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Abstract
We present the first near-linear-time (1 + ε)-approximation algorithm for the diameter of a
weighted unit-disk graph of n vertices, running in O

(
n log2 n

)
time, for any constant ε > 0,

improving the near-O
(
n3/2)-time algorithm of Gao and Zhang [STOC 2003]. Using similar

ideas, we can construct a (1 + ε)-approximate distance oracle for weighted unit-disk graphs with
O(1) query time, with a similar improvement in the preprocessing time, from near O

(
n3/2) to

O
(
n log3 n

)
. We also obtain new results for a number of other related problems in the weighted

unit-disk graph metric, such as the radius and bichromatic closest pair.
As a further application, we use our new distance oracle, along with additional ideas, to

solve the (1 + ε)-approximate all-pairs bounded-leg shortest paths problem for a set of n planar
points, with near O

(
n2.579) preprocessing time, O

(
n2 logn

)
space, and O (log logn) query time,

improving thus the near-cubic preprocessing bound by Roditty and Segal [SODA 2007].
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1 Introduction

In this paper, we study shortest-path problems in weighted unit-disk graphs, i.e., intersection
graphs of unit disks. More concretely, in such a graph, vertices correspond to a set S of
planar points (specifically, the centers of the disks), and there is an edge between every
two points of S at Euclidean distance at most one (of weight equal to that distance). These
graphs have been widely used in many applications, such as modelling ad-hoc communication
networks.

We are interested in various basic problems about shortest paths in such a weighted
unit-disk graph G, notably:

designing algorithms for computing a (1 + ε)-approximation of various parameters of G,
such as the diameter (i.e., maxs,t∈S dG[s, t]), the radius (i.e., mins∈S maxt∈S dG[s, t]),
the bichromatic closest pair distance of two subsets A,B ⊂ S (i.e., mina∈A, b∈B dG[a, b]),
et cetera; and,
designing approximate distance oracles, i.e., data structures that support the following
query: given any s, t ∈ S, quickly compute a (1+ε)-approximation of the s-to-t shortest-
path distance in G, dG[s, t].
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24:2 Approximate Shortest Paths and Distance Oracles in Weighted Unit-Disk Graphs

Besides practical motivation from wireless networks, this collection of problems is in-
teresting from the theoretical perspective as well since it connects computational geometry
with graph data structures—indeed, our new algorithms will draw on ideas from both areas.

Planar graph techniques. There has already been an extensive body of work devoted to
distance oracles and shortest-path-related problems both for general and for planar graphs,
the latter of which are of particular relevance to us. For example, Thorup [25] gave (1 + ε)-
approximate distance oracles for weighted, undirected planar graphs with O (n polylogn)
preprocessing time and space, and O (1) query time, for any constant ε > 0, while subse-
quent work [19, 18, 16, 10] gave improvements and examined the dependency of the hidden
factors on ε. Weimann and Yuster [27] presented a (1 + ε)-approximation algorithm for
the diameter for weighted, undirected planar graphs, running in O

(
n log4 n

)
time, for any

constant ε > 0, improved later to O
(
n log2 n

)
by Chan and Skrepetos [10], who also re-

duced the ε-dependency from exponential to polynomial (there has also been exciting recent
breakthrough on exact algorithms for diameter and distance oracles in planar graphs, by
Cabello [5] and subsequent researchers [15, 11, 14]).

All the above approximation results for planar graphs rely heavily on the concept of
shortest-path separator : a set of shortest paths with common root, such that the removal
of their vertices decomposes the graph into at least two disjoint subgraphs. Unfortunately,
such separators do not seem directly applicable to unit-disk graphs, and not only because
the latter may be dense. Indeed, by grid rounding, we can construct a sparse weighted
graph Ĝ, such that it (i) approximately preserves distances in the original unit-disk graph
G (e.g., see the proof of Lemma 2), and (ii) is “nearly planar”, in the sense that each edge
intersects at most a constant number of other edges. However, even for such a graph, it
is not clear how to define a shortest-path separator that divides it cleanly into an inside
and an outside because edges may “cross” over the separator. At least one prior paper [28]
worked on extending shortest-path separators to unit-disk graphs, but the construction was
complicated and achieved only constant approximation factors.

Gao and Zhang’s WSPD technique. In a seminal paper, Gao and Zhang [13] obtained
the first nontrivial set of results on shortest-path problems in weighted unit-disk graphs, by
adapting a familiar technique in computational geometry—namely, the well-separated pair
decomposition (WSPD), introduced by Callahan and Kosaraju [7] for addressing proximity
problems in the Euclidean (or Lp) metric and has since found countless applications. Gao
and Zhang proposed a new variant of WSPDs for the weighted unit-disk graph metric and
showed that any n-point set in two dimensions has a WSPD of near-linear (O (n logn))
size under the new definition. Consequently, they obtained a (1 + ε)-approximate distance
oracle with O (n logn) size and O(1) query time, for any constant ε > 0. Unfortunately,
its preprocessing time, O

