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Abstract

We design new polynomials for representing threshold fonstin three different regimegroba-
bilistic polynomialsof low degree, which need far less randomness than prevangtructionspolyno-
mial threshold function§PTFs) with “nice” threshold behavior and degree almosbasds the proba-
bilistic polynomials, and a new notion pfobabilistic PTFswhere we combine the above techniques to
achieve even lower degree with similar “nice” thresholddadr. Utilizing these polynomial construc-
tions, we design faster algorithms for a variety of problems

e Offline Hamming Nearest (and Furthest) Neighbors: Given n red andn blue points ind-
dimensional Hamming space foe= clogn, we can find an (exact) nearest (or furthest) blue neigh-
bor for every red point in randomized tinmd—1/0(velog®>¢) o deterministic timen?~1/0(clog?e),
These improve on a randomized 1/°(°¢*c) hound by Alman and Williams (FOCS’15), and
also lead to faster MAX-SAT algorithms for sparse CNFs.

e Offline Approximate Nearest (and Furthest) Neighbors: Givenn red andn blue points ind-
dimensionall; or Euclidean space, we can find B+ €)-approximate nearest (or furthest) blue

neighbor for each red point in randomized time naas- n2-2(”%/109(1/¢)) This improves on an
algorithm by Valiant (FOCS’12) with randomized time nelar+ n2~2(v€), which in turn improves
previous methods based on locality-sensitive hashing.

e SAT Algorithms and Lower Bounds for Circuits With Linear Thr eshold Functions:We give
a satisfiability algorithm forACO[m] o LTF o LTF circuits with a subquadratic number of linear
threshold gates on the bottom layer, and a subexponenti#dhetof gates on the other layers, that
runs in deterministic® ™ time. This strictly generalizes a SAT algorithm #€C°o LTF circuits
of subexponential size by Williams (STOC’14) and also ireplhew circuit lower bounds for
threshold circuits, improving a recent gate lower boundaf&and Williams (STOC’16). We also
give a randomized? ™ -time SAT algorithm for subexponential-sitAJo AC°o LTFo ACo LTF
circuits, where the topAJ gate and middI&TF gates have(n%5-9) fan-in.
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1 Introduction

The polynomial method is a powerful tool in circuit complgxiThe idea of the method is to transform all
circuits of some class into “nice” polynomials which regesthe circuit in some way. If the polynomial is
always sufficiently nice (e.g. has low degree), and one cawepthat a certain Boolean functidncannot
be represented so nicely, one concludes that the circsi$ daunable to compute

Recently, these tools have found surprising uses in algoridesign. If a subproblem of an algorithmic
problem can be modeled by a simple circuit, and that circait be transformed into a “nice” polyno-
mial (or “nice” distribution of polynomials), then fast &graic algorithms can be applied to evaluate or
manipulate the polynomial quickly. This approach has legideances on problems such as All-Pairs Short-
est Paths\il14a], Orthogonal Vectors and Constraint Satisfactigfiy{14, AWY 15, Wil14d], All-Nearest
Neighbor problemsAW15], and Stable Matching\IPS14.

In most applications, the key step is to randomly convertpsntircuits into so-callegbrobabilistic
polynomials. Iff is a Boolean function on variables, andR is a ring, aprobabilistic polynomial over R
for f with error 1/s and degree ds a distributionZ of degreed polynomials overR such that for alk €
{0,1}", Pry_5[p(x) = f(x)] > 1— 1. Razborov Raz87 and Smolensky$mo87 introduced the notion of a
probabilistic polynomial, and showed that any low-deptiuii consisting of AND, OR, and PARITY gates
can be transformed into a low degree probabilistic polyr@bioy constructing constant degree probabilistic
polynomials for those three gates. Many polynomial metHgdrighms use this transformation.

In this work, we are interested in polynomial representetiof threshold functions. The threshold
function THy determines whether at leas@draction of its input bits are 1s. Threshold functions aream
the simplest Boolean functions that do not have constantdggrobabilistic polynomials: Razborov and
Smolensky showed that the MAJORITY function (a special aafsa threshold function) requires degree
Q(y/nlogs). Nonetheless, as we will see throughout this paper, therenany important problems which
can be reduced to evaluating circuits involving threshatkeg on many inputs, and so further study of
polynomial representations of threshold functions is aated.

Threshold functions have been extensively studied in #i@al computer science for many years; there
are numerous applications of linear and polynomial thrieshoictions to complexity and learning theory
(a sample includesBRS91 BS92 ABFR94, Bei95 KS01, OS1Q Shel)).

1.1 Our Results

We consider three different notions of polynomials repnésg THg. Each achieves different tradeoffs
between polynomial degree, the randomness required, amébrurately the polynomial represents glH
Each leads to improved algorithms in our applications.

Less RandomnessFirst, we revisit probabilistic polynomials. Alman and Wims [AW15] designed
a probabilistic polynomial for T which already achieves a tight degree boun®¢{/nlogs). However,
their construction useQ(n) random bits, which makes it difficult to apply in determimdsalgorithms. We
show how their low-degree probabilistic polynomials foretshold functions can use substantially fewer
random bits:

Theorem 1.1. For any 0 < 6 < 1, there is a probabilistic polynomial for the functiorHg of degree
O(1/nlogs) on n bits with errorl/s that can be randomly sampled using onlyid@nlog(ns)) random
bits.

Polynomial Threshold Function Representations. Second, we consider deterministic Polynomial
Threshold Functions (PTFs). A PTF for a Boolean functfois a polynomial (ot a distribution on poly-
nomials) p: {0,1}" — R such thatp(x) is smaller than a fixed value whefi{x) = 0, andp(x) is larger



than the value wheffi(x) = 1. In our applications, we seek PTFs with “good thresholdalbiEn”, such that
Ip(x)| < 1 whenf(x) =0, andp(x) is very large otherwise. We can achieve almost the same elégra
PTF as for a probabilistic polynomial, and even better dedpe an approximate threshold function:

Theorem 1.2. We can construct a polynomiaif : R — R of degree ©,/1/¢logs), such that
o ifxe {0,1,....t}, then|Pst ¢ (X)| < L;
o ifxe(t,(1+¢)t), then Ry ¢(x) > 1;

o if x> (14 ¢)t, then Rig(X) > s.
For the “exact” setting withe = 1/t, we can alternatively bound the degree bfx @i log(st)).

By summing multiple copies of the polynomial from Theorérd, we immediately obtain a PTF with
the same degree for the OR ©fs) threshold functions (needed in our applications). Thiotém fol-
lows directly from known extremal properties of Chebyshelypomials, as well as the lesser knowis-
crete Chebyshev polynomials. Because Theoremgives a single polynomial instead of a distribution
on polynomials, it is especially helpful for designing detaistic algorithms. Chebyshev polynomials
are well-known to yield good approximate polynomials fompmting certain Boolean functions over the
reals NS94 Pat92 KS01, Shel3Vall?] (please see the Preliminaries for more background).

Probabilistic PTFs. Third, we introduce a new (natural) notion opeobabilistic PTFfor a Boolean
function f. This is a distribution on PTFs, where for each ingut PTF drawn from the distribution is
highly likely to agree withf on x. Combining the techniques from probabilistic polynomiis THg and
the deterministic PTFs in a simple way, we construct a pritisib PTF with good threshold behavior
whose degree ilwer than both the deterministic PTF and the degree bounds altiaiby probabilistic
polynomials (surprisingly breaking the “square-root heat}:

Theorem 1.3. We can construct a probabilistic polynomRs; ¢ : {0,1}" — R of degree @(1/¢)*/3logs),
such that

e if SI 1 x <t, then|Pyste(X1,. .., %) < 1 with probability at leastl — 1/s;
o if STL1X € (t,t+¢€n), thenﬁnﬁt,g(xl, ...,%n) > 1 with probability at leastlL — 1/s;
o if STL X >t+en, thenﬁn,sm(xl, ..., %n) > s with probability at leasi — 1/s.
For the “exact” setting withe = 1/n, we can alternatively bound the degree bin&®log?3(ns)).

The PTFs of Theorerh.3can be sampled using on®(log(n) - log(ns)) random bits as well; their lower
degree will allow us to design faster randomized algoritfiansa variety of problems. For emphasis, we
will sometimes refer to PTFs aeterministic PTF$o distinguish them from probabilistic PTFs.

These polynomials for Thlican be applied to many different problems:

Offline Hamming Nearest Neighbor Search.n the Hamming Nearest Neighbor problem, we wish to
preprocess a s&t of n points in{0,1}9 such that, for a querg € {0,1}¢, we can quickly find thg € D with
smallest Hamming distance tp This problem is central to many problems throughout Comp8tience,
especially in search and error correctiond04]. However, it suffers from theurse of dimensionalitphe-
nomenon, where known algorithms achieve the nearly trivintimes of either 219 or Q(n/poly(logn)),
with matching lower bounds in many data structure models ésg. BR0Z). Using our PTFs, we instead
design a new algorithm for the natural offline version of firigblem:



Theorem 1.4. Given n red and n blue points if0,1}9 for d = clogn < log® n/log®logn, we can find an

(exact) Hamming nearest/farthest blue neighbor for evedypoint in randomized time?n%/C(v/clog*?c)

Using the same ideas, we are also able to derandomize ouitlalgoto achievedeterministictime
n2—1/0(clog”c) (see Remark in Section5). Whend = clogn for constantc, these algorithms both have
“truly subquadratic” runtimes. These both improve on Alnaawd Williams' algorithm AW15] which runs
in randomized tima?2-/0(¢log°¢) and only gives a nontrivial algorithm for< log2n/ log3logn. Applying
reductions from AW15], we can achieve similar runtimes for finding closest pairg;i for vectors with
small integer entries, and pairs with maximum inner productaccard coefficient.

It is worth noting that there may be a serious limit to solvihig problem much faster. Theorelmt (and
[AW15]) shows for allc there is @ > 0 such that Offline Hamming Nearest Neighbor search in diinans
d = clogn takesO(n?~9%) time. Showing that there is a universal> 0 that works for allc would disprove
the Strong Exponential Time Hypothes®Y/15, Theorem 1.4].

