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Abstract

Given a set of geometric objects each associated with a time value, we wish to determine
whether a given property is true for a subset of those objects whose time values fall within a
query time window. We call such problems time-windowed decision problems, and they have
been the subject of much recent attention, for instance studied by Bokal, Cabello, and Eppstein
[SoCG 2015]. In this paper, we present new approaches to this class of problems that are
conceptually simpler than Bokal et al.’s, and also lead to faster algorithms. For instance, we
present algorithms for preprocessing for both the time-windowed 2D diameter decision problem
and the time-windowed 2D convex hull area decision problem in O(n log n) time, improving
Bokal et al.’s O(n log2 n) and O(n log n log log n) solutions respectively.

Our first approach is to reduce time-windowed decision problems to a generalized range
successor problem, which we solve using a novel way to search range trees. Our other approach
is to use dynamic data structures directly, taking advantage of a new observation that the total
number of combinatorial changes to a planar convex hull is linear for any FIFO update sequence,
in which deletions occur in the same order as insertions. We also apply these approaches to
obtain the first O(npolylog n) algorithms for the time-windowed 3D diameter decision and 2D
orthogonal segment intersection detection problems.

1 Introduction

Time-windowed geometric problems have been the subject of many recent papers and are motivated
by timestamped social network data and Geographic Information System (GIS) data, the latter
of which may consist not only of longitude, latitude, and altitude coordinates but also time. A
2014 paper by Bannister et al. [4] examined time-windowed versions of convex hull, approximate
spherical range searching, and approximate nearest neighbor queries. At SoCG 2015, Bokal et al. [5]
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presented more results on a variety of other time-windowed problems. In the same year, Chan and
Pratt [13] studied the time-windowed closest pair problem.

Let S be a set of n objects, where each object s ∈ S is associated with a time value t(s). In this
paper, we consider problems for which the answer is a Boolean value: given a query interval of time
[t1, t2] called a time window, does the subset of S whose time values are within the query window
have property P or not? We call these time-windowed decision problems. For brevity, we say objects
whose time values are within the query window are themselves within the query window.

Without loss of generality, we assume that time values are given as integers from 1 to n, for
otherwise we can replace time values with their rank during preprocessing. The query time only
increases by O(1) predecessor searches on the query time values.

In this and the previous paper [5], we focus only on hereditary properties, meaning if a set S
has P then any superset S′ ⊇ S also has it.1 Examples of hereditary properties include: the set of
points has greater than unit diameter, or the convex hull of a set of points has greater than unit
area.

As observed by Bokal et al., it suffices to find, for each start time t, the minimal end-time t′ such
that objects within the window [t, t′] have P. Afterwards, we can easily obtain a data structure
with O(n) words of space and O(1) query time.2 We do so by storing the resulting t′ in a table
indexed by start time t (recall that time values have been initially reduced to integers from 1 to n).
A query for a time window [t1, t2] is answered by looking up the t′ in the table for start time t1, and
checking if t′ ≤ t2.

For this reason, Bokal et al. refer to time-windowed decision problems as the problem of finding
minimal contiguous subsequences with hereditary properties.

Since answering a query after preprocessing is trivial, for the rest of the paper, we focus only on
bounding the preprocessing time.

1.1 Previous results

Recently, Bokal et al. [5] presented an approach to time-windowed decision problems. They achieve
the following geometric results:

1. 2D diameter decision: Given a set of n time-labeled points in R2, determine if there exist two
points greater than unit distance apart, whose time values are within a query time window.
Their approach obtains O

(
n log2 n

)
preprocessing time.

2. 2D convex hull area decision: Given a set of n time-labeled points in R2, determine whether
the convex hull of points within a query time window has greater than unit area. Their
approach obtains O(n log n log logn) preprocessing time.

3. 2D monotone paths: Given a set of n points in R2, determine if the points within a query
time window form a monotone path in some (subpath-dependent) direction. Their approach
obtains O(n) preprocessing time.

They also show that their approach works for graph planarity. Given a graph whose edge set
contains n time-labeled edges, determine if the subgraph on the edges within a query time window
is planar. Their approach obtains O(n log n) preprocessing time.

