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Abstract

We answer a basic data structuring question (for example, raised by Dietz and Raman [1991]):
can van Emde Boas trees be made persistent, without changing their asymptotic query/update
time? We present a (partially) persistent data structure that supports predecessor search in a set of
integers in {1, . . . , U} under an arbitrary sequence of n insertions and deletions, with O(log logU)
expected query time and expected amortized update time, and O(n) space. The query bound is
optimal in U for linear-space structures and improves previous near-O((log logU)2) methods.

The same method solves a fundamental problem from computational geometry: point location
in orthogonal planar subdivisions (where edges are vertical or horizontal). We obtain the first
static data structure achieving O(log logU) worst-case query time and linear space. This result is
again optimal in U for linear-space structures and improves the previous O((log logU)2) method
by de Berg, Snoeyink, and van Kreveld [1995]. The same result also holds for higher-dimensional
subdivisions that are orthogonal binary space partitions, and for certain nonorthogonal planar
subdivisions such as triangulations without small angles. Many geometric applications follow,
including improved query times for orthogonal range reporting for dimensions ≥ 3 on the RAM.

Our key technique is an interesting new van-Emde-Boas–style recursion that alternates be-
tween two strategies, both quite simple.

1 Introduction

Van Emde Boas trees [60, 61, 62] are fundamental data structures that support predecessor searches

in O(log logU) time on the word RAM with O(n) space, when the n elements of the given set S

come from a bounded integer universe {1, . . . , U} (U ≥ n). In a predecessor search, we seek the

largest element in S which is smaller than a given value not necessarily in S. The word size w is

assumed to be at least logU so that each element fits in a word. The key assumption is not so

much about input elements being integers but that they have bounded precision, as in “real life”

(for example, floating-point numbers with w1-bit mantissa and w2-bit exponents can be mapped

to integers with U = O(2w1+w2) for the purpose of comparisons). In terms of U , the O(log logU)

time bound is known to be tight for predecessor search for any data structure with O(n polylogn)

space [11, 55]. Van Emde Boas trees can also be dynamized to support insertions and deletions in
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Figure 1: Left: The point location problem—or, where are we (the black dot)? Right: the vertical

decomposition of a set of horizontal line segments.

O(log logU) expected time with randomization. The importance of van Emde Boas trees is reflected,

for instance, by its inclusion in the latest edition of a popular textbook on algorithms [23].

In this paper, we address some basic questions about such trees. Very roughly put: is there a

persistent analogue of van Emde Boas trees? And is there a two-dimensional equivalent of van Emde

Boas trees?

Persistent predecessor search. Persistence has been a frequently studied topic in data structures

since the seminal papers by Sarnak and Tarjan [56] and Driscoll et al. [32]. A partially persistent

data structure is one that supports updates and allows queries to be made to past versions of the

data structure. In this paper we will not consider fully persistent data structures, which also allow

updates to be done to past versions, resulting in a tree of different versions. Despite the mildness of

the name, “partial” persistence is actually sufficient for many of the applications in computational

geometry, for instance.

The archetypal example of a persistent data structure is Sarnak and Tarjan’s, which maintains

a dynamic set S under n insertions and deletions in O(logn) time and supports predecessor search

in S at any previous time value in O(logn) time. Many other results on persistent data structures

have subsequently been published, for example, on union-find, deques, etc. [47].

Here, we consider the possibility of making van Emde Boas trees persistent, which remained

an open question. The underlying problem is the same as in the original paper by Sarnak and

Tarjan, except we work in a bounded universe. Known techniques can give around O((log logU)2)

query and update time, and the challenge is to obtain an O(log logU) bound. This problem was

explicitly mentioned, for instance, by Dietz and Raman [29] two decades ago (and might date back

even further).

We solve this open problem: we provide an optimal partially persistent O(n)-space data structure

that supports insertions and deletions in O(log logU) expected amortized time and predecessor search

at any previous time value in O(log logU) expected time.

Orthogonal planar point location. A closely related problem (in fact, the problem that initiates

this research) is orthogonal (or rectilinear) point location in 2-d, which can be viewed as a geometric

generalization of 1-d predecessor search: given a planar subdivision of size O(n) in which all the edges

are vertical or horizontal, build a data structure so that we can quickly find the region containing any

given query point. By constructing a vertical decomposition of the horizontal edges (see Figure 1),

the problem reduces to point location in a collection of O(n) interior-disjoint axis-aligned rectangles

in the plane. This in turn is equivalent to answering vertical ray shooting queries among O(n)
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horizontal line segments. By viewing the x-coordinate as time, we can immediately see that the

geometric problem is identical to (partially) persistent predecessor search in the offline case in which

all the updates are known in advance (or all queries occur after all updates).

Planar point location is one of the central problems in computational geometry. Many different

methods with O(logn) query time and O(n) space have been proposed in the literature [25, 53,

58]. On the word RAM, Chan and Pǎtraşcu [17] were the first to obtain sublogarithmic query

time O(min{
√
logU/ log logU, log n/ log log n}) with linear space for arbitrary, nonorthogonal planar

subdivisions with coordinates from {1, . . . , U}. For the orthogonal case, de Berg, van Kreveld, and

Snoeyink [26] have earlier obtained an O((log logU)2) query bound with linear space.

Our result immediately implies the first optimal O(n)-space data structure for orthogonal planar

point location achieving O(log logU) query time. Unlike in our result for persistent predecessor

search, we can make the query bound here worst-case rather than expected. We also get optimal

O(n) preprocessing time, assuming that the given subdivision is connected.

The (log log)2 barrier. There are actually two different approaches to obtaining the previous

O((log logU)2) bound for persistent predecessor search and orthogonal 2-d point location:

For orthogonal 2-d point location, one approach is to use a “two-level” data structure, in which

we build a van Emde Boas tree for the y-values, and nodes of the global tree store van Emde Boas

trees for x-values. De Berg et al. [26] followed this approach. More generally, any data structure,

abstracted in the form of an array, can be made persistent by adding an extra level of van Emde

Boas trees storing time values, with a log log factor slow-down; in fact, Dietz [28] showed how to

achieve full persistence in this setting. Driscoll et al. [32] described another general transformation

without the slow-down, but under a bounded fan-out assumption that does not hold for van Emde

Boas trees.

A second approach starts with the observation that O(log logU) query time is easy to achieve if

space or update time is not a consideration. For example, for orthogonal 2-d point location, the trivial

method of dividing into O(n) vertical slabs enables queries to be answered by a search in x followed by

a search in y, using total space O(n2); for persistent predecessor search, the trivial method of building

a new data structure after every update has O(n) update time. We can then apply known techniques

to lower space (or update time in the persistent problem), for example, via sampling, separators, or

exponential search trees, as described by Chan and Pǎtraşcu [17]. With a constant number of rounds

of reduction, the space usage can be brought down to O(n1+ε). However, to get below O(n polylogn)

space, O(log log n) rounds are needed. As a result, the query time becomes O(log log n log logU) ≤
O((log logU)2), as before. (It is not important to distinguish between log log n and log logU , since for

orthogonal point location at least, any query bound t(n,U) can be converted to O(log logU+t(n, n))

by a simple normalization trick sometimes called “rank space reduction” [39].)

A very small improvement is possible if we start with the data structure for predecessor search

by Beame and Fich [11], which for polynomial space has O(log logU/ log log logU) query time. This

gives an overall query bound of O(log log n log logU/ log log logU) (see Section 3.3).