Offline Approximate Nearest Neighbor Search. The problem of finding high-dimensionapproxi-
matenearest neighbors has received even more attention. byssalsitive hashing yields data structures
that can find(1+ ¢)-factor approximate nearest neighbors to any query poiél('cml‘Q(s)) (randomized)
time after preprocessing (d n+n?~2(€)) time and spacé for not only Hamming space but algpand/;
space HIM12, AI06]. Thus, a batch oh queries can be answered@jdr?~2(€)) randomized time. Excit-
ing recent work on locality-sensitive hashirilNR14, AR15] has improved the constant factor in tQéc)
bound, but not the growth rate in In 2012, G. Valiant Yal12] reported a surprising algorithm running
in O(dn+ n?-2(vé)) randomized time for the offline version of the problen¥jn We obtain a still faster
algorithm for the offline problem, witk/e improved to aboug?/3:
log®logn

log®n ’
or ¢, nearest/farthest blue neighbor for each red pointdm+ n2-2(€"*/109(1/€)) . poly(log(nU)) random-
ized time.

Theorem 1.5. Given n red and n blue points {b/]9 and e > we can find g1+ £)-approximate/,

Valiant’s algorithm, like Alman and Williams’AW15], relied on fast matrix multiplication, and it also
used Chebyshev polynomials but in a seemingly more compticavay. Our new probabilistic PTF con-
struction is inspired by our attempt to unify Valiant's apach with Alman and Williams’, which leads to
not only a simplification but also an improvement of Valiardlgorithm. (We also almost succeed in deran-
domizing Valiant'sn?~2(vV#) result in the Hamming case, except for an initial dimensixhuction step; see
Remark3 in Section5.)

Numerous applications to high-dimensional computatiggedmetry follow; for example, we can ap-
proximate the diameter or Euclidean minimum spanning tmeeughly the same running time.

MAX-SAT. Another application is MAX-SAT: finding an assignment thatisfies the maximum num-
ber of clauses in a given CNF formula withvariables. In the sparse case when the number of clauses is
a series of papers have given faster exact algorithms, fimple, achieving 2 "/©(¢109¢) time by Dantsin
and Wolpert PWO0g], 2"~/0(0g9?* {ime by Sakai et al.$STT153 and 2-"/°V%) time by Chen and
Santhanam@S13. Using the polynomial method and our new probabilistic REDRstruction, we obtain
the following improved result:

Theorem 1.6. Given a CNF formula with n variables and eq n*/ log'®n clauses, we can find an assign-
ment that satisfies the maximum number of clauses in rangdi2llz"/0(¢"*109”°¢) time.

1Throughout the paper, tH@ notation hides polylogarithmic factorié)] denotes{0,1,...,U — 1}, and polyn) denotes a fixed
polynomial inn.



For general dense instances, the problem becomes tougfitamsa/ [Wil04] gave anO(2°792")-time
algorithm for MAX-2-SAT, but arO(2(1-%)")-time algorithm for MAX-3-SAT (for a universab > 0) has

remained open; currently the best reported time bo@RITT 150 is 2n=Q(n/logm* " \hich can be slightly

improved to 2-2(V1/109% wjith more care. We make new progress on not only MAX-3-SATast) MAX-
4-SAT:

Theorem 1.7. Given a weighted 4-CNF formula F with n variables with pastinteger weights bounded by
poly(n), we can find an assignment that maximizes the total weighto$es satisfied in F, in randomized

2n-n/O(log’nlog”logn) time. In the sparse case when the clauses have total weigtitetime bound improves
to 2n—"1/O(log’ clog®logc)

LTF-LTF Circuit SAT Algorithms and Lower Bounds. Using our small sample space for probabilis-
tic MAJORITY polynomials (Theoreni.1), we construct a new circuit satifiability algorithm for cirits
with linear threshold functions (LTFs) which improves owaveral prior results. LeACO[d,m] olLTFo
LTF[S1, S, S3] be the class of circuits with a layer 8f LTFs at the bottom layer (nearest the inputs), a layer
of S, LTFs above the bottom layer, and a sB&eAC°|m| circuit of depthd above the two LTF layers.

Theorem 1.8. For every integer @~ 0, m> 1, andd > 0, there is are > 0 and an algorithm for satisfiability
of ACO[d,m] o LTF o LTF[2™, 2", n?-9] circuits that runs in deterministi2™ " time.

Williams [Wil14b] gave a comparable SAT algorithm faCC°0 LTF circuits of 2° size, wheree > 0 is
sufficiently smalf Theoreml.8strictly generalizes the previous algorithm, allowing t#ieo layer ofn®—¢
linear threshold functions below the existih@F layer. Theorenil.8 also trivially implies deterministic
SAT algorithms forL TF o LTF circuits of up ton? °1) gates, improving over the recent SAT algorithms of
Chen, Santhanam, and Srinivas@8[B816 which only work for n**¢-wire circuits fore <« 1, and the SAT
algorithms of Impagliazzo, Paturi, and Schneid®dJ13.

Here we sketch the ideas in the SAT algorithm AGrC%o LTF o LTF. Similar to the SAT algorithm for
ACCPo LTF circuits [Wil14b], the bottom layer of TFs can be replaced by a layer of DNFs, via a weight
reduction trick. We replactTFs in the middle layer wittAC® o MAJ circuits (modifying a construction of
Maciel and ThérienIT98] to keep the fan-in oMAJ gates low), then replace thes®AJ gates ofn?©(9)
fan-in with probabilisticF,-polynomials of degre@!~©(9)+0() gver a small sample space, provided by
Theoreml.1l Taking a majority vote over all samples, and observing #mdf,-polynomial is aMOD> o
AND circuit, we obtain aviAJ o ACC circuit, but with 2°°% size in some of its layers. By carefully
applying known depth reduction techniques, we can convertcircuit into a depth-two circuit of size
2" which can then be evaluated efficiently on many inputs. (Thist obvious: applying the Beigel-
Tarui depth reduction to &8 °)-size circuit would make its new sizgiasi-polynomial ir2®"™ ), yielding
an intractable bound of"3” )

Applying the known connection between circuit satisfidypilgorithms and circuit lower bounds for
ENP problems Wil10, Will4c, IMV15], the following is immediate:

Corollary 1.1. For every d> 0, m> 1, andd € (0,1), there is ane > 0 such that the clasENP does not
have non-uniform circuits iMC°[d, m| o LTF o LTF[2", 2™ n2-%]. In particular, for everye > 0, ENP does
not haveACC%o LTF o LTF circuits where theACC%o LTF subcircuit ha2™” size and the bottordTF layer
has f—¢ gates.

2Recall that for an integan > 2, AC°[m] refers to constant-depth unbounded fan-in circuits ovebtsis{ AND, OR, MODp,},
whereMOD, outputs 1 iff the sum of its input bits is divisible toy.
3RecallACCY is the infinite union oAC[m for all integersm > 2.



Most notably, Corollaryl.1 proves lower bounds with*—¢ LTFs on the bottom layer arglibexponen-
tially manyLTFs on the second layer. This improves upon reddrfio LTF gate lower bounds of Kane
and Williams KW16], at the cost of raising the complexity of the hard functioonf Tcg to ENP. Sug-
uru Tamaki fam1g has recently reported similar results for depth-two discwith both symmetric and
threshold gates.

A Powerful Randomized SAT Algorithm. Finally, combining the probabilistic PTF for MAJORITY
(Theorem1.3) with the probabilistic polynomial ofAW15], we give a randomized SAT algorithm for a
rather powerful class of circuits. The clas$AJ o AC® o LTF o AC?0 LTF denotes the class of circuits
with a majority gate at the top, along with two layers of lindareshold gates, and arbitra@y(1)-depth
ACP circuitry between these three layers. This circuit clasarggiably much more powerful tha‘ﬁcg
(MAJoMAJoMA), based on known low-depth circuit constructions for anigic functions (e.g.gSV84
MT98, MT99)).

Theorem 1.9. For all € > 0 and integers d> 1, there is ad > 0 and a randomized satisfiability algorithm
for MAJo AC%o LTF 0 AC%o LTF circuits of depth d running i2"2(") time, on circuits with the following
properties:

e the topMAJ gate, along with every,TF on the middle layer, has @%°~¢) fan-in, and

e there are Q2”5) manyAND/OR gates (anywhere) andl' F gates at the bottom layer.

Theoreml.9applies the probabilistic PTF of degree abol€ (Theoreml..3) to the topMAJ gate, prob-
abilistic polynomials oveZ of degree about'/2 (Theorem1.1) to the middle LTFs, and weight reduction
to the bottom LTFs; the rest can be represented with(p8lydegree.

It would not be surprising (to at least one author) if the aboircuit class contained strong pseudo-
random function candidates; that is, it seems likely thatNtatural Proofs barrier applies to this circuit
class. Hence from the circuit lower bounds perspectiveptbblem of derandomizing the SAT algorithm
of Theoreml.9is extremely interesting.

2 Preliminaries

Notation. In what follows, for(xy,...,%,) € {0,1}" define|x| := ¥, x. For a logical predicat®, we use
the notationP] to denote the function which outputs 1 wheiis true, and 0 wher is false.

For 6 € [0,1], define TH : {0,1}" — {0, 1} to be thethreshold functiomHg(xq,...,%) :=[|X|/n > 6].
In particular, TH , = MAJORITY.

For classes of circuits” and %, € o ¥ denotes the class of circuits consisting of a single cilCuit %
whose inputs are the outputs of some circuits fr@inThat is,% o & is simply the composition of circuits
from % and 2.

Rectangular Matrix Multiplication. One of our key tools is fast rectangular matrix multipliocati

Lemma 2.1(CoppersmithCop83). For all sufficiently large N, multiplication of an M N-172 matrix with
an N172 x N matrix can be done in M?log?N) arithmetic operations over any field.

A proof can be found in the appendix aifl14b].

Chebyshev Polynomials in TCSAnother key to our work is that we find new applications of Gheb
shev polynomials to algorithm design. This is certainly aagtew phenomenon in itself; here we briefly
survey some prior related usages of Chebyshev polynonfialst, Nisan and SzegediN594 used Cheby-
shev polynomials to compute the OR functionroBoolean variables with an “approximating” polynomial
p:R" — R, such that for alk € {0,1}" we have|OR(x) — p(x)| < 1/3, yet degp) = O(y/n). They also
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proved the degree bound is tight up to constants in the biga@yri [Pat92 generalized the upper and lower
bound to all symmetric functions.