1 The definition in [5] considers subsets instead of supersets, but is equivalent after complementation.
2In fact, Chan and Pratt [13] show that we can reduce space to O(n) bits while maintaining O(1) query time, by

using succinct rank/select data structures [25].
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Chan and Pratt [13] study the time-windowed closest pair decision problem, in which we are
given a set of n time-labeled points in Rd and we wish to determine whether there exist two points
at most unit distance apart. They solve the problem in O(n) time using grids. They also consider
the exact version of the problem, which is to find the closest pair of points within the time window.
They solve this problem in O(n log n log logn) preprocessing time and O(log log n) query time with
O(n log n) words of space. Their techniques rely on geometric properties of the closest pair and
cannot be trivially modified to solve the time-windowed diameter problem.

1.2 New results

We achieve the following results:

1. 2D and 3D diameter decision: We improve Bokal et al.’s preprocessing time bound in 2D
from O

(
n log2 n

)
to O(n log n). Thus, we obtain the first optimal algorithm for the problem

in the algebraic decision-tree model [29]. Furthermore, we obtain the first nontrivial result in
3D with O

(
n log2 n

)
preprocessing time. See Section 2 for details.

2. 2D orthogonal segment intersection detection: Given a set of n horizontal or vertical time-
labeled line segments in R2, we want to determine if there are any intersections between
horizontal segments with vertical segments whose time values are within a query time window.
We give the first nontrivial result for this problem, obtaining O(n log n log log n) preprocessing
time. See Section 2 for details.

3. 2D convex hull area decision: We improve Bokal et al.’s preprocessing time bound from
O(n log n log log n) to O(n log n). See Section 3 for details.

4. 2D width decision: Given a set of n time-labeled points in R2, we want to determine whether
the points within a query time window have greater than unit width. We give the first
nontrivial result for this problem, obtaining O

(
n log5 n

)
preprocessing time. See Section 3 for

details. Previously, a näıve approach using Chan’s dynamic data structure [8] would give a
worse O

(
n3/2 polylog n

)
time bound.

1.3 Techniques

Bokal et al.’s main approach considers the upper triangle of a binary n × n matrix where entry
i, j has value 1 if and only if the set of objects within the window [i, j] has P. The goal is to
compute, for each row, the leftmost column at which the matrix entry is 1. First, Bokal et al.
decompose the upper triangle into disjoint rectangles, each with a corner on the main diagonal
i = j, which together cover all the entries we want; this decomposition is generated by a simple
greedy algorithm. Then, for each such rectangle, the problem is solved by divide-and-conquer: At
the median row, we find the leftmost column at which the matrix entry is 1; this splits the rectangle
into 4 subrectangles. The entries in the top-right subrectangle all have value 1, and the entries in
the bottom-left subrectangle all have value 0. We recursively solve the subproblem for the top-left
and bottom-right subrectangles. Unfortunately, the subproblem size (the number of objects relevant
to the subproblem) does not decrease, but Bokal et al. showed that for certain problems such as 2D
diameter and 2D convex area decision, the input to the subproblem can be replaced by a smaller-size
sketch (similar to “coresets” in the context of approximation algorithms). The efficiency of the
resulting divide-and-conquer algorithm relies on such sketches.
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Our first approach, which we discuss in Section 2, is much more direct: we simply reduce the
problem to a range successor search problem. This (static) data structure problem can be solved by
standard range searching techniques, and if we are not too concerned with extra logarithmic factors,
we immediately obtain efficient solutions to the diameter decision problem in 2D and 3D, as well as
orthogonal line segment intersection detection. To further improve the logarithmic factors, we come
up with a more efficient way to traverse a range tree.

Our second approach, which we discuss in Section 3, simply adds the objects in sequence to
a dynamic data structure until P is true for the objects in the structure, then removes from the
beginning until P is not true, then repeats. Bokal et al. [5] have already suggested this näıve use of
dynamic data structures as a natural solution to the problem, but dismissed it as inefficient. We show
that it is actually efficient in the case of the 2D convex hull area and width decision problems, because
of a special property concerning the update sequences that arise in our applications. Specifically, we
prove a linear upper bound on the number of structural changes to the convex hull under a certain
sequence of updates in which the order of insertions is the same as the order of deletions—we call
these FIFO update sequences. Although there has been at least one prior paper on geometric data
structures for FIFO updates [31], our combinatorial bound for planar convex hull appears new,
and may be of independent interest. From this combinatorial result, we can immediately solve
the time-windowed 2D width decision problem in O(n polylog n) preprocessing time via Eppstein’s
dynamic width data structure [20], and we can solve time-windowed 2D convex hull area decision
problem in O(n log n) preprocessing time via a known dynamic convex hull data structure [6, 26].