Note that if we start with the other known predecessor-search bounds O(logw n) and

O(
√
logn/ log logn) attained by fusion trees and exponential search trees [9, 10, 11, 37, 55], the

repeated rounds of space reduction increase the query bound by only an additive log logn term,

rather than a log log n factor, because these functions grow sufficiently rapidly in n (see Section 3.3

for details). One can even avoid the log logn term for the O(logw n) bound by directly making fusion

trees persistent, as observed by Mihai Pǎtraşcu (personal communication, 2010), since a variant of
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the transformation by Driscoll et al. [32] remains applicable to trees with wO(1) fan-out. The van

Emde Boas bound is thus the chief remaining question concerning orthogonal point location and

persistent predecessor search.

Because the two approaches fail to give anything substantially better than O((log logU)2), our

O(log logU) result may come as a bit of surprise—the 2-d orthogonal point location problem has the

same complexity as in 1-d. Before, O(log logU) bounds were known in limited special cases only:

Dietz and Raman [29] considered persistent predecessor search in the insertion-only or deletion-

only case, with the further restriction U = n; Iacono and Langerman [45] studied orthogonal point

location among fat (hyper)rectangles; and a number of researchers [8, 14] investigated approximate

nearest neighbor search in constant dimensions, though this approximate problem turns out to be

directly reducible to 1-d [15].

Although many applications and variations of van Emde Boas trees have appeared in the litera-

ture, our log log result requires a truly new generalization. Still, our final solution to orthogonal 2-d

point location is simple, to the degree of being implementable, and is based on an unexpected syn-

ergy between two different recursive strategies (see Section 2). Our solution to persistent predecessor

search builds on these strategies further (see Section 3), but is more theoretical: it invokes fusion

trees or atomic heaps [37, 38] in one step, and requires additional new ideas concerning monotone

list labeling, possibly of independent interest.

Applications. Orthogonal planar point location is a very fundamental problem in computational

geometry, and our new result has numerous immediate consequences (see Section 4). For example,

we obtain the current-record upper bounds on the query time for orthogonal range reporting—a

standard problem studied since the dawn of computational geometry—among data structures with

O(n polylogn) space on the word RAM, for all constant dimensions d ≥ 3.

Some of the corollaries are of interest even to traditionalists not accustomed to sublogarithmic

word-RAM results. For example, we obtain the first data structures with O(logn) query time and

O(n polylogn) space, for rectangle containment queries in 2-d (for a set of possibly intersecting

rectangles, finding a rectangle contained in a given query rectangle) and vertical ray shooting queries

for a set of horizontal rectangles in 3-d. (Any word-RAM algorithm with t(n,U) query time can

be converted to a real-RAM algorithm with O(logn + t(n, n)) query time in a model where we

are permitted to inspect the input coordinates only through comparisons, in addition to standard

(log n)-bit RAM operations.)

Though important, the orthogonal case may seem a bit restrictive at first glance. However, our

result actually implies O(log logU) query time for point location in certain planar nonorthogonal

subdivisions, such as subdivisions with a constant number of different edge directions, or triangu-

lations satisfying a fatness assumption, which is reasonable in practice. We are also able to extend

our point location result to higher dimensions in the case of binary space partitions (BSPs), which

include k-d trees and quadtrees (possibly unbalanced) as special cases.

2 Orthogonal Planar Point Location

We first describe our technique for the orthogonal planar point location problem, which as mentioned

is equivalent to persistent predecessor search in the case of offline updates; the general case of online

updates will be handled in Section 3. We could have chosen to explain our algorithm entirely in the

persistent 1-d setting, but the 2-d setting has visual appeal and is particularly nice to work with
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Figure 2: The table T (“c”, “v”, and “h” stand for “covered”, “vertical”, and “horizontal” respec-

tively).

because of the underlying symmetry of the problem (with respect to x- vs. y-coordinates, i.e., time

vs. elements’ values).

We work with the following formulation of the problem: The input is a set S of n disjoint

axis-aligned rectangles with integer coordinates inside a rectangular range which, by translation, is

assumed to be [0,W )× [0, H). (Initially, W = H = U .) We want a data structure that can find the

rectangle in S containing a query point q, if the rectangle exists.

2.1 First idea: range reduction via grids/tables

We use recursion to solve the problem. Our first recursive strategy is based on a simple idea—build

a uniform grid. Although this may sound commonplace (grid-based approaches have been used in

some data structures for orthogonal range searching, e.g., [5]), the way we apply the idea to point

location is original, to the author’s knowledge.

Specifically, we use a grid with ⌈W/K⌉ columns and ⌈K/L⌉ rows for some parameters K and L.

Column i refers to the range [iK, (i+ 1)K)× [0, H), row j refers to [0,W )× [jL, (j + 1)L), and grid

cell (i, j) refers to [iK, (i+ 1)K)× [jL, (j + 1)L). We say that a line segment s cuts through a cell if

s intersects the cell but both endpoints of s are strictly outside the cell.

The data structure:

• Store a table T (see Figure 2), where for each grid cell (i, j),

– if the cell is contained in some rectangle s ∈ S, then T [i, j] = “covered by s”;

– else if some vertical edge in S cuts through the cell, then T [i, j] = “vertical”;

– else if some horizontal edge in S cuts through the cell, then T [i, j] = “horizontal”;

– else T [i, j] is set to either “horizontal” or “vertical” arbitrarily.

• For each column i, take the subset of all rectangles in S that have a vertex inside the column,

and recursively build a data structure for these rectangles clipped to the column.

• For each row j, take the subset of all rectangles in S that have a vertex inside the row, and

recursively build a data structure for these rectangles clipped to the row.
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Note that each rectangle is stored in at most 4 of these substructures (2 column and 2 row data

structures). We choose K = ⌈W/
√
n⌉ and L = ⌈H/

√
n⌉ so that the number of grid cells, and thus

the table size, are O(n).

The query algorithm: Given query point q = (x, y),

1. let i = ⌊x/K⌋, j = ⌊y/L⌋;

2. if T [i, j] = “covered by s”, then return s;

3. if T [i, j] = “vertical”, then recursively query the data structure for column i;

4. if T [i, j] = “horizontal”, then recursively query the data structure for row j.

Correctness is easy to see: for example, if T [i, j] = “vertical”, then no horizontal edges can cut

through the cell (i, j), by disjointness of the rectangles, so the rectangle containing q must have a

vertex inside column i.

The space and query time of the above data structure clearly satisfy the recurrences

S(n,W,H) ≤
∑

i

S(mi,
⌈
W/
√
n
⌉
, H) +

∑

j

S(nj ,W,
⌈
H/
√
n
⌉
) + O(n),

Q(n,W,H) ≤ max

{
max

i
Q(mi,

⌈
W/
√
n
⌉
, H), max

j
Q(nj ,W,

⌈
H/
√
n
⌉
)

}
+ O(1), (1)

for some values of mi and nj with
∑

imi +
∑

j nj ≤ 4n (where the number of terms is O(
√
n)).

Remarks: A more careful accounting could perhaps reduce the factor-4 blow-up in space at each

level of the recursion, but this will not matter at the end as revealed in Section 2.4 (besides, there

will be a similar blow-up in the strategy in Section 2.2 that is not as easy to avoid).

Initially, by normalization (“rank space reduction”), we can make W = H = n and the recursion

allows us to reduce one of W or H greatly, to
√
n, in just the first iteration. However, as n gets

small (relative to W and H), progress gets worse with the above recurrences. We could re-normalize

every so often, to close the gap from n to W and H, but each such re-normalization requires 1-d

predecessor search (van Emde Boas trees) which would cost an extra log log factor in the query time.