This work has led to several advances in learning theoryldBigi on the polynomials of Nisan and
Szegedy, Klivans and Servedi&$01] showed how to compute an OR dbfANDs of w variables with
a PTF of degre®©(,/wlogt), similar to our degree bound for computing an ORt }1AJORITYs of w
variables of Theorem.2 (however, note our bound in the “exact” setting is a bit betlee to our use of
discrete Chebyshev polynomials). They also show how to coengn OR ofs ANDs on n variables with
a deterministicPTF of O(nl/3 logs) degree, similar to our cube-root-degree probabilistic Rirkhe OR
of MAJORITY of Theorem1.3in the “exact” setting. However, it looks difficult to genbza Klivans-
Servedio'sO(nl/3 logs) degree bound to compute an OR of MAJORITY: part of their aoesion uses
a reduction to decision lists which works for conjunctiong hot for MAJORITY functions. Klivans,
O’Donnell and ServedioHOS04 show how to compute an AND &€ MAJORITY on n variables with a
PTF of degre®©(,/wlogk). By a simple transformation via De Morgan’s law, there is lypomial for OR
of MAJORITY with the same degree. Their degree is only slightorse than ours in terms & (because
we use discrete Chebyshev polynomials).

In streaming algorithms, Harvey, Nelson, and Ondk {08 use Chebyshev polynomials to design ef-
ficient algorithms for computing various notions of entrépy stream. As a consequence of a query upper
bound in quantum computing, Ambainis et &JR*10] show how to approximate any Boolean formula
of size s with a polynomial of degreefs“o(l), improving on earlier bounds of O’Donnell and Serve-
dio [0S1(Q that use Chebyshev polynomials. Sachdeva and VisI8\1§ give applications of Chebyshev
polynomials to graph algorithms and matrix algebra. Limiatl Nisan [N90] use Chebyshev polynomi-
als to approximate inclusion-exclusion formulas, and Stoer[She0§ extends this to arbitrary symmetric

functions.

3 Derandomizing Probabilistic Polynomials for Threshold Functions

In this section, we revisit the previous probabilistic paynial for the majority function on bits, and show
it can be implemented using only polylogs) random bits. Our construction is essentially identicahiat t
of [AW15], except that we use far fewer random bits to sample entrags the input vector in the recursive
step of the construction.

For the analysis, we need a Chernoff bound for bits with Bohindependence:

Lemma 3.1([SSS9% Theorem 5 (I)(b)) If X is the sum of k-wise independent random variables, e&ch o
which is confined to the intervéd, 1], with u = E[X], < 1, and k= [ 5%ue /3|, then

PHIX — p| > op] < e 13,

In particular, the following inequality appears in the aséd of [AW15]:

Corollary 3.1. If x € {0,1}" with x| /n = w, and% € {0,1}"/*C is a vector each of whose entries is k-wise
independently chosen entry of x, where k20e~/3log(1/¢) |, with |%| /(n/10) = v, then for everg < 1/4,

where a= v/10-/In(1/¢).

Proof. Apply Lemma3.1with X = |X|, u = E[|X|] = wn, andd = /40log(1/¢)/n. O
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Reminder of Theorem1.1 Forany0< 0 < 1, there is a probabilistic polynomial for the threshold ftioa
THp of degree @,/nlogs) on n bits with errorl/s that can be randomly sampled usingl@(n)log(ns))
random bits.

Proof. Our polynomial is defined recursively, just as #WJ15]. Sete = 1/s. Using their notation, the
polynomialM, g ¢ for computing THy on n bits with errore is defined by:

Mng.e(X) :=Ang.2a(X) - Sy/100.a/ie/a(X) + Mnj106.e/4(X) - (1= Sy/106.a/ ne/a(X))-

In [AW15], X was a sample afi/10 bits ofx, chosen independently at random. Here, we pit& be
a sample of/10 bits choserk-wise independently, fok = [20e*/3log(1/¢)|. The other polynomials in
this recursive definition are as iIA\V15]:

e Mg for m< nis the (recursively defined) probabilistic polynomial fdfd on m bits ande error

® Snose(X) = (1=Mmngis5:(X) Mmg 5e(X) form<n

e Angg:{0,1}" — Zis an exact polynomial of degree at mogtZ+ 1 which gives the correct answer

to THg for any vectorx with |x| € [6n— g/n,6n+ g/n], and may give arbitrary answers on other
vectors.

Examining the proof of correctness in Alman and William&\[15], we see that the only requirement
of the randomness is that it satisfies their Lemma 3.4, a cdrat®n inequality for sampling ffom x. Our
Corollary 3.1is identical to their Lemma 3.4, except that it replacesrtirathod of sampling With k-wise
sampling; the remainder of the proof of correctness is éxastbefore.

Our polynomial construction is recursive: we divid®y 10 and dividee by 4, each time we move from
one recursive layer to the next. At thith recursive level of our construction, ford j < log,o(n), we need
to O(log(4! /£))-wise independently sampig/10! entries from a vector of lengthy10/~1. Summing across
all of the layers, we need a total 6fn) samples from &-wise independent space, whérés never more
thanO(n/¢g). This can be done all together usi@gn) samples from{1,2,...,n} which areO(n/¢)-wise
independent. Using standard constructions, this req@(&gy(n)log(n/g)) random bits. O

4 PTFs for ORs of Threshold Functions

In this section, we show how to construct low-degree PTFRsssmting threshold functions that have good
threshold behavior, and consequently obtain low-degrdes®dr an OR of many threshold functions.

4.1 Deterministic Construction

We begin by reviewing some basic facts about Chebyshev poiiais. Thedegree-q Chebyshev polynomial

of the first kindis
la/2] a\,2 i 2i
Tq(X) := <_>(x—1)x‘ .
! i; 2

Fact 4.1. For anye € (0,1),
o ifxe[—1,1], then|Ty(x)| <1,
o ifxe (1,1+¢), then {(x) > 1,

o if x> 1+¢, then {(x) > 2eWVe,



Proof. The first property easily follows from the known formulg(x) = cogqarccogx)) for x € [—1,1].
The second and third properties follow from another knowmigda Tq(x) = cosh{garcosttx)) for x > 1,

which forx > 1+ & implies Ty(x) > cosh(ay/€) = 3 (W& + e V). O

In certain scenarios, we obtain slightly better resultagisi (lesser known) family afiscrete Chebyshev
polynomialsdefined as followsHlir03, page 59]:

oun=3()()0)

(See also$ze75 pages 33—34] or Chebyshev’s original papgeh¢99 with an essentially equivalent defi-
nition up to rescaling.)

Fact4.2. Let ¢ = (t+1)%1/qgl. Forallt > q> /8(t+1)In(t+ 1),
o ifxe {0,1,...,t}, then|Dgt(X)| < Cqt;
o if x < —1, then Dy (x) > e/t )ey,.
Proof. From [Hir03, page 61],
! 29\ /t+1+q
Dqt(k)? =
2,0 <Q><ZQ+1>

29(29—1)---q (t+1+q)(t+q)---(t+1-0q)

qq-1)---1 (29+1)(2q)---1
(t+D(+12-1)(t+1)2-2) - ((t+1)° -7 _ (t+1)*H2
(29+1)(ah)? - (a)?
Thus, for every integex € [0,t], we have|Dg; (X)| < (t+ 1)9t1/g! = cqy
Forx < —1, we havg—1)' (}) = (=X(= X”% |( XH-1) > 1, and by the Chu—Vandermonde identity,

SRR

+1)9(1+ t+1)(1+ t+1) (14 Hil)
ol

Cqp 2ietg a(a+1)/(4(t+1))—In(t+1) o’/ (8(t+1))
U e — ¢ = € it
t+1 " - -

v

Reminder of Theorem1.2. We can construct a polynomiai® : R — R of degree @,/1/&logs), such
that

o ifxe{0,1,....t}, then|Pst ¢ (X)| < L;
o ifxe (t,(1+¢)t), then Ry ¢(x) > 1;
o if x> (14 ¢)t, then Rig(x) >s.

For the “exact” setting withe = 1/t, we can alternatively bound the degree b @log(st)).



Proof. SetPs; ¢(X) := Tq(X/t) for a parameteq to be determined. The first two properties are obvious from
Fact4.1 On the other hand, ¥ > (1+ ¢)t, then Factt.1shows thas; ¢(x) > %eq\/g > s, provided we set

q= %/1/sln(23)1 . This achieve®©(,/1/¢logs) degree.

When ¢ = 1/t the above yield©(\/tlogs) degree; we can reduce the Béactor by instead defin-
iNg Pste(X) i= Dgi(t —X)/Cqr.  Now, if x > t+1, then Py (x) > eT/B141) > s by setting q =
[\/S(t +1)In(max{s,t + 1})} : O

Using Theorend.2, we can construct a low-degree PTF for computing an Oftlofesholds of bits:

Corollary 4.1. Given ns;t,&, we can construct a polynomial £{0,1}"S — R of degree at mosA :=
O(y/1/¢logs) and at most s(,) monomials, such that

o if the formula\/i_; [T ; x; > t] is false, therP(xy1, ..., X1n, ..., Xst, - - Xsn)| < S;

e if the formula\/;_; [Z?:]_Xij >t+en] is true, then PXa1, ..., Xan, ..., Xst, .- ., Xsn) > 25.
For the exact setting witl = 1/n, we can alternatively bourdl by O(+/nlog(ns)).
Proof. Define P(X11,...,Xn, .-, Xst,- -+, Xsn) = Y1 Pnaste (3]_1%j), where Pyaste is from Theo-
rem1.2. The stated properties clearly hold. (In the second caseyutput is at leasts3- (s—1) > 2s) O
4.2 Probabilistic Construction

Allowing ourselves a distribution of PTFs to randomly draarfi, we can achieve noticeably lower degree
than the previous section. We start with a fact which foll@asily from the (tight) probabilistic polynomial
for MAJORITY:

Fact 4.3. (Alman—Williams [AW15], or Theorem 1.1) We can construct a probabilistic polynomiah Q) :
{0,1}" — R of degree @y/nlogs), such that

o if S, <t, then Qst(X1,...,%) = O with probability at leastL — 1/s;

e if S, % >t, then Qst(X1,..., %)) = 1 with probability at leastlL — 1/s.