2 Generalized range successor approach

In this section, we focus on time-windowed decision problems for properties that deal with pairs.
More precisely, given a symmetric relation R ⊆ S × S, we consider the property P that there exist
p, q ∈ S such that (p, q) ∈ R. We call such properties pairwise interaction properties. If (p, q) ∈ R,
we say that p interacts with q; we also say that p is in q’s range.

Examples of such problems include: diameter decision, for which two points interact if they are
farther apart than unit distance; segment intersection detection, in which two segments interact
with each other if they intersect; and closest pair decision, in which two points interact if they are
nearer than unit distance. Note that such properties are hereditary.

Our approach is to reduce the time-windowed problem to the following data structure problem:

Definition 1. Let each object s ∈ S have weight w(s). In the generalized range successor problem,
we want to preprocess S to find the successor of a query object q among the objects in q’s range,
that is, the object p ∈ S that interacts with q with the smallest w(p) > w(q).

The above is a generalization of the original 1D range successor problem where the objects are
points in 1D and the objects’ ranges are intervals; for example, see [32] for the latest results.

To see how this data structure problem can be used to solve the time-windowed pairwise
interaction problem, we simply find the successor q+ of every q ∈ S in the generalized range
successor problem with weights equal to time values.

Observation 1. A query window [t1, t2] contains an interacting pair if and only if [t1, t2] contains
[t(q), t(q+)] for some q ∈ S.
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v` vr

Figure 1: A range tree showing the path followed by a query for an interval [`, r] that splits at vs,
and the subtrees in bold that fall within the query range between leaves v` and vr.

Proof. The “if” direction is trivial. For the “only if” direction, let p, q be an interacting pair in
[t1, t2] and assume that t(q) ≤ t(p) without loss of generality. Then t(q) ≤ t(q+) ≤ t(p) by definition
of the successor q+, and the claim follows.

Thus, the answer to a query window [t1, t2] is yes if and only if the point (t1,−t2) is dominated
by some point (t(p),−t(q+)). The time-windowed problem can then be solved by precomputing the
maxima [29] of the 2D point set {(t(p),−t(q+)) | q ∈ S}, which takes linear time by a standard plane
sweep after pre-sorting (recall that time values have been initially reduced to integers in {1, . . . , n}
and can be trivially sorted in linear time). The running time is then dominated by the cost of
computing the successors q+ for all q ∈ S. If we can solve the generalized range successor problem
in P (n) preprocessing time and Q(n) query time, we can solve the corresponding time-windowed
problem in O(P (n) + nQ(n)) preprocessing time.

In the rest of this section, we can thus focus on solving the generalized range successor problem.
One approach is to first consider the decision version of the problem: deciding whether there

exists an object p that lies in q’s range and has weight w(p) in the interval [`, r] for ` = w(q) and a
given value r. This problem can be solved using standard multi-level data structuring techniques:
The primary structure is a 1D range tree [29] on the weights (i.e., time values). See Figure 1. This
naturally decomposes any interval [`, r] of weights into O(log n) canonical subtrees by performing a
binary search for both ` and r until we reach their lowest common ancestor node vs at which the
search splits. The search continues leftward and rightward to leaves v` and vr with values ` and r
respectively. Every right subtree on the path from vs to v`, and every left subtree on the path from
vs to vr are within the interval [`, r]. At each node v, we store the subset Sv of all objects within its
interval in a secondary structure for the original range searching problem—deciding whether there
exists an object in Sv that lies in a query object q’s range. A query for the decision problem can
then be answered by making O(log n) queries to the secondary structures. This increases the query
time by a logarithmic factor.

Finally, we can reduce the generalized range successor problem to its decision problem by a
binary search over all time values r. This increases the query time by a second logarithmic factor.
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q p

Figure 2: A search path finding the successor p of a point q is shown in bold. The search is divided
into an “up” phase followed by a “down” phase.

2.1 Avoiding binary search

In this subsection, we describe a still better algorithm that solves the generalized range successor
problem without going through the decision problem, thereby removing one of the extra logarithmic
factors caused by the binary search.

We first find the leaf node v storing q in O(log n) time. To answer a successor query for q, we
proceed in two phases. (See Figure 2.)