(
n3/2√logn

)
, is quite high and becomes the bottleneck when the

technique is applied to offline problems such as computing the diameter.
However, the issue is not constructing the WSPD itself, which can be done in near-

linear time, but computing the shortest-path distances of a near-linear number of vertex
pairs in the “nearly planar” graph Ĝ mentioned above, which takes almost n3/2 time, by
adapting a known exact distance oracle for planar graphs [1] (noting that Ĝ has balanced
separators [22, 12]). Cabello [4] has given an improved algorithm for computing multiple
distances in planar graphs, and if it could be adapted here, the running time would be
reduced to around n4/3. However, near-linear time still seems out of reach with current
techniques.
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Gao and Zhang [13] observed that the preprocessing time can be made near-linear when
the approximation factor is a certain constant (about 2.42), but this improvement does not
apply to 1+ε approximation factor and has no new implication to the diameter problem (for
which a near-2-approximation is easy by running a single-source shortest paths algorithm).

New results. In Section 2, we give the first near-linear-time algorithm to compute a (1+ε)-
approximation of the diameter of a weighted unit-disk graph, running in O

(
n log2 n

)
time,

for any constant ε > 0 (the dependencies of the hidden factors on ε are polynomial). A
similar result holds for (1 + ε)-approximate distance oracles: we obtain O

(
n log3 n

)
pre-

processing time, O (n logn) space, and O(1) query time. We thus answer one of the main
questions left open in Gao and Zhang’s paper, while also apply our techniques to related
problems.

Our approach is conceptually simple: we just go back to known shortest-path separator
techniques for planar graphs [25, 18]!

But how do we get around the issue that unit-disk graphs do not have nice path sep-
arators? We first find a spanner subgraph H that is planar and has constant approxima-
tion/stretch factor (fortunately, such spanners are known to exist in unit-disk graphs [21]
and they were also used by Gao and Zhang [13]) and then then apply divide-and-conquer
over the shortest-path separator decomposition tree for H instead of G.

Although the above plan may sound obvious in hindsight, the details are tricky to get
right. For example, how could the use of a spanner with O(1) approximation factor even-
tually lead to 1 + ε approximation factor? The known divide-and-conquer approaches for
planar graphs select a small number of vertices, called portals, along each separator and
compute distances from each with a Single-Source Shortest Paths algorithm; that works
well because a shortest path in a planar graph crosses a separator only at vertices. In our
case, however, we need to use the original (non-planar, unit-disk) graph G when computing
distances from portals, but therein a shortest path could “cross” the separator over an edge.
We show that we can nevertheless re-route such a path to pass through a separator vertex
without increasing the length by much, by using the fact that H is a O (1)-spanner.

Application to all-pairs bounded-leg shortest paths. In the last part of the paper, as a
further application, we employ our new distance oracle, along with additional ideas, to solve
the (1 + ε)-approximate All-Pairs Bounded-Leg Shortest Paths (apBLSP) problem. Given a
set S of n planar points, we define G≤L to be the subgraph of the complete Euclidean graph
of S that contains only edges of weight at most L. Then, we want to preprocess S, such
that given two points s, t ∈ S and any positive number L, we can quickly compute a (1 + ε)-
approximation of the s-to-t shortest path in G≤L (i.e., the shortest path under the restriction
that each leg of the trip has length bounded by L) or its length. To see the connection of
apBLSP with the earlier problems, note that, for each fixed L, G≤L is a weighted unit-disk
graph, after rescaling the radii. One important difference, however, is that L is not fixed in
apBLSP, and we want to answer queries for any of the

(
n
2
)
combinatorially different L’s.

Bose et al. [2] introduced that problem in 2003 and gave a data structure for it with
O
(
n5) preprocessing time, O

(
n2 logn

)
space, and O (logn) query time, for any constant

ε > 0, while Roditty and Segal [24] improved the preprocessing time to roughly O
(
n3) and

the query time to O (log logn).
In Section 3, we apply our (1 + ε)-approximate distance oracle for weighted unit-disk

graphs, along with additional new ideas, to obtain the first method to break the cubic
preprocessing barrier: we can obtain roughly O

(
n8/3) preprocessing time, while keeping

SoCG 2018
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O
(
n2 logn

)
space and O (log logn) query time. With fast matrix multiplication, we can

further reduce the preprocessing time to O
(
n2.579), assuming a polynomial bound on the

spread, i.e., the ratio of the maximum to the minimum Euclidean distance over all pairs of
points in V .

2 Approximate diameter and distance oracles

Let S be a set of planar points whose weighted unit-disk graph G has diameter ∆. A key
subproblem in both (i) computing a (1 + ε)-approximation of the diameter of G and (ii)
building a (1 + ε)-approximate distance oracle for it is the construction of a distance oracle
with additive stretch O (ε∆): a data structure, such that, given any s, t ∈ S, we can quickly
compute a value d̃ with dG[s, t] ≤ d̃ ≤ dG[s, t] + O (ε∆). We describe our solution for that
subproblem in Section 2.2, after giving two preliminary ingredients in Section 2.1, and then
show, in Section 2.3, how to employ it, along with existing techniques, to address the two
original problems.