Reminder of Theorem 1.3, We can construct a probabilistic polynomiﬁl,s&g :{0,1}" — R of degree
0O((1/€)*3logs), such that

o if 1L X <t, then]ﬁn,sm(xl,...,xn)] < 1 with probability at leastl — 1/s;
o if SN % € (t,t+&n), thenPhsp (X1, .., %) > 1 with probability at leastl — 1/s;
o if 1L x >t+en, thenlsnisit,g(xl, ...,Xn) > s with probability at leasfL— 1/s.

For the “exact” setting withe = 1/n, we can alternatively bound the degree bin&®log®3(ns)).

Proof. Letr andq be parameters to be set later. Draw a random saRplg1,...,n} of sizer. Let

tR::%—cm/rlogs and t:=t—2c (\%) \/logs



for a sufficiently large constamy. Define

n
PI’L&t,E(Xla"de) = Qr,ZatR({Xi Yier) - Py gl (lel _t>,
i=

wherePsy ¢ is the polynomial from Theoreh 2, witht’ :=t—t~ = ©((n/,/r)\/logs) ande’ := en/t’ =
O(ey/r//10959).

To verify the stated properties, consider three cases:

e Case 1: ' ;% <t~. By a standard Chernoff bound, with probability at least 1/(2s), we have
YierX <t7r/n+coy/rlogs < tg (assuming that > logs). Thus, with probability at least 1 1/s,
we haveQn st ({Xi }icr) = 0 and st ste (X1, - - -, %n) = 0.

o CASE2: 31X € [t™,t]. With probability at least - 1/s, we haveQ 2, ({X }icr) € {0, 1} and so
|Pn.5.t,€(xlv cee »Xn)| <1

e CASE 3: Y1, % >t. By a standard Chernoff bound, with probability at least 1/(2s), we have
YierX > tr/n+ cp/rlogs=tg. Thus, with probability atleast-1 1/s, we haveQ; st ({Xi }icr) = 1
and soPyste(X1,...,%) > 1for 3L, x € (t,t+&n), orPoste(Xa, ..., %) >sfor 3L, x >t+en.

The degree oP, s ¢ is

0 V/riogs +/(1/(ev) iogslogs)

and we can sat= [(1/5)2/3 logs|. For the exact setting, the degree is

o Viiogs:+/(n/vP)fogs-tog(ns )

and we can sat= {n2/3 Iog1/3(ns)w : O

Remark 1. Using the same techniques as in Theork we can sample a probabilistic polynomial from
Theoreml.3with only O(log(n)log(ns)) random bits.

Corollary 4.2. Given ds,t,&, we can construct a probabilistic polynomial: {0,1}"S — R of degree at
mostA := O((1/€)Y/3logs) with at most s (i) monomials, such that
o if Vi [T 1x; >t] is false, thenP(X11,...,Xn, ..., Xs1, .- -, Xsn)| < S With probability at leasg/3;
o if \/7 [Z(jj:lxjj >t-+en| is true, thenP(X11,. .., X1n, .., Xs1,- - -, Xsn) > 25 With probability at least
2/3.
For the exact setting wite = 1/n, we can alternatively bounti by O(n'/3log?3(ns)).

PrOOf Deflneﬁ(xll,,xln,7Xsl,,Xsn) = Z|s:1|/5n,3s.t|,€(x|177)(m) D

Remark 2. The coefficients of the polynomials from FacBare polyn)-bit integers, and it can be checked
that the coefficients of all our deterministic and probalii polynomials are rational numbers with paiy-

bit numerators and a common p@ty-bit denominator, and that the same bound for the number afomo
mials holds for the construction time, up to p@ily factors. That is, computations with these polynomials
have low computational overhead relativento
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5 Exact and Approximate Offline Nearest Neighbor Search

We now apply our new probabilistic PTF construction to abtaifaster algorithm for offline exact near-
est/farthest neighbor search in Hamming space:

Reminder of Theorem1.4. Given n red and n blue points i0,1}9 for d = clogn < log® n/log®logn,
we can find an (exact) Hamming nearest/farthest blue neigftroevery red point in randomized time
n2-1/0(yElog*?c)

Proof. We proceed as in Abboud, Williams, and Yu’s algorithm for B@m orthogonal vector&WY 15] or
Alman and Williams’ algorithm for Hamming closest pa#W15]. For a fixedt, we first solve the decision
problem of testing whether the nearest neighbor distariessghart for each red point. (Farthest neighbors
are similar.) Lets=n® for some parametex to be set later. Arbitrarily divide the blue point set intgs
groups ofs points. For every grouf of blue points and every red poigt we want to test whether

d
F(G,q) := [ggg\\p—qmd} =V [_Zl(piQi‘f‘(l_pi)(l_Qi))>d_t
peG i=

(wherep; denotes thé-th coordinate of a poinp). By Corollary4.2, we can expresk (G, q) as a proba-
bilistic polynomial that has the following number of monasi

132/31ogn)
clogn Ol
n“-O( >

s o(d) <
O(d¥/3log?3(ds))) ~ cl/3a2/3logn

< ne.pOERa i) o (n/god
for large enough, by settinga to be a sufficiently small constant timeg(&/3log®?c). The same bound
holds for the construction time of the polynomial.

We can rewrite the polynomial fd%(G,q) as the dot product of two vectogg G) andg(q) in (n/s)®!
dimensions oveR. The problem of evaluating (G, ) over alln/sgroupsG of blue points and all red points
q then reduces to multiplying am/s x (n/s)%! with an (n/s)%! x n matrix overR. This in turn reduces to
s instances of multiplication aofi/s x (n/s)%! with (n/s)®! x n/s matrices, each of which can be done in
(5(n/s)2 arithmetic operations on palgt)-bit numbers over an appropriately large field (Lem2ng. The
total time isO(poly(d)n?/s) = O(n2~1/0(c**log¥?c)y

The error probability for each paif, g) is at most %3, which can be lowered ©(1/n%), for example,
by repeatingO(logn) times (and taking the majority of the answers). The overatireprobability is then
O(1/n). This solves the decision problem for a fixedut we can compute all nearest neighbor distances
by calling the decision algorithm times for all values of. For each red point, we can find an actual nearest
neighbor in additionaD(s) time, since we know which group achieves the nearest neigtibtance. [

The same approach can be applied to salyeroximatenearest neighbor search in Hamming space:

Theorem 5.1. Given n red and n blue points i0,1}9 and £ > log®(dlogn)/log®n, we can find an ap-
proximate Hamming nearest/farthest blue neighbor withitade error at mosted for each red point in

randomized time Fr 2(8"*/109(zi5g7)).

Proof. We mimic the proof of Theorerh.4 up to the definition of the polynomi#d (G, q). However, instead
of applying the exact polynomial of Corollady2, we insert theapproximatepolynomial construction from

11



the same corollary. While the exact polynomial had de@(atél/3 Iogz/3(ds)), the approximate one has
degreeO((1/¢)Y3logs). Setting
s —n% — n9(81/3/|09(a§—gn))7

the number of monomials in the new polynomial is now

O(d) a d O((a/e*/%)logn)
> <0<<1/s>1/3|ogs>> =0 'O<<a/el/3>|ogn>

< na.nl@/e)08angm) « (n/g)0

for large enougim. The remainder of the algorithm is the same as the proof obiém1.4, and the running
time isO(n2/s2) < n? (/100 cagn)). .

Remark 3. For deterministic algorithms, using Corollafyl instead, the time bounds for Theorefg
and1.5becomen?~1/0(clog’c) andn?~2VE/108(5gn)) respectively.

The algorithm of Theoren.1 still has three drawbacks: (i) the exponent in the time bodepends
on the dimensiom, (ii) the result requires additive instead of multiplieatierror, and (iii) the result is for
Hamming space instead of more generdllypr ¢,. We can resolve all three issues at once, by using known
dimension reduction technigues:

'°9 '09” , we can find a

Reminder of Theorem 1.5.  Given n red and n blue points ify]? and £ >

(14 €)-approximatel; or £, nearest/farthest blue neighbor for each red p0|n(dm+ n2 Q(51/3/""9’(1/5))) -
poly(log(nU)) randomized time.

Proof. (The /1 case.)We first solve the decision problem for a fixed threshold valiWe use a variant of;
locality-sensitive hashing (seAfd05) to map points fron?; into low-dimensional Hamming space (pro-
viding an alternative to Kushilevitz, Ostrovsky, and Ralsadimension reduction technique for Hamming
space KOROQ). For each red/blue poirt and each € {1,... k}, defineh;(p) = (hi1(p),-..,hiq(p)) with

hij (p) = | (pa; +bij)/(2t)| wherea;; € {1,...,d} andbj; € [0,2t) are independent uniformly distributed
random variables. For each of tl¥n) hashed values df;, pick a random bit; lef(p) be the random bit
associated witt; (p). Finally, definef (p) = (f1(p),..., f(p)) € {0,1}X. For any fixedp, g,

d
Prihij (p) # hij(a)] = %Z {‘pa qa’71}
k
Pifi(p) # fi(a)] = 3 Pih(p) £ hi(a) =%Pr[\/[hi,-<p>¢hi,-<q>]].
j=1

o If |p—qllz <t, then Pfhj (p) # hij (a)] < B < L and Ptfi(p) # fi(a)] < ao:= 3(1— (1 £)9);

o it [p—qlls > (L+&)t, then Pt (p) # hy; (0)] > min{LBzdls 1} > L€ and PEfi(p)  fi(q)] > a1 =
11— (1)),

Note thata; — ap = Q(¢&). By a Chernoff bound, it follows (assumirkg> logn) that

e if |[p—q|js <t, then||f(p) — f(q)||1 < Ao := aok+ O(y/Klogn) with probability 1— O(1/nd);
o if ||p—qljs> (14 &)t, then||f(p) — f(q)||1 > A1 := ark— O(y/klogn) with probability 1— O(1/n?).
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Note thatA; — Ag = Q(ek) by settingk to be a sufficiently large constant timés/e)?logn. We have
thus reduced the problem to an approximate problem withtigddérror O(ek) for Hamming space in
k = O((1/€2)logn) dimensions, which by Theoref1 requiresn?~(e"°/109(1/¢)) time. The initial cost of
applying the mapping is O(dkn).