• In the first (i.e., “up”) phase, we walk upward from v towards the root. Each time our search
follows a parent pointer from a left child, we query the secondary structure at the right child
to see if there exists an object stored at the right child that is in q’s range. If no, we continue
upward. If yes, the answer is in the subtree at the right child and we proceed to the second
phase starting at this node.

• In the second (i.e., “down”) phase, we walk downward from the current node to a leaf. Each
time our search descends from a node, we query the secondary structure at the left child to
see if there exists an object stored at the left child that is in q’s range. If no, the answer is in
the right subtree and we descend right. Otherwise, we descend left.

This algorithm makes O(log n) queries in the secondary structures. We next apply this algorithm
to specific time-windowed pairwise interaction problems.

2.2 2D diameter decision

For the application to 2D diameter decision, our set of objects S is composed of points in R2, and
p, q interact if and only if d(p, q) > 1. In other words, q’s range is the complement of a unit disk.

The secondary structure at a node v needs to handle the following type of query: decide whether
a query point q has greater than unit distance from some point in Sv, that is, decide whether q lies
outside the intersection Dv of all unit disks centered at the points of Sv (see Figure 3). We store
the unit-disk intersection Dv, along with the sorted list of the x-coordinates of the vertices of Dv.

Since we can merge two unit-disk intersections in linear time (similar to how we can merge two
planar convex hulls in linear time), we can build the secondary structures at all nodes of the range
tree bottom-up in P (n) = O(n log n) time.
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Figure 3: The boundaries of unit disks centered at four points in R2. The boundary of the unit-disk
intersection is shown in bold.

Given point q, a query in the secondary structure at node v reduces to binary search for the
x-coordinate of q in the list Xv and takes O(log n) time. Since the algorithm in Section 2.1 requires
O(log n) queries in the secondary structures, the overall query time is Q(n) = O

(
log2 n

)
.

We can use fractional cascading to speed up the algorithm further [17, 18]. Since the technique
is well known, we give just a quick sketch. Recall that the algorithm in Section 2.1 is divided into
two phases.

• For the “up” phase, we first move the list Xv of each right child v to its parent. We pass a
fraction of the elements of the list at each node to the lists at both children during preprocessing.
This way, we can determine where the x-coordinate of q is in the list of the parent from where
it is in the list of the child in O(1) time. We can then answer all O(log n) queries in the
secondary structures during the “up” phase in O(log n) overall time, after an initial binary
search at the leaf in O(log n) time.

• For the “down” phase, we pass a fraction of the elements of the list at each node to the list at
its parent during preprocessing. This way, we can determine where the x-coordinate of q is in
the list of a child from where it is in the list of its parent in O(1) time. We can then answer
all O(log n) queries in the secondary structures during the “down” phase in O(log n) overall
time, after an initial binary search in O(log n) time.

We conclude that a generalized range successor query in this setting can be answered in
Q(n) = O(log n) time. This gives us the following result.

Theorem 2. We can preprocess for the time-windowed 2D diameter decision problem in O(n log n)
time.

2.3 3D diameter decision

In 3D, a query in the secondary structure at node v becomes deciding whether the query point
q lies outside the intersection Dv of unit balls centered at the points of Sv. In 3D, the unit-ball
intersection Dv still has linear combinatorial complexity and can be constructed in O(|Sv| log |Sv|)
time by Clarkson and Shor’s randomized algorithm [19] or Amato et al.’s deterministic algorithm [3].
We store the xy-projection of the upper and lower boundary of Dv in a planar point location
structure [29]. We can build the secondary structures at all nodes of the range tree in O(n log n)
time per level, and thus P (n) = O

(
n log2 n

)
total time. (Unlike in 2D, it is not clear if we could

speed up the building time by linear-time merging.)
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Figure 4: A set of horizontal segments is shown in solid lines, with their vertical decomposition
shown in dotted lines. A query vertical segment is shown in bold; its endpoints are in different cells.

Given point q, a query in a secondary structure reduces to planar point location for the xy-
projection of q and takes O(log n) time [29]. Since the algorithm in Section 2.1 requires O(log n)
queries in the secondary structures, the overall query time is Q(n) = O(log2 n). (Unlike in 2D, we
cannot apply fractional cascading to speed up the algorithm.) This gives us the following result.

Theorem 3. We can preprocess for the time-windowed 3D diameter decision problem in O
(
n log2 n

)
time.