2.1 Preliminaries
The first ingredient we need is the existence of a planar spanner with constant stretch factor
in any weighted unit-disk graph.

I Lemma 1 (Planar spanner). Given a set S of n planar points, we can find, in O (n logn)
time, a planar spanning subgraph H of its weighted unit-disk graph G, such that, for every
s, t ∈ S, dG[s, t] ≤ dH [s, t] ≤ cdG[s, t], where c is some constant.

Li, Calinescu, and Wan [21] proved the above lemma with c = 2.42 by simply building
the Delaunay triangulation of the given points and discarding edges of weight more than
one; however, the analysis of the stretch factor c is nontrivial.

The second ingredient is an efficient algorithm for the Single-Source Shortest Paths
(SSSP) problem in weighted unit-disk graphs, where the currently best exact result, due to
Cabello and Jejčič [6], requires O

(
n log12+o(1) n

)
time and employs complicated dynamic

data structures for additively-weighted Voronoi diagrams [8, 17]. For our purposes though,
it suffices to consider the (1 +O (ε))-approximate version of the problem instead, i.e., given
a set of points S and a source s ∈ S, compute, for each t ∈ S, a path of length d̃[s, t], such
that dG[s, t] ≤ d̃[s, t] ≤ (1 + O (ε))dG[s, t], where G is the weighted unit-disk graph of S.
Our algorithm first finds a sparse graph Ĝ that (1+O (ε))-approximately preserves distances
in G (i.e., for any s, t ∈ S, there are vertices ps, pt of Ĝ, such that δG[s, t] ≤ δ

Ĝ
[cs, ct] ≤

(1 + O (ε))dG[s, t]) and then runs Dijkstra’s algorithm therein; sparsification in weighted
unit-disk graphs has been used before (e.g., see [13, Section 4.2]).

I Lemma 2 (Approximate SSSP). Given a set S of n planar points, we can solve the (1 +
O (ε))-approximate SSSP problem in its weighted unit-disk graph G in O

(
(1/ε)2n logn

)
time.

Proof. First, we build a uniform grid of side length ε and construct a sparse weighted graph
Ĝ by placing a vertex at each non-empty grid cell and an edge between every two such cells
c and c′ iff there exist points p ∈ c and p′ ∈ c′ with ‖pp′‖ ≤ 1; the weight of that edge is
equal to the maximum Euclidean distance of c and c′. Each grid cell has at most O

(
(1/ε)2)

neighbors, so Ĝ has at most O
(
(1/ε)2n

)
edges and can be constructed in O

(
(1/ε)2n logn

)
time, by using a Euclidean bichromatic closest pair algorithm [23] over O

(
(1/ε)2n

)
pairs of

grid cells.
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Let s and t be two points of S; if ‖st‖ ≤ 1, we can trivially return ‖st‖. Else, let
p0p1 · · · p`, with p0 = s and p` = t, be the shortest path in G from s to t. Two consecutive
edges therein have lengths whose sum is at least one because otherwise we could take a short-
cut and obtain a shorter path; thus, dG[s, t] ≥ b`/2c. We construct a path c0c1 · · · c` in Ĝ,
where each ci is the cell that contains pi. Since, for each ci, ci+1, ‖pipi+1‖ ≤ d

Ĝ
[ci, ci+1] ≤

‖pipi+1‖+O (ε), it follows that dG[s, t] ≤ d
Ĝ

[c0, c`] ≤ dG[s, t] +O (ε`) ≤ (1 +O (ε))dG[s, t].
Thus, given a source s ∈ S, we can invoke Dijkstra’s algorithm in Ĝ to compute, for each

t ∈ S, a value d
Ĝ

[cs, ct], such that δG[s, t] ≤ δ
Ĝ

[cs, ct] ≤ (1 +O (ε))dG[s, t], where cs and ct
are the grid cells that contain s and t, respectively. We can easily modify our algorithm to
also find, for each t ∈ S, an s-to-t path in G of length δ

Ĝ
[cs, ct], by appending s and t at the

ends of the s-to-t shortest path in Ĝ and replacing each ci and ci+1 with the bichromatic
closest pair of ((S ∩ ci), (S ∩ ci+1)) in G (which has been found while constructing Ĝ). J

2.2 Distance oracles with O (ε∆) additive stretch

We describe now a distance oracle with additive-stretch for an arbitrary weighted graph
G = (V,E) of n vertices and of diameter ∆ that has the following properties, which are the
only ones needed from weighted unit-disk graphs.

(I) There exists a planar c-spanner H of G, for some constant c.
(II) For any induced subgraph of G with n′ vertices, the (1 + ε)-approximate SSSP

problem can be solved in T (n′) time, for some function T (·), such that T (n′)/n′ is
nondecreasing.

(III) Every edge weight in G is at most ε∆.

If G is a weighted unit-disk graph, Lemmas 1 and 2 imply (I) and (II), respectively,
where c = 2.42 and T (n′) = O

(
(1/ε)2n′ logn′

)
, and (III) holds as long as ∆ ≥ 1/ε.