This solves the decision problem; we can solve the originatblpm by calling the decision algorithm
O(log,. . U) times for allt’s that are powers of % €. O

Proof. (The ¢/, case.)We use a version of the Johnson-Lindenstrauss lemma to g rto ¢1 (see for
example Mat08)). For each red/blue poim, definef (p) = (f1(p),..., fk(p)) € R¥with f;(p) = z‘j;laij JF
where theg;j’s are independent normally distributed random variablils mean 0 and variance 1. For each
fixed p,q € RY, it is known that after rescaling by a constaff,(p) — f(q)||1 approximates|p — q||» to
within 14 O(¢) factor with probability 1- O(1/n%), by settingk = O((1/£)?logn). It suffices to keep
O(logU )-hit precision of the mapped points. The initial cost of gpm the mappingf is O(dkn) (which
can be slightly improved by utilizing a sparse Johnson—&instrauss transforn\{C09)). O

Numerous applications to high-dimensional computatigedmetry now follow. We briefly mention
just one such application, building on the work B¥1p8, HIM12]:

Corollary 5.1. Given n points ifU]? and & > log®logn/log®n, we can find g1+ ¢)-approximate/; or
¢, minimum spanning tree ifdn-+ n2-(e"*/109(1/£))) . poly(log(nU)) randomized time.

Proof. Let G; denote the graph where the vertex set is the given poinP setd an edgeq is present
whenevem andq have distance at most Har-Peled, Indyk, and MotwanHIM12] gave a reduction of the
approximate minimum spanning tree problem to the follovapgroximate connected componepitsblem:

Given a valuer, compute a partition oP into subsets with the properties that (i) two points
in the same subset must be in the same compone@tin), and (i) two points in different
subsets must be in different component&in

The reduction is based on Kruskal's algorithm and incredsgsunning time by a logarithmic factor.

To solve the approximate connected components problemPElad, Indyk, and Motwani gave a further
reduction to online dynamic approximate nearest neighéarch. Since we want a reduction to offline static
approximate nearest neighbor search, we proceed different

We first reduce the approximate connected components pndbl¢heoffline approximate nearest for-
eign neighborsgproblem:

Given a setP of n colored points with colors fronin], for each pointg € P, find a(1+ €)-
approximate nearest neighbor Ng&mong all points irP with color different fromg’s color.

The reduction can be viewed as a variant of Boruvka’s algoriand is as follows: Initially assign each
point a unique color and mark all colors as active. At eadfafiten, solve the offline approximate nearest
foreign neighbors problem for points with active colors.r Eachg, if NFNg andq have distance at most
(1+¢)r and have different colors, merge the color class of N&hq. If a color class has not been merged
to other color classes during the iteration, mark its cofoinactive. When all colors are inactive, output the
color classes. Otherwise, proceed to the next iteratior chinrectness of the algorithm is obvious. Since
each iteration decreases the number of active colors bwast éehalf, the number of iterations is bounded
by O(logn). Thus, the reduction increases the running time by a |dgaitt factor.

13



Tofinish, we reduce the offline approximate nearest foreaghbors problem to the standard (red/blue)
offline approximate nearest neighbors problem by a startdakd For eachj = 1,..., [logn], for each point
g € P where thej-th bit of g's color is O (resp. 1), compute an approximate nearest heigbf g among all
points p € P where thej-th bit of p's color is 1 (resp. 0). Record the nearest among all appraémearest
neighbors found for each poiat The final reduction increases the running time by anothgarithmic
factor. O

6 Faster Algorithms For MAX-SAT

Next, we apply our improved probabilistic PTFs to obtaindaslgorithms for MAX-SAT for sparse in-
stances witten clauses. We first consider MAK-SAT for smallk before solving the general problem:

Theorem 6.1. Given a k-CNF formula F (or k-CSP instance) with n variablesl &n< n*/(k*log®n)
clauses, we can find an assignment that satisfies the maxiraarben of clauses (constraints) of F in
randomized@"—"/O(k*c"?log(ke)) time,

Proof. We proceed as in thek#8SAT algorithm of Chan and WilliamsJw16g. We first solve the decision
problem of testing whether there is a variable assignmeisfigag more thart clauses for a fixetl € [cn].
Lets= an for some parameter < 1/2 to be set later.

For j € [cy], define the functiol€j(xy, ..., X)) = 1 if the j-th clause of the given formula is satisfied, and
0 otherwise. Note that ea€?) can be expressed as a polynomial of degree at knost

Say that a variable igoodif it occurs in at most Rc clauses. By the pigeonhole principle, at least half of
the variables are good, so we can fasgbod variablexy, ..., xs. LetXs.1,...,X, be the remaining variables,
and letJ C [cn| be the set of indices of all claus€s that contain some occurrence of a good variable; note
that|J| = O(kcs). Now for every variable assignmef¥s, 1,...,%,) € {0,1}"5, we want to compute

cn
F(XS+17-.-7Xn) = \/ [ZCJ(a17>aSaXS+177Xn)>t]
(as,....as)e{0,1}s LI=1

We will achieve this by computing for evetye< [cn]:

Gt/(XS+1>"'7Xn) = \/ [ Cj(al,...,as,XSle,...,Xn)>t/].
(a1,...,as)€{0,1}s LI&€

Let us defin€T [Xs;1,...,%n] ==t =¥ z3Cj(0,...,0,Xs41,...,%). (Observe that it is OK to zero out the
good variables(, ... ,Xs here, because we are only summing over clausesdthabtcontain them.) Note
that T can be viewed as a polynomial m— s variables with only polyn) monomials. Therefore for all
(Xs+1,---,%n) € {0,1}"3, theseT -values can be precomputed in paily2"—s time. As theseT -values are
measuring the contribution from the variabless, . . . , X, to the number of satisfied clauses, we have

F(Xst1,---5%n) = G gy 1,00 0] (Xst1y---5%n)-

Applying Corollary4.2(in the exact setting), we can express &pyas a sum of 2probabilistic polynomials
of degreek - O((kcs'/3(s+ log(kcs))?/3), where each probabilistic polynomial computes an expoessi
of the form [y Pj(Xst1.---,X)] with error probability at most A(10-2%), and for all j € J we have
ded pj(Xs+1,---,%)) < k. The number of monomials in our probabilistic polynomial @& is at most

n O(k*/3cY/3an)
k4/3cl/3a n >

Zan'ZO(k4/3c1/3alog%)n < 20In

> n—s an
2'(k'o((kCS)1/3(s+Iog(kcs))2/3)> = 2 'O<

IN
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by settinga to be a sufficiently small constant timeg(k%3cY3log(kc)). The same bound holds for the
construction time of the polynomial.

For eacht’, we can evaluate the polynomial f@ at all 2~S input values by divide-and-conquer or
dynamic programming using pdly)2"—S arithmetic operations¥at37, Will4c] on poly(n)-bit numbers.
The total time is 2~"/OK"*c"?log(kd)) - As before, the error probability can be lowered by takirgimjority
values oveO(n) repetitions, and the original problem can be solved byrgglihe decision algorithm for at
mostcntimes. O

Reminder of Theorem1.6. Given a CNF formula with n variables and ea n*/log!°n clauses, we can
find an assignment that satisfies the maximum number of clausandomize@""/0(c*log”%0) time,

Proof. We use a standard width reduction technigB&T15 originally observed by SchuleiSch0j and
studied closely by Calabro, Impagliazzo, and Pat@tP0§. Consider the following recursive algorithm:
o If all clauses have length at mdstthen call the algorithm from Theorefil and return its output.
e Otherwise, pick a claus@r, V --- Vv ay) with £ > k. Return “SAT” if at least one of the two following
calls return “SAT™:
— Recursively solve the instance in whitty Vv --- v ay) is replaced bya; Vv --- Vv ak), and
— recursively solve the instance in whidh, ..., ax are all assignethlse
Sakai, Seto, and Tamaki’'s analysis for MAX-SA33T15 can be directly modified to show that the total
time of this algorithm remains"2"/Ok"*c"*log(kd) \when the parameteris set to be a sufficiently large
constant times log O

For MAX-k-SAT with k < 4, we can obtain a much better dependency on the sparsitynpteec; in
fact, we obtain significant speedup even for general derséarioes. The approach this time requires only
the previous probabilistic polynomials by Alman and Willia [AW15]. Naively, the dense case seems to
require threshold functions with superlinearly many argats, but by incorporating a few new ideas, we
manage to solve MAX-4-SAT using oniy(n)-variate threshold functions.

Reminder of Theorem 1.7. Given a weighted 4-CNF formula F with n variables with pastinteger
weights bounded by pdly), we can find an assignment that maximizes the total weighto$es satisfied
in F, in randomized@"—"/0(log®nlog?logn) time . |n the sparse case when the clauses have total weigtiien
time bound improves tg"—"/O(log*clog®loge)

Proof. (Dense case.lLets= anfor some parametear to be set later. Arbitrarily divide the variables of
F into three groupsx = {X1,...,Xn-g/2}, ¥ = {Y1,---,Y(n—s)/2}, andz= {z,...,z}. Asin Theoren6.1,
it suffices to solve the decision problem of whether therstexy € {0,1}("~9/2 andz € {0,1}° such that
f(x,y,2) > t, for a given degree-4 polynomidland a fixed € [n®] (for an appropriately large constam).
Sincef has degree 4, observe that each term has either (a) at mogvanable, (b) at most onevariable,
or (c) nozvariable. We can thus write

(n—s)/2 (n—s)/2
f(xy,2) = fi(x,2)yi + gi(y,2)% +h(x,y
( ) i; i(X,2)Yi i; i(Y,2) (xy)

where thefi’s andg;’s are degree-3 polynomials, ahds a degree-4 polynomial.
For everyx,y € {0,1}("=9/2 it suffices to compute

Fxy) = 5 [f(xy2>t].
ze{0,1}
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More generally, we compute for evet'ye [n®]:

(n—s)/2 (n—s)/2
Gt/(xvy) = Z HZJ’(X?y) with HZt’ X y [ Zl f X, Z yl + Z Gi y> Xl > t]
ze{0,1}°

ThenF (x,y) = Gi_n(xy) (X,Y); we can precompute dfi(x,y) values in polyn)2"~* time.

TheH, v (x,y) predicate can be viewed asvaightedthreshold function witfO(n) arguments. To further
complicate matters, these weights are not fixed: they depemxdndy. We resolve the issue by extending
the vectorsc andy and using a binary representation trick.