In the next subsection, we propose another strategy to bring W and H closer to n in just constant

time, which can be viewed as a generalization of one round of a van Emde Boas recursion.

2.2 Second idea: range reduction via hashing

We consider a different recursive strategy to reduce the range of the y-coordinates. Following van

Emde Boas, we could divide the y-range [0, H) into about
√
H rows each of height

√
H, build a “top”

data structure treating the nonempty rows as elements recursively, and a “bottom” data structure

for the elements within each nonempty row. However, this approach does not work for our problem,

because an element can “participate” in multiple rows (i.e., a rectangle can have its vertical edges

cutting through multiple rows). Our new idea is to use a single bottom data structure rather than

multiple ones, obtained via a “collapsing” operation. This, however, results in a recurrence that

deviates somewhat from van Emde Boas’.

Specifically, we use a grid with ⌈H/L⌉ rows for some parameter L, where row j refers to the

range [0,W )× [jL, (j + 1)L).

The data structure:
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Figure 3: The top and bottom data structures.

• Create a dictionary D storing the indices of all rows that contain vertices in S, i.e., D contains

⌊y/L⌋ for all y-coordinates y of the vertices of the rectangles. Sort D and record the rank f [z]

of each element z in D.

• “Round” each y-coordinate to its row index; in other words, map each rectangle [x1, x2)×[y1, y2)
in S to [x1, x2) × [⌊y1/L⌋, ⌊y2/L⌋). Recursively build a top data structure for these mapped

rectangles. (See Figure 3. Naturally, an identifier to the original rectangle is kept for each

mapped rectangle.)

• “Collapse” all rows that do not contain vertices; in other words, map each rectangle [x1, x2)×
[y1, y2) in S to [x1, x2)× [f [⌊y1/L⌋]L+(y1 mod L), f [⌊y2/L⌋]L+(y2 mod L)). Recursively build

a bottom data structure for these mapped rectangles. (See Figure 3.)

Note that the rectangular range in the top data structure has height ⌈H/L⌉, whereas the range in

the bottom structure has height at most 2nL. We choose L =
⌈√

H/n
⌉
so that the heights in both

structures are at most O(
√
nH).

The query algorithm: Given query point (x, y),

1. if ⌊y/L⌋ 6∈ D, then recursively query the top data structure for the point (x, ⌊y/L⌋);

2. if ⌊y/L⌋ ∈ D, then recursively query the bottom data structure for the point (x, f [⌊y/L⌋]L +

(y mod L)).

Correctness is easy to see. Note that membership in D (and lookup of f) takes O(1) time by perfect

hashing.

The space and query time of the above data structure clearly satisfy the following recurrences:

S(n,W,H) ≤ 2S(n,W,O(
√
nH)) +O(n),

Q(n,W,H) ≤ Q(n,W,O(
√
nH)) +O(1). (2)

By a symmetric approach for x-coordinates, we can obtain the following alternate recurrences:

S(n,W,H) ≤ 2S(n,O(
√
nW ), H) +O(n),

Q(n,W,H) ≤ Q(n,O(
√
nW ), H) +O(1). (3)
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Remarks: These recursions can lower W and H very rapidly, requiring only log log iterations to

converge. However, unlike in the original van Emde Boas recursion, W and H converge to O(n), not

O(1), so this strategy by itself would not solve the problem.

2.3 Combining

Although neither of the two recursive strategies performs well enough alone, they complement each

other surprisingly perfectly—the first makes good progress when n is large, whereas the second makes

good progress when n is small (relative to W or H). A simple combination of the two turns out to

be sufficient to yield log log query time.

Several ways to combine are viable. We suggest the following:

• if n >
√
W,
√
H, adopt the first strategy, using (1);

• if n ≤
√
H, adopt the second strategy, using (2);

• if n ≤
√
W , adopt the second strategy, using (3).

The choice of thresholds comes from balancing the expressions W/
√
n against

√
nW , and H/

√
n

against
√
nH. In each of these cases, we get

S(n,W,H) ≤
∑

i

S(mi, O(W 3/4), H) +
∑

j

S(nj ,W,O(H3/4)) + O(n),

Q(n,W,H) ≤ max

{
max

i
Q(mi, O(W 3/4), H), max

j
Q(nj ,W,O(H3/4))

}
+ O(1), (4)

for some values of mi and nj with
∑

imi+
∑

j nj ≤ 4n (in the case n ≤
√
H or n ≤

√
W , the number

of terms degenerates to 2, and the constant factor 4 reduces to 2).

The base case, where W or H drops below a constant, can be handled directly by a 1-d

data structure. Solving the recurrences, we immediately obtain Q(n,U, U) ≤ O(log logU), and

S(n,U, U) ≤ O(42 log4/3 logUn) ≤ O(n log10 U).

2.4 Last step: lowering space via separators

It remains to eliminate the extra polylogarithmic factor from the space bound. This step is standard

(e.g., in 1-d van Emde Boas trees, it is analogous to the final transformation from “x-fast” to “y-

fast tries” [62]). Chan and Pǎtraşcu [17] have described three general approaches to lowering space

for planar point location: random sampling, planar graph separators, and an approach based on

1-d exponential search trees. De Berg et al. [26] have specifically employed the graph separator

approach for orthogonal planar point location. For the sake of completeness, we quickly re-sketch

the separator-based approach, which has the theoretical advantage of achieving good deterministic

preprocessing time (the sampling-based approach makes for a more practical option and will be

discussed later in Section 3.3).

It is more convenient now to consider the point location problem in the vertical decomposition

V of a given subdivision. (Each cell in V has at most 4 sides.) By applying a multiple-components

version of the planar separator theorem [36] to the dual of V , there exist r separator cells of V whose

removal leaves connected components each with at most O((n/r)2) cells.1 Build a point-location

1Equivalently, O(
√

kn) separator cells suffice to yield components of size O(n/k).
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data structure for the subdivision induced by the separator cells, with S0(r) space and Q0(r) query

time. For each component γi with ni cells, build a point-location data structure, with S1(ni) space

and Q1(ni) query time. This leads to a data structure with the following space and query bound:

S(n) ≤ S0(r) +
∑

i

S1(ni) +O(n),

Q(n) ≤ Q0(r) + max
i

Q1(ni) +O(1), (5)

where
∑

i ni ≤ n and maxi ni ≤ O((n/r)2).

We can use our data structure in Section 2.3 with S0(r) = O(r log10 U) and Q0(r) = O(log logU),

along with a classical point-location data structure with S1(ni) = O(ni) and Q1(ni) = O(log ni).

Choosing r =
⌊
n/ log10 U

⌋
, we obtain a solution with S(n) = O(n) space, and Q(n) = O(log logU)

query time.

2.5 Preprocessing time

We analyze the time required to build the data structure.

In Sections 2.1 and 2.2, it can be checked that the preprocessing time satisfies the same recurrence

as space, up to at most a logarithmic factor increase: In Section 2.1, we can easily set all the “covered”

entries of the table T in O(n) time (since the rectangles are disjoint and there are O(n) table entries).

To set the “vertical” entries, we can take each column i and find the “interval” of grid cells that

are cut through by each vertical edge inside column i, and compute the union of these intervals.

The total cost of solving these union-of-intervals subproblems is at most O(n logn) (or O(n) if one

is careful). The “horizontal” entries can be set similarly. In Section 2.2, hashing requires linear

expected preprocessing time or O(n logn) deterministic time [41].

