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Polynomial Representations of Threshold Functions and
Algorithmic Applications

Josh Alman∗ Timothy M. Chan† Ryan Williams‡

Abstract

We design new polynomials for representing threshold functions in three different regimes:proba-
bilistic polynomialsof low degree, which need far less randomness than previous constructions,polyno-
mial threshold functions(PTFs) with “nice” threshold behavior and degree almost as low as the proba-
bilistic polynomials, and a new notion ofprobabilistic PTFswhere we combine the above techniques to
achieve even lower degree with similar “nice” threshold behavior. Utilizing these polynomial construc-
tions, we design faster algorithms for a variety of problems:

• Offline Hamming Nearest (and Furthest) Neighbors: Given n red andn blue points ind-
dimensional Hamming space ford= clogn, we can find an (exact) nearest (or furthest) blue neigh-

bor for every red point in randomized timen2−1/O(
√

clog2/3 c) or deterministic timen2−1/O(clog2 c).
These improve on a randomizedn2−1/O(clog2 c) bound by Alman and Williams (FOCS’15), and
also lead to faster MAX-SAT algorithms for sparse CNFs.

• Offline Approximate Nearest (and Furthest) Neighbors: Givenn red andn blue points ind-
dimensionalℓ1 or Euclidean space, we can find a(1+ ε)-approximate nearest (or furthest) blue

neighbor for each red point in randomized time neardn+n2−Ω(ε1/3/ log(1/ε)). This improves on an
algorithm by Valiant (FOCS’12) with randomized time neardn+n2−Ω(

√
ε), which in turn improves

previous methods based on locality-sensitive hashing.

• SAT Algorithms and Lower Bounds for Circuits With Linear Thr eshold Functions:We give
a satisfiability algorithm forAC0[m] ◦ LTF ◦ LTF circuits with a subquadratic number of linear
threshold gates on the bottom layer, and a subexponential number of gates on the other layers, that
runs in deterministic 2n−nε

time. This strictly generalizes a SAT algorithm forACC0◦LTF circuits
of subexponential size by Williams (STOC’14) and also implies new circuit lower bounds for
threshold circuits, improving a recent gate lower bound of Kane and Williams (STOC’16). We also
give a randomized 2n−nε

-time SAT algorithm for subexponential-sizeMAJ◦AC0◦LTF◦AC0◦LTF
circuits, where the topMAJ gate and middleLTF gates haveO(n6/5−δ) fan-in.

∗Computer Science Department, Stanford University,jalman@cs.stanford.edu. Supported by NSF CCF-1212372 and
NSF DGE-114747.

†Cheriton School of Computer Science, University of Waterloo,tmchan@uwaterloo.ca. Supported by an NSERC grant.
‡Computer Science Department, Stanford University,rrw@cs.stanford.edu. Supported in part by NSF CCF-1212372

and CCF-1552651 (CAREER). Any opinions, findings and conclusions or recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of the National Science Foundation.

http://arxiv.org/abs/1608.04355v1


1 Introduction

The polynomial method is a powerful tool in circuit complexity. The idea of the method is to transform all
circuits of some class into “nice” polynomials which represent the circuit in some way. If the polynomial is
always sufficiently nice (e.g. has low degree), and one can prove that a certain Boolean functionf cannot
be represented so nicely, one concludes that the circuit class is unable to computef .

Recently, these tools have found surprising uses in algorithm design. If a subproblem of an algorithmic
problem can be modeled by a simple circuit, and that circuit can be transformed into a “nice” polyno-
mial (or “nice” distribution of polynomials), then fast algebraic algorithms can be applied to evaluate or
manipulate the polynomial quickly. This approach has led toadvances on problems such as All-Pairs Short-
est Paths [Wil14a], Orthogonal Vectors and Constraint Satisfaction [WY14, AWY15, Wil14d], All-Nearest
Neighbor problems [AW15], and Stable Matching [MPS16].

In most applications, the key step is to randomly convert simple circuits into so-calledprobabilistic
polynomials. If f is a Boolean function onn variables, andR is a ring, aprobabilistic polynomial over R
for f with error 1/s and degree dis a distributionD of degree-d polynomials overR such that for allx∈
{0,1}n, Prp∼D [p(x) = f (x)]≥ 1− 1

s. Razborov [Raz87] and Smolensky [Smo87] introduced the notion of a
probabilistic polynomial, and showed that any low-depth circuit consisting of AND, OR, and PARITY gates
can be transformed into a low degree probabilistic polynomial by constructing constant degree probabilistic
polynomials for those three gates. Many polynomial method algorithms use this transformation.

In this work, we are interested in polynomial representations of threshold functions. The threshold
function THθ determines whether at least aθ fraction of its input bits are 1s. Threshold functions are among
the simplest Boolean functions that do not have constant degree probabilistic polynomials: Razborov and
Smolensky showed that the MAJORITY function (a special caseof a threshold function) requires degree
Ω(

√
nlogs). Nonetheless, as we will see throughout this paper, there are many important problems which

can be reduced to evaluating circuits involving threshold gates on many inputs, and so further study of
polynomial representations of threshold functions is warranted.

Threshold functions have been extensively studied in theoretical computer science for many years; there
are numerous applications of linear and polynomial threshold functions to complexity and learning theory
(a sample includes [BRS91, BS92, ABFR94, Bei95, KS01, OS10, She14]).

1.1 Our Results

We consider three different notions of polynomials representing THθ . Each achieves different tradeoffs
between polynomial degree, the randomness required, and how accurately the polynomial represents THθ .
Each leads to improved algorithms in our applications.

Less Randomness.First, we revisit probabilistic polynomials. Alman and Williams [AW15] designed
a probabilistic polynomial for THθ which already achieves a tight degree bound ofΘ(

√
nlogs). However,

their construction usesΩ(n) random bits, which makes it difficult to apply in deterministic algorithms. We
show how their low-degree probabilistic polynomials for threshold functions can use substantially fewer
random bits:

Theorem 1.1. For any 0 ≤ θ ≤ 1, there is a probabilistic polynomial for the functionTHθ of degree
O(

√
nlogs) on n bits with error1/s that can be randomly sampled using only O(lognlog(ns)) random

bits.

Polynomial Threshold Function Representations. Second, we consider deterministic Polynomial
Threshold Functions (PTFs). A PTF for a Boolean functionf is a polynomial (not a distribution on poly-
nomials) p : {0,1}n → R such thatp(x) is smaller than a fixed value whenf (x) = 0, andp(x) is larger
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than the value whenf (x) = 1. In our applications, we seek PTFs with “good threshold behavior”, such that
|p(x)| ≤ 1 when f (x) = 0, andp(x) is very large otherwise. We can achieve almost the same degree for a
PTF as for a probabilistic polynomial, and even better degree for an approximate threshold function:

Theorem 1.2. We can construct a polynomial Ps,t,ε : R→ R of degree O(
√

1/ε logs), such that

• if x ∈ {0,1, . . . , t}, then|Ps,t,ε(x)| ≤ 1;

• if x ∈ (t,(1+ ε)t), then Ps,t,ε(x) > 1;

• if x ≥ (1+ ε)t, then Ps,t,ε(x) ≥ s.

For the “exact” setting withε = 1/t, we can alternatively bound the degree by O(
√

t log(st)).

By summing multiple copies of the polynomial from Theorem1.2, we immediately obtain a PTF with
the same degree for the OR ofO(s) threshold functions (needed in our applications). This theorem fol-
lows directly from known extremal properties of Chebyshev polynomials, as well as the lesser knowndis-
crete Chebyshev polynomials. Because Theorem1.2 gives a single polynomial instead of a distribution
on polynomials, it is especially helpful for designing deterministic algorithms. Chebyshev polynomials
are well-known to yield good approximate polynomials for computing certain Boolean functions over the
reals [NS94, Pat92, KS01, She13, Val12] (please see the Preliminaries for more background).

Probabilistic PTFs. Third, we introduce a new (natural) notion of aprobabilistic PTFfor a Boolean
function f . This is a distribution on PTFs, where for each inputx, a PTF drawn from the distribution is
highly likely to agree withf on x. Combining the techniques from probabilistic polynomialsfor THθ and
the deterministic PTFs in a simple way, we construct a probabilistic PTF with good threshold behavior
whose degree islower than both the deterministic PTF and the degree bounds attainable by probabilistic
polynomials (surprisingly breaking the “square-root barrier”):

Theorem 1.3. We can construct a probabilistic polynomialP̃n,s,t,ε : {0,1}n →R of degree O((1/ε)1/3 logs),
such that

• if ∑n
i=1 xi ≤ t, then|P̃n,s,t,ε (x1, . . . ,xn)| ≤ 1 with probability at least1−1/s;

• if ∑n
i=1 xi ∈ (t, t + εn), thenP̃n,s,t,ε(x1, . . . ,xn)> 1 with probability at least1−1/s;

• if ∑n
i=1 xi ≥ t + εn, thenP̃n,s,t,ε(x1, . . . ,xn)≥ s with probability at least1−1/s.

For the “exact” setting withε = 1/n, we can alternatively bound the degree by O(n1/3 log2/3(ns)).

The PTFs of Theorem1.3can be sampled using onlyO(log(n) · log(ns)) random bits as well; their lower
degree will allow us to design faster randomized algorithmsfor a variety of problems. For emphasis, we
will sometimes refer to PTFs asdeterministic PTFsto distinguish them from probabilistic PTFs.

These polynomials for THθ can be applied to many different problems:

Offline Hamming Nearest Neighbor Search.In the Hamming Nearest Neighbor problem, we wish to
preprocess a setD of n points in{0,1}d such that, for a queryq∈ {0,1}d, we can quickly find thep∈D with
smallest Hamming distance toq. This problem is central to many problems throughout Computer Science,
especially in search and error correction [Ind04]. However, it suffers from thecurse of dimensionalityphe-
nomenon, where known algorithms achieve the nearly trivialruntimes of either 2Ω(d) or Ω(n/poly(logn)),
with matching lower bounds in many data structure models (see e.g. [BR02]). Using our PTFs, we instead
design a new algorithm for the natural offline version of thisproblem:
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Theorem 1.4. Given n red and n blue points in{0,1}d for d = clogn≪ log3n/ log5 logn, we can find an

(exact) Hamming nearest/farthest blue neighbor for every red point in randomized time n2−1/O(
√

clog3/2 c).

Using the same ideas, we are also able to derandomize our algorithm, to achievedeterministictime
n2−1/O(clog2 c) (see Remark3 in Section5). Whend = clogn for constantc, these algorithms both have
“truly subquadratic” runtimes. These both improve on Almanand Williams’ algorithm [AW15] which runs
in randomized timen2−1/O(clog2 c), and only gives a nontrivial algorithm ford≪ log2n/ log3 logn. Applying
reductions from [AW15], we can achieve similar runtimes for finding closest pairs in ℓ1 for vectors with
small integer entries, and pairs with maximum inner productor Jaccard coefficient.

It is worth noting that there may be a serious limit to solvingthis problem much faster. Theorem1.4(and
[AW15]) shows for allc there is aδ > 0 such that Offline Hamming Nearest Neighbor search in dimension
d = clogn takesO(n2−δ ) time. Showing that there is a universalδ > 0 that works for allc would disprove
the Strong Exponential Time Hypothesis [AW15, Theorem 1.4].