For each vectox € {0,1}("~9/2, define arextended vectorxwherex" = x; for eachi = 1,...,(n—s)/2
andyx; , is thej-th least significant bit in the binary representatiorfio, z) for eachi = 1,...,(n—s)/2, j =
0,...,¢andz e {0,1}°, with £ = O(logn). Note thatx" is a vector inO(n-logn- 2°%) dimensions. Similarly,
for each vectoy € {0,1}("~9/2, define an extended vectgr wherey: = y; for eachi =1,...,(n—s)/2
andy;; , is the j-th least significant bit in the binary representatiorga, z) for eachi = 1,...,(n—s)/2,
j=0,...,0andze {0,1}. We can precompute all extended vectors(tr2/2. poly(n)2s time.

Then
n—s)/2 (n—s)/2 ]

Hze (x,y) - Z l'L[ Zl Xij ¥+ Zi YijX =t

.....

where the outer sum is over all tupletg,...,tg) € [n%]* with szOZJ -t >t

By Fact4.3, for eachz € {0,1}°, j =0,...,¢, andt; € [n®], we can construct a probabilistic polynomial
(overR or Fy) for the predicate{zi XMtV = tj] with degreeO(y/nlogS) with error probability
at most ¥S. By the union bound, the probability that there is an errorstamez, j,t; is at mostO((1/S) -
25-logn-n°®), which can be made at most4, for example, by setting = n%2s for a sufficiently large
constanty. Thus, the degree for each predicat®is/ns) (assuming > logn).

For eachz € {0,1}° andt’ € [n®], by distributing over the produ<|:t|f:0 we can then construct a proba-
bilistic polynomial forH,y (x,y) with degreeO(y/ns/) < O(y/nslogn). For a fixedz andt’, such a polyno-
mial is a function ofO(nlogn) free variables ix* andy*, and therefore has at mc(%o\/’lglggn)) monomials.
The same bound holds for the time needed to construct thelpititic polynomial (note the number of
tuples(to, . .. ,t;) is nN°1°9" 'which is a negligible factor).

For eacht’ € [n®], we can thus construct a probabilistic polynomial 8y (x,y) with degree
O(/nslogn) overx* andy*, with the following number of monomials:

O(y/anlogn)
0. O(nlogn) < 2.0 nlogn
O(y/nslogn) vanlogn

< 2an_2\/ﬁn(log(n))log(1/a) < 2041(n—s)/2

by settinga to be a sufficiently small constant timeg(logn - loglogn)?. The same bound holds for the
construction time.

We can rewrite the polynomial foBy (x,y) as the dot product of two vectors(x*) and g(y*) of
201(n-9)/2 dimensions. The problem of evaluati@y (x,y) over all x,y € {0,1}("9/2 then reduces to
multiplying a 2"-9/2 x 20100-9/2 with g 2-1(=9)/2 « 2(0-9/2 matrix (overR or F,), which can be done
in poly(n)2"~S time (Lemma2.1). The total time is 2-"/O(log”nlog’logn) O

Proof. (Sparse case.)f the clauses have total weigbi, we can refine the analysis above, in the following
way. Letp; andv; be the maximum value df(x, z) andgi(y, z) respectively. We know thag; (1 +vi) <cn.
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The variablex’; , is needed only whef < log(Li), and the variablg;; , is needed only when < log(Vv;).
For eactly, j,t;, the probabilistic polynomial for the predicate

in*,j,zyi + zyr,j,zxi = tj
i i

has degre®(,/n;s), wheren; is the number of's with p; > 2l orv, > 2.
Observe thah; = O(cn/2)). It follows that the degree for thi, (x,y) polynomial isO(zf:(y /N;S) =

O(y/nslogc + ¥ j-ipgc v/ (cN/2))s) = O(y/nslogc). The number of variables i,y (x,y) is at most
O(3—on;j) = O(nlogc+ ¥ j-i0gc(cn/2})) = O(nlogc).
Thus, the bound on the total number of monomials becomes

O(v/anlogc)
05, O(nlogc) < 2.0 nlogc
O(y/nslogc) yvanlogc

< Zan.z\/ﬁnlogclog(l/a) < 20.1(nfs)/2

by settinga to be a sufficiently small constant timeg(lbgcloglogc)?. O

7 Circuit Satisfiability Algorithms

In this section, we give new algorithms for solving the SADliem on some rather expressive circuit
classes. First, we outline some notions used in both algosit

7.1 Satisfiability on a Cartesian Product

In intermediate stages of our SAT algorithms, we will stuldy following generalization of SAT, where the
task is to find a SAT assignment in a “Cartesian product” offlads assignments.

Definition 7.1. Let n be even, and let,B C {0,1}"/? be arbitrary. TheSAT problem on the sk x B is to
determine if a given n-input circuit has a satisfying assigmt contained in the set>AB.

Recall that a Boolean functiofi : {0,1}" — {0,1} is a linear threshold function (LTF) if there are
ai,...,an,t € Rsuchthatforalke {0,1}", f(x) =1 <= Sax >t.

Let Circuit o LTF[Z, S be the class of circuits with a layer 8fLTFs at the bottom (nearest the inputs),
with Z additional arbitrary gates above that layer. Catcuit o SUMoANDI[Z,S be the analogous circuit
class, but wittSDNFs at the bottom layer with property that each DNF alwaysdianosbneconjunct true
for every variable assignment. (Thus we may think of the DBIBimply aninteger surm) We first prove that
the SAT problem foCircuit o LTF can be reduced to the SAT problem @ircuit o SUM o AND, utilizing a
weight reduction trick that can be traced back to MatouSakjsrithm for computing dominances in high
dimensions [Mat91, Wil14b]:

Lemma 7.1. Let AB C {0,1}"V2, with |A| = |[B| = N < 2". Let K € [1,N] be an integer parameter.
The SAT problem for CircuitLTF[Z,§ circuits on the set A B can be reduced to the SAT problem for
Circuit o SUM o AND[Z, S where each DNF has at mostlogK) terms and eaciAND has fan-in at most
2logK, on a prescribed set’A B with |A'| = |B'| = N and A,B’ C {0,1}25°9K The reduction has the
property that if the latter SAT problem can be solved in timéhen the former SAT problem can be solved
in time (T +N2-Z2/K+N-S) - poly(n).
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Proof. For a given circuitC of type Circuit o LTF[Z, S, let the jth LTF in the bottom layer have weights
aj1,...,0jnt. Let the assignments i beay,...,ay, and let the assignments Bbeb, ..., by. Denote
thekth bit of & andb; asa[k] andb;[K], respectively.

MakeN x SmatricesMa andMg, where

n/2
Mali,J] = 5 ajk-ailK

K=1
and

n/2

Mgli,j] =tj— > o n2k-bilK.

K=1

The key property of these matrices is thf[i, j| > Mg[i’, j] if and only if then-variable assignmertg;, by )

makes theth LTF output 1.

For eachj =1,...,S letL; be the list of all 2N entries in thejth column ofMa and thejth column
of Mg, sorted in increasing order. Partitibp into K contiguous parts 0®(N/K) entries each, and think of
each part oL ; as containing a set @(N/K) assignments froMAU B. (So, the partition of ; is construed
as a partition of the assignmentsAmuB.) There are two possible cases for a satisfying assignroehet
circuit C:

1. There is a satisfying assignme(@, b;) € A x B such that for some= 1,...,S, g and by are in the
same part of |. By enumerating everg; € A, everyj = 1,...,S and allO(N/K) assignment$;: of
B which are in the same part &f asa;, then evaluating the circu on the assignmer(ia;, by ) in
Z? . poly(n) time, we can determine satisfiability for this cas@ifN - N/K - Z2) - poly(n) time. If this
does not uncover a SAT assignment, we move to the second case.

2. There is a satisfying assignmdat, by ) € Ax B such that for every§1,...,S, gand by are different
parts of Lj. Then for every LTF gatg = 1,...,Son the bottom layer of the circuit, we claim that the
j-th LTF can be replaced by a sum©flogK) ANDs on 2loK new variables. In particular, for the
j-th LTF we define one new set of lggvariables which encodes the indkx=1,...,K such that
g is in partk of L, and another set of Idg variables which encodes the indxsuch thaty is in
partk’ of Lj. Then, determinindk > K] is equivalent to determining wheths;, by/) satisfies thg-th
LTF gate. Finally, note that the predicdte> k'| can be computed by a DNF @f(logK) conjuncts.
(Take an OR over alt = 0,...,logK, guessing that thé-th bit is the most significant bit in which
k andk’ differ; we can verify that guess with a conjunction on 2kogariables.) On every possible
input (k,k') € {0,1}2°9X | the DNF has at mosinetrue conjunction. Thus we can construe the OR
as simply arinteger sunof ANDs, as desired. Preparing these new assignments fondw SAT
problem takes tim©(N - S) - poly(n). 0O

7.2 Simulating LTFs with ACO of MAJORITY

In our SAT algorithms, we will need a way to simulate LTFs withunded-depth circuits with MAJORITY
gates. This was also used in Williams’ work on solving ACCFLIAT [Will4b], as a black box. However,
here we must pay careful attention to the details of the cocisbn. In fact, we will actually have to modify
the construction slightly in order for our circuit convensito work out. Let us review the construction
here, and emphasize the parts that need modification fop#mer. Recall thatlAJ denotes the majority
function.
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Theorem 7.1(Follows from MT98], Theorem 3.3) Every LTF can be computed by polynomial-si& o
MAJ circuits. Furthermore, the circuits can be constructed olymomial time given the weights of the
LTF, and the fan-in of eacMAJ gate can be made'né, for every desired > 0, and the circuit has depth

O(log(1/¢)).

It will be crucial for our final results that the fan-in of théAJ gates can be made arbitrarily close to
linear.

Proof. We begin by revisiting the circuit construction of Macieldamhérien MT98], which shows that
the addition ofn distinct n-bit numbers can be performed with polynomial-six€° o MAJ circuits. The
original construction of Maciel and Thérien yieltl$AJ gates of fan—inﬁ(nz), which is too large for our
purposes. We can reduce the fan-in\bAJ gates toO(n'*¢) by setting the parameters differently in their
construction. Let us sketch their construction in its etyirthen describe how to modify it.

Recall thatSYM denotes the class of symmetric functions. First, we show dlddition of n n-bit
numbers can be done iC%o SYM. Suppose the-bit numbers to be added afg,...,A,, whereA =
Ain---A1for Aji € {0,1}. Maciel and Thérien partition eadq into m blocks of¢ bits, wherem- ¢ = n.
They compute the suig of then ¢-bit numbers in each blodk=1,...,m, i.e.

n /¢ -
&= A pesj 27
i=1j=1
and note that the desired sum is o
7= S( . 2(kfl)f‘
2,

EachS can be represented i+ logn bits. Maciel and Thérien sét= logn, so that eacl%; is represented
by 2/ bits. They then split eac into ¢-bit numberdHy andLy such that

S‘:Hk'ZZ—I—Lk.