Shortest-path separators in H. Although G may not necessarily have nice shortest-path
separators, we know that H does, by planarity. Thus, we apply a known shortest-path sepa-
rator decomposition therein, namely the version of Kawarabayashi, Sommer, and Thorup [18,
Section 3.1], paraphrased for our purposes. Specifically, we can compute in O (n logn) time
a decomposition tree T with the following properties.

T has O(1) degree and O(logn) height.
Each node µ of T is associated with a subset V (µ) ⊆ V . The subsets V (ν) over all
children ν of µ are disjoint and contained in V (µ). If µ is the root, V (µ) = V ; if µ is a
leaf, V (µ) has O(1) size.
Each non-leaf node µ of T is associated with a set of O(1) paths, called separator paths,
which are classified as “internal” and “external”. The internal separator paths cover
precisely all vertices of V (µ) −

⋃
child ν of µ V

(ν), while the external are outside of V (µ).
For each child ν of a non-leaf node µ, every neighbor of the vertices of V (ν) in H is either
in V (ν) or in one of the (internal or external) separator paths at µ.
Each separator path is a shortest path in H and, in particular, has length at most the
diameter ∆(H) of H (which is at most c∆).

SoCG 2018
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Our data structure. To construct an additive oracle with O (ε∆) stretch for G, we con-
struct the above decomposition tree T and augment it with extra information, as follows.
Let µ be an internal node of T and σ one of its internal separator paths; since σ has length
at most ∆(H) ≤ c∆, we can select, with a linear walk, a set of O (1/ε) vertices thereon,
called portals, such that each consecutive pair of them is at distance at most ε∆ on it.

Let P (µ) denote the set of all portals over all internal separator paths at a non-leaf node
µ of T . For each such node and for each p ∈ P (µ) and v ∈ V (µ), we invoke O (1/ε) times
the SSSP algorithm from Property (II) to compute a (1 + ε)-approximation, d̃µ[p, v], of the
shortest path distance from p to v in the subgraph of G induced by V (µ). Then, for each leaf
µ, we just find and store all pairwise distances in the subgraph of G that is induced by V (µ).
Overall, our oracle requires O ((1/ε)T (n) · logn) preprocessing time and O ((1/ε)n · logn)
space.

Query algorithm. Given two vertices s, t ∈ V , we first identify all O (logn) nodes µ in T ,
such that both s ∈ V (µ) and t ∈ V (µ) (by trivially starting from the root and going down
the tree along a path). For each such non-leaf node µ, we compute, in O (1/ε) time, a value
δ̃µ[s, t] = minp∈P (µ)

{
d̃µ[s, p] + d̃µ[p, t]

}
. If µ is a leaf, d̃µ[s, t] is the exact shortest path

distance in the subgraph of G induced by V (µ) (which we have already computed). Finally
we return the minimum, δ̃[s, t], over all δ̃µ[s, t]. The total query time is O ((1/ε) logn).

Stretch analysis. We want to prove that for any s, t ∈ V , the value, d̃[s, t], that our oracle
returns is such that dG[s, t] ≤ d̃[s, t] ≤ dG[s, t] + O (ε∆). The left side of the inequality
clearly holds because d̃[s, t] corresponds to the length of an s-to-t path in a subgraph of G.
To prove the right side, let π be the shortest s-to-t path in G, and let µ be the lowest node
in T , such that all vertices of π lie in V (µ); we assume that µ is a non-leaf node (otherwise
we have already computed dG[s, t] exactly).

Although π is a path in the (not necessarily planar) graph G, not H, we show that it is
possible to re-route it to pass through a vertex on a separator path of µ without increasing
its length by much.

I Claim 3 (Detour through a separator vertex). There exists an s-to-t path π′ in G that (i)
passes through some vertex w on a separator path of µ, (ii) uses only vertices of V (µ) (except
maybe for w itself) and (iii) has length at most dG[s, t] + 2cε∆.

Proof. We assume that none of the vertices on π lie on a separator path of µ because
otherwise we can just set π′ = π. Let ν be the child of µ with s ∈ V (ν), let u be the last
vertex on π that lies in V (ν) (note that u 6= t, by definition of µ), and let v be the next
vertex after u thereon. By (I), there is a path πu,v from u to v in H of length at most
c · (the weight of uv), which is at most cε∆ by (III). Let w be the first vertex on πu,v that
lies outside of V (ν) (which exists since v is outside of V (ν)); then, from the fourth property
of T , we know that w must be on an (internal or external) separator path σ of µ. Thus, we
set π′ to be the path that goes from s to u along π, then from u to w along πu,v (which uses
only vertices in V (ν) as intermediates), then back from w to u along πu,v, and finally from
u to t along π. See Figure 1(a) (where σ is internal) and 1(b) (where σ is external). J

Next, we note how to further re-route π to pass through a portal.