2.4 Orthogonal segment intersection detection

For the application to 2D orthogonal segment intersection detection, our set of objects S is composed
of horizontal and vertical line segments in R2, and for a horizontal segment p and a vertical segment
q (or vice versa), p and q interact if and only if they intersect.

Without loss of generality, we assume that all x- and y-coordinates are given as integers from 1
to O(n), for otherwise we can replace coordinate values with their rank during preprocessing. The
query time only increases by O(1) predecessor searches on the coordinate values, costing no more
than O(log n) time.

The secondary structure at a node v now needs to handle the following type of query: decide
whether a query segment q intersects some segment in Sv. Without loss of generality, assume that q
is vertical and the segments in Sv are horizontal. We store the vertical decomposition VDv (also
called the trapezoidal decomposition) in a planar point location structure.

Since we can compute the vertical decomposition VDv in O(|Sv| log log |Sv|) time by a standard
plane sweep with van Emde Boas trees, we can build the secondary structures at all nodes of the
range tree in P (n) = O(n log n log logn) time.

Given vertical segment q, a query in the secondary structure at node v requires testing whether
both endpoints of q lie in the same cell in VDv (see Figure 4), which reduces to two planar point
location queries. Since the subdivision is orthogonal, we can apply Chan’s orthogonal point location
structure [10], which achievesO(log logU) query time when coordinates are integers from {1, . . . , U}—
recall that coordinate values have been initially reduced to integers bounded by U = O(n). Since
the algorithm in Section 2.1 requires O(log n) queries in the secondary structures, the overall query
time is Q(n) = O(log n log log n). This gives us the following result.

Theorem 4. We can preprocess for the time-windowed 2D orthogonal intersection detection problem
in O(n log n log logn) time.

Remark 1. An open problem is to remove the extra log log n factor. Perhaps the techniques
from [12] for the 4D offline dominance searching problem may be relevant.
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3 FIFO update sequence approach

In the previous section, we have presented an approach to building data structures to solve time-
windowed pairwise interaction problems, but the 2D width and the 2D convex hull area decision
problems, for instance, cannot be expressed in terms of a pairwise interaction property.

As mentioned in the introduction, both problems are on hereditary properties. The most obvious
approach to solve a problem on a hereditary property is to use a dynamic data structure directly,
inserting each object in order until P is satisfied, then deleting each object in the same order
until P is no longer satisfied, and repeating. By storing for each i ∈ {1, . . . , n} the smallest j for
which {si, . . . , sj} satisfies P , we can answer queries for the time-windowed problem. However, this
approach does not seem to yield efficient solutions in some settings. For example, for the 2D width
decision problem, we would need a fully dynamic data structure for 2D width decision, but the best
result to date has near

√
n update time [8]. Agarwal and Sharir [2] gave a dynamic data structure

for 2D width decision with polylogarithmic update time but only for offline update sequences; their
data structure does not seem to work in our application when we do not know a priori in what
order the deletions are intermixed with the insertions.

Both the 2D width and 2D convex hull area problem are about the convex hull. There exist
sequences of n updates to the convex hull in the plane that cause Ω(n2) structural changes. For
example, consider the case of inserting a point that causes Ω(n) points to be no longer on the convex
hull, then deleting and re-inserting the same point n times. However, in our application points are
deleted in the same order as they are inserted, so this particular example cannot occur.

Restricted update sequences on the dynamic convex hull have been studied before. The insertion-
only case was studied by Preparata [28]. The deletion-only case was studied by Chazelle [16],
and Hershberger and Suri [21]. Random update sequences were studied by Mulmuley [24] and
Schwarzkopf [30].

We call an update sequence in which objects are inserted and deleted in the same order a
first-in-first-out (FIFO) update sequence. Sheng and Tao [31] examined data structures for extreme
point queries in the plane under FIFO updates, but did not consider the explicit maintenance of
the convex hull. We prove a combinatorial lemma, stating that, for such sequences, the number of
structural changes to the convex hull is at most linear.3

Lemma 1. The number of structural changes to the upper hull of a set of points in R2 over n FIFO
updates is O(n).

Proof. We want to bound the number of edge insertions/deletions on the upper convex hull of a
dynamic set P of points subject to FIFO insertions and deletions. We order the n = |P | points of P
by their insertion times: P = {p1, p2, . . . , pn}. Each point p ∈ P is inserted at time i(p) and deleted
at time d(p), with i(p) < d(p). Let us assume that all insertion and deletion times are distinct, so
j < k iff i(pj) < i(pk) iff d(pj) < d(pk).