Note that the “high” partHy corresponds to the “carry bits” &. They then note that if
m ) m
yii= 3 He 29y = L 20D
K=1 K=1

we have
(@) z=y1+Y2, and
(b) each bit ofy; is a function of exactly ongly or Ly for somek. In turn, eachy, Hcisasumoh-£ A j’s
where eaclh j is multiplied by a power of two io0, 2']. Therefore, each bit ofi can be computed
by aSYM gate of fan-in at mogt- £-2¢ < n?.

We have therefore reduced the additiomafbit numbers to adding the tw@(n)-bit numbersy; andys,
with a layer ofSYM gates. Adding two numbers can be easily computetiih (see for exampleGFL8S),
so the whole circuit is of the forrAC® o SYM.

We wish to reduce the fan-in of tfg&YM gates toO(n**¢) for arbitrarye > 0. To reduce the fan-in
further, it suffices to find a construction that lets us redtéic&aturally, we can try to set = €logn for
arbitrarily smalle € (0,1). Without loss of generality, let us assumgelis an integer. Then, eack is
represented i +logn < (1+1/¢)¢ bits. Lett =1+ 1/¢e. If we then split eacls; into t ¢-bit numbers
Tﬁfl, .. ,Tko, ranging from high-order to low-order bits, we then have

S = lefl A T 20410
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Defining thet numbers

the desired sum ig= yi-Jyi. Just as before, each bit gfis a function of exactly ond,! for somek,

which is a sum of- ¢ A; j’s where eaclh j is multiplied by an integer 0, 2']. Hence each bit ofj can
be computed by 8YM gate of fan-in at mosh- ¢- 2/ < 6(n1+5). So with one layer o6YM gates, we
have reduced the numbern-bit addition problem to the addition ®fO(n)-bit numbersyp,...,y—1. But

for t < logn, addition oft n-bit numbers can be computed BY° circuits of poly(n)-size andixed depth
independent of (see e.g.ol99], p.14-15). This completes the description of &@° o SYM circuit.

Observe that eacklYM gate can be easily represented byCdtio AND o MAJ circuit. In particular, the
ORisover allj € {0,1,...,n} such that th&YM gate outputs 1 when givehinputs are equal to 1, and the
AND o MAJ part compute§ ; X; = j. Again, the fan-in of eacMAJ here isé(n”f).

We now apply the addition circuits to show how every LTF mwariables can be represented by a
polynomial-sizeAC® o MAJ circuit. Suppose our LTF has weights, ..., W1, computinng:lexj >
Wn.1. By standard facts about LTFs, we may assume foj it |w;| < 2°M°%" for some constartt > 0.
SetW = bnlog, n.

Let D be aAC® o MAJ circuit for addingn W-bit numbers as described above, where édéh gate has
fan-in é(n”f). Forallj=1,...,n, connect to thgth W-bit input of D a circuit which, giverx;, feedsw;
to D if the input bitx;, = 1, and the all-zer@V-bit string if x; = 0. Observe this extra circuitry is only wires,
no gates: we simply place a wire fraxmto all bits of thejth W-bit input where the corresponding bit wf
equals 1.

This new circuitD’ clearly computes the linear for@’j‘zlexj. The linear form can then be compared

to Wy, 1 with anACP circuit, since the “less-than-or-equal-to” comparisorved integers can be performed
in ACC. Indeed, this function can be represented as a quadracF SUM o AND), as was noticed in

Lemma7.1 We now have al\C® o MAJ circuit D” of size polyW,t) < n° computing the LTF, where the
MAJ gates have fan-i©(n'¢). O

7.3 Satisfiability Algorithm for ACC of LTF of LTF

Let ACO[d,m] o LTF o LTF[S, S, S| be the class of circuits with a layer & LTFs at the bottom layer
(nearest the inputs), a layer 8f LTFs above the bottom layer, and a s&eAC°[m] circuit of depthd above
the two LTF layers.

Reminder of Theorem1.8. For every integer &> 0, m> 1, andd > 0, there is ang > 0 and an algorithm
for satisfiability of ACO[d, m| o LTF o LTF[2", 2" n?-%] circuits that runs in deterministi2™ " time.

We use the following depth-reduction theorem of Beigel aaduil(with important constructibility is-
sues clarified by Allender and GoraG94], and recent size improvements by Chen and Papakonstanti-
nou [CP14):

Theorem 7.2([BT94, AG94]). EverySYM o ACC circuit of size s can be simulated by&M o AND circuit

of 20095° size for some constant depending only on the depth d and MODm gates of AR€ part.
Moreover, theAND gates of the final circuit have onKyogs)d fan-in, the final circuit can be constructed

from the original in 20((logs)®) time, and the final symmetric function at the output can beptded in
20((1099%) time.
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Proof of Theorem 1.8 Let € > 0 be a parameter to be set later. The plan is to start with aitias
specified in the theorem statement, and slowly convert imtice form that can be evaluated efficiently on
many inputs.

1. Trade Variables for Circuit Size. Our first step is standard fokCC-SAT algorithms Will4b,
Will4c]: given anAC[d,m| o LTF o LTF[2", 2™ n2-9] circuit C with n variables, create a copy of the
circuit C, := C(v, -) for all possible assignmentsc {0,1}™ to the firstn® variables ofC, and define

C/(Xn£+17 oo >Xﬂ) = \/CV(Xn£+17 oo >Xﬂ)

Observe tha€' is satisfiable if and only i€ is satisfiableC’ has size at most®™), C’ is also anAC® o
LTF o LTF circuit, andC’ has onlyn— né variables.

2. Replace the middle LTFs with MAJORITYs (Theorem 7.1). Note that each LTF on the second
layer ofC’ has fan-in at most® % 4 n, since the number of LTFs on the first layemé& ®. Applying the
low fan-in transformation of Theorem 1, we can replace each of the LTFs on the second lay€f wfith
poly(n)-size AC® o MAJ circuits where eactAJ has fan-in at most?~9/2. This generates at mosf™?
newMAJ gates in the circui€’, for some constard > 0, and produces a circuit of type

ACC°o MAJOLTF.

3. Replace those MAJORITYs with (derandomized) probabilisic polynomials over F, (Theo-
rem 1.1). We replace each of these n&hAJ gates with our low-randomness probabilistic polynomials f
the MAJORITY function, as follows. Recall from Theorehil that we can construct a probabilistic poly-
nomial overfF; for k-bit MAJORITY with degreeO(+/klog(1/¢’)) and error at most’, using a distribution
of kOUoa(k/€") yniformly choserF,-polynomials. Setting := n?~9/2 for the fan-in of theMAJ gates, and
the error to be’ := 1/2297 | the degree becomes

D=0 (x/ n2-—9/2. 2dn$) < O(nt-0/4+¢/2)

and the sample space has s&ze n°"), Fore < /4, we haveD := O(n'~%/8), and each polynomial in

our sample space has at m@ﬁf}fg) < 20(n*"*"*logn) monomials. For every choice of the random seédl
the probabilistic polynomial, le&€] be the circuitlC’ with the correspondind’, polynomialR substituted in
place of eactMAJ gate. That is, eachAJ gate is substituted by akOR of 20(n**/logn) ANDs of fan-in
at mostO(n1—9/8),
We now form a circuiC” which takes a majority vote over alP?"'°9" circuits C.. The new circuitC”
therefore has the form
MAJoACC®oXORoAND o LTF,

where theMAJ o ACC? part has size2™ 109" and eactXOR o AND o LTF subcircuit has size2"**logn)
Since our probabilistic polynomial computes MAJORITY MI)‘QZd”S error and there are at most2MAJ
gates inC’, the new circuitC” is equivalent to the original circu@’.

4. Apply Beigel-Tarui to the top of the circuit, and distribute. It is very important to observe that
we cannotapply Beigel-Tarui (Theorerfi.?) to theentire circuit C”, as its total size is%™ *°logn and
the quasi-polynomial blowup of Beigel-Tarui would generathuge circuit of siz€(2"), rendering our
conversion intractable.

However, the togVIAJ o ACC? part is still small. Invoking the depth reduction lemma ofigg# and
Tarui (Theoreni.2 above), we can replace th&AJ o ACCO part inC” of size 219" (even though it has
20(n*logn) innuts from theXOR layer!) with aSYM o AND circuit of size 2*° for a constang > 1, where
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eachAND has fan-in at most®, anda depends only on the (constant) depthnd (constant) modulus
of the ACC? subcircuit.

The resulting circuiCs now has the form
SYMoAND o XORoANDoLTF.

Applying the distributive law to théAND o XOR parts, where théNDs have fan-in at most® and the
XORs have fan-in 9" °*10an) ' eachAND o XOR parts can be converted into X®R o AND circuit of size
20(n'"*/#*%logn) \yhere the fan-in oANDs is at most®. Letting & < 0/(ca) for sufficiently largec > 1,
the fan-in of the newXORs is at most 8" °). We now have a circui, of the form

SYMoXORoANDOoLTF.

Note that the fan-in of th6YM gate is at most™’, and the fan-in of the (merged)NDs isO(n!~9/8+a¢),

5. Apply modulus-amplifying polynomials to eliminate the XOR layer. We'd like to remove the
XOR layer, to further reduce the depth of the circuit. But as theeg of this layer have very high fan-in, we
must be careful not to blow the circuit size up®92"). The following construction will take advantage of
the fact that we have only pdly) total gates in the bottoaTF layer.

We apply one step of Beigel-Tarui's transformatioBTP4] (from ACC® to SYM o AND) to the
SYMo XORoAND part of our circuit. In particular, we apply a modulus-arfyptig polynomialP (over the
integers) of degreel = 2n?¢ to each of theXOR o AND parts. Construing th¥OR o AND as a sum of
productsy [, the polynomialP has the property:

e Ifthe T [1=1 mod 2, therP(S 1) = 1 mod 2.
e Ifthe T[] =0 mod 2, therP(S 1) = 0 mod 2.