Offline Approximate Nearest Neighbor Search.The problem of finding high-dimensionalapproxi-
matenearest neighbors has received even more attention. Locality-sensitive hashing yields data structures
that can find(1+ ε)-factor approximate nearest neighbors to any query point inÕ(dn1−Ω(ε)) (randomized)
time after preprocessing iñO(dn+n2−Ω(ε)) time and space,1 for not only Hamming space but alsoℓ1 andℓ2

space [HIM12, AI06]. Thus, a batch ofn queries can be answered iñO(dn2−Ω(ε)) randomized time. Excit-
ing recent work on locality-sensitive hashing [AINR14, AR15] has improved the constant factor in theΩ(ε)
bound, but not the growth rate inε . In 2012, G. Valiant [Val12] reported a surprising algorithm running
in Õ(dn+n2−Ω(

√
ε)) randomized time for the offline version of the problem inℓ2. We obtain a still faster

algorithm for the offline problem, with
√

ε improved to aboutε1/3:

Theorem 1.5. Given n red and n blue points in[U ]d andε ≫ log6 logn
log3 n

, we can find a(1+ε)-approximateℓ1

or ℓ2 nearest/farthest blue neighbor for each red point in(dn+n2−Ω(ε1/3/ log(1/ε))) ·poly(log(nU)) random-
ized time.

Valiant’s algorithm, like Alman and Williams’ [AW15], relied on fast matrix multiplication, and it also
used Chebyshev polynomials but in a seemingly more complicated way. Our new probabilistic PTF con-
struction is inspired by our attempt to unify Valiant’s approach with Alman and Williams’, which leads to
not only a simplification but also an improvement of Valiant’s algorithm. (We also almost succeed in deran-
domizing Valiant’sn2−Ω̃(

√
ε) result in the Hamming case, except for an initial dimension reduction step; see

Remark3 in Section5.)

Numerous applications to high-dimensional computationalgeometry follow; for example, we can ap-
proximate the diameter or Euclidean minimum spanning tree in roughly the same running time.

MAX-SAT. Another application is MAX-SAT: finding an assignment that satisfies the maximum num-
ber of clauses in a given CNF formula withn variables. In the sparse case when the number of clauses iscn,
a series of papers have given faster exact algorithms, for example, achieving 2n−n/O(clogc) time by Dantsin
and Wolpert [DW06], 2n−n/O(clogc)2/3

time by Sakai et al. [SSTT15a], and 2n−n/O(
√

c) time by Chen and
Santhanam [CS15]. Using the polynomial method and our new probabilistic PTFconstruction, we obtain
the following improved result:

Theorem 1.6. Given a CNF formula with n variables and cn≪ n4/ log10n clauses, we can find an assign-

ment that satisfies the maximum number of clauses in randomized2n−n/O(c1/3 log7/3 c) time.

1Throughout the paper, thẽO notation hides polylogarithmic factors,[U ] denotes{0,1, . . . ,U −1}, and poly(n) denotes a fixed
polynomial inn.
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For general dense instances, the problem becomes tougher. Williams [Wil04] gave anO(20.792n)-time
algorithm for MAX-2-SAT, but anO(2(1−δ )n)-time algorithm for MAX-3-SAT (for a universalδ > 0) has
remained open; currently the best reported time bound [SSTT15b] is 2n−Ω(n/ logn)1/3

, which can be slightly

improved to 2n−Ω(
√

n/ logn) with more care. We make new progress on not only MAX-3-SAT butalso MAX-
4-SAT:

Theorem 1.7.Given a weighted 4-CNF formula F with n variables with positive integer weights bounded by
poly(n), we can find an assignment that maximizes the total weight of clauses satisfied in F, in randomized
2n−n/O(log2 nlog2 logn) time. In the sparse case when the clauses have total weight cn, the time bound improves
to 2n−n/O(log2 clog2 logc).

LTF-LTF Circuit SAT Algorithms and Lower Bounds. Using our small sample space for probabilis-
tic MAJORITY polynomials (Theorem1.1), we construct a new circuit satifiability algorithm for circuits
with linear threshold functions (LTFs) which improves overseveral prior results. LetAC0[d,m] ◦ LTF ◦
LTF[S1,S2,S3] be the class of circuits with a layer ofS3 LTFs at the bottom layer (nearest the inputs), a layer
of S2 LTFs above the bottom layer, and a size-S1 AC0[m] circuit of depthd above the two LTF layers.2

Theorem 1.8.For every integer d> 0, m> 1, andδ > 0, there is anε > 0 and an algorithm for satisfiability
ofAC0[d,m]◦LTF◦LTF[2nε

,2nε
,n2−δ ] circuits that runs in deterministic2n−nε

time.

Williams [Wil14b] gave a comparable SAT algorithm forACC0◦LTF circuits of 2nε
size, whereε > 0 is

sufficiently small.3 Theorem1.8strictly generalizes the previous algorithm, allowing another layer ofn2−ε

linear threshold functions below the existingLTF layer. Theorem1.8 also trivially implies deterministic
SAT algorithms forLTF ◦LTF circuits of up ton2−o(1) gates, improving over the recent SAT algorithms of
Chen, Santhanam, and Srinivasan [CSS16] which only work forn1+ε -wire circuits forε ≪ 1, and the SAT
algorithms of Impagliazzo, Paturi, and Schneider [IPS13].

Here we sketch the ideas in the SAT algorithm forACC0◦LTF ◦LTF. Similar to the SAT algorithm for
ACC0 ◦LTF circuits [Wil14b], the bottom layer ofLTFs can be replaced by a layer of DNFs, via a weight
reduction trick. We replaceLTFs in the middle layer withAC0◦MAJ circuits (modifying a construction of
Maciel and Thérien [MT98] to keep the fan-in ofMAJ gates low), then replace theseMAJ gates ofn2−Θ(δ )

fan-in with probabilisticF2-polynomials of degreen1−Θ(δ )+Θ(ε) over a small sample space, provided by
Theorem1.1. Taking a majority vote over all samples, and observing thatanF2-polynomial is aMOD2 ◦
AND circuit, we obtain aMAJ ◦ACC0 circuit, but with 2n

1−O(δ )
size in some of its layers. By carefully

applying known depth reduction techniques, we can convert the circuit into a depth-two circuit of size
2n1−Ω(ε)

which can then be evaluated efficiently on many inputs. (Thisis not obvious: applying the Beigel-
Tarui depth reduction to a 2O(n1−ε )-size circuit would make its new sizequasi-polynomial in2O(n1−ε ), yielding
an intractable bound of 2nO(1)

.)

Applying the known connection between circuit satisfiability algorithms and circuit lower bounds for
ENP problems [Wil10, Wil14c, JMV15], the following is immediate:

Corollary 1.1. For every d> 0, m> 1, andδ ∈ (0,1), there is anε > 0 such that the classENP does not
have non-uniform circuits inAC0[d,m]◦LTF ◦LTF[2nε

,2nε
,n2−δ ]. In particular, for everyε > 0, ENP does

not haveACC0◦LTF◦LTF circuits where theACC0◦LTF subcircuit has2no(1)
size and the bottomLTF layer

has n2−ε gates.

2Recall that for an integerm≥ 2,AC0[m] refers to constant-depth unbounded fan-in circuits over the basis{AND,OR,MODm},
whereMODm outputs 1 iff the sum of its input bits is divisible bym.

3RecallACC0 is the infinite union ofAC0[m] for all integersm≥ 2.
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Most notably, Corollary1.1proves lower bounds withn2−ε LTFs on the bottom layer andsubexponen-
tially manyLTFs on the second layer. This improves upon recentLTF ◦ LTF gate lower bounds of Kane
and Williams [KW16], at the cost of raising the complexity of the hard function from TC0

3 to ENP. Sug-
uru Tamaki [Tam16] has recently reported similar results for depth-two circuits with both symmetric and
threshold gates.

A Powerful Randomized SAT Algorithm. Finally, combining the probabilistic PTF for MAJORITY
(Theorem1.3) with the probabilistic polynomial of [AW15], we give a randomized SAT algorithm for a
rather powerful class of circuits. The classMAJ ◦ AC0 ◦ LTF ◦AC0 ◦ LTF denotes the class of circuits
with a majority gate at the top, along with two layers of linear threshold gates, and arbitraryO(1)-depth
AC0 circuitry between these three layers. This circuit class isarguably much more powerful thanTC0

3
(MAJ◦MAJ◦MAJ), based on known low-depth circuit constructions for arithmetic functions (e.g. [CSV84,
MT98, MT99]).

Theorem 1.9. For all ε > 0 and integers d≥ 1, there is aδ > 0 and a randomized satisfiability algorithm
for MAJ◦AC0◦LTF◦AC0◦LTF circuits of depth d running in2n−Ω(nδ ) time, on circuits with the following
properties:

• the topMAJ gate, along with everyLTF on the middle layer, has O(n6/5−ε ) fan-in, and
• there are O(2nδ

) manyAND/OR gates (anywhere) andLTF gates at the bottom layer.

Theorem1.9applies the probabilistic PTF of degree aboutn1/3 (Theorem1.3) to the topMAJ gate, prob-
abilistic polynomials overZ of degree aboutn1/2 (Theorem1.1) to the middle LTFs, and weight reduction
to the bottom LTFs; the rest can be represented with poly(nδ ) degree.

It would not be surprising (to at least one author) if the above circuit class contained strong pseudo-
random function candidates; that is, it seems likely that the Natural Proofs barrier applies to this circuit
class. Hence from the circuit lower bounds perspective, theproblem of derandomizing the SAT algorithm
of Theorem1.9 is extremely interesting.

2 Preliminaries

Notation. In what follows, for(x1, . . . ,xn) ∈ {0,1}n define|x| := ∑n
i=1xi . For a logical predicateP, we use

the notation[P] to denote the function which outputs 1 whenP is true, and 0 whenP is false.

Forθ ∈ [0,1], define THθ : {0,1}n →{0,1} to be thethreshold functionTHθ (x1, . . . ,xn) := [|x|/n≥ θ ].
In particular, TH1/2 = MAJORITY.

For classes of circuitsC andD , C ◦D denotes the class of circuits consisting of a single circuitC ∈ C

whose inputs are the outputs of some circuits fromD . That is,C ◦D is simply the composition of circuits
from C andD .

Rectangular Matrix Multiplication. One of our key tools is fast rectangular matrix multiplication:

Lemma 2.1(Coppersmith [Cop82]). For all sufficiently large N, multiplication of an N×N.172 matrix with
an N.172×N matrix can be done in O(N2 log2N) arithmetic operations over any field.

A proof can be found in the appendix of [Wil14b].

Chebyshev Polynomials in TCS.Another key to our work is that we find new applications of Cheby-
shev polynomials to algorithm design. This is certainly nota new phenomenon in itself; here we briefly
survey some prior related usages of Chebyshev polynomials.First, Nisan and Szegedy [NS94] used Cheby-
shev polynomials to compute the OR function onn Boolean variables with an “approximating” polynomial
p : Rn → R, such that for allx ∈ {0,1}n we have|OR(x)− p(x)| ≤ 1/3, yet deg(p) = O(

√
n). They also
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proved the degree bound is tight up to constants in the big-O;Paturi [Pat92] generalized the upper and lower
bound to all symmetric functions.

This work has led to several advances in learning theory. Building on the polynomials of Nisan and
Szegedy, Klivans and Servedio [KS01] showed how to compute an OR oft ANDs of w variables with
a PTF of degreeO(

√
wlogt), similar to our degree bound for computing an OR oft MAJORITYs of w

variables of Theorem1.2 (however, note our bound in the “exact” setting is a bit better, due to our use of
discrete Chebyshev polynomials). They also show how to compute an OR ofs ANDs onn variables with
a deterministicPTF of O(n1/3 logs) degree, similar to our cube-root-degree probabilistic PTFfor the OR
of MAJORITY of Theorem1.3 in the “exact” setting. However, it looks difficult to generalize Klivans-
Servedio’sO(n1/3 logs) degree bound to compute an OR of MAJORITY: part of their construction uses
a reduction to decision lists which works for conjunctions but not for MAJORITY functions. Klivans,
O’Donnell and Servedio [KOS04] show how to compute an AND ofk MAJORITY on n variables with a
PTF of degreeO(

√
wlogk). By a simple transformation via De Morgan’s law, there is a polynomial for OR

of MAJORITY with the same degree. Their degree is only slightly worse than ours in terms ofk (because
we use discrete Chebyshev polynomials).