I Claim 4 (Detour through a portal). There exists another s-to-t path π′′ in G that (i) passes
through a portal p on a separator path σ′ of µ′, where µ′ is some ancestor of µ, (ii) uses
only vertices of V (µ′), and (iii) has length at most dG[s, t] + (2c+ 2)ε∆.
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V (ν)

w

πv

V (µ)

σ
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πv

V (µ)

σ

π(u, v)

(b)

w

π′

σ′p

V (µ′)

s

t

(c)

Figure 1 Detour through a vertex of a separator path σ in Claim 3, where σ may be internal,
as in (a), or external, as in (b); detour through a portal in Claim 4 in (c).

Proof. Let w be as in Claim 3, and let µ′ be the lowest ancestor of µ, such that w ∈ V (µ′)

(notice that if w ∈ V (µ), σ = σ′). Then w must be on an internal separator path σ′ in µ′
(whose existence is guaranteed by the third property of T ). Let p be the portal on σ′ that
is closest to w, so the p-to-w distance on σ′ is at most O (ε∆). We set π′′ to be the path
the goes from s to w along π′, then from w to p along σ′ and back from p to w, and, finally,
from w to u along π′. See Figure 1(c). J

Let µ′ be as in Claim 4. It follows that δ̃[s, t] ≤ δ̃µ′ [s, t] ≤ d̃µ′ [s, p] + d̃µ′ [p, t] ≤ dG[s, t] +
O (ε∆).

I Theorem 5 (General Additive-Stretch Distance Oracle). Given a weighted graph of n
vertices and of diameter ∆ that satisfies Properties (I)–(III), we can construct for it, in
O ((1/ε)T (n) logn) time, a distance oracle of O (ε∆) additive stretch, O ((1/ε)n logn) space,
and O ((1/ε) logn) query time.

As we saw earlier, weighted unit-disk graphs satisfy Properties (I)-(III), thus we have
the following theorem.

I Corollary 6 (Additive-Stretch Distance Oracle in Unit-Disk Graphs). Given a set S of n
planar points, such that the weighted unit-disk graph of S has diameter ∆ ≥ 1/ε, we can
construct for the latter, a distance oracle of O (ε∆) additive stretch, O

(
(1/ε)3n log2 n

)
pre-

processing time, O ((1/ε)n logn) space, and O ((1/ε) logn) query time.

2.3 Applications
We now describe how to employ Corollary 6 to compute a (1 + ε)-approximation of the
diameter of a unit-disk graph and how to build a (1 + ε)-approximate distance oracle for it.

Approximate diameter. To approximate the diameter of a weighted unit-disk graph, we use
the following lemma, implied by Gao and Zhang’s WSPD-based technique [13, Corollary 5.2].

I Lemma 7 (Via Well-Separated Pair Decomposition). Given a set S of n planar points, we
can find a set of O

(
(1/ε)4n logn

)
pairs of them in O

(
(1/ε)4n logn

)
time, such that the

shortest-path distance between any two vertices in the weighted unit-disk graph of S can be
(1 + ε)-approximated by the shortest-path distance between one of these pairs, which can be
found in O (1) time.

SoCG 2018
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First we compute in O (n logn) time [23] the Euclidean diameter, ∆0, of S; if ∆0 ≥ 1/ε,
then ∆ ≥ 1/ε, and, to compute a (1 + ε)-approximation of ∆, we can query the oracle
of Corollary 6 of O (ε∆) additive stretch with all O

(
(1/ε)4n logn

)
pairs of Lemma 7 and

return the maximum; thus the approximation factor is 1 + O (ε). The total time required
for this case is O

(
((1/ε)4n logn · (1/ε) logn

)
.

If 1 < ∆0 < 1/ε, the problem is more straightforward because we can construct the
sparsified graph Ĝ from the proof of Lemma 2, which preserves distances approximately,
and then run a standard All-Pairs Shortest Paths (APSP) algorithm therein. Since Ĝ has
n̂ = O

(
(∆0/ε)2) = O

(
(1/ε)4) vertices and m̂ = O

(
(1/ε)2n̂

)
= O

(
(1/ε)6) edges, we need

O
(
n̂2 log n̂+ m̂n̂

)
= O

(
(1/ε)10) time for this case. Finally, if ∆0 < 1, the unit-disk graph

is a complete Euclidean graph, so we just return ∆0.

I Theorem 8 (Approximate Diameter). Given a set S of n planar points, we can compute,
in O

(
(1/ε)5n log2 n+ (1/ε)10) time, a (1+ε)-approximation of the diameter of the weighted

unit-disk graph of S.

Remark: Employing a WSPD is not essential here, as we could combine our techniques with
those of Weimann and Yuster for planar graphs [27], increasing, though, the ε-dependency
to 2O(1/ε).

Approximate distance oracles. To build a distance oracle of (1 + ε)-approximation factor
for a weighted unit-disk graph, we employ the oracle of Corollary 6 of O (ε∆) additive stretch
as a building block in a known technique called sparse neighborhood covers. We use sparse
neighborhood covers result of Busch et al. [3] for planar graphs, whose construction time
bound was given by Kawarabayashi et al. [18].

