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Range Searching

at the “core” of computational geometry…



orthogonal range search

semialgebraic range search

incidence problems intersection search

e.g. Hopcroft’s e.g. segment intersection counting

simplex range search

ray shooting halfspace range reporting

hidden surface removal

visibility, connectivity problems, LP queries

geom. shortest paths, nearest neighbor search

geom. optimization,

comp. statistics, … convex hull, Voronoi, Delaunay, extreme points, 

k-level, bichromatic closest pair, EMST, …



History of Simplex Range Search

(O(n)-space data structures)

• 2-d: Willard’82   O(nlog4 3) ≈ O(n0.792)

4-partition

Willard’82   O(nlog6 4) ≈ O(n0.774)

Edelsbrunner,Welzl’86  O(nlog2 φ) ≈ O(n0.695)



History (Cont’d)

• 3-d: F. Yao’83 O(nlog8 7) ≈ O(n0.936)

Dobkin,Edelsbrunner’84 O(n0.916)

Edelsbrunner,Huber’84 O(n0.909)

Yao,Dobkin,Edelsbrunner,Paterson’89   O(n0.899)

• Higher-d: Yao,Yao’85 O(nlog2(2
d-1) / d) 



History (Cont’d)

• Haussler,Welzl [SoCG’86]

O(n1-1/[d(d-1)+1]+ε)

e.g. 2-d:  O(n2/3+ε),  3-d:  O(n0.858)

key idea:  random sampling  (ε-nets)



History: Turning Point

• Welzl [SoCG’88],  Chazelle-Welzl’89

2-d:  O(n1/2 log n) query,  O(n) space

3-d: O(n2/3 log2n) query,  O(n log n) space

O(n1-1/d log n) query, O(n) space in semigroup model

(but not “algorithmic”)

spanning trees with low crossing number

key idea:  iterative reweighting



History: Last Stretch

• Chazelle,Sharir,Welzl [SoCG’90]

O(n1-1/d+ε) query,  O(n1+ε) space

idea:  multiple cuttings

• Matoušek [SoCG’91]

O(n1-1/d logO(1) n) query,  O(n) space

“partition thm”

idea:  iterative reweighting + cuttings

• Matoušek [SoCG’92]

O(n1-1/d) query,  O(n) space

“final method”

idea:  iterative reweighting + Chazelle’s hierarchical cuttings



Loose Ends

Matoušek’s final method is great, but…

– has large preprocessing time: O(n1+ε)

(in algorithmic applications, we usually switch back to

partition-thm method, which has O(n log n) preproc.)

– is not good for multilevel data structures

(Matoušek switched to multiple-cuttings method: 

cost 1 log in query, 2 log’s in space, nε in preproc. per level,

or logO(1) n in query/space/preproc. per level)

– is complicated !!



New Result

O(n1-1/d) query,  O(n) space

– with O(n log n) preprocessing time (rand. w.h.p.)

– good for multilevel data structures 

(cost only 1 log in query/space/preproc. per level)

– simpler !! 



Recap: Matoušek’s Partition Thm

Let P be n-point set in Rd,  t ≤ n.

Can partition P into t subsets of O(n/t) points & 

enclose each subset in a (simplicial) cell s.t.

max # cells crossed by any hyperplane is O(t1-1/d)



Matoušek’s Partition Tree

recurse

Q(n)   =   O(t1-1/d) Q(n/t)  + O(t)

set t = large const  ⇒ Q(n)  =  O(n1-1/d+ε) 

set t = nε ⇒ Q(n)  =  O(n1-1/d logO(1) n) 



A New “Partition Refinement Thm”

Let P be n-point set in Rd,  bt ≤ n.

Given a partition with t disjoint cells each with O(n/t) 
points s.t. max # cells crossed by any hyperplane is ℓ.

Can subdivide each cell into O(b) disjoint subcells each 
with O(n/bt) points s.t. 

max total # subcells crossed by any hyperplane is

O((bt)1-1/d +  b1-1/(d-1) ℓ +  b logO(1) n)



The New Partition Tree

build level by level

…

ℓ(bt)   ≈ O( (bt)1-1/d +  b1-1/(d-1) ℓ(t) )

set b = large const ⇒ ℓ(n)  =  O(n1-1/d)



Proof Sketch of Partition Refinement Thm



Preliminaries

• Suffices to work with a finite set of nO(1) “test 
hyperplanes”

• Cutting Lemma: [Clarkson,Shor/Chazelle,Friedman]

Given m hyerplanes in Rd & cell ∆ containing X vertices,

can divide ∆ into  O(X(r/m)d + rd-1) disjoint subcells s.t. 

each subcell is crossed by O(m/r) hyperplanes



The New Algorithm

Idea: iterative reweighting

Initialize multiplicity (“weight”) of each hyperplane to 1

For i = t to 1 do:

0. Among the i remaining cells, pick a good cell ∆

1. Apply cutting lemma to subdivide ∆ into O(b) subcells

2. Further subdivide ∆ s.t. each subcell has O(n/bt) points

3. For each hyperplane h, multiply multiplicity of h by 
(1+1/b)λ(h) where λ(h) = # subcells of ∆ crossed by h



Analysis

Let M = total multiplicity of all hyperplanes

0. Among the i remaining cells, pick a good cell ∆

with X ≤ O(Md/i) vertices, 

crossed by m ≤ O(Mℓ/i) hyperplanes

1. Apply cutting lemma with r = min { m(b/X)1/d , b1/(d-1) }
to subdivide ∆ into O(X(r/m)d + rd-1) = O(b) subcells

⇒ # hyperplanes crossing each subcell ≤ O(m/r)

≤ O((X/b)1/d   +  m/b1/(d-1))

≤ M · O( 1/(bi)1/d  + ℓ /(b1/(d-1)i) )



Analysis (Cont’d)

2. Further subdivide ∆ s.t. each subcell has O(n/bt) points

3. For each hyerplane h, multiply multiplicity of h by 
(1+1/b)λ(h) where λ(h) = # subcells of ∆ crossed by h

∑h λ(h)  ≤ O(bm/r)

⇒ increase in M  ≤ ∑h [(1+1/b)
λ(h) – 1]

≤ O(∑h λ(h)/b)
≤ O(m/r)

≤ M · O( 1/(bi)1/d  + ℓ /(b1/(d-1)i) )



Analysis (Cont’d)

• Final value of M  

≤ nO(1) Πi=t,…,1 [1 +  O( 1/(bi)
1/d  + ℓ /(b1/(d-1)i) )]

≤ nO(1) exp( O( t1-1/d/b1/d +   ℓ ln t / b1/(d-1) ) )

• Final multiplicity of h  =  (1+1/b)crossing-number(h)

≤ final value of M

⇒ crossing-number(h)   ≤ b  log(final value of M)

≤ O((bt)1-1/d +  b1-1/(d-1) ℓ ln t  +  b log n)



Concluding Remarks

• Simple tree structure, with const degree, disjoint cells  
(in 2-d, can make it a BSP tree)

• Optimal crossing number at essentially all levels of tree

• An open problem: halfspace range reporting for odd d 
with O(n1-1/d/2 + k) query,  O(n) space ?