In streaming algorithms, Harvey, Nelson, and Onak [HNO08] use Chebyshev polynomials to design ef-
ficient algorithms for computing various notions of entropyin a stream. As a consequence of a query upper
bound in quantum computing, Ambainis et al. [ACR+10] show how to approximate any Boolean formula
of size s with a polynomial of degree

√
s1+o(1), improving on earlier bounds of O’Donnell and Serve-

dio [OS10] that use Chebyshev polynomials. Sachdeva and Vishnoi [SV13] give applications of Chebyshev
polynomials to graph algorithms and matrix algebra. Linialand Nisan [LN90] use Chebyshev polynomi-
als to approximate inclusion-exclusion formulas, and Sherstov [She08] extends this to arbitrary symmetric
functions.

3 Derandomizing Probabilistic Polynomials for Threshold Functions

In this section, we revisit the previous probabilistic polynomial for the majority function onn bits, and show
it can be implemented using only polylog(n,s) random bits. Our construction is essentially identical to that
of [AW15], except that we use far fewer random bits to sample entries from the input vector in the recursive
step of the construction.

For the analysis, we need a Chernoff bound for bits with limited independence:

Lemma 3.1([SSS95] Theorem 5 (I)(b)). If X is the sum of k-wise independent random variables, each of
which is confined to the interval[0,1], with µ = E[X], δ ≤ 1, and k= ⌊δ 2µe−1/3⌋, then

Pr[|X−µ | ≥ δ µ ]≤ e−δ 2µ/3.

In particular, the following inequality appears in the analysis of [AW15]:

Corollary 3.1. If x ∈ {0,1}n with |x|/n = w, andx̃∈ {0,1}n/10 is a vector each of whose entries is k-wise
independently chosen entry of x, where k= ⌊20e−1/3 log(1/ε)⌋, with |x̃|/(n/10) = v, then for everyε < 1/4,

Pr

[
v≤ w− a√

n

]
≤ ε

4
,

where a=
√

10·
√

ln(1/ε).

Proof. Apply Lemma3.1with X = |x̃|, µ = E[|x̃|] = wn, andδ =
√

40log(1/ε)/n.
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Reminder of Theorem1.1. For any0≤ θ ≤ 1, there is a probabilistic polynomial for the threshold function
THθ of degree O(

√
nlogs) on n bits with error1/s that can be randomly sampled using O(log(n) log(ns))

random bits.

Proof. Our polynomial is defined recursively, just as in [AW15]. Set ε = 1/s. Using their notation, the
polynomialMn,θ ,ε for computing THθ onn bits with errorε is defined by:

Mn,θ ,ε(x) := An,θ ,2a(x) ·Sn/10,θ ,a/
√

n,ε/4(x̃)+Mn/10,θ ,ε/4(x̃) · (1−Sn/10,θ ,a/
√

n,ε/4(x̃)).

In [AW15], x̃ was a sample ofn/10 bits ofx, chosen independently at random. Here, we pick ˜x to be
a sample ofn/10 bits chosenk-wise independently, fork = ⌊20e−1/3 log(1/ε)⌋. The other polynomials in
this recursive definition are as in [AW15]:

• Mm,θ ,ε for m< n is the (recursively defined) probabilistic polynomial for THθ on mbits andε error
• Sm,θ ,δ ,ε (x) := (1−Mm,θ+δ ,ε(x)) ·Mm,θ−δ ,ε(x) for m< n
• An,θ ,g : {0,1}n →Z is an exact polynomial of degree at most 2g

√
n+1 which gives the correct answer

to THθ for any vectorx with |x| ∈ [θn− g
√

n,θn+ g
√

n], and may give arbitrary answers on other
vectors.

Examining the proof of correctness in Alman and Williams [AW15], we see that the only requirement
of the randomness is that it satisfies their Lemma 3.4, a concentration inequality for sampling ˜x from x. Our
Corollary3.1 is identical to their Lemma 3.4, except that it replaces their method of sampling ˜x with k-wise
sampling; the remainder of the proof of correctness is exactly as before.

Our polynomial construction is recursive: we dividen by 10 and divideε by 4, each time we move from
one recursive layer to the next. At thejth recursive level of our construction, for 1≤ j < log10(n), we need
to O(log(4 j/ε))-wise independently samplen/10j entries from a vector of lengthn/10j−1. Summing across
all of the layers, we need a total ofO(n) samples from ak-wise independent space, wherek is never more
thanO(n/ε). This can be done all together usingO(n) samples from{1,2, . . . ,n} which areO(n/ε)-wise
independent. Using standard constructions, this requiresO(log(n) log(n/ε)) random bits.

4 PTFs for ORs of Threshold Functions

In this section, we show how to construct low-degree PTFs representing threshold functions that have good
threshold behavior, and consequently obtain low-degree PTFs for an OR of many threshold functions.

4.1 Deterministic Construction

We begin by reviewing some basic facts about Chebyshev polynomials. Thedegree-q Chebyshev polynomial
of the first kindis

Tq(x) :=
⌊q/2⌋

∑
i=0

(
q
2i

)
(x2−1)ixq−2i .

Fact 4.1. For anyε ∈ (0,1),

• if x ∈ [−1,1], then|Tq(x)| ≤ 1;

• if x ∈ (1,1+ ε), then Tq(x)> 1;

• if x ≥ 1+ ε , then Tq(x)≥ 1
2eq

√
ε .

7



Proof. The first property easily follows from the known formulaTq(x) = cos(qarccos(x)) for x ∈ [−1,1].
The second and third properties follow from another known formula Tq(x) = cosh(qarcosh(x)) for x > 1,
which for x≥ 1+ ε impliesTq(x) ≥ cosh(q

√
ε) = 1

2(e
q
√

ε +e−q
√

ε).

In certain scenarios, we obtain slightly better results using a (lesser known) family ofdiscrete Chebyshev
polynomialsdefined as follows [Hir03, page 59]:

Dq,t(x) :=
q

∑
i=0

(−1)i
(

q
i

)(
t −x
q− i

)(
x
i

)
.

(See also [Sze75, pages 33–34] or Chebyshev’s original paper [Che99] with an essentially equivalent defi-
nition up to rescaling.)

Fact 4.2. Let cq,t = (t +1)q+1/q!. For all t > q≥
√

8(t +1) ln(t +1),

• if x ∈ {0,1, . . . , t}, then|Dq,t(x)| ≤ cq,t ;

• if x ≤−1, then Dq,t(x)≥ eq2/(8(t+1))cq,t .

Proof. From [Hir03, page 61],

t

∑
k=0

Dq,t(k)
2 =

(
2q
q

)(
t +1+q
2q+1

)

=
2q(2q−1) · · ·q
q(q−1) · · ·1 · (t +1+q)(t +q) · · · (t +1−q)

(2q+1)(2q) · · ·1

=
(t +1)((t +1)2−12)((t +1)2−22) · · · ((t +1)2−q2)

(2q+1)(q!)2 ≤ (t +1)2q+2

(q!)2 .

Thus, for every integerx∈ [0, t], we have|Dq,t(x)| ≤ (t +1)q+1/q! = cq,t .

For x≤−1, we have(−1)i
(x

i

)
= (−x)(−x+1)···(−x+i−1)

1·2···i ≥ 1, and by the Chu–Vandermonde identity,

Dq,t(x) ≥
q

∑
i=0

(
q
i

)(
t +1
q− i

)
=

(
t +1+q

q

)

=
(t +1)q(1+ 1

t+1)(1+
2

t+1) · · · (1+
q

t+1)

q!

≥ cq,t

t +1
e

1+2+···+q
2(t+1) = eq(q+1)/(4(t+1))−ln(t+1)cq,t ≥ eq2/(8(t+1))cq,t .

Reminder of Theorem1.2. We can construct a polynomial Ps,t,ε : R→ R of degree O(
√

1/ε logs), such
that

• if x ∈ {0,1, . . . , t}, then|Ps,t,ε(x)| ≤ 1;

• if x ∈ (t,(1+ ε)t), then Ps,t,ε(x) > 1;

• if x ≥ (1+ ε)t, then Ps,t,ε(x) ≥ s.

For the “exact” setting withε = 1/t, we can alternatively bound the degree by O(
√

t log(st)).
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Proof. SetPs,t,ε(x) := Tq(x/t) for a parameterq to be determined. The first two properties are obvious from
Fact4.1. On the other hand, ifx≥ (1+ ε)t, then Fact4.1shows thatPs,t,ε(x)≥ 1

2eq
√

ε ≥ s, provided we set

q=
⌈√

1/ε ln(2s)
⌉
. This achievesO(

√
1/ε logs) degree.

When ε = 1/t the above yieldsO(
√

t logs) degree; we can reduce the logs factor by instead defin-
ing Ps,t,ε(x) := Dq,t(t − x)/cq,t . Now, if x ≥ t + 1, then Ps,t,ε(x) ≥ eq2/(8(t+1)) ≥ s by setting q =⌈√

8(t +1) ln(max{s, t +1})
⌉
.

Using Theorem1.2, we can construct a low-degree PTF for computing an OR ofs thresholds ofn bits:

Corollary 4.1. Given n,s, t,ε , we can construct a polynomial P: {0,1}ns → R of degree at most∆ :=
O(
√

1/ε logs) and at most s·
(n

∆
)

monomials, such that

• if the formula
∨s

i=1

[
∑n

j=1xi j > t
]

is false, then|P(x11, . . . ,x1n, . . . ,xs1, . . . ,xsn)| ≤ s;

• if the formula
∨s

i=1

[
∑n

j=1xi j ≥ t + εn
]

is true, then P(x11, . . . ,x1n, . . . ,xs1, . . . ,xsn)> 2s.

For the exact setting withε = 1/n, we can alternatively bound∆ by O(
√

nlog(ns)).

Proof. Define P(x11, . . . ,x1n, . . . ,xs1, . . . ,xsn) := ∑s
i=1 Pn,3s,t,ε

(
∑n

j=1xi j
)
, where Pn,3s,t,ε is from Theo-

rem1.2. The stated properties clearly hold. (In the second case, the output is at least 3s− (s−1)> 2s.)

4.2 Probabilistic Construction

Allowing ourselves a distribution of PTFs to randomly draw from, we can achieve noticeably lower degree
than the previous section. We start with a fact which followseasily from the (tight) probabilistic polynomial
for MAJORITY:

Fact 4.3. (Alman–Williams [AW15], or Theorem 1.1) We can construct a probabilistic polynomial Qn,s,t :
{0,1}n → R of degree O(

√
nlogs), such that

• if ∑n
i=1 xi ≤ t, then Qn,s,t(x1, . . . ,xn) = 0 with probability at least1−1/s;

• if ∑n
i=1 xi > t, then Qn,s,t(x1, . . . ,xn) = 1 with probability at least1−1/s.

Reminder of Theorem 1.3. We can construct a probabilistic polynomialP̃n,s,t,ε : {0,1}n → R of degree
O((1/ε)1/3 logs), such that

• if ∑n
i=1 xi ≤ t, then|P̃n,s,t,ε (x1, . . . ,xn)| ≤ 1 with probability at least1−1/s;

• if ∑n
i=1 xi ∈ (t, t + εn), thenP̃n,s,t,ε(x1, . . . ,xn)> 1 with probability at least1−1/s;

• if ∑n
i=1 xi ≥ t + εn, thenP̃n,s,t,ε(x1, . . . ,xn)≥ s with probability at least1−1/s.