I Lemma 9 (Sparse neighborhood cover). Given a weighted planar graph H of n vertices and
a value r, we can construct, in O (n logn) time, a collection of subsets Vi of V , such that
(i) the diameter of the subgraph of H induced by each V is O (r), (ii) every vertex resides in
O (1) subsets, and (iii) for every vertex v, the set of all vertices at distance at most r from
v in H is contained in at least one of the Vi’s.

Let G be the weighted unit-disk graph of a set S of n planar points, and let H be
an O (1)-planar spanner of G. Every shortest path distance in G is upper bounded by
n, so we first apply the above lemma to H for each value of r ∈ {20, 21, . . . , 2logn}, thus
obtaining collections of subsets V (r)

i , and then build the distance oracle of Corollary 6 for
the weighted unit-disk graph of each V

(r)
i . The total preprocessing time and space over

all O (logn) choices of r is O
(
logn · (1/ε)3n log2 n

)
and O (logn · (1/ε)n logn), respectively.

Given s, t ∈ S, we consider each r and each subset V (r)
i that contains both s and t, query

the oracle for V (r)
i , and return the minimum. The total query time over all O (logn) choices

of r and O(1) choices of V (r)
i (Lemma 9(ii)) is O (logn · (1/ε) logn).

If dG[s, t] ≥ 1/ε, let r ≥ c/ε be such that dG[s, t] ∈ (r/2c, r/c]. Then, each vertex on
the shortest path from s to t in G is at distance at most cdG[s, t] ≤ r from s in H, so it is
contained in a common subset Vi(r), and we approximate dG[s, t] with an additive error of
O (εr) = O (εdG[s, t]), obtaining thus 1 +O (ε) approximation factor.

If 1 < dG[s, t] < 1/ε, we simply build the sparsified graph Ĝ from the proof of Lemma 2,
which preserves distances approximately, and, from every vertex, we pre-compute the dis-
tances to all grid cells at Euclidean distance at most 1/ε, by running Dijkstra’s algorithm
on a subgraph of Ĝ with n′ = O

(
1/ε)4) vertices and O

(
(1/ε)2n′

)
= O

(
(1/ε)6) edges,

in O
(
(1/ε)6 log(1/ε)

)
time. The total preprocessing time and space over all sources is
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O
(
(1/ε)6n log(1/ε)

)
and O

(
(1/ε)4n

)
, respectively. Finally, if δG[s, t] ≤ 1, the shortest-path

distance of s and t is their Euclidean distance. We do not know a priori which of the cases
we are in, so we try all of them and return the minimum distance found.

I Theorem 10 (Approximate Distance Oracle). Given a set S of n planar points, we can
construct a (1 + ε)-approximate distance oracle for its weighted unit-disk graph with
O
(
(1/ε)3n log3 n+ (1/ε)6n log(1/ε)

)
preprocessing time, O

(
(1/ε)n log2 n+ (1/ε)4n

)
space

and O
(
(1/ε) log2 n

)
query time.

To reduce the query time, we can combine the above method with Gao and Zhang’s
WSPD-based oracle [13, Section 5.1], which requires O (1) query time and O ((1/ε)n logn)
space. Its construction time is dominated by finding (1 + ε)-approximate shortest-path
distances for O

(
(1/ε)4n logn

)
pairs, however, we can compute these distances by querying

our oracle of Theorem 10 in O
(
(1/ε)4n logn · (1/ε) log2 n

)
total time.

I Corollary 11 (Approximate Distance Oracle with O (1) Query Time). Given a set S of n
planar points, we can construct a (1+ε)-approximate distance oracle for its weighted unit-disk
graph of O

(
(1/ε)5n log3 n+ (1/ε)6n log(1/ε)

)
preprocessing time, O

(
(1/ε)4n logn

)
space,

and O (1) query time.

Similarly, we can use the distance oracle of Theorem 10 to improve Gao and Zhang’s
results for other distance-related problems on weighted unit-disk graphs:

I Corollary 12 (Approximate Radius and Bichromatic Closest Pair). Given a set S of n
planar points, we can compute, in O

(
(1/ε)5n log3 n+ (1/ε)6n log(1/ε)

)
time, a (1 + ε)-

approximation of the radius of the weighted unit-disk graph of S or of the bichromatic closest
pair distance of two given subsets A,B ⊆ S therein.

Remarks:

For the sake of simplicity, we did not optimize the poly(1/ε, logn) factors.
Our distance oracle in Theorem 10 can be easily modified to report an approximate
shortest path, not just its distance, in additional time proportional to the number of
edges in the path: every time we find approximate shortest distances in a subgraph from
a portal, we also store its approximate shortest path tree.
The same approach gives (1 + O(ε))-approximation results for unweighted unit-disk
graphs, assuming that the diameter and the distances of the query vertices exceed Ω(1/ε).
Specifically, Lemma 7 can be modified for the unweighted case, but the error now has an
extra additive term of 4+O(ε) [13, Lemma 6.2], which can be ignored under our assump-
tion. Also, we need to replace the SSSP algorithm of Lemma 2 with the O (n logn)-time
exact SSSP algorithm by Cabello and Jejčič [6] or by Chan and Skrepetos [9].

