phones;
see Tables 1 and 2 for a summary of our results. Interception for
the camera and microphone is performed when the requests to
access these resources are made. On the other hand, interception
for sensors is done in the sensor data retrieval callbacks. Hence,
the performance of sensor data access is more affected by AppVeto.
Therefore, in our experimental setup, we first rebooted our test

devices and ran a test application that retrieves accelerometer and
gyroscope sensor data. Next, we measured the overall CPU usage of
both test devices during an interval of 1 second for 60 seconds and
took the average of these 60 samples. The experiment is repeated
for 10 times with and without the AppVeto framework. We observe
a CPU overhead of 0.43% for Pixel 3 and 5.28% for Nexus 4. It
should be noted that a significant portion of the observed processing
cost is due to the Xposed framework and runtime hooking. When
integrated with an OS distribution, this overhead is expected to be
much less.

We also monitored the memory usage during a 5 second interval,
took 10 samples, and calculated the additional memory usage. The
latency presented in Tables 1 and 2 was calculated by measuring
the accelerometer access latency, which was done by using a test
application that retrieves accelerometer data and measures the time
difference between each data retrieval point. The latency values for
both Nexus 4 and Pixel 3 are small (0.2ms and 0.1ms, respectively).
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Figure 4: An example illustrating a background application
denied from accessing the accelerometer by the foreground
application.

8 LIMITATIONS
Our current prototype does not consider Android native libraries
and the Android Native Development Kit (NDK). The Android
NDK allows access to sensors and other resources without using
the Android application framework APIs. During our side-channel
evaluation (Sec. 7.1), we noticed that the microphone access in
Skype resulted in unexpected outputs. Skype could access the mi-
crophone even after preventing all the callbacks. By decompiling
Skype, we confirmed that it uses the NDK for accessing the micro-
phone. Current versions of the Xposed framework cannot hook
native binary libraries. However, this limitation can be easily ad-
dressed if AppVeto is incorporated in the OS source.

Also, AppVeto may be abused by malicious apps to deny
legitimate apps access to Android resources, which might make
them malfunction–e.g., fitness apps might miss count steps. We
limit the possibility of a DoS attack to only when an app is in the
foreground. To further mitigate this threat, we set a timeout on an
app’s veto powers (configurable by the OS/AppVeto distributors).
Our study shows that in most cases resource access veto is required
mostly on login or authentication forms where users stay for a
short amount of time. Also, developers should use AppVeto only
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% CPU usage Memory usage (KB) Sensor-access latency (ms)
Without AppVeto With AppVeto Without AppVeto With AppVeto Without AppVeto With AppVeto

Average 2.71 3.14 3479527.2 3528691.6 10.0 10.1
Std. dev. 0.073 0.86 39691.61 384.63 1.95 1.22
Overhead 0.426% 49164.4 KB 0.1 ms

Table 1: Performance overhead for Pixel 3.

% CPU usage Memory usage (KB) Sensor-access latency (ms)
Without AppVeto With AppVeto Without AppVeto With AppVeto Without AppVeto With AppVeto

Average 9.19 14.47 1827821.6 1831245.2 10.0 10.3
Std. dev. 1.17 1.49 2303.18 2231.96 1.72 0.82
Overhead 5.28% 3423.6 KB 0.2 ms

Table 2: Performance overhead for Nexus 4.

on activities that handle critical information that may be subjected
to side-channel attacks. We are also experimenting with a negative
reinforcement strategy, which will make apps pay some price, e.g.,
warning messages, notification warnings, and process throttling,
to limit DoS possibility.

We have designed AppVeto such that it has minimal impact on
other apps. Regardless, legitimate apps can malfunction, specially
if the apps do not check a resource’s availability before using it.
We also broadcast a resource’s availability state, which legitimate
apps can receive to handle interruptions. We observed that the
Facebook messenger app drops the call after receiving no input
from the microphone for a while; apparently, this app drops the call
if it receives zero bytes from the microphone for a defined amount
of time.

We rely on developers to understand the security needs of their
apps to benefit from AppVeto. However, many Android developers
may have little grasp on security. On the other hand, many apps
may not require the additional security through AppVeto. Also,
configuring an app for AppVeto is similar to current permission
settings in the Android manifest file, which we believe will help
developers to easily incorporate veto powers in their apps.

Mobile OS vendors may also consider enhancing protections
against side-channel attacks; cf. recent changes to sensor access in
Android 9.0 [9]. If password input prompts are reliably detected, the
OS itself can apply a veto on accessing side-channel-prone resources
for all background apps, even if the foreground app requests no
such restrictions.

9 CONCLUSION
We introduce AppVeto, a generic OS-level framework to enable
finer-grained control on mobile device resources. Compared to
existing runtime and install-time models, such enhanced access
restrictions allow us to design a comprehensive defense against
several side-channel attacks that exploit both permissioned (e.g.,
microphone) and permission-less (e.g., accelerometer) resources.
We bring developers to the forefront of securing their apps against
these stealthy but highly effective attacks, without burdening users
with more security-critical decisions. Our current implementation
does not address native code based resource abuse; we also leave

out a few other resources such as Bluetooth. With more engineering
efforts, these limitations can be addressed. We are making AppVeto
available to app developers and security-enthusiasts, who can test
and extend AppVeto as it is based on the Xposed framework, i.e., no
custom OS image is needed. We believe that the AppVeto approach
is a step towards a more effective permission model for mobile
operating systems.
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A APPVETO KEYWORDS
Table 3 lists the meta keys supported by our system. These
keys are used to define constraints on resource access. The key
appveto_sensor_all blocks all sensors from the Android Sensor
Framework, appveto_inference_keystroke blocks all resources
that have been exploited for past keystroke inference side-channel
attacks, and appveto_rogue_communication blocks the micro-
phone and magnetic sensor, exploited by past work for rouge com-
munication [24, 32].

Type Meta Key Constraint

Gr
ou

p

appveto_sensor_all All Sensors
appveto_inference_keystroke Keystroke Infer-

ence
appveto_rogue_communication Rogue Communi-

cation Channel

In
di
vi
du

al

appveto_sensor_magnetic_field Magnetic Sensor
Access

appveto_sensor_accelerometer Accelerometer
Sensor Access

appveto_sensor_significant_motion Significant
Motion Access

appveto_sensor_gyroscope Gyroscope
Access

appveto_sensor_light Light Sensor Ac-
cess

appveto_sensor_proximity Proximity Sensor
Access

appveto_sensor_gravity Gravity Sensor
Access

appveto_sensor_pressure Pressure Sensor
Access

appveto_sensor_temperature Temperature Sen-
sor Access

appveto_sensor_humidity Humidity Sensor
Access

appveto_sensor_step_detector Step Detector Ac-
cess

appveto_sensor_step_counter Step Counter Ac-
cess

appveto_sensor_heart_rate Heart Rate Sen-
sor Access

appveto_camera Camera Access
appveto_mic Microphone Ac-

cess
Table 3: Configurable constraints/veto powers.

B CODE SNIPPET TO ADD A VETO
Listing 1 depicts a code-snippet that shows how to add metadata
in the AndroidManifest.xml file to veto keystroke inferance on
LoginActivity and RegisterActivity.

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

...>

<application ...>

<meta-data

android:name="appveto_inference_keystroke"

android:value="com.example.LoginActivity|

com.example.RegisterActivity"/>

<activity android:name=".LoginActivity" ...>

...

</activity>

<activity android:name=".RegisterActivity" ...>

...

</activity>

...

</application>

</manifest>

Listing 1: Code-snippet to add a constraint in AndroidMani-
fest.xml
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