For the “exact” setting withε = 1/n, we can alternatively bound the degree by O(n1/3 log2/3(ns)).

Proof. Let r andq be parameters to be set later. Draw a random sampleR⊆ {1, . . . ,n} of sizer. Let

tR :=
tr
n
−c0

√
r logs and t− := t −2c0

(
n√
r

)√
logs
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for a sufficiently large constantc0. Define

P̃n,s,t,ε(x1,...,xd) := Qr,2s,tR({xi}i∈R) · Ps,t ′,ε ′

(
n

∑
i=1

xi − t−
)
,

wherePs,t ′,ε ′ is the polynomial from Theorem1.2, with t ′ := t−t−=Θ((n/
√

r)
√

logs) andε ′ := εn/t ′ =
Θ(ε

√
r/
√

logs).

To verify the stated properties, consider three cases:

• CASE 1: ∑n
i=1 xi < t−. By a standard Chernoff bound, with probability at least 1−1/(2s), we have

∑i∈R xi < t−r/n+ c0
√

r logs≤ tR (assuming thatr ≥ logs). Thus, with probability at least 1−1/s,
we haveQn,2s,tR({xi}i∈R) = 0 and soP̃n,s,t,ε (x1, . . . , xn) = 0.

• CASE 2: ∑n
i=1 xi ∈ [t−, t]. With probability at least 1−1/s, we haveQr,2s,tR({xi}i∈R) ∈ {0,1} and so

|P̃n,s,t,ε (x1, . . . , xn)| ≤ 1.

• CASE 3: ∑n
i=1 xi > t. By a standard Chernoff bound, with probability at least 1−1/(2s), we have

∑i∈R xi ≥ tr/n+c0
√

r logs= tR. Thus, with probability at least 1−1/s, we haveQr,2s,tR({xi}i∈R) = 1
and soP̃n,s,t,ε(x1, . . . , xn)> 1 for ∑n

i=1 xi ∈ (t, t + εn), or P̃n,s,t,ε (x1, . . . , xn)≥ s for ∑n
i=1 xi ≥ t + εn.

The degree of̃Pn,s,t,ε is

O

(√
r logs+

√
(1/(ε

√
r))
√

logslogs

)

and we can setr =
⌈
(1/ε)2/3 logs

⌉
. For the exact setting, the degree is

O

(√
r logs+

√
(n/

√
r)
√

logs· log(ns)

)

and we can setr =
⌈
n2/3 log1/3(ns)

⌉
.

Remark 1. Using the same techniques as in Theorem1.1, we can sample a probabilistic polynomial from
Theorem1.3with only O(log(n) log(ns)) random bits.

Corollary 4.2. Given d,s, t,ε , we can construct a probabilistic polynomial̃P : {0,1}ns → R of degree at
most∆ := O((1/ε)1/3 logs) with at most s·

(n
D

)
monomials, such that

• if
∨s

i=1

[
∑n

j=1xi j ≥ t
]

is false, then|P̃(x11, . . . ,x1n, . . . ,xs1, . . . ,xsn)| ≤ s with probability at least2/3;

• if
∨s

i=1

[
∑d

j=1 xi j ≥ t + εn
]

is true, thenP̃(x11, . . . ,x1n, . . . ,xs1, . . . ,xsn) > 2s with probability at least
2/3.

For the exact setting withε = 1/n, we can alternatively bound∆ by O(n1/3 log2/3(ns)).

Proof. DefineP̃(x11, . . . ,x1n, . . . ,xs1, . . . ,xsn) := ∑s
i=1 P̃n,3s,ti ,ε(xi1, . . . ,xin).

Remark 2. The coefficients of the polynomials from Fact4.3are poly(n)-bit integers, and it can be checked
that the coefficients of all our deterministic and probabilistic polynomials are rational numbers with poly(n)-
bit numerators and a common poly(n)-bit denominator, and that the same bound for the number of mono-
mials holds for the construction time, up to poly(n) factors. That is, computations with these polynomials
have low computational overhead relative ton.
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5 Exact and Approximate Offline Nearest Neighbor Search

We now apply our new probabilistic PTF construction to obtain a faster algorithm for offline exact near-
est/farthest neighbor search in Hamming space:

Reminder of Theorem1.4. Given n red and n blue points in{0,1}d for d = clogn ≪ log3 n/ log5 logn,
we can find an (exact) Hamming nearest/farthest blue neighbor for every red point in randomized time
n2−1/O(

√
clog3/2 c).

Proof. We proceed as in Abboud, Williams, and Yu’s algorithm for Boolean orthogonal vectors [AWY15] or
Alman and Williams’ algorithm for Hamming closest pair [AW15]. For a fixedt, we first solve the decision
problem of testing whether the nearest neighbor distance isless thant for each red point. (Farthest neighbors
are similar.) Lets= nα for some parameterα to be set later. Arbitrarily divide the blue point set inton/s
groups ofspoints. For every groupG of blue points and every red pointq, we want to test whether

F(G,q) :=

[
min
p∈G

‖p−q‖1 < t

]
=

∨

p∈G

[
d

∑
i=1

(piqi +(1− pi)(1−qi))> d− t

]

(wherepi denotes thei-th coordinate of a pointp). By Corollary4.2, we can expressF(G,q) as a proba-
bilistic polynomial that has the following number of monomials:

s·
(

O(d)

O(d1/3 log2/3(ds))

)
≤ nα ·O

(
clogn

c1/3α2/3 logn

)O(c1/3α2/3 logn)

≤ nα ·nO(c1/3α2/3 log c
α ) ≪ (n/s)0.1

for large enoughn, by settingα to be a sufficiently small constant times 1/(c1/3 log3/2 c). The same bound
holds for the construction time of the polynomial.

We can rewrite the polynomial forF(G,q) as the dot product of two vectorsφ(G) andψ(q) in (n/s)0.1

dimensions overR. The problem of evaluatingF(G,q) over alln/sgroupsG of blue points and all red points
q then reduces to multiplying ann/s× (n/s)0.1 with an(n/s)0.1 ×n matrix overR. This in turn reduces to
s instances of multiplication ofn/s× (n/s)0.1 with (n/s)0.1 × n/s matrices, each of which can be done in
Õ(n/s)2 arithmetic operations on poly(d)-bit numbers over an appropriately large field (Lemma2.1). The

total time isÕ(poly(d)n2/s) = O(n2−1/O(c1/3 log3/2 c)).

The error probability for each pair(G,q) is at most 1/3, which can be lowered toO(1/n3), for example,
by repeatingO(logn) times (and taking the majority of the answers). The overall error probability is then
O(1/n). This solves the decision problem for a fixedt, but we can compute all nearest neighbor distances
by calling the decision algorithmd times for all values oft. For each red point, we can find an actual nearest
neighbor in additionalO(s) time, since we know which group achieves the nearest neighbor distance.

The same approach can be applied to solveapproximatenearest neighbor search in Hamming space:

Theorem 5.1. Given n red and n blue points in{0,1}d and ε ≫ log6(d logn)/ log3 n, we can find an ap-
proximate Hamming nearest/farthest blue neighbor with additive error at mostεd for each red point in

randomized time n2−Ω(ε1/3/ log( d
ε logn)).

Proof. We mimic the proof of Theorem1.4up to the definition of the polynomialF(G,q). However, instead
of applying the exact polynomial of Corollary4.2, we insert theapproximatepolynomial construction from

11



the same corollary. While the exact polynomial had degreeO(d1/3 log2/3(ds)), the approximate one has
degreeO((1/ε)1/3 logs). Setting

s := nα := nΩ(ε1/3/ log( d
ε logn)),

the number of monomials in the new polynomial is now

s·
(

O(d)
O((1/ε)1/3 logs)

)
≤ nα ·O

(
d

(α/ε1/3) logn

)O((α/ε1/3) logn)

≤ nα ·nO((α/ε1/3) log d
α logn) ≪ (n/s)0.1,

for large enoughn. The remainder of the algorithm is the same as the proof of Theorem1.4, and the running

time isÕ(n2/s2)≤ n2−Ω(ε1/3/ log( d
ε logn)).

Remark 3. For deterministic algorithms, using Corollary4.1 instead, the time bounds for Theorems1.4

and1.5becomen2−1/O(clog2 c) andn2−Ω(
√

ε/ log( d
ε logn)) respectively.

The algorithm of Theorem5.1 still has three drawbacks: (i) the exponent in the time bounddepends
on the dimensiond, (ii) the result requires additive instead of multiplicative error, and (iii) the result is for
Hamming space instead of more generallyℓ1 or ℓ2. We can resolve all three issues at once, by using known
dimension reduction techniques:

Reminder of Theorem 1.5. Given n red and n blue points in[U ]d and ε ≫ log6 logn
log3 n

, we can find a

(1+ ε)-approximateℓ1 or ℓ2 nearest/farthest blue neighbor for each red point in(dn+n2−Ω(ε1/3/ log(1/ε))) ·
poly(log(nU)) randomized time.

Proof. (The ℓ1 case.)We first solve the decision problem for a fixed threshold valuet. We use a variant ofℓ1

locality-sensitive hashing (see [And05]) to map points fromℓ1 into low-dimensional Hamming space (pro-
viding an alternative to Kushilevitz, Ostrovsky, and Rabani’s dimension reduction technique for Hamming
space [KOR00]). For each red/blue pointp and eachi ∈ {1, . . . ,k}, definehi(p) = (hi1(p), . . . ,hid(p)) with
hi j (p) =

⌊
(pai j +bi j )/(2t)

⌋
whereai j ∈ {1, . . . ,d} andbi j ∈ [0,2t) are independent uniformly distributed

random variables. For each of theO(n) hashed values ofhi , pick a random bit; letfi(p) be the random bit
associated withhi(p). Finally, definef (p) = ( f1(p), . . . , fk(p)) ∈ {0,1}k. For any fixedp,q,

Pr[hi j (p) 6= hi j (q)] =
1
d

d

∑
a=1

min

{ |pa−qa|
2t

,1

}

Pr[ fi(p) 6= fi(q)] =
1
2

Pr[hi(p) 6= hi(q)] =
1
2

Pr

[
k∨

j=1

[hi j (p) 6= hi j (q)]

]
.

• If ‖p−q‖1 ≤ t, then Pr[hi j (p) 6= hi j (q)]≤ ‖p−q‖1
2dt ≤ 1

2d and Pr[ fi(p) 6= fi(q)]≤α0 := 1
2(1−(1− 1

2d)
d);

• if ‖p−q‖1 ≥ (1+ε)t, then Pr[hi j (p) 6= hi j (q)]≥min{‖p−q‖1
2dt , 1

d} ≥ 1+ε
2d and Pr[ fi(p) 6= fi(q)]≥ α1 :=

1
2(1− (1− 1+ε

2d )d).

Note thatα1−α0 = Ω(ε). By a Chernoff bound, it follows (assumingk≥ logn) that

• if ‖p−q‖1 ≤ t, then‖ f (p)− f (q)‖1 ≤ A0 := α0k+O(
√

k logn) with probability 1−O(1/n3);

• if ‖p−q‖1 ≥ (1+ε)t, then‖ f (p)− f (q)‖1 ≥ A1 := α1k−O(
√

k logn) with probability 1−O(1/n3).

12



Note thatA1 −A0 = Ω(εk) by settingk to be a sufficiently large constant times(1/ε)2 logn. We have
thus reduced the problem to an approximate problem with additive error O(εk) for Hamming space in
k= O((1/ε2) logn) dimensions, which by Theorem5.1 requiresn2−Ω(ε1/3/ log(1/ε)) time. The initial cost of
applying the mappingf is O(dkn).

This solves the decision problem; we can solve the original problem by calling the decision algorithm
O(log1+ε U) times for allt’s that are powers of 1+ ε .