So, composindg® with eachXOR o AND part, eactP outputs either 0 or 1 moduld?. The key property
here is that the modulus exceeds the fan-in of Sk gate, so the sum of aR(3 []) simply counts the
number ofXOR o ANDs which are true; this is enough to determine the output ofd gate. Construing
the output of each bottotiT F gate as a variable, there are at mwStt variables. Expressing eaéts [1)
(expanded as a sum of products) as a multilinear polynomigtheéselL TF variables, the total number of
terms is at most -

n= O(D’-.nt-0/8+2¢ | O(n2ae+1-3/8 |
Lete := & /(ca) for a sufficiently large constawt> 1 so that 26 +1—6/8 < 1— &. We can then merge the
sum of allP(3 [])’s into theSYM gate, and obtain &YM o AND circuit where theSYM has fan-in

(o) 2a-£+(1-0/8) Oo(nl—¢
2 (n )§ 2 (n )’

and theAND gates have fan-i@(n?*¢+(1-9/8)) < O(nl~¢). The result is a circuiCs of the form

SYMoANDOoLTF.

6. Replace the bottom threshold gates with DNFs (Theoreri.1), and distribute. Note that the
circuit C4 hasn — n® variables, so our SAT algorithm would follow if we could ewateC, on all of its
variable assignments i 2" - poly(n) time. We are now in a position to apply Lemriidl, which lets us
reduce the evaluation problem f6¥M o AND o LTF circuits to the evaluation problem f&YMo AND o
SUM o AND circuits, with a parameteK that needs setting. Recall the midd&\D gates have fan-in
O(n'~¢), and the fan-in of th€UM is O(logK). Therefore by the distributive law, we can rewrite the dircu
as aSYM o SUM o AND circuit, where eaclSUM gate haglogK )" ) ANDs below it, and at mostne
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AND below eachSUM is true. Thus we can wire thege\ND gates directly into the tofYM gate without
changing the output.

In more detail, le\, B= {0,1}("")/2 and setN = 2("~"")/2 and the integer parametir:= 2°™ * for
a sufficiently large constait> 1. By Lemma7.1, we can reduce the SAT problem 8Y¥M o AND o LTF
circuits of size 2™ °) on the seA x B = {0,1}""" to the SAT problem fo6YM o SUM o AND circuits of
size

nl—s

20(”178) . 22bﬁ17£ . n2—6 S 20(”178)

on a prescribed s&t’ x B with |A'| = |B'| = N andA’,B' C {0, 1}2b”275'”17£. By the distributive argument
from the previous paragraph, we can convert3ié/l o SUM o AND circuit into aSYM o AND circuit of

size at most
20(n1*£) ) 20(n1*5|og logk) 20(n1*£ log(n))

By Lemma7.1, we know that if theSYM o AND SAT problem is solvable in tim& on the se\’ x B/, then
the SAT problem foC, on the sef x B can be solved in tim® (T +N2-Z/K +N-S) - poly(n).

7. Evaluate the depth-two circuit on many pairs of points. By applying fast rectangular matrix
multiplication in a now-standard way\fil14c, Wil14b], the resultingSYM o AND circuit of 220M ) size
can be evaluated on all points A x B/, in time poly(n) - 21" thus solving its SAT problem. Therefore,
the SAT problem foC4 can be solved in time

on—n  50(nt¢)

2b-nlfs + 2# . 20(n1*€ log(m)) .

poly(n) - 2" 4

Settingb > 1 to be sufficiently large, we obtain a SAT algorithm &y (and hence the original circut)
running in poly(n) - 2" time. O

7.4 Satisfiability for Three Layers of Majority + ACO

In this section, we give our SAT algorithm féMAJ o AC%o LTF o AC%0 LTF circuits with low-polynomial
fan-in at the output gate and the middIEF layer:

Reminder of Theorem1.9. For all € > 0and integers d> 1, there is a > 0and a randomized satisfiability
algorithm forMAJ o AC%o LTF 0 AC?o LTF circuits of depth d running i2™~2(") time, on circuits with the
following properties:

e the topMAJ gate, along with everyTF on the middle layer, has @6/5*5) fan-in, and

e there are Q2”5) manyAND/OR gates (anywhere) andl' F gates at the bottom layer.

We need one more result concerning probabilistic polyntnuger the integers:

Theorem 7.3([BRS91, Tar93). For everyAC® circuit C with n inputs and size s, there is a distribution of
n-variate polynomials? overZ such that every p has degree pddgs) (depending on the depth of C) and
for all x € {0,1}", Pry.5[C(x) = p(x)] > 1 — 1/2pollogs),

Proof of Theorem 1.9, The SAT algorithm is somewhat similar in structure to Theofie8, but with a few
important changes. Most notably, we work with probabitigtolynomials ovef instead off.

Start with a circuilC of the required form. Le$ be the number oAND/OR gates inC plus the number
of LTF gates on the bottom layer. Lé&t< n®/5—¢ be the maximum fan-in of the todAJ gate and théTFs
on the middle layer, and recall that we're planning to coms with size at most % whered > 0 is a
sufficiently small constant (depending en- 0 and the circuit depth) in the following. Our SAT algorithm
runs as follows:
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1. By Theorent.1, every LTF of fan-inf can be replaced by akC°oMAJ of fan-in f1+°1) and poly( f)
size. Hence we can redu€ato a circuit of similar size, but of the form

MAJoAC%o MAJoAC?o MAJ.

The fan-ins of the majority gates in the middle and bottonetasan be made at most/>~¢', for any
¢’ > 0 which is smaller thai. To be concrete, let us set:= €/2.

2. Replace the “middle” majority gates of fan-i%/5-£/2 with probabilistic polynomials (oveF.) of
degreen®5-¢/“poly(logs) and error 32°Po¥(109s) [AW15] (Theorem1.1in this paper). Replace all
the AC? subcircuits of sizes by probabilistic polynomials (oveZ) of degree polylogs) and error
1/2Pol(logs) yia Lemma7.3. Note that the latter polyogs) factor depends on the depth of the circuit.

3. Replace the majority gate at the output (of fantirc né/>-¢) with the probabilistic PTF of Corol-
lary 4.2, setting the threshold paramet@r(which is calleds in the statement of the corollary) to
be 2° and setting the error (called in the statement of the corollary) to bgflL The resulting
polynomial has degree?/>—¢/3. poly(n?).

Applying the distributive law to all the polynomials fromesgts 2 and 3, the new circu@’ can be
viewed as arinteger sunof at mostT AND o LTF circuits of at mosT size, where

T = 2n3/5*€/4<n2/5*£/3-poly(logs,n5) _ 2n1—7£/12_p0|y(|ogs’n6)

and allAND gates have fan-in at most"¢/12. poly(logs,n®) (because the resulting polynomial has
at most this degree).

Now is a good time to mention our choice 8f as it will considerably clean up the exponents in
what follows. We will choosed > 0 to be sufficiently small so that the pdlggs,n®) factor in the

exponent ofT is less thamé/12. That is, we taked := £/c and the size parametsk 2 — 2n°° for
a sufficiently large constamt> 12. (Note that depends on the depth of the circuit, since the degree
of the polylog factor depends on the depth.) Thus we haveitkebeund

T=— 2n1*75/124poly(logs,n5) < O(2n177e/124ne/12) < O(2n178/2),

and allAND gates have fan-in at most—¢/2.

4. For all assignmenta to the firstn® variables ofC’, plug a into C', creating a cop,. LetC” be the
integer sum of all /3 circuitsC,. By the properties of the polynomial constructed in Theofle&and

the chosen parametdr= 22° with probability at least 23 there is a (computable) threshold value
v = 3s/2 such that

e C’(x) > vwhen at least on€j(x) outputs 1, and
e C’(x) < vwhen allC}(x) output 0.

The circuitC” is a Sum-ofAND o LTF circuit; note thaC” hasn — n® variables.

5. We now want to evaluat’ on all of its 2"’ possible variable assignments. Applying Lemnbfor
an integer parameté¢ € [2"] (to be determined\ = 2("-"")/2, andz, S= 2™, we can convert this
evaluation problem fo€” into a corresponding evaluation problem for a SumAdi® o SUM o AND
circuit C”, on an appropriate combinatorial rectanglex B’ of 27— variable assignments in total.
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The relative size of the circuit is unchanged, as esidM o AND has sizeO(log?K) < O(r?). The
time for conversion o€” into C"” is
2n-n° . 2202 noly(n)

" .

N2z
(T + N'S> -poly(n) <
SettingK := 22" makes this time bound"22(").

Recall that in the Sum-o&ND o SUM o AND circuit C"”, the fan-in of the middlANDs is at most
n'—¢/2, and eactfsUM hasO(n) fan-in. We can therefore apply the distributive law to eadD o
SUM part, and obtain 8UM o AND of size at most®™ “*). Merging theSUMs into theSYM gate,

we obtain &8YM o AND circuit of size at mosh®™ /%),

6. Finally, applying rectangular matrix multiplication dlnma2.1) we can evaluate the Sum-aiND
C" of n°("*) size on the combinatorial rectangdéx B’ in 2-20°) time, by preparing matrices of
dimensions 22-200°) 5 fO™ ) (for A’y andn®n*/%) x 20/2-Q(0°) (for B), then multiplying them.
Note that preparing these matrices takes time no more tHah%"" “?loan which is negligible for
us.

After multiplying the matrices, we obtain a value 6f(x) for each assignment which is correct
with probability at least 23. By repeating steps 2-5 for 10@imes, we obtain correct values on all
on-—n’ points with high probability.

This completes the proof. O

8 Conclusion

Our work has led to interesting algorithmic improvementsdeveral core problems. Here are two open
problems that we wish to highlight.

First, it would be interesting to understand what are the ggomnd limits of probabilistic polyno-
mial threshold functions representing Boolean functiohkow easy/difficult is it to prove degree lower
bounds for such representations? In this paper, we haverdgrated how probabilistic PTFs can be sig-
nificantly better than probabilistic polynomials or detamistic PTFs alone, by combining the strengths
of the two representation methods. Informally, a probstidipolynomial threshold function can be seen
as anApproximate-MAJ o LTF o AND circuit or as anApproximate-MAJ o LTF o XOR circuit, so we are
effectively asking about lower bounds regarding such dildasses.

Second, can our SAT algorithm féAJ o AC°o LTF o AC?o LTF be derandomized? If so, the deran-
domization should lead to new circuit lower bounds. Pertiapsdeas in Tamaki’'s recent workdm14g
will be helpful here.
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