We can create a lifetime plot for the points of P by plotting the horizontal line segment
[(i(pi), i), (d(pi), i)] for each point pi ∈ P . These segments lie in the band between the two monotone
paths formed by the sequences {(i(pi), i)} and {(d(pi), i)}.

We divide the time interval [i(p1), d(pn)] into subintervals in which no point is both inserted
and deleted. That is, in each subinterval the active points of P consist of one set subject only to
insertions and one set subject only to deletions. We can visualize this graphically by drawing a

3This improves the O(n logn) upper bound from the earlier conference version of this paper [14].
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Figure 5: Lifetime plot for a FIFO update sequence, and a division into time intervals such that in
each interval, no point is both inserted and deleted.

monotone staircase inside the band: we draw the vertical segment from (d(p1), 1) up to the top
of the band, draw the horizontal segment from there to the right side of the band, and repeat,
zigzagging up inside the band. The vertical segments of the staircase divide time into the desired
intervals. Phrased differently, we can define a sequence of time values t0, t1, . . . , tk by setting t0
to a value less than i(p1), then inductively setting ti to a value just less than d(pX), where pX is
the first point inserted after ti−1. At the penultimate time value tk−1, there are no points left to
insert, and the final time value tk is chosen to be greater than d(pn). (See Figure 5 for an example.)
By construction, the lifetime of each point in P overlaps the interiors of exactly two of the time
intervals (ti, ti+1).

We can count the number of combinatorial changes to H(P ), the upper convex hull of P , by
summing the number of changes over all intervals. In each interval, we have one set of points D
subject to deletions only and one set I subject to insertions only. The sum of |D| + |I| over all
intervals is 2n.

The edges that appear on the convex hull during a single interval are of three types: edges
joining points of D, edges joining points of I, and mixed edges joining a point of D to a point of I.

For any set of points S, an edge (u, v) of H(S) is also an edge of H(S′) for any S′ ⊆ S that
includes both u and v. Thus the I-only edges of H(D ∪ I) are a subset of the edges of H(I). The
number of convex hull edges of a dynamic insertions-only set I is at most 2|I|, because each inserted
vertex creates at most two edges (incident to it), however many edges it hides (removes from the
hull). Likewise, the D-only edges of H(D ∪ I) are a subset of the edges of H(D), and their number
is at most 2|D|, as we can see by running time backward and applying the insertions-only bound.

Now we bound the mixed edges, i.e., those with one endpoint from each of D and I. Since no
point of I is present at the beginning of the time interval, and no point of D is present at the end of
the interval, all mixed edges are created and destroyed during the interval. We bound the number
of mixed edges by charging each edge’s deletion to a point of D or I.

Consider a mixed edge e = (u, v), with u ∈ D and v ∈ I. The deletion of e may be due to a
deletion from D or an insertion into I. If the deletion of e is due to a point deletion, it can only
be due to the deletion of u, by the subset-hull observation above. In this case we charge edge e to
vertex u ∈ D. If the deletion of e is due to the insertion of a point x ∈ I, we charge the deletion
either to u or to x. When x is inserted, it hides (causes the removal of) one or more mixed edges.
Let e1, e2, . . . , em be the mixed edges removed by x, numbered in left-to-right order. If e ∈ {e1, em},
then we charge e to x; at most two edges are charged to x in this way. Otherwise, we charge e
to u. The upper convex hull of x and the two I-vertices in e1 and em completely hides the edges
e2, . . . , em−1, ensuring that u is never on the convex hull again. Thus a point u of D is charged for
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a mixed edge only if u is leaving the convex hull for the last time. Since each point of D is charged
at most twice (once from each side) and each point of I is also charged at most twice, the total
number of mixed edges is at most 2(|D|+ |I|).

Combining the bounds for D-only, I-only, and mixed edges, and summing over all time intervals,
it follows that the total number of edge insertions and deletions on the convex hull of a point set
subject to FIFO insertions and deletions is O(n).