Proof. (The ℓ2 case.)We use a version of the Johnson–Lindenstrauss lemma to map from ℓ2 to ℓ1 (see for
example [Mat08]). For each red/blue pointp, definef (p) = ( f1(p), . . . , fk(p))∈R

k with fi(p) =∑k
j=1 ai j p j ,

where theai j ’s are independent normally distributed random variables with mean 0 and variance 1. For each
fixed p,q ∈ R

d, it is known that after rescaling by a constant,‖ f (p)− f (q)‖1 approximates‖p− q‖2 to
within 1±O(ε) factor with probability 1−O(1/n3), by settingk = O((1/ε)2 logn). It suffices to keep
O(logU)-bit precision of the mapped points. The initial cost of applying the mappingf is O(dkn) (which
can be slightly improved by utilizing a sparse Johnson–Lindenstrauss transform [AC09]).

Numerous applications to high-dimensional computationalgeometry now follow. We briefly mention
just one such application, building on the work of [IM98, HIM12]:

Corollary 5.1. Given n points in[U ]d and ε ≫ log6 logn/ log3n, we can find a(1+ ε)-approximateℓ1 or
ℓ2 minimum spanning tree in(dn+n2−Ω(ε1/3/ log(1/ε))) ·poly(log(nU)) randomized time.

Proof. Let Gr denote the graph where the vertex set is the given point setP and an edgepq is present
wheneverp andq have distance at mostr. Har-Peled, Indyk, and Motwani [HIM12] gave a reduction of the
approximate minimum spanning tree problem to the followingapproximate connected componentsproblem:

Given a valuer, compute a partition ofP into subsets with the properties that (i) two points
in the same subset must be in the same component inG(1+ε)r , and (ii) two points in different
subsets must be in different components inGr .

The reduction is based on Kruskal’s algorithm and increasesthe running time by a logarithmic factor.

To solve the approximate connected components problem, Har-Peled, Indyk, and Motwani gave a further
reduction to online dynamic approximate nearest neighbor search. Since we want a reduction to offline static
approximate nearest neighbor search, we proceed differently.

We first reduce the approximate connected components problem to theoffline approximate nearest for-
eign neighborsproblem:

Given a setP of n colored points with colors from[n], for each pointq ∈ P, find a (1+ ε)-
approximate nearest neighbor NFNq among all points inP with color different fromq’s color.

The reduction can be viewed as a variant of Boruvka’s algorithm and is as follows: Initially assign each
point a unique color and mark all colors as active. At each iteration, solve the offline approximate nearest
foreign neighbors problem for points with active colors. For eachq, if NFNq andq have distance at most
(1+ε)r and have different colors, merge the color class of NFNq andq. If a color class has not been merged
to other color classes during the iteration, mark its color as inactive. When all colors are inactive, output the
color classes. Otherwise, proceed to the next iteration. The correctness of the algorithm is obvious. Since
each iteration decreases the number of active colors by at least a half, the number of iterations is bounded
by O(logn). Thus, the reduction increases the running time by a logarithmic factor.
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To finish, we reduce the offline approximate nearest foreign neighbors problem to the standard (red/blue)
offline approximate nearest neighbors problem by a standardtrick: For eachj = 1, . . . ,⌈logn⌉, for each point
q∈ P where thej-th bit of q’s color is 0 (resp. 1), compute an approximate nearest neighbor of q among all
pointsp∈ P where thej-th bit of p’s color is 1 (resp. 0). Record the nearest among all approximate nearest
neighbors found for each pointq. The final reduction increases the running time by another logarithmic
factor.

6 Faster Algorithms For MAX-SAT

Next, we apply our improved probabilistic PTFs to obtain faster algorithms for MAX-SAT for sparse in-
stances withcnclauses. We first consider MAX-k-SAT for smallk before solving the general problem:

Theorem 6.1. Given a k-CNF formula F (or k-CSP instance) with n variables and cn≪ n4/(k4 log6n)
clauses, we can find an assignment that satisfies the maximum number of clauses (constraints) of F in
randomized2n−n/O(k4/3c1/3 log(kc)) time.

Proof. We proceed as in the #k-SAT algorithm of Chan and Williams [CW16]. We first solve the decision
problem of testing whether there is a variable assignment satisfying more thant clauses for a fixedt ∈ [cn].
Let s= αn for some parameterα < 1/2 to be set later.

For j ∈ [cn], define the functionCj(x1, . . . ,xn) = 1 if the j-th clause of the given formula is satisfied, and
0 otherwise. Note that eachCj can be expressed as a polynomial of degree at mostk.

Say that a variable isgoodif it occurs in at most 2kcclauses. By the pigeonhole principle, at least half of
the variables are good, so we can findsgood variablesx1, . . . ,xs. Let xs+1, . . . ,xn be the remaining variables,
and letJ ⊂ [cn] be the set of indices of all clausesCj that contain some occurrence of a good variable; note
that |J|= O(kcs). Now for every variable assignment(xs+1, . . . ,xn) ∈ {0,1}n−s, we want to compute

F(xs+1, . . . ,xn) :=
∨

(a1,...,as)∈{0,1}s

[
cn

∑
j=1

Cj(a1, . . . ,as,xs+1, . . . ,xn)> t

]
.

We will achieve this by computing for everyt ′ ∈ [cn]:

Gt ′(xs+1, . . . ,xn) :=
∨

(a1,...,as)∈{0,1}s

[

∑
j∈J

Cj(a1, . . . ,as,xs+1, . . . ,xn)> t ′
]
.

Let us defineT[xs+1, . . . ,xn] := t −∑ j 6∈JCj(0, . . . ,0,xs+1, . . . ,xn). (Observe that it is OK to zero out the
good variablesx1, . . . ,xs here, because we are only summing over clauses thatdo notcontain them.) Note
that T can be viewed as a polynomial inn− s variables with only poly(n) monomials. Therefore for all
(xs+1, . . . ,xn) ∈ {0,1}n−s, theseT-values can be precomputed in poly(n)2n−s time. As theseT-values are
measuring the contribution from the variablesxs+1, . . . ,xn to the number of satisfied clauses, we have

F(xs+1, . . . ,xn) = GT[xs+1,...,xn](xs+1, . . . ,xn).

Applying Corollary4.2(in the exact setting), we can express anyGt ′ as a sum of 2s probabilistic polynomials
of degreek · O((kcs)1/3(s+ log(kcs))2/3), where each probabilistic polynomial computes an expression
of the form

[
∑ j∈J p j(xs+1, . . . ,xn)

]
with error probability at most 1/(10 · 2s), and for all j ∈ J we have

deg(p j(xs+1, . . . ,xn))≤ k. The number of monomials in our probabilistic polynomial for Gt ′ is at most

2s ·
(

n−s
k ·O((kcs)1/3(s+ log(kcs))2/3)

)
≤ 2αn ·O

( n

k4/3c1/3αn

)O(k4/3c1/3αn)

≤ 2αn ·2O(k4/3c1/3α log 1
α )n ≪ 20.1n
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by settingα to be a sufficiently small constant times 1/(k4/3c1/3 log(kc)). The same bound holds for the
construction time of the polynomial.

For eacht ′, we can evaluate the polynomial forGt ′ at all 2n−s input values by divide-and-conquer or
dynamic programming using poly(n)2n−s arithmetic operations [Yat37, Wil14c] on poly(n)-bit numbers.
The total time is 2n−n/O(k4/3c1/3 log(kc)). As before, the error probability can be lowered by taking the majority
values overO(n) repetitions, and the original problem can be solved by calling the decision algorithm for at
mostcn times.

Reminder of Theorem1.6. Given a CNF formula with n variables and cn≪ n4/ log10n clauses, we can

find an assignment that satisfies the maximum number of clauses in randomized2n−n/O(c1/3 log7/3 c) time.

Proof. We use a standard width reduction technique [SST15] originally observed by Schuler [Sch05] and
studied closely by Calabro, Impagliazzo, and Paturi [CIP06]. Consider the following recursive algorithm:

• If all clauses have length at mostk, then call the algorithm from Theorem6.1and return its output.
• Otherwise, pick a clause(α1∨ ·· ·∨αℓ) with ℓ > k. Return “SAT” if at least one of the two following

calls return “SAT”:
– Recursively solve the instance in which(α1∨ ·· ·∨αℓ) is replaced by(α1∨ ·· ·∨αk), and
– recursively solve the instance in whichα1, . . . ,αk are all assignedfalse.

Sakai, Seto, and Tamaki’s analysis for MAX-SAT [SST15] can be directly modified to show that the total
time of this algorithm remains 2n−n/O(k4/3c1/3 log(kc)), when the parameterk is set to be a sufficiently large
constant times logc.

For MAX-k-SAT with k ≤ 4, we can obtain a much better dependency on the sparsity parameterc; in
fact, we obtain significant speedup even for general dense instances. The approach this time requires only
the previous probabilistic polynomials by Alman and Williams [AW15]. Naively, the dense case seems to
require threshold functions with superlinearly many arguments, but by incorporating a few new ideas, we
manage to solve MAX-4-SAT using onlyO(n)-variate threshold functions.

Reminder of Theorem 1.7. Given a weighted 4-CNF formula F with n variables with positive integer
weights bounded by poly(n), we can find an assignment that maximizes the total weight of clauses satisfied
in F, in randomized2n−n/O(log2 nlog2 logn) time. In the sparse case when the clauses have total weight cn, the
time bound improves to2n−n/O(log2 clog2 logc).

Proof. (Dense case.)Let s= αn for some parameterα to be set later. Arbitrarily divide then variables of
F into three groups:x= {x1, . . . ,x(n−s)/2}, y= {y1, . . . ,y(n−s)/2}, andz= {z1, . . . ,zs}. As in Theorem6.1,
it suffices to solve the decision problem of whether there exist x,y∈ {0,1}(n−s)/2 andz∈ {0,1}s such that
f (x,y,z) > t, for a given degree-4 polynomialf and a fixedt ∈ [nc0] (for an appropriately large constantc0).
Since f has degree 4, observe that each term has either (a) at most oney variable, (b) at most onex variable,
or (c) nozvariable. We can thus write

f (x,y,z) =
(n−s)/2

∑
i=1

fi(x,z)yi +
(n−s)/2

∑
i=1

gi(y,z)xi +h(x,y)

where thefi ’s andgi ’s are degree-3 polynomials, andh is a degree-4 polynomial.

For everyx,y∈ {0,1}(n−s)/2, it suffices to compute

F(x,y) := ∑
z∈{0,1}s

[ f (x,y,z) > t] .
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More generally, we compute for everyt ′ ∈ [nc0]:

Gt ′(x,y) := ∑
z∈{0,1}s

Hz,t ′(x,y), with Hz,t ′(x,y) :=

[
(n−s)/2

∑
i=1

fi(x,z)yi +
(n−s)/2

∑
i=1

gi(y,z)xi > t ′
]
.

ThenF(x,y) = Gt−h(x,y)(x,y); we can precompute allh(x,y) values in poly(n)2n−s time.

TheHz,t ′(x,y) predicate can be viewed as aweightedthreshold function withO(n) arguments. To further
complicate matters, these weights are not fixed: they dependon x andy. We resolve the issue by extending
the vectorsx andy and using a binary representation trick.

For each vectorx∈ {0,1}(n−s)/2, define anextended vector x∗ wherex∗i = xi for eachi = 1, . . . ,(n−s)/2
andx∗i, j,z is the j-th least significant bit in the binary representation offi(x,z) for eachi = 1, . . . ,(n−s)/2, j =
0, . . . , ℓ andz∈ {0,1}s, with ℓ= O(logn). Note thatx∗ is a vector inO(n· logn·2s) dimensions. Similarly,
for each vectory ∈ {0,1}(n−s)/2, define an extended vectory∗ wherey∗i = yi for eachi = 1, . . . ,(n− s)/2
andy∗i, j,z is the j-th least significant bit in the binary representation ofgi(y,z) for eachi = 1, . . . ,(n− s)/2,

j = 0, . . . , ℓ andz∈ {0,1}s. We can precompute all extended vectors in 2(n−s)/2 ·poly(n)2s time.