The data structure in Section 2.3 therefore has preprocessing time T0(n) ≤ O(n log11 U). In

Section 2.4, the separator can be constructed in linear time [4, 40]. The classical point-location data

structure by Kirkpatrick [48] has T1(ni) = O(ni) preprocessing time. The total preprocessing time

is

T (n) ≤ T0(r) +
∑

i

T1(ni) +O(n). (6)

Resetting r =
⌊
n/ log11 U

⌋
gives T (n) = O(n).

We have assumed that a vertical decomposition of the subdivision is given. If not, it can be

constructed in linear time by an algorithm of Chazelle [21] if the subdivision is connected, and

O(n log logU) time otherwise by a sweep-line algorithm using 1-d dynamic van Emde Boas trees.

The O(n log logU) term can be reduced to O(n log logn), by using a word-RAM sorting algorithm [42]

first to normalize coordinates to {1, . . . , n}.

Theorem 2.1 Given an orthogonal subdivision of size n whose coordinates are from {1, . . . , U}, we
can build an O(n)-space data structure so that point location queries can be answered in O(log logU)

time. The preprocessing time is O(n) if the subdivision is connected, and O(n log log n) otherwise.

Remarks: Our query algorithm requires only standard word operations, namely, additions, multi-

plications, and shifts. In fact, we can bypass multiplications in the first strategy by rounding the

parameters K and L to make them powers of 2, although we cannot avoid non-AC0 operations in

the second strategy due to hashing.
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As a function of both n and w (taking U = 2w), the query bound in Theorem 2.1 can be rewritten

more precisely as

O

(
min

{
logw

log(logw/ log logn)
, logw n

})
,

to match the known optimal bound by Pǎtraşcu and Thorup [55] for 1-d predecessor search with

O(n) space. The first term is always at least as large as log log n; we can first normalize coordinates

by the known 1-d predecessor search result before applying Theorem 2.1. The second term follows

from a persistent version of fusion trees, as noted in the Introduction.

3 Persistent Predecessor Search

In this section, we extend our method to solve the (partially) persistent predecessor search problem.

Following Section 2, our description will be in notation and terminology from the 2-d geometric

setting. It is not difficult to see that persistent 1-d predecessor search can be reduced to the following

problem: We want a data structure to maintain a set S of at most n disjoint rectangles with integer

coordinates from the range [0,W ) × ([0, H) ∪ {∞}). In a query, we want to find the rectangle in S

containing a given point, just as before. In addition, the data structure should support the following

restricted update operations:

• open: insert a rectangle s of the form [t,∞)× [y1, y2) to S, under the assumption that t is at

least as large as all finite x-coordinates currently in S;

• close: replace a rectangle s of the form [t′,∞)× [y1, y2) with [t′, t]× [y1, y2) in S, again under

the assumption that t is at least as large as all finite x-coordinates currently in S.

Note that over the entire sequence of open/close operations, the value of t must be monotone in-

creasing and thus can be thought of as time. Let t∗ denote the current time, i.e., the value of t from

the most recent update operation in S.

To see how persistent 1-d predecessor search reduces to the above, when an element y is inserted

(resp. deleted), we can use a standard (ephemeral) dynamic van Emde Boas tree to find its current

predecessor y− and successor y+ in O(log logU) time, and then close (resp. open) a rectangle with

y-range [y−, y+) and open (resp. close) two rectangles with y-ranges [y−, y) and [y, y+) at current

time. A predecessor search in the past reduces to point location among these rectangles. In the rest

of the section, we will thus avoid talking about persistence and instead solve the geometric problem

to support opening and closing rectangles.

We assume that n is known in advance, but this assumption can be eliminated by a standard

doubling trick: when the number of rectangles exceeds n, we double n and rebuild the data structure

by re-processing the entire update sequence from scratch. The total update time increases by a

constant factor: more precisely, if the original total update time is T (n), the new total update time

is O(
∑

i T (ni)) for some ni’s with
∑

i ni = O(n) by a geometric series.

3.1 First idea, modified

The grid strategy as described in Section 2.1 does not directly support open/close operations on-line.

One issue lies in the column data structures—when t∗ passes through iK, we do not know in advance

which rectangles will be closed with their right vertical edges in column i. We change the definition

of column data structures, which in turn leads to a complete change in the definition of the table:
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• The data structure for column i now stores only the rectangles in S whose left vertical edges

lie in the column. (The row data structures remain the same.)

• The table T now stores two pieces of information per entry. For each cell (i, j) with iK ≤ t∗,

– let T [i, j].s be the rectangle that contains the cell’s left side, if such a rectangle exists;

– if some horizontal edge in S cuts through the cell, then set T [i, j].x =∞;

– else set T [i, j].x to be the largest x-coordinate among the right endpoints of the horizontal

edges in S that intersect the cell’s left side (−∞ if no such edge exists).

Here is the modified query algorithm: given point q = (x, y),

1. reset x← min{x, t∗} and let i = ⌊x/K⌋, j = ⌊y/L⌋;

2. if q is inside T [i, j].s, then return T [i, j].s;

3. if x ≤ T [i, j].x, then recursively query the data structure for row j;

4. if x > T [i, j].x, then recursively query the data structure for column i.

To show correctness of the algorithm, let s be the rectangle containing q. Suppose s does not contain

the left side of cell (i, j). If x ≤ T [i, j].x, then the left vertical edge of s cannot cut through the cell,

by disjointness of the rectangles, so s must have a horizontal edge inside row j. If x > T [i, j].x, then

the horizontal edges of s cannot intersect the left side of the cell, by maximality in the definition of

T [i, j].x, so s must have its left vertical edge inside column i.

We now explain how the above data structure can be maintained under open and close operations.

Opening/closing a rectangle in S requires recursively opening/closing it in at most 1 column and 2

row data structures. In addition, the table can be maintained as follows:

Consider the first moment when t∗ passes through iK. We can compute T [i, j].s at that time, for

example, in O(log n) time for each j by a standard binary search tree. (The value of T [i, j].s does

not change afterwards.) Create a counter C[i, j], defined as the number of horizontal edges in S that

cut through cell (i, j). We can compute the value of C[i, j] at that time, again in O(log n) time for

each j by a binary search tree. If C[i, j] is initially nonzero, then initialize T [i, j].x to ∞; otherwise,

set T [i, j].x = −∞.

Each time we close a rectangle, at most 2 counters may need to be decremented. At the first

moment when C[i, j] drops to 0, set T [i, j].x to current time t∗. (The value of T [i, j].x will not be

changed again.)

Thus, we can bound the total update time by the same recurrence as space in (1), except for

at most a logarithmic factor increase. Note that we do not know the values of the mi’s and nj ’s in

advance, but can apply the doubling trick, which still guarantees that
∑

imi +
∑

j nj ≤ O(n) in the

recurrence.

3.2 Second idea, with monotone list labeling

The strategy from Section 2.2 also has difficulties in supporting the open operation. Although we

can insert to the dictionary D by hashing, the ranks f [·] of many elements in D can change in a

single update.
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Fortunately, we do not require f [·] to be the exact ranks. The algorithm is correct so long as f

is a monotone labeling , i.e., for every y1, y2 ∈ D with y1 < y2, f [y1] < f [y2] at all times. Monotone

list labeling is a well-studied problem. For example, there are simple algorithms [12, 27, 30, 46]

that can maintain a monotone labeling of D, under insertions to D, where the labels are integers

bounded by nO(1), and each insertion requires only O(logn) amortized number of label changes.