3.1 2D width decision

We can immediately apply Lemma 1 to solve the time-windowed 2D width decision problem, by using
Eppstein’s dynamic 2D width data structure [20] as a black box. Eppstein’s algorithm maintains the
width in time O(k · f(n) · log n) where k is the number of structural changes to the convex hull, and
f(n) is the time to solve the dynamic 3D convex hull problem (more precisely, answer gift-wrapping
queries and perform updates for a 3D point set). Note that Eppstein used Agarwal and Matoušek as
a black box to solve the dynamic 3D convex hull problem in O(nε) time [1], but this was improved by
Chan to O

(
log6 n

)
expected time [9], derandomized by Chan and Tsakalidis [15], further improved

by Kaplan et al. to O
(
log5 n

)
amortized time [23] and by Chan to O

(
log4 n

)
[11]. This proves the

following result.

Theorem 5. We can preprocess for the time-windowed 2D width decision problem in O
(
n log5 n

)
time.

3.2 2D convex hull area decision

For the time-windowed 2D convex hull area decision problem, we can now directly apply known
fully dynamic convex hull data structures [6, 7, 26], most of which can be modified to maintain the
area. For example, Brodal and Jacob’s data structure [6] can maintain the convex hull and its area
in O(k · log n) amortized time, where k is the number of structural changes to the convex hull. This
yields an overall running time of O(n log n).

Brodal and Jacob’s data structure is very complicated. In the proof below, we suggest a simpler
alternative solution for FIFO updates by instead adapting Overmars and van Leeuwen’s dynamic
convex hull data structure, namely, the hull tree [26]:

Theorem 6. We can preprocess for the time-windowed 2D convex hull area decision problem in
O(n log n) time.

Proof. It suffices to maintain the upper hull and the area above it inside a sufficiently large bounding
box, since we can similarly maintain the lower hull and the area below it, and subtract the areas
from the bounding box.

A hull tree of a given point set is a binary tree whose root node stores the upper hull edge (called
the bridge) that crosses the median vertical line, and whose left/right subtrees are the hull trees
for the subset of all points to the left/right of the median, respectively. Here, we assume that the
x-coordinates of all n points are known in advance, which is true in our application (the assumption
can be removed by extra steps to balance the hull tree, for example, via tree rotations [26]). At
each node, we store the area above the upper hull of its corresponding subset of points. Pointer
structures can be set up to let us traverse the upper hull at any node of the tree [22, 26].

Consider the deletion of a point p at a node of the hull tree. Without loss of generality, suppose
that p is to the right of the median. We first recursively delete p in the right subtree. Suppose that
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`

γR

γL

r∗

r

Figure 6: Deletion of p causes the old bridge (`, p) to change to the new bridge (`∗, r∗), both shown
in bold. Computing the new bridge requires walking from ` to `∗ and r to r∗. If point p is instead
being inserted, computing the new bridge requires walking from `∗ to `.

p was an endpoint of the bridge of the node. We need to compute a new bridge. Overmars and van
Leeuwen [26] originally proposed a binary search, but we use a linear search instead (inspired by the
variants of hull trees by Chazelle [16] and Hershberger and Suri [22] for deletion-only sequences).
Specifically, let ` be the left endpoint of the old bridge, and let r be the successor of p in the old
upper hull. (See Figure 6.) A simple linear scan walking rightward from ` and leftward from r can
find the new bridge (`∗, r∗) in O(|γL|+ |γR|) time, where γL denotes the subchain from ` to `∗ in
the left upper hull, and γR denotes the subchain from r∗ to r in the new right upper hull. The
change in area at the current node (i.e., the area of the polygon with vertices `γL`

∗r∗γRrp`) can
be computed in the same amount of time. The O(|γL|+ |γR|) cost is bounded by the number of
structural changes to the upper hull at the node.

Next consider the insertion of a point p at a node of the hull tree. Without loss of generality,
suppose that p is to the right of the median. We first recursively insert p in the right subtree.
We need to compute the new bridge (if it changes). We can just mimic the deletion algorithm in
reverse. In fact, the details are a little simpler: a linear search from `∗ can find `, the left endpoint
of the new bridge (see Figure 6), in O(|γL|) time. The change in the area can again be computed in
O(|γL|+ |γR|) time, which is bounded by the number of structural changes to the upper hull at the
node.

Let T (n) denote the total time for performing an entire FIFO update sequence by the above
method, over a hull tree of n points. By Lemma 1, the total cost is O(n) plus the cost of
maintaining the left and the right hull subtrees. Thus, T (n) = 2T (n/2) + O(n), which solves to
T (n) = O(n log n).

Acknowledgement. We wish to thank Haim Kaplan and Micha Sharir for their suggestions,
which led to an improvement of an earlier version of Lemma 1.
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