Then

Hz,t ′(x,y) := ∑
(t0,...,tℓ)

ℓ

∏
j=0

[
(n−s)/2

∑
i=1

x∗i, j,zyi +
(n−s)/2

∑
i=1

y∗i, j,zxi = t j

]
,

where the outer sum is over all tuples(t0, . . . , tℓ) ∈ [nc0]ℓ with ∑ℓ
j=02 j · t j > t ′.

By Fact4.3, for eachz∈ {0,1}s, j = 0, . . . , ℓ, andt j ∈ [nc0], we can construct a probabilistic polynomial

(overR or F2) for the predicate
[
∑i x

∗
i, j,zyi +∑i y

∗
i, j,zxi = t j

]
with degreeO(

√
nlogS) with error probability

at most 1/S. By the union bound, the probability that there is an error for somez, j, t j is at mostO((1/S) ·
2s · logn·nO(1)), which can be made at most 1/4s, for example, by settingS= nc02s for a sufficiently large
constantc0. Thus, the degree for each predicate isO(

√
ns) (assumings≥ logn).

For eachz∈ {0,1}s andt ′ ∈ [nc0], by distributing over the product∏ℓ
j=0 we can then construct a proba-

bilistic polynomial forHz,t ′(x,y) with degreeO(
√

nsℓ)≤ O(
√

nslogn). For a fixedz andt ′, such a polyno-

mial is a function ofO(nlogn) free variables inx∗ andy∗, and therefore has at most
( O(nlogn)

O(
√

nslogn)

)
monomials.

The same bound holds for the time needed to construct the probabilistic polynomial (note the number of
tuples(t0, . . . , tℓ) is nO(logn), which is a negligible factor).

For each t ′ ∈ [nc0], we can thus construct a probabilistic polynomial forGt ′(x,y) with degree
O(

√
nslogn) overx∗ andy∗, with the following number of monomials:

2s ·
(

O(nlogn)
O(

√
nslogn)

)
≤ 2αn ·O

(
nlogn√
αnlogn

)O(
√

αnlogn)

≤ 2αn ·2
√

αn(log(n)) log(1/α) ≪ 20.1(n−s)/2

by settingα to be a sufficiently small constant times 1/(logn · log logn)2. The same bound holds for the
construction time.

We can rewrite the polynomial forGt ′(x,y) as the dot product of two vectorsφ(x∗) and ψ(y∗) of
20.1(n−s)/2 dimensions. The problem of evaluatingGt ′(x,y) over all x,y ∈ {0,1}(n−s)/2 then reduces to
multiplying a 2(n−s)/2 × 20.1(n−s)/2 with a 20.1(n−s)/2 × 2(n−s)/2 matrix (overR or F2), which can be done
in poly(n)2n−s time (Lemma2.1). The total time is 2n−n/O(log2 nlog2 logn).

Proof. (Sparse case.)If the clauses have total weightcn, we can refine the analysis above, in the following
way. Letµi andνi be the maximum value offi(x,z) andgi(y,z) respectively. We know that∑i(µi +νi)≤ cn.
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The variablex∗i, j,z is needed only whenj ≤ log(µi), and the variabley∗i, j,z is needed only whenj ≤ log(νi).
For eachz, j, t j , the probabilistic polynomial for the predicate

[

∑
i

x∗i, j,zyi +∑
i

y∗i, j,zxi = t j

]

has degreeO(
√

n js), wheren j is the number ofi’s with µi ≥ 2 j or νi ≥ 2 j .

Observe thatn j = O(cn/2 j ). It follows that the degree for theHz,t ′(x,y) polynomial isO(∑ℓ
j=0

√
n js) =

O(
√

nslogc+ ∑ j>logc

√
(cn/2 j )s) = O(

√
nslogc). The number of variables inHz,t ′(x,y) is at most

O(∑ℓ
j=0n j) = O(nlogc+∑ j>logc(cn/2 j )) = O(nlogc).

Thus, the bound on the total number of monomials becomes

2s ·
(

O(nlogc)
O(

√
nslogc)

)
≤ 2αn ·O

(
nlogc√
αnlogc

)O(
√

αnlogc)

≤ 2αn ·2
√

αnlogclog(1/α) ≪ 20.1(n−s)/2

by settingα to be a sufficiently small constant times 1/(logclog logc)2.

7 Circuit Satisfiability Algorithms

In this section, we give new algorithms for solving the SAT problem on some rather expressive circuit
classes. First, we outline some notions used in both algorithms.

7.1 Satisfiability on a Cartesian Product

In intermediate stages of our SAT algorithms, we will study the following generalization of SAT, where the
task is to find a SAT assignment in a “Cartesian product” of possible assignments.

Definition 7.1. Let n be even, and let A,B⊆ {0,1}n/2 be arbitrary. TheSAT problem on the setA×B is to
determine if a given n-input circuit has a satisfying assignment contained in the set A×B.

Recall that a Boolean functionf : {0,1}n → {0,1} is a linear threshold function (LTF) if there are
a1, . . . ,an, t ∈R such that for allx∈ {0,1}n, f (x) = 1 ⇐⇒ ∑i aixi ≥ t.

Let Circuit ◦LTF[Z,S] be the class of circuits with a layer ofSLTFs at the bottom (nearest the inputs),
with Z additional arbitrary gates above that layer. LetCircuit ◦SUM◦AND[Z,S] be the analogous circuit
class, but withSDNFs at the bottom layer with property that each DNF always has at mostoneconjunct true
for every variable assignment. (Thus we may think of the DNF as simply aninteger sum.) We first prove that
the SAT problem forCircuit ◦LTF can be reduced to the SAT problem forCircuit ◦SUM◦AND, utilizing a
weight reduction trick that can be traced back to Matoušek’salgorithm for computing dominances in high
dimensions [Mat91, Wil14b]:

Lemma 7.1. Let A,B ⊆ {0,1}n/2, with |A| = |B| = N ≤ 2n. Let K ∈ [1,N] be an integer parameter.
The SAT problem for Circuit◦LTF[Z,S] circuits on the set A×B can be reduced to the SAT problem for
Circuit ◦SUM◦AND[Z,S] where each DNF has at most O(logK) terms and eachAND has fan-in at most
2logK, on a prescribed set A′×B′ with |A′| = |B′| = N and A′,B′ ⊆ {0,1}2SlogK . The reduction has the
property that if the latter SAT problem can be solved in time T, then the former SAT problem can be solved
in time

(
T +N2 ·Z2/K+N ·S

)
·poly(n).
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Proof. For a given circuitC of typeCircuit ◦LTF[Z,S], let the jth LTF in the bottom layer have weights
α j,1, . . . ,α j,n, t j . Let the assignments inA bea1, . . . ,aN, and let the assignments inB beb1, . . . ,bN. Denote
thekth bit of ai andbi asai [k] andbi [k], respectively.

MakeN×SmatricesMA andMB, where

MA[i, j] =
n/2

∑
k=1

α j,k ·ai [k]

and

MB[i, j] = t j −
n/2

∑
k=1

α j,n/2+k ·bi[k].

The key property of these matrices is thatMA[i, j]≥ MB[i′, j] if and only if then-variable assignment(ai ,bi′)
makes thejth LTF output 1.

For eachj = 1, . . . ,S, let L j be the list of all 2·N entries in thejth column ofMA and thejth column
of MB, sorted in increasing order. PartitionL j into K contiguous parts ofO(N/K) entries each, and think of
each part ofL j as containing a set ofO(N/K) assignments fromA∪B. (So, the partition ofL j is construed
as a partition of the assignments inA∪B.) There are two possible cases for a satisfying assignment to the
circuit C:

1. There is a satisfying assignment(ai ,bi′) ∈ A×B such that for some j= 1, . . . ,S, ai and bi′ are in the
same part of Lj . By enumerating everyai ∈ A, every j = 1, . . . ,S, and allO(N/K) assignmentsbi′ of
B which are in the same part ofL j asai , then evaluating the circuitC on the assignment(ai ,bi′) in
Z2 ·poly(n) time, we can determine satisfiability for this case inO(N ·N/K ·Z2) ·poly(n) time. If this
does not uncover a SAT assignment, we move to the second case.

2. There is a satisfying assignment(ai ,bi′)∈A×B such that for every j= 1, . . . ,S, ai and bi′ are different
parts of Lj . Then for every LTF gatej = 1, . . . ,Son the bottom layer of the circuit, we claim that the
j-th LTF can be replaced by a sum ofO(logK) ANDs on 2logK new variables. In particular, for the
j-th LTF we define one new set of logK variables which encodes the indexk = 1, . . . ,K such that
ai is in partk of L j , and another set of logK variables which encodes the indexk′ such thatbi′ is in
partk′ of L j . Then, determining[k≥ k′] is equivalent to determining whether(ai ,bi′) satisfies thej-th
LTF gate. Finally, note that the predicate[k≥ k′] can be computed by a DNF ofO(logK) conjuncts.
(Take an OR over allℓ = 0, . . . , logK, guessing that theℓ-th bit is the most significant bit in which
k andk′ differ; we can verify that guess with a conjunction on 2logK variables.) On every possible
input (k,k′) ∈ {0,1}2logK , the DNF has at mostonetrue conjunction. Thus we can construe the OR
as simply aninteger sumof ANDs, as desired. Preparing these new assignments for this new SAT
problem takes timeO(N ·S) ·poly(n).

7.2 Simulating LTFs with AC0 of MAJORITY

In our SAT algorithms, we will need a way to simulate LTFs withbounded-depth circuits with MAJORITY
gates. This was also used in Williams’ work on solving ACC-LTF SAT [Wil14b], as a black box. However,
here we must pay careful attention to the details of the construction. In fact, we will actually have to modify
the construction slightly in order for our circuit conversion to work out. Let us review the construction
here, and emphasize the parts that need modification for thispaper. Recall thatMAJ denotes the majority
function.

18



Theorem 7.1(Follows from [MT98], Theorem 3.3). Every LTF can be computed by polynomial-sizeAC0◦
MAJ circuits. Furthermore, the circuits can be constructed in polynomial time given the weights of the
LTF, and the fan-in of eachMAJ gate can be made n1+ε , for every desiredε > 0, and the circuit has depth
O(log(1/ε)).

It will be crucial for our final results that the fan-in of theMAJ gates can be made arbitrarily close to
linear.

Proof. We begin by revisiting the circuit construction of Maciel and Thérien [MT98], which shows that
the addition ofn distinct n-bit numbers can be performed with polynomial-sizeAC0 ◦MAJ circuits. The
original construction of Maciel and Thérien yieldsMAJ gates of fan-inÕ(n2), which is too large for our
purposes. We can reduce the fan-in ofMAJ gates toO(n1+ε) by setting the parameters differently in their
construction. Let us sketch their construction in its entirety, then describe how to modify it.

Recall thatSYM denotes the class of symmetric functions. First, we show that addition of n n-bit
numbers can be done inAC0 ◦ SYM. Suppose then-bit numbers to be added areA1, . . . ,An, whereAi =
Ai,n · · ·Ai,1 for A j,i ∈ {0,1}. Maciel and Thérien partition eachAi into m blocks ofℓ bits, wherem· ℓ = n.
They compute the sumSk of then ℓ-bit numbers in each blockk= 1, . . . ,m, i.e.

Sk =
n

∑
i=1

ℓ

∑
j=1

Ai,(k−1)ℓ+ j ·2 j−1,

and note that the desired sum is

z=
m

∑
k=1

Sk ·2(k−1)ℓ.