(The nO(1) bound can be reduced to n1+ε for any fixed ε > 0; it can even be improved to O(n) by

using more complicated algorithms, if the amortized number of label changes increases to O(log2 n).)

Monotone list labeling has been used before in (fully) persistent data structures, e.g., in Dietz’s

paper [28] (though there we label time values, i.e., x-coordinates, but here we label elements’ values,

i.e., y-coordinates).

Unfortunately, amortized bounds on the number of label changes are not adequate for our

application—we need a worst-case bound on the number of label changes per element (not per

insertion), because during a query, we need to perform predecessor search over the time values at

which an element changes labels. Previous algorithms do not seem directly applicable. The author

can think of a simple monotone labeling algorithm that guarantees each element changes labels at

most O(logn) times, using labels bounded by nO(logn), but this bound is too big.

Fortunately, we observe that a relaxed variant of the monotone list labeling problem is sufficient

for our purposes. Here, we are allowed to use multiple (but a small number of) monotone labelings,

and for each element y, we require that y changes labels a small number of times in just one of the

labelings, within each of a certain set of time periods. More precisely:

Lemma 3.1 For a multiset D that undergoes n insertions, we can maintain ℓ = O(logn) monotone

labelings f1, . . . , fℓ : D → {1, . . . , nc} for some constant c, as well as a mapping χ : D → {1, . . . , ℓ},
in O(n log2 n) total time, such that

(a) the total number of label changes in each fi is O(n logn);

(b) for each y ∈ D, the number of changes to χ[y] is O(logn), and the number of changes to fi[y]

during the time period when χ[y] = i is O(logn).

The lemma will be proved later in Section 3.4, but let us clarify the meaning of the lemma in the

case of multisets. In the definition of a monotone labeling f , we require that for any two copies y1, y2
of the same element, f [y1] = f [y2]. In (a) above, multiple copies of an element contribute multiple

times to the total (i.e., multiplicities act as weights).

We now apply the above lemma to modify our data structure from Section 2.2. First, D is now a

multiset, where each occurrence of a y-coordinate y in S induces a new copy of ⌊y/L⌋ in D. We now

use ℓ = O(logn) bottom data structures, one for each fi. For each rectangle [x1,∞)× [y1, y2) in S,

for each i ∈ {1, . . . , ℓ}, each time fi[⌊y1/L⌋] or fi[⌊y2/L⌋] changes, we close [x1,∞)× [fi[⌊y1/L⌋]L+

(y1 mod L), fi[⌊y2/L⌋]L+(y2 mod L)) in the i-th bottom data structure at current time t∗, and open

[t∗,∞)× [fi[⌊y1/L⌋]L+ (y1 mod L), fi[⌊y2/L⌋]L+ (y2 mod L)) with the new fi value.

Opening/closing a rectangle in S requires recursively opening/closing a rectangle in the top data

structure and in the ℓ = O(logn) bottom data structures. By Lemma 3.1(a), the total number of

open/close operations in each bottom data structure is O(n logn).

Below is the new query algorithm: given point (x, y),

1. if ⌊y/L⌋ 6∈ D, then recursively query the top data structure for the point (x, ⌊y/L⌋);
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2. if ⌊y/L⌋ ∈ D, then let i be the value of χ[⌊y/L⌋] at time x, let j be the value of fi[⌊y/L⌋] at
time x, and recursively query the i-th bottom data structure for the point (x, jL+(y mod L)).

Membership in D can be decided in O(1) time by dynamic perfect hashing [31]; each update in

D takes O(1) expected amortized time. By Lemma 3.1(b), we can compute i and j in line 2 by

performing predecessor search over at most n′ = O(logn) time values. This takes O(1 + logw n′) =

O(1) time using fusion trees [37]. These trees can be updated naively in (n′)O(1) = O(logO(1) n) time

per change in χ and fi (the update time can be reduced to O(1) for n′ = O(logn) if we use atomic

heaps [38]).

Replacing (2), the recurrences for space and query time become

S(n,W,H) ≤ O(logn)S(O(n log n),W,O(
√
ncH)) +O(n log2 n),

Q(n,W,H) ≤ Q(O(n logn),W,O(
√
ncH)) +O(1). (7)

The total expected update time obeys the same recurrence as space, up to polylogarithmic factors.

The alternate recurrences (3) do not require modification: The elements of D here are x-values,

and they are already inserted in monotone increasing order, so ranks do not need to be changed.

Opening/closing a rectangle in S requires recursively open/closing a rectangle in the top data struc-

ture and the (single) bottom data structure.

In Section 2.3, we can use the first strategy when n > W 1/(c+1), H1/(c+1), and the second strategy

otherwise. We get a recurrence similar to (4) with 3/4 changed to 1− 1/(2(c+1)), but now
∑

imi+∑
i nj ≤ O(n log2 n) (because of (7)). Solving the recurrences, we obtain the same query time

O(log logU) but with space and total expected update time O(n(log n)O(log logU)).

3.3 Last step, via sampling

It remains to lower the space and update time bounds. The separator-based approach from Sec-

tion 2.4 does not adapt well with on-line updates, and we decide to switch to the sampling-based

approach, which is the simplest:

It is more convenient now to consider the point location problem in the vertical decomposition

V(S) of a set S of at most n horizontal line segments. We want a data structure to support the

open/close operations of segments, defined analogously as in the our previous definition of open-

ing/closing of rectangles (think of segments as degenerate rectangles).

Take a random sample R ⊂ S by “Bernoulli sampling”, i.e., put each segment of S into the set R

independently with probability r/(2n) for some parameter r. Build a data structure that supports

point location in V(R) and open/close operations in R, with T0(r) total (expected) update time,

S0(r) space, and Q0(r) (expected) query time. For each cell γi in V(R), let the conflict list Lγi be

the subset of all segments in S that intersect γi, let ni be the maximum size of Lγi , and build a data

structure that supports point location in V(Lγi) and open/close operations in Lγi , with T1(ni) total

update time, S1(ni) space, and Q1(ni) query time.

By a standard analysis of Clarkson and Shor [22] (modified for Bernoulli sampling),
∑

i ni ≤ O(n)

and maxi ni ≤ O((n/r) log r) with probability exceeding a positive constant arbitrarily close to 1. If

any of these conditions fails, or if |R| > r, we rebuild from scratch; the expected number of trials is

O(1).

With this approach, we can get the same space and (expected) query bound as in (5):

S(n) ≤ S0(r) +
∑

i

S1(ni) +O(n),
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Q(n) ≤ Q0(r) + max
i

Q1(ni) +O(1), (8)

where now
∑

i ni ≤ O(n) and maxi ni ≤ O((n/r) log r). (Note that we do not know the exact values

of the ni’s in advance, but can again apply the doubling trick.)

Consider an open (resp. close) operation of a segment s in S. If s 6∈ R, this operation requires

opening (resp. closing) s in the conflict list Lγi of one cell γi, which can be found by a point location

query in V(R). On the other hand, if s ∈ R, this operation requires not only opening (resp. closing)

s in R, but also changing the vertical decomposition V(R), namely, closing 1 cell and opening 2 cells

(resp. closing 2 cells and opening 1 new cell) in V(R). The initial conflict list of the newly opened

cells can be generated by scanning through the conflict list of the closed cells; the total cost of these

scans over time is O(
∑

i ni) = O(n). We open the segments in the new conflict lists for the new cells.