3 Approximate apBLSP

In this section, we study the (1+ε)-approximate apBSLP problem. Given a set S of n planar
points, let G be its complete weighted Euclidean graph, let w1, w2, . . . , wN , where N =

(
n
2
)
,

be the weights of the edges of G in non-decreasing order, and let Gi be the subgraph of G
that contains only the edges of weight at most wi. We can assume that w1 ≥ 1; else, we
can impose that assumption by simply translating and rescaling S in linear time. We want
to preprocess S into a data structure, such that we can quickly answer (1 + ε)-approximate
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bounded-leg distance queries, i.e., given s, t ∈ S and a positive number L, compute a (1 + ε)-
approximation of dGi [s, t], where i is the largest integer with wi ≤ L. First, we briefly review
the previous methods of Bose et al. [2] and of Roditty and Segal [24], in Section 3.1, and
then describe our own approach, in Section 3.2.

3.1 Previous methods
Let s, t ∈ S, and let c(s, t) be the minimum index, such that s and t are connected in Gc(s,t).
Then, since each Gi is a subgraph of Gi+1, we have that dG[s, t] ≤ dGN−1 [s, t] ≤ · · · ≤
dGc(s,t) [s, t]. Moreover, the s-to-t shortest path in any Gi with i > c(s, t) must have an edge
of weight at least wc(s,t), so dG[s, t] ≥ wc(s,t); any shortest path has at most n − 1 edges,
thus dGc(s,t) [s, t] ≤ (n − 1)dG[s, t]. Therefore, as Roditty and Segal [24, Section 2] noticed,
we can compute and store, for each s, t ∈ S, a (1 + ε)-approximation of the s-to-t shortest
path distance in only O

(
log1+ε n

)
graphs, such that a bounded-leg distance query can be

answered with a binary search in O
(
log log1+ε n

)
time.

Specifically, for every s, t ∈ S and j ∈ {0, 1, . . . , dlog1+ε ne}, let Ij(s, t) be the set
of indices of the graphs Gi, such that (1 + ε)jδG[s, t] ≤ δGi [s, t] ≤ (1 + ε)j+1δG[s, t]. If
Ij(s, t) 6= ∅, we create two values mj(s, t) and `j(s, t), where the former is any index therein
and the latter is equal to wmj(s,t); else, mj(s, t) and `j(s, t) are undefined. The total space
required over all pairs of S is O

(
n2 log1+ε n

)
. Then, given a positive number L, we can

find the largest i among the mj(s, t)’s, such that wi ≤ L, with a binary search over the
`j(s, t)’s, in O

(
log log1+ε n

)
time, and return a (1 + ε)-approximation of the s-to-t shortest

path distance in Gi.
To compute a possible index for mj(s, t), for every s, t ∈ S and j ∈ {0, 1, . . . , dlog1+ε ne},

Roditty and Segal performed O
(
n2 log1+ε n

)
independent binary searches, each making

O (logn) (1 + ε)-approximate bounded-leg distance queries (i.e., a query to find a (1 + ε)-
approximation of the s-to-t shortest path distance in some graph Gi). Instead, we group the
queries for all s, t, j into O

(
logn · log1+ε n

)
rounds of n2 offline queries each, where “offline”

means that the queries in every round are given in advance.

I Lemma 13 (Framework for Approximate apBLSP). Given a set S of n planar points, we can
construct a data structure for the (1 + ε)-approximate apBLSP problem of O

(
(1/ε)n2 logn

)
space, O (log logn+ log(1/ε)) query, and O

(
Toffline(n, n2, 1 + ε) · (1/ε) log2 n

)
preprocessing

time, where Toffline(n′, q′, 1 + ε′) denotes the total time for answering q offline (1 + ε′)-
approximate bounded-leg distance queries for an n′-point set.

To address each round, Roddity and Segal’s method would imply constructing in near-
linear time a sparse (1 + ε)-spanner of every graph Gi and then running Dijkstra’s al-
gorithm therein to answer each query; thus a near-cubic bound would be obtained for
Toffline(n, n2, 1 + ε). Instead, we show that by employing our (1 + ε)-approximate distance
oracle of Corollary 11 for weighted unit-disk graphs as a subroutine, we can obtain a truly
subcubic bound on Toffline(n, n2, 1 + ε), as we next describe.

3.2 Improved method
We view the problem of answering, for each s, t ∈ S and j ∈ {0, 1, . . . , dlog1+ε ne}, n2 ap-
proximate offline bounded-leg distance queries as the problem of constructing and querying
the following offline semi-dynamic (actually insertion-only) distance oracle.

I Subproblem 1 (Semi-Dynamic Approximate Distance Oracles). Given an arbitrary graph of
n vertices with edge weights in [1,∞), we want to perform an offline sequence of q operations,
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each of which is either an edge insertion, or a query to compute a (1 + ε)-approximation of
the shortest-path distance between two vertices. Let Tdyn(n, q, 1+ε) be the complexity of this
problem.