EachSk can be represented inℓ+ logn bits. Maciel and Thérien setℓ= logn, so that eachSk is represented
by 2ℓ bits. They then split eachSk into ℓ-bit numbersHk andLk such that

Sk = Hk ·2ℓ+Lk.

Note that the “high” partHk corresponds to the “carry bits” ofSk. They then note that if

y1 :=
m

∑
k=1

Hk ·2kℓ, y2 :=
m

∑
k=1

Lk ·2(k−1)ℓ,

we have

(a) z= y1+y2, and
(b) each bit ofyi is a function of exactly oneHk or Lk for somek. In turn, eachLk, Hk is a sum ofn·ℓ Ai, j ’s

where eachAi, j is multiplied by a power of two in[0,2ℓ]. Therefore, each bit ofyi can be computed
by aSYM gate of fan-in at mostn· ℓ ·2ℓ ≤ n2.

We have therefore reduced the addition ofn n-bit numbers to adding the twoO(n)-bit numbersy1 andy2,
with a layer ofSYM gates. Adding two numbers can be easily computed inAC0 (see for example [CFL85]),
so the whole circuit is of the formAC0◦SYM.

We wish to reduce the fan-in of theSYM gates toO(n1+ε) for arbitrary ε > 0. To reduce the fan-in
further, it suffices to find a construction that lets us reduceℓ. Naturally, we can try to setℓ = ε logn for
arbitrarily smallε ∈ (0,1). Without loss of generality, let us assume 1/ε is an integer. Then, eachSk is
represented inℓ+ logn ≤ (1+ 1/ε)ℓ bits. Let t = 1+ 1/ε . If we then split eachSk into t ℓ-bit numbers
Tt−1

k , . . . ,T0
k , ranging from high-order to low-order bits, we then have

Sk = Tt−1
k ·2(t−1)ℓ+ · · ·+T1

k ·2ℓ+T0
k .
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Defining thet numbers

yi :=
m

∑
k=1

T i
k ·2(k+i−1)ℓ,

the desired sum isz= ∑t−1
i=0 yi . Just as before, each bit ofyi is a function of exactly oneT i

k for somek,
which is a sum ofn · ℓ Ai, j ’s where eachAi, j is multiplied by an integer in[0,2ℓ]. Hence each bit ofyi can
be computed by aSYM gate of fan-in at mostn · ℓ · 2ℓ ≤ Õ(n1+ε). So with one layer ofSYM gates, we
have reduced then numbern-bit addition problem to the addition oft O(n)-bit numbersy0, . . . ,yt−1. But
for t ≤ logn, addition oft n-bit numbers can be computed byAC0 circuits of poly(n)-size andfixeddepth
independent oft (see e.g. [Vol99], p.14-15). This completes the description of ourAC0◦SYM circuit.

Observe that eachSYM gate can be easily represented by anOR◦AND◦MAJ circuit. In particular, the
OR is over all j ∈ {0,1, . . . ,n} such that theSYM gate outputs 1 when givenj inputs are equal to 1, and the
AND◦MAJ part computes∑ j x j = j. Again, the fan-in of eachMAJ here isÕ(n1+ε).

We now apply the addition circuits to show how every LTF onn variables can be represented by a
polynomial-sizeAC0 ◦MAJ circuit. Suppose our LTF has weightsw1, . . . ,wn+1, computing∑n

j=1w jx j ≥
wn+1. By standard facts about LTFs, we may assume for allj that |w j | ≤ 2bnlog2 n for some constantb> 0.
SetW = bnlog2 n.

Let D be aAC0◦MAJ circuit for addingn W-bit numbers as described above, where eachMAJ gate has
fan-in Õ(n1+ε). For all j = 1, . . . ,n, connect to thejth W-bit input of D a circuit which, givenx j , feedsw j

to D if the input bitxi j = 1, and the all-zeroW-bit string if x j = 0. Observe this extra circuitry is only wires,
no gates: we simply place a wire fromx j to all bits of thejthW-bit input where the corresponding bit ofw j

equals 1.

This new circuitD′ clearly computes the linear form∑n
j=1w jx j . The linear form can then be compared

to wn+1 with anAC0 circuit, since the “less-than-or-equal-to” comparison oftwo integers can be performed
in AC0. Indeed, this function can be represented as a quadratic-size DNF (SUM◦AND), as was noticed in
Lemma7.1. We now have anAC0 ◦MAJ circuit D′′ of size poly(W, t) ≤ nb computing the LTF, where the
MAJ gates have fan-iñO(n1+ε).

7.3 Satisfiability Algorithm for ACC of LTF of LTF

Let AC0[d,m] ◦ LTF ◦ LTF[S1,S2,S3] be the class of circuits with a layer ofS3 LTFs at the bottom layer
(nearest the inputs), a layer ofS2 LTFs above the bottom layer, and a sizeS1 AC

0[m] circuit of depthd above
the two LTF layers.

Reminder of Theorem1.8. For every integer d> 0, m> 1, andδ > 0, there is anε > 0 and an algorithm
for satisfiability ofAC0[d,m]◦LTF◦LTF[2nε

,2nε
,n2−δ ] circuits that runs in deterministic2n−nε

time.

We use the following depth-reduction theorem of Beigel and Tarui (with important constructibility is-
sues clarified by Allender and Gore [AG94], and recent size improvements by Chen and Papakonstanti-
nou [CP16]):

Theorem 7.2([BT94, AG94]). EverySYM◦ACC circuit of size s can be simulated by aSYM◦AND circuit

of 2(logs)c′
size for some constant c′ depending only on the depth d and MODm gates of theACC part.

Moreover, theAND gates of the final circuit have only(logs)c′ fan-in, the final circuit can be constructed

from the original in2O((logs)c′) time, and the final symmetric function at the output can be computed in

2O((logs)c′ ) time.
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Proof of Theorem 1.8. Let ε > 0 be a parameter to be set later. The plan is to start with a circuit as
specified in the theorem statement, and slowly convert into anice form that can be evaluated efficiently on
many inputs.

1. Trade Variables for Circuit Size. Our first step is standard forACC-SAT algorithms [Wil14b,
Wil14c]: given anAC0[d,m] ◦ LTF ◦ LTF[2nε

,2nε
,n2−δ ] circuit C with n variables, create a copy of the

circuit Cv :=C(v, ·) for all possible assignmentsv∈ {0,1}nε
to the firstnε variables ofC, and define

C′(xnε+1, . . . ,xn) :=
∨

v

Cv(xnε+1, . . . ,xn).

Observe thatC′ is satisfiable if and only ifC is satisfiable,C′ has size at most 2O(nε ), C′ is also anAC0 ◦
LTF◦LTF circuit, andC′ has onlyn−nε variables.

2. Replace the middle LTFs with MAJORITYs (Theorem 7.1). Note that each LTF on the second
layer ofC′ has fan-in at mostn2−δ +n, since the number of LTFs on the first layer isn2−δ . Applying the
low fan-in transformation of Theorem7.1, we can replace each of the LTFs on the second layer ofC′ with
poly(n)-sizeAC0 ◦MAJ circuits where eachMAJ has fan-in at mostn2−δ/2. This generates at most 2dnε

newMAJ gates in the circuitC′, for some constantd > 0, and produces a circuit of type

ACC0◦MAJ◦LTF.

3. Replace those MAJORITYs with (derandomized) probabilistic polynomials over F2 (Theo-
rem 1.1). We replace each of these newMAJ gates with our low-randomness probabilistic polynomials for
the MAJORITY function, as follows. Recall from Theorem1.1 that we can construct a probabilistic poly-
nomial overF2 for k-bit MAJORITY with degreeO(

√
k log(1/ε ′)) and error at mostε ′, using a distribution

of kO(log(k/ε ′)) uniformly chosenF2-polynomials. Settingk := n2−δ/2 for the fan-in of theMAJ gates, and
the error to beε ′ := 1/22dnε

, the degree becomes

D := O
(√

n2−δ/2 ·2dnε
)
≤ O(n1−δ/4+ε/2)

and the sample space has sizeS= nO(nε ). For ε ≪ δ/4, we haveD := O(n1−δ/8), and each polynomial in

our sample space has at most
( n2−δ

n1−δ/8

)
≤ 2O(n1−δ/8 logn) monomials. For every choice of the random seedr to

the probabilistic polynomial, letC′
r be the circuitC′ with the correspondingF2 polynomialPr substituted in

place of eachMAJ gate. That is, eachMAJ gate is substituted by anXOR of 2O(n1−δ/8 logn) ANDs of fan-in
at mostO(n1−δ/8).

We now form a circuitC′′ which takes a majority vote over all 2O(nε logn) circuitsC′
r . The new circuitC′′

therefore has the form
MAJ◦ACC0◦XOR◦AND◦LTF,

where theMAJ◦ACC0 part has size 2O(nε logn), and eachXOR◦AND◦LTF subcircuit has size 2O(n1−δ/8 logn).
Since our probabilistic polynomial computes MAJORITY with1/22dnε

error and there are at most 2dnε
MAJ

gates inC′, the new circuitC′′ is equivalent to the original circuitC′.

4. Apply Beigel–Tarui to the top of the circuit, and distribute. It is very important to observe that
we cannotapply Beigel–Tarui (Theorem7.2) to theentire circuit C′′, as its total size is 2Ω(n1−δ/8 logn), and
the quasi-polynomial blowup of Beigel–Tarui would generate a huge circuit of sizeΩ(2n), rendering our
conversion intractable.

However, the topMAJ ◦ACC0 part is still small. Invoking the depth reduction lemma of Beigel and
Tarui (Theorem7.2above), we can replace theMAJ◦ACC0 part inC′′ of size 2O(nε logn) (even though it has
2O(nε logn) inputs from theXOR layer!) with aSYM◦AND circuit of size 2n

a·ε
for a constanta≥ 1, where
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eachAND has fan-in at mostnaε , anda depends only on the (constant) depthd and (constant) modulusm
of theACC0 subcircuit.

The resulting circuitC3 now has the form

SYM◦AND◦XOR◦AND◦LTF.

Applying the distributive law to theAND ◦XOR parts, where theANDs have fan-in at mostnaε and the
XORs have fan-in 2O(n1−δ/8 logn), eachAND◦XOR parts can be converted into anXOR◦AND circuit of size
2O(n1−δ/8+aε logn), where the fan-in ofANDs is at mostnaε . Letting ε ≪ δ/(ca) for sufficiently largec≥ 1,
the fan-in of the newXORs is at most 2O(n1−ε ). We now have a circuitC4 of the form

SYM◦XOR◦AND◦LTF.

Note that the fan-in of theSYM gate is at most 2n
a·ε

, and the fan-in of the (merged)ANDs isO(n1−δ/8+aε ).

5. Apply modulus-amplifying polynomials to eliminate the XOR layer. We’d like to remove the
XOR layer, to further reduce the depth of the circuit. But as the gates of this layer have very high fan-in, we
must be careful not to blow the circuit size up toΩ(2n). The following construction will take advantage of
the fact that we have only poly(n) total gates in the bottomLTF layer.

We apply one step of Beigel-Tarui’s transformation [BT94] (from ACC0 to SYM ◦ AND) to the
SYM◦XOR◦AND part of our circuit. In particular, we apply a modulus-amplifying polynomialP (over the
integers) of degree 2D′ = 2na·ε to each of theXOR ◦AND parts. Construing theXOR ◦AND as a sum of
products∑∏, the polynomialP has the property:

• If the ∑∏ = 1 mod 2, thenP(∑∏) = 1 mod 2D
′
.

• If the ∑∏ = 0 mod 2, thenP(∑∏) = 0 mod 2D
′
.