Replacing (6), the total expected update time becomes

T (n) ≤ T0(r) +
∑

i

T1(ni) +O(nQ0(r)). (9)

To illustrate the power of the above approach, we first show how to obtain bounds analogous

to those of 1-d (ephemeral) exponential search trees [9, 10]. We can start with a naive method

which stores r static predecessor search structures [11, 37, 55], to get T0(r), S0(r) = rO(1), and

Q0(r) = O(min{log logU/ log log logU, 1 + logw r,
√
log r/ log log r}). By recursion, we can replace

T1(ni), S1(ni), and Q1(ni) with T (ni), S(ni), and Q(ni). Choosing r = nε for a sufficiently small

constant ε > 0, we obtain a recurrence with O(log logn) levels, yielding T (n), S(n) = O(n logO(1) n),

and Q(n) = O(t(n,U)) where

t(n,U) := min

{
log logn log logU

log log logU
, log log n+ logw n,

√
log n

log logn

}
.

We can reduce space and update time further by bootstrapping. This time, we set T0(r), S0(r) =

O(r logO(1) r) and Q0(r) = O(t(r, U)), and use a traditional 1-d persistent predecessor search data

structure to get T1(ni) = O(ni logni), S1(ni) = O(ni), and Q1(ni) = O(logni). Choosing r =

n/ logc
′

n for a sufficiently large constant c′ gives T (n) = O(n t(n,U)), S(n) = O(n), and Q(n) =

O(t(n,U)).

Now, we can demonstrate how to reduce the space and update time of our data structure from

the previous subsection. We set T0(r), S0(r) = O(r(log r)O(log logU)) and Q0(r) = O(log logU), and

T1(ni) = O(nit(ni, U)), S1(ni) = O(ni) and Q1(ni) = O(t(ni, U)). Choosing r =
⌊
n/(log n)c

′′ log logU
⌋

for a sufficiently large constant c′′, and noting that for ni ≤ (log n)O(log logU), t(ni, U) ≤ o(log logU),

we obtain our final solution with T (n) = O(n log logU), S(n) = O(n), and Q(n) = O(log logU).

Theorem 3.2 We can build a partially persistent data structure with O(n) space to maintain a set

of integers in {1, . . . , U} under n updates in O(log logU) amortized expected time, so that predecessor

search can be performed in O(log logU) expected time.

3.4 Proof of the monotone labeling lemma

We still need to prove Lemma 3.1. Our proof below uses a standard monotone labeling algorithm as

a black box. We proceed in three steps, the first of which is an extension of the standard labeling

result to the multiset (i.e., weighted) setting:
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Lemma 3.3 For a multiset D that undergoes n insertions, we can maintain a monotone labeling

f : D → {1, . . . , nc} for some constant c, in O(n logn) total time, such that the total number of label

changes is O(n logn).

Proof: Apply one of the known monotone labeling algorithms [12, 27, 30, 46] to a set D̂ containing

D, where the copies of an element in D are treated as distinct elements in D̂. We can arbitrarily

totally ordered the different copies of an element. Let f̂ be the resulting labeling for D̂, which

undergoes O(n logn) label changes.

We cannot use f̂ directly, because our definition of monotone labeling requires different copies of

the same element be mapped to the same label. We overcome this problem as follows. Let y1, . . . , yh
denote all current copies of an element y, in order. We maintain the invariant that f [y1] = · · · = f [yh]

lies between f̂ [y1] and f̂ [yh]; this guarantees monotonicity of f . At the moment that the invariant

is violated, we restore it by resetting f [y1] = · · · = f [yh] to the current value of f̂ [y⌈h/2⌉]: denote the

value by z. This requires h label changes for f , but ensures that the invariant will not be violated

until at least ⌈h/2⌉ label changes in f̂ [y1], . . . , f̂ [yh]: for f̂ [y1] to go above z (resp. f̂ [yh] to go below

z), f̂ [y1], . . . , f̂ [y⌈h/2⌉] have to go above z (resp. f̂ [y⌈h/2⌉], . . . , f̂ [yh] have to go below z). Thus, the

total number of label changes in f is at most a constant times the total number of label changes

in f̂ . 2

Lemma 3.4 For a multiset D that undergoes n insertions and a subset A ⊆ D that undergoes at

most n′ insertions, we can maintain a monotone labeling f : D → {1, . . . , nc} for some constant c,

in O(n logn) total time, such that the total number of label changes in D is O(n logn), and the total

number of label changes in A is O(n′ log n).

Proof: We just apply Lemma 3.3 to a multiset D̃ which contains D plus ⌈n/n′⌉ copies of each

element in A. The multiset D̃ undergoes O(n+ (n/n′)n′) = O(n) insertions. Since the total number

of label changes in D̃ is O(n logn), the total number of label changes in A is O(n log n
n/n′ ) = O(n′ logn).

2

Proof of Lemma 3.1: We maintain ℓ = ⌊log2 n⌋+ 1 sets A1 ⊇ A2 ⊇ · · · ⊇ Aℓ, where each Ai will

undergo insertions only and have at most n/2i−1 elements. We apply Lemma 3.4 to D and Ai to

maintain a monotone labeling fi.

The sets A1, . . . , Ak are formed as follows. When we insert y to D, we insert it to A1 (if it is not

in A1) and set χ[y] = 1. For each y ∈ Ai, at the first moment that fi[y] changes more than c′ logn

times for a sufficiently large constant c′, we insert y to Ai+1 and set χ[y] = i+ 1 (we do not remove

y from Ai and fi[y] can continue to change).

Assume inductively that |Ai| ≤ n/2i−1. Since the total number of changes to fi[y] over all y ∈ Ai

is at most c0(n/2
i−1) log n for some absolute constant c0, the number of elements y ∈ Ai that changes

more than c′ log n is at most c0(n/2i−1) logn
c′ logn ≤ n/2i by choosing c′ = 2c0. So, indeed |Ai+1| ≤ n/2i.

Properties (a) and (b) follow immediately. 2

4 Applications and Extensions

4.1 Immediate consequences

Orthogonal 2-d point location has many applications. We briefly mention some of them below. None

of the geometric applications requires Section 3.
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By Afshani’s work [1] on dominance and orthogonal range reporting, which improved on Nekrich’s

earlier work [50], Theorem 2.1 immediately implies:

Corollary 4.1 For a set of n points in {1, . . . , U}d for a constant d, we can build a data structure

for dominance reporting (finding all points inside a query orthant) with

• O(n) space and O(log logU + k) query time for d = 3;

• O(n logd−3+ε n) space and O((logn/ log logn)d−3 log logn+ k) query time for d ≥ 4.

We can build a data structure for orthogonal range reporting (finding all points inside a query axis-

aligned box) with

• O(n log3 n) space and O(log logU + k) query time for d = 3;

• O(n logd+ε n) space and O((log n/ log log n)d−3 log log n+ k) query time for d ≥ 4.

Here, ε > 0 is an arbitrarily small constant, and k denotes the output size of a query (we can set

k = 1 for deciding whether the range is empty or for reporting one element in the range).

These improve previous query bounds by a log log factor and are the best query bounds known

among data structures with O(n polylogn) space on the RAM (results stated in Afshani, Arge, and

Larsen’s recent papers [2, 3] are for the pointer machine model or I/O model). Our query bound for

the d = 4 case—O(logn+ k)—looks especially attractive and is optimal in a comparison model that

permits (log n)-bit RAM operations (although on the word RAM there remains a small gap from

Pǎtraşcu’s lower bound for 4-d orthogonal range reporting, with Ω(log n/ log log n) query time for

O(n polylogn) space [54]).