We could reduce our problem to Subproblem 1 by naively inserting the O
(
n2) edges

of G in increasing order of weight to an initially empty graph and mix that sequence of
insertions with the given sequence of bounded-leg distance queries. Hence, we would have
that Toffline(n, n2, 1 + ε) = O

(
Tdyn(n, n2, 1 + ε)

)
.

Instead, we propose a better reduction that employs a simple periodic rebuilding trick.
First, we divide the sequence of the q edge insertions and queries into O (q/r) phases of at
most r operations each, where r is a parameter to be set later. At the beginning of each
phase, the current graph is a weighted unit-disk graph (after rescaling), so we can build
the (1 + ε)-approximate distance oracle of Corollary 11 in O

(
(1/ε)5n log3 n

)
time. Then, in

O
(
r2) total time, we query that oracle to approximate the shortest-path distances between

all pairs of vertices that are involved in the upcoming r operations (i.e., are endpoints of the
edges to be inserted, or belong to the pairs to be queried). We build the complete graph over
these at most 2r vertices, with the approximate shortest-path distances as edge weights.
Each phase can then be handled by r edge insertions/queries on this smaller graph in
O (Tdyn(2r, r, 1 + ε)) time. The resulting approximation factor is at most (1+ε)2 = 1+Θ(ε).
Thus, for q = n2, we get the following bound:

Toffline(n, n2, 1 + Θ(ε)) = O

(
n2

r
·
(
(1/ε)5n log3 n+ r2 + Tdyn(2r, r, 1 + ε)

))
. (1)

To solve Subproblem 1, we could do nothing during insertions and, in each query, re-run
Dijkstra’s algorithm from scratch. Then we would have that Tdyn(2r, r, 1 + ε) = O(r3) and,
by setting r = (1/ε)5/3n1/3 logn, Toffline(n, n2, 1 + Θ(ε)) would be truly subcubic, namely
O
(
(1/ε)10/3n8/3 log2 n

)
.

Actually, by using fast matrix multiplication and additional techniques, we can establish
a better bound on Toffline(n, n2, 1 + Θ(ε)). Our idea is to recursively divide phases into
subphases, as in the proof of the following lemma. Note that this lemma actually holds for
general graphs (although (semi-)dynamic shortest paths have been extensively studied in
the literature, we are unable to find a known specific result that we can directly invoke).

I Lemma 14 (A Semi-Dynamic Approximate Distance Oracle). We can solve Subproblem 1 in
Tdyn(2r, r, 1+Θ(ε)) = O

(
(1/ε)rω log r logW

)
total time, where ω is the matrix multiplication

exponent and W is an upper bound on the maximum (finite) shortest-path distances.

Proof. Let H be the input graph of 2r vertices, and let H ′ be the graph that results from
performing toH all edge insertions of the first r/2 operations. We run theO

(
(1/ε)rω logW

)
-

time (1+ε)-approximate APSP algorithm of Zwick [29] on H and H ′ and answer all distance
queries therein. Then, we construct two graphs H1 and H2 of r vertices each, where H1
(resp. H2) is the complete graph over all vertices that are involved in the first (resp. last) r/2
operations; we set each edge weight in H1 (resp. H2) to be a (1 + ε)-approximation of the
shortest-path distance of its endpoints in H (resp. H ′) (which we have already computed),
increasing thus the error by a 1 + ε factor. Finally, we recurse in H1 and H2.

The running time of our approach is Tdyn(2r, r, (1 + ε)i) ≤ 2Tdyn(r, r/2, (1 + ε)i+1) +
O
(
(1/ε)rω logW

)
, where, initially, and i = 1; thus, we have that Tdyn(2r, r, (1 + ε)) =

O
(
(1/ε)rω log r logW

)
. The approximation factor is (1 + ε)log r = 1 + Θ(ε log r), which can

be refined to 1 + ε, by resetting ε← ε/ log r. J
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Combining (1) with the above lemma gives

Toffline(n, n2, 1 + Θ(ε)) = O

(
n2

r

(
(1/ε)5n log3 n+ (1/ε)rω log r logW

))
.

Setting r = n1/ω yields Toffline(n, n2, 1 + Θ(ε)) = O
(
(1/ε)5n3−1/ω log3(nW )

)
, where W ≤

nW , and W is the spread of S.

I Theorem 15 (Approximate apBLSP). Given a set S of n planar points of spreadW , we can
construct a data structure for the (1 + ε)-approximate apBLSP problem of O

(
(1/ε)n2 logn

)
space, O (log logn+ log(1/ε)) query, and O

(
(1/ε)6n3−1/ω log5(nW )

)
preprocessing time.

The current best bound on the matrix multiplication exponent [26, 20] is ω < 2.373,
which gives a preprocessing time of O

(
(1/ε)6n2.579 log5(nW )

)
.

Remark. For the sake of simplicity, we did not optimize the poly(1/ε, log(nW )) factors.
Specifically, it might be possible to avoid the dependency on the spread W by using known
techniques, such as balanced quadtrees.
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