So, composingP with eachXOR ◦AND part, eachP outputs either 0 or 1 modulo 2na·ε
. The key property

here is that the modulus exceeds the fan-in of theSYM gate, so the sum of allP(∑∏) simply counts the
number ofXOR◦ANDs which are true; this is enough to determine the output of theSYM gate. Construing
the output of each bottomLTF gate as a variable, there are at mostn2−ε variables. Expressing eachP(∑∏)
(expanded as a sum of products) as a multilinear polynomial in theseLTF variables, the total number of
terms is at most (

n2−ε

D′ ·n1−δ/8+aε

)
≤ 2O(D′·n1−δ/8+aε ·logn) ≤ 2O(n2a·ε+1−δ/8·logn).

Let ε := δ/(ca) for a sufficiently large constantc> 1 so that 2aε +1−δ/8< 1−ε . We can then merge the
sum of allP(∑∏)’s into theSYM gate, and obtain aSYM◦AND circuit where theSYM has fan-in

2O(n2a·ε+(1−δ/8)) ≤ 2O(n1−ε ),

and theAND gates have fan-inO(n2a·ε+(1−δ/8))≤ O(n1−ε). The result is a circuitC4 of the form

SYM◦AND◦LTF.

6. Replace the bottom threshold gates with DNFs (Theorem7.1), and distribute. Note that the
circuit C4 hasn− nε variables, so our SAT algorithm would follow if we could evaluateC4 on all of its
variable assignments in 2n−nε ·poly(n) time. We are now in a position to apply Lemma7.1, which lets us
reduce the evaluation problem forSYM◦AND ◦LTF circuits to the evaluation problem forSYM◦AND ◦
SUM ◦AND circuits, with a parameterK that needs setting. Recall the middleAND gates have fan-in
O(n1−ε), and the fan-in of theSUM is O(logK). Therefore by the distributive law, we can rewrite the circuit
as aSYM◦SUM ◦AND circuit, where eachSUM gate has(logK)O(n1−ε ) ANDs below it, and at mostone
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AND below eachSUM is true. Thus we can wire theseAND gates directly into the topSYM gate without
changing the output.

In more detail, letA,B= {0,1}(n−nε )/2, and setN = 2(n−nε )/2 and the integer parameterK := 2b·n1−ε
for

a sufficiently large constantb> 1. By Lemma7.1, we can reduce the SAT problem forSYM◦AND ◦LTF
circuits of size 2O(n1−ε ) on the setA×B= {0,1}n−nε

to the SAT problem forSYM◦SUM◦AND circuits of
size

2O(n1−ε ) ·22bn1−ε ·n2−δ ≤ 2O(n1−ε )

on a prescribed setA′×B′ with |A′| = |B′| = N andA′,B′ ⊆ {0,1}2bn2−δ ·n1−ε
. By the distributive argument

from the previous paragraph, we can convert theSYM◦SUM ◦AND circuit into aSYM ◦AND circuit of
size at most

2O(n1−ε ) ·2O(n1−ε log logK) ≤ 2O(n1−ε log(n)).

By Lemma7.1, we know that if theSYM◦AND SAT problem is solvable in timeT on the setA′×B′, then
the SAT problem forC4 on the setA×B can be solved in timeO

(
T +N2 ·Z/K+N ·S

)
·poly(n).

7. Evaluate the depth-two circuit on many pairs of points. By applying fast rectangular matrix
multiplication in a now-standard way [Wil14c, Wil14b], the resultingSYM◦AND circuit of 2Õ(n1−ε) size
can be evaluated on all points inA′×B′, in time poly(n) ·2n−nε

, thus solving its SAT problem. Therefore,
the SAT problem forC4 can be solved in time

poly(n) ·2n−nε
+

2n−nε ·2O(n1−ε )

2b·n1−ε +2
n−nε

2 ·2O(n1−ε log(n)).

Settingb> 1 to be sufficiently large, we obtain a SAT algorithm forC4 (and hence the original circuitC)
running in poly(n) ·2n−nε

time. �

7.4 Satisfiability for Three Layers of Majority + AC0

In this section, we give our SAT algorithm forMAJ◦AC0 ◦LTF ◦AC0 ◦LTF circuits with low-polynomial
fan-in at the output gate and the middleLTF layer:

Reminder of Theorem1.9. For all ε > 0 and integers d≥ 1, there is aδ > 0and a randomized satisfiability
algorithm forMAJ◦AC0◦LTF◦AC0◦LTF circuits of depth d running in2n−Ω(nδ ) time, on circuits with the
following properties:

• the topMAJ gate, along with everyLTF on the middle layer, has O(n6/5−ε ) fan-in, and
• there are O(2nδ

) manyAND/OR gates (anywhere) andLTF gates at the bottom layer.

We need one more result concerning probabilistic polynomials over the integers:

Theorem 7.3([BRS91, Tar93]). For everyAC0 circuit C with n inputs and size s, there is a distribution of
n-variate polynomialsD overZ such that every p has degree poly(logs) (depending on the depth of C) and
for all x ∈ {0,1}n, Prp∼D [C(x) = p(x)] ≥ 1−1/2poly(logs).

Proof of Theorem1.9. The SAT algorithm is somewhat similar in structure to Theorem 1.8, but with a few
important changes. Most notably, we work with probabilistic polynomials overZ instead ofF2.

Start with a circuitC of the required form. Lets be the number ofAND/OR gates inC plus the number
of LTF gates on the bottom layer. Letf ≤ n6/5−ε be the maximum fan-in of the topMAJ gate and theLTFs
on the middle layer, and recall that we’re planning to consider C with size at most 2n

δ
whereδ > 0 is a

sufficiently small constant (depending onε > 0 and the circuit depth) in the following. Our SAT algorithm
runs as follows:
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1. By Theorem7.1, every LTF of fan-inf can be replaced by anAC0◦MAJ of fan-in f 1+o(1) and poly( f )
size. Hence we can reduceC to a circuit of similar size, but of the form

MAJ◦AC0◦MAJ◦AC0◦MAJ.

The fan-ins of the majority gates in the middle and bottom layer can be made at mostn6/5−ε ′ , for any
ε ′ > 0 which is smaller thanε . To be concrete, let us setε ′ := ε/2.

2. Replace the “middle” majority gates of fan-inn6/5−ε/2 with probabilistic polynomials (overZ) of
degreen3/5−ε/4poly(logs) and error 1/2poly(logs) [AW15] (Theorem1.1 in this paper). Replace all
theAC0 subcircuits of sizes by probabilistic polynomials (overZ) of degree poly(logs) and error
1/2poly(logs), via Lemma7.3. Note that the latter poly(logs) factor depends on the depth of the circuit.

3. Replace the majority gate at the output (of fan-inf ≤ n6/5−ε ) with the probabilistic PTF of Corol-
lary 4.2, setting the threshold parameters′ (which is calleds in the statement of the corollary) to
be 22nδ

and setting the error (calledε in the statement of the corollary) to be 1/ f . The resulting
polynomial has degreen2/5−ε/3 ·poly(nδ ).

Applying the distributive law to all the polynomials from steps 2 and 3, the new circuitC′ can be
viewed as aninteger sumof at mostT AND◦LTF circuits of at mostT size, where

T = 2n3/5−ε/4·n2/5−ε/3·poly(logs,nδ ) = 2n1−7ε/12·poly(logs,nδ )

and allAND gates have fan-in at mostn1−7ε/12 ·poly(logs,nδ ) (because the resulting polynomial has
at most this degree).

Now is a good time to mention our choice ofδ , as it will considerably clean up the exponents in
what follows. We will chooseδ > 0 to be sufficiently small so that the poly(logs,nδ ) factor in the
exponent ofT is less thannε/12. That is, we takeδ := ε/c and the size parameters< 2nδ

= 2nε/c
, for

a sufficiently large constantc≥ 12. (Note thatc depends on the depth of the circuit, since the degree
of the poly log factor depends on the depth.) Thus we have the size bound

T = 2n1−7ε/12·poly(logs,nδ ) ≤ O(2n1−7ε/12·nε/12
)≤ O(2n1−ε/2

),

and allAND gates have fan-in at mostn1−ε/2.

4. For all assignmentsa to the firstnδ variables ofC′, plug a into C′, creating a copyC′
a. LetC′′ be the

integer sum of all 2n
δ

circuitsC′
a. By the properties of the polynomial constructed in Theorem1.3and

the chosen parameters′ = 22nδ
, with probability at least 2/3 there is a (computable) threshold value

v= 3s/2 such that

• C′′(x)> v when at least oneC′
a(x) outputs 1, and

• C′′(x)< v when allC′
a(x) output 0.

The circuitC′′ is a Sum-of-AND ◦LTF circuit; note thatC′′ hasn−nδ variables.

5. We now want to evaluateC′′ on all of its 2n−nδ
possible variable assignments. Applying Lemma7.1for

an integer parameterK ∈ [2n] (to be determined),N= 2(n−nδ )/2, andZ,S= 2n1−ε/2
, we can convert this

evaluation problem forC′′ into a corresponding evaluation problem for a Sum-of-AND ◦SUM◦AND
circuit C′′′, on an appropriate combinatorial rectangleA′×B′ of 2n−nδ

variable assignments in total.
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The relative size of the circuit is unchanged, as eachSUM◦AND has sizeO(log2K) ≤ O(n2). The
time for conversion ofC′′ into C′′′ is

(
N2Z2

K
+N ·S

)
·poly(n) ≤ 2n−nδ ·22n1−ε/2 ·poly(n)

K
.

SettingK := 22n1−ε/2
makes this time bound 2n−Ω(nδ ).

Recall that in the Sum-of-AND ◦SUM◦AND circuit C′′′, the fan-in of the middleANDs is at most
n1−ε/2, and eachSUM hasO(n) fan-in. We can therefore apply the distributive law to eachAND ◦
SUM part, and obtain aSUM◦AND of size at mostnO(n1−ε/2). Merging theSUMs into theSYM gate,
we obtain aSYM◦AND circuit of size at mostnO(n1−ε/2).

6. Finally, applying rectangular matrix multiplication (Lemma2.1) we can evaluate the Sum-of-AND

C′′′ of nO(n1−ε/2) size on the combinatorial rectangleA′×B′ in 2n−Ω(nδ ) time, by preparing matrices of
dimensions 2n/2−Ω(nδ )×nO(n1−ε/2) (for A′) andnO(n1−ε/2)×2n/2−Ω(nδ ) (for B′), then multiplying them.
Note that preparing these matrices takes time no more than 2n/2+O(n1−ε/2 logn), which is negligible for
us.

After multiplying the matrices, we obtain a value forC′′(x) for each assignmentx, which is correct
with probability at least 2/3. By repeating steps 2-5 for 100n times, we obtain correct values on all
2n−nδ

points with high probability.

This completes the proof. �

8 Conclusion

Our work has led to interesting algorithmic improvements for several core problems. Here are two open
problems that we wish to highlight.

First, it would be interesting to understand what are the power and limits of probabilistic polyno-
mial threshold functions representing Boolean functions.How easy/difficult is it to prove degree lower
bounds for such representations? In this paper, we have demonstrated how probabilistic PTFs can be sig-
nificantly better than probabilistic polynomials or deterministic PTFs alone, by combining the strengths
of the two representation methods. Informally, a probabilistic polynomial threshold function can be seen
as anApproximate-MAJ ◦ LTF ◦AND circuit or as anApproximate-MAJ ◦ LTF ◦XOR circuit, so we are
effectively asking about lower bounds regarding such circuit classes.

Second, can our SAT algorithm forMAJ ◦AC0 ◦LTF ◦AC0 ◦LTF be derandomized? If so, the deran-
domization should lead to new circuit lower bounds. Perhapsthe ideas in Tamaki’s recent work [Tam16]
will be helpful here.
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