For orthogonal range reporting, the polylogarithmic factors in the space bound stated in Corol-

lary 4.1 are not the best possible. See the paper [16] for the latest development.

As one application of Corollary 4.1, we can build an O(n log1+ε n)-space data structure for n

(possibly intersecting) rectangles in 2-d, so that all rectangles contained inside a query rectangle can

be reported in O(logn + k) time. This follows by mapping each rectangle to a point in 4-d and

reducing to 4-d dominance reporting.

Below are some further implications of Theorem 2.1 based on observations from de Berg, van

Kreveld, and Snoeyink’s work [26]:

Corollary 4.2 Assume that input coordinates are from {1, . . . , U}.

(a) Given n horizontal line segments in the plane, we can build an O(n)-space data structure so that

the first k segments hit by a query vertical ray can be found (in sorted order) in O(log logU+k)

time.

(b) Given a 3-d orthogonal subdivision consisting n interior-disjoint boxes covering the entire space,

we can build an O(n log logU)-space data structure so that point location queries can be an-

swered in O(log logU + (log log n)2) time.

(c) Given a planar subdivision where each edge is parallel to one of a constant number of fixed

directions, we can build an O(n)-space data structure so that point location queries can be

answered in O(log logU) time.
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(d) Given n interior-disjoint fat triangles where all angles are greater than a positive constant,

we can build an O(n)-space data structure so that point location queries can be answered in

O(log logU) time.

(e) Given n horizontal axis-aligned rectangles in 3-d, we can build an O(n log1+ε n)-space data

structure so that vertical ray shooting queries can be answered in O(logn) time.

(f) Given n horizontal fat triangles in 3-d, we can build an O(n log1+ε n)-space data structure so

that vertical ray shooting queries can be answered in O(logn) time.

Part (a) follows from the hive graph by Chazelle [20]; the 1-d persistent analog will be addressed

later in Section 4.3.

In (b), de Berg et al. obtained O((log logU)3) query time in 3-d using the 2-d case as a subroutine;

our improvement thus gives O((log logU)2), which can be rewritten as O(log logU + (log log n)2) by

normalization. It is important that the boxes fill the entire space. A special case where the query

time can be improved to O(log logU) will be discussed in Section 4.2.

Part (c) follows by constructing the vertical decomposition of the edges of each direction sep-

arately, using a shear transformation. Part (d) follows from (c). Note that the query bound is

much better than the bound by Chan and Pǎtraşcu [17] O(min{
√
logU/ log logU, log n/ log log n})

for general planar point location. The triangle fatness assumption is common in the literature.

For (e), de Berg et al. stated an O(n logn) space bound and an O(logn(log logn)2) query bound

by using a segment tree on top of orthogonal 2-d point location. Our improvement eliminates one

log log factor. To make the query bound even more attractive, we can trade off the other log log

factor if we increase space by logε n, using a higher-degree segment tree. Part (f) follows similarly

from another method by de Berg et al. [26].

On another front, Nekrich [51] recently considered orthogonal planar point location in the I/O

model and gave a structure with O(n) space and O((log2 logB U)2) query cost. It is straightforward

to adapt our method to get an improved O(log2 logB U) query cost. In fact, our method works in

the cache-oblivious model (in Section 2.4, we can use a bound Q1(n) = O(logB n) from [13]).

4.2 Point location in higher-dimensional orthogonal BSPs

We now show that our planar point location method from Section 2 can be extended to higher

dimensions in one important special case: when the subdivision is an orthogonal binary space partition

(or orthogonal BSP , for short). Given a root box, an orthogonal BSP is defined as a subdivision

formed by cutting the root box by an axis-aligned hyperplane, and recursively building an orthogonal

BSP for the two resulting boxes. We place no restrictions on the height of the associated BSP tree.

Previously, Schwarz, Smid, and Snoeyink [57] had considered point location in this case and

described an O(log n) query algorithm. The BSP case is important as it includes point location for

k-d trees and quadtrees, which are useful in approximate nearest neighbor search; see [24] for other

applications. Any set of disjoint boxes, or any orthogonal subdivision, can be refined into a BSP,

although the size can increase considerably in the worst case; see [33, 44, 52, 59] for combinatorial

bounds on orthogonal BSPs.

We first generalize the methods in Sections 2.1 and 2.2 to solve the point location problem for a

set S of n disjoint axis-aligned boxes in IRd. We assume the following property:

(∗) For any box γ ⊂ IRd, there exists a coordinate axis δ such that no edges in S parallel to δ cut

through γ.
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It is easy to see that (∗) is satisfied for the leaf boxes in an orthogonal BSP: take the first hyperplane

cut h through γ (if h does not exist, the property is trivially true); the direction orthogonal to h

satisfies the property.

In the first strategy from Section 2.1, we use a d-dimensional grid and change the definition of

the table T as follows:

– if the cell (i1, . . . , id) is contained in some box s ∈ S, then set T [i1, . . . , id] = “covered by s”;

– else if no edges parallel to some coordinate axis δ cut through the cell, then set T [i1, . . . , id] = δ

(at least one choice of δ is applicable by property (∗)).

During a query, if the query point q lies in cell (i1, . . . , id) and T [i1, . . . , id] = δ, then we can recur-

sively answer the query in the data structure for the slab containing q between two grid hyperplanes

orthogonal to δ. (Note that property (∗) is obviously satisfied for the boxes inside the slab.)

We get a recurrence similar to (1), with
√
n replaced by n1/d.

The second strategy from Section 2.2 can be adapted easily. (Note that after applying either

mapping, we still have property (∗).) We get recurrences similar to (2) and (3). Balancing the two

recurrences as in Section 2.3 then gives a method with T0(n), S0(n) = O(n logO(1) U) preprocessing

time and space and Q0(n) = O(log logU) query time.

For the last step in Section 2.4 to lower space and preprocessing time, we use known tree sepa-

rators [35]: in any binary tree with O(n) nodes, there exist r edges whose removal leaves connected

components (subtrees) of size O(n/r), where each subtree is adjacent to O(1) other subtrees; the

subtrees can be formed in O(n) time. We apply this fact to the underlying BSP tree. Build a

point-location data structure for the subdivision R formed by the boundary of the boxes associated

with roots of the r subtrees, with T0(O(r)) preprocessing time, S0(O(r)) space, and Q0(O(r)) query

time. Although the subdivision R may not be a BSP, we can further subdivide each of its cells O(1)

times to turn R into a BSP of size O(r), since each cell in R is the set difference of an outer box with

at most O(1) inner boxes. For each subtree γi of size ni, build a point-location data structure for

the subdivision formed by the boxes in the subtrees, with T1(ni) preprocessing time, S1(ni) space,

and Q1(ni) query time. We then get the same bounds as in (5) and (6), but with
∑

i ni ≤ n and

ni ≤ O(n/r).

To illustrate the power of the tree separator approach, we can start with setting r to be a

sufficiently large constant and by recursion replace T1(ni), S1(ni), and Q1(ni) with T (ni), S(ni), and

Q(ni). This yields T (n), S(n) = O(n logn) and Q(n) = O(logn).

Next, we set T0(r), S0(r) = O(r log r) and Q0(r) = O(log r), and trivially T1(ni), S1(ni), Q1(ni) =

O(ni). Choosing r = ⌈n/ logn⌉ gives T (n), S(n) = O(n) and Q(n) = O(logn).

Finally, we reduce the space and preprocessing time of our data structure. We set T0(r), S0(r) =

O(r logO(1) U) and Q0(r) = O(log logU), and T1(ni), S1(ni) = O(ni) and Q(ni) = O(log ni).

Choosing r = ⌈n/ logc U⌉ for a sufficiently large constant c gives T (n), S(n) = O(n) and Q(n) =

O(log logU).

Theorem 4.3 Given an orthogonal BSP in a constant dimension d with n leaf boxes whose coor-

dinates are from {1, . . . , U}, we can build an O(n)-space data structure in O(n) time so that point

location queries can be answered in O(log logU) time.

It can be checked that the hidden constant factors depend on d only polynomially.

18



4.3 k predecessors

In this subsection, we describe an extension of the data structure from Section 3 to find the first k

predecessors of a query element at a given time in O(log logU + k) expected time. In the geometric

2-d setting, this is equivalent to finding the first k segments hit by a downward query ray (in reverse

y-sorted order), for a set S of horizontal segments, subject to open/close operations. Corollary 4.2(a)

solves the same query problem using Chazelle’s hive graphs, but this approach does not support on-

line updates. We suggest following the sampling-based approach from Section 3.3, which is simpler.

We choose sample size r = ⌈n/ log logU⌉ and use our data structure with T0(r) = O(r log logU),

S0(r) = O(r), and Q0(r) = O(log logU). The data structure of each cell γi is simply the conflict

list Lγi , sorted by y-coordinates, which can be maintained in a dynamic van Emde Boas tree, with

T1(ni) = O(ni log logU) and S1(ni) = O(ni). By (8) and (9), we get total expected update time

T (n) = O(n log logU) and space S(n) = O(n).

To answer a query for a ray from point q, we first locate the cell γ of V(R) containing q in Q0(r)

time. We then find all segments (in reverse y-sorted order) hit by the ray inside γ, by scanning the

conflict list of γ. If the number of segments found is less than k, we locate the cell immediately below

γ and repeat.

Assume that q is independent of the random choices made inside the data structure. Let q be the

vertical segment from q to the k-th intersection along the ray. The expected number of cells of V(R)

intersected by q is clearly O(1 + kr/n). By the technique of Clarkson and Shor [22], the expected

value of
∑{ni : γi intersects q} is O((1 + kr/n)(n/r)). It follows that the expected query time is

O((1 + kr/n)Q0(r) + (1 + kr/n)(n/r)), which for our choice of r is O(log logU + k).

Theorem 4.4 We can build a partially persistent data structure with the same space and expected

amortized update time as in Theorem 3.2, so that the first k predecessors of an element at a given

time can be found (in sorted order) in O(log logU + k) expected time.

Remark : The same approach also yields O(log logU + k) query time for persistent 1-d range search,

i.e., reporting all elements inside a query interval at a given time, where the output size k is not

given in advance.

5 Open Problems

We conclude with open problems. The following questions are natural to ask in light of our results,

but might not necessarily have positive answers:

• Can the persistent predecessor search data structure in Section 3 be derandomized? Hashing

is the main issue. Even for standard (ephemeral) dynamic predecessor search, the known de-

terministic upper bound is worse (O(log logn log logU/ log log logU) query/update time [10]).

• Can our predecessor data structure be made fully persistent, with O(log logU) update and

query time? We could of course try applying monotone list labeling to not just y- but also

x-coordinates (time), but additional ideas seem to be required.

• Can our orthogonal 2-d point location data structure in Section 2 for disjoint rectangles be made

fully dynamic, to support insertions and deletions of rectangles in O(polylogU) update time?

An O(nε) update time is straightforward (by using a smaller nε/2 × nε/2 table). For vertical
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ray shooting among horizontal line segments subject to insertions/deletions of segments, there

is an Ω(log n/ log log n) query lower bound for O(polylogn) update time, even when U = n, by

a reduction from the marked ancestor problem [7].

In view of Corollary 4.2 and Theorem 4.3, can the 3-d orthogonal point location for arbitrary box

subdivisions of size n (or, more generally, a collection of n disjoint boxes) be solved in O(log logU)

time with O(n polylogU) space?

A minor open question, implicit in Section 3.2, is whether there is a monotone list labeling

algorithm that supports insertions, where labels are bounded by nO(1) and each element changes

labels at most a polylogarithmic number of times.

An interesting direction is to explore offline (or batched) query problems, in the spirit of [18, 19].

The version of 1-d persistent predecessor search where the updates and queries are all given in

advance is equivalent to the version of orthogonal 2-d point location where n query points are

given in advance. This in turn is equivalent to a basic geometric problem: construct the vertical

decomposition of n horizontal line segments (since we can add a degenerate segment for each query

point). An O(n log logn) upper bound is obvious, by van Emde Boas trees. Can the problem be

solved in the same time as integer sorting (currently O(n
√
log logn) with randomization [43])? Or,

more challengingly, if the coordinates have been pre-sorted (i.e., normalized to {1, . . . , n}), can the

problem be solved in O(n) time?

Note that an easier problem of constructing the lower envelope of n horizontal pre-sorted segments

is known to be linear-time solvable [34]. (This problem corresponds to offline priority queues.)

Another interesting offline problem is the version of 1-d range search where the updates and

queries are all given in advance. Note that in the on-line setting, 1-d range emptiness queries are

known to have lower complexity than predecessor search (O(1) query time in the static case [6], and

O(log log logU) in the dynamic case with polylogarithmic update time [49]). The offline problem

is equivalent to another basic geometric problem, orthogonal 2-d segment intersection: report the

k intersections among n horizontal and vertical line segments. More simply, we can consider the

emptiness problem: detect whether an intersection exists. Can the problem be solved faster than

integer sorting? Or, if the coordinates have been pre-sorted, can the problem be solved in O(n) time?

(Known dynamic 1-d range searching results [49] only imply a linear-time solution for an asymmetric

special case with n horizontal segments and at most O(n/ logε n) vertical segments, or vice versa.)
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[16] T. M. Chan, K. G. Larsen, and M. Pǎtraşcu. Orthogonal range searching on the RAM, revisited. In
Proc. 27th Sympos. Comput. Geom., pages 1–10, 2011.
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[49] C. W. Mortensen, R. Pagh, and M. Pǎtraşcu. On dynamic range reporting in one dimension. In Proc.
37th ACM Sympos. Theory Comput., pages 104–111, 2005.

[50] Y. Nekrich. A data structure for multi-dimensional range reporting. In Proc. 23rd Sympos. Comput.
Geom., pages 344–353, 2007.

[51] Y. Nekrich. I/O-efficient point location in a set of rectangles. In Proc. 8th Latin American Sympos.
Theoretical Informatics, volume 4957 of Lect. Notes Comput. Sci., pages 687–698. Springer-Verlag, 2008.

[52] M. S. Paterson and F. F. Yao. Optimal binary space partitions for orthogonal objects. J. Algorithms,
13:99–113, 1992.

[53] F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduction. Springer-Verlag, 1985.
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[59] C. Tóth. Binary space partitions for axis-aligned fat rectangles. SIAM J. Comput., 38:429–447, 2008.

[60] P. van Emde Boas. Preserving order in a forest in less than logarithmic time and linear space. Inform.
Process. Lett., 6:80–82, 1977.

[61] P. van Emde Boas, R. Kaas, and E. Zijlstra. Design and implementation of an efficient priority queue.
Mathematical Systems Theory, 10:99–127, 1977.

[62] D. E. Willard. Log-logarithmic worst case range queries are possible in space Θ(n). Inform. Process.
Lett., 17:81–84, 1983.

23


