Optimal In-Place Algorithms for
3-d Convex Hulls &
2-d Segment Intersection

Timothy Chan Eric Chen
School of CS
U of Waterloo

History Recap:
3-d Convex Hull Alg'ms

* O(n log n) time, O(n) space

[Preparata,Hong'77] by divide&conquer
[Clarkson,Shor'88] by rand. incremental
[Fortune'86] by sweep (for 2-d Voronoi diagrams)

History Recap:
2-d Line Segment Intersection Alg'ms

* O((n + K) log n) time, O(n + K) (or O(n)) space
[Bentley,Ottmann'79] (+ [Brown'81]) by sweep

* O(nlog n+ K) time, O(n + K) space

[Chazelle,Edelsbrunner'88] by a "complicated” sweep

* O(nlog n+ K) time, O(n) space
[Clarkson,Shor'88] by rand. mcremen’ral/samplmg
[Mulmuley'88]

[Balaban'95] by divide&conquer

Sublinear space ??

CONSTANT space I

In-Place Alg'ms

» Example: heapsort

» The model

array of n elements (RAM, read/write) extra word
of space

(+ write-only output stream)

Known In-Place Results/Techniques

* In-place merging
- O(n) time, O(1) space ['80s]

» In-place stable partitioning
- O(n) time, O(1) space ['80s]

» In-place sorting with O(n) moves
- O(n log n) time, O(1) space [Franceschini,Geffert'03]

Known In-Place Results/Techniques

* In-place/"implicit" data structures for searching

- O(
- O(
- O(
- O(

0g° n) query/update time/space [Munro'84]

0g°n/loglog n) " " [Franceschini Grossi,Munro Pagli'02]
og hloglogn) " " [Franceschini,Grossi'03]
og h) “ ", O(1) space [Franceschini,Grossi'03]

- Recent renaissance
- In_

place radix-sort ['07], in-place suffix sorting ['09], ...

Known In-Place CG Alg'ms

2-d convex hull

- O(n log h) time, O(1) space
[Bronnimann,Lacono,Katajainen,Morin,Morrison, Toussaint'02]

- Simple polygonal chains: O(n) time, O(1) space
[Bronnimann,Chan'04]

2-d maxima layers

- O(n log n) time, O(1) space [Bliinck,Vahrenhold'06]

2-d red/blue closest pair

- O(n log n) time, O(1) space

[Bose , Maheshwari,Morin,Morrison,Smid,Vahrenhold'04] by
simple divide&conquer

Known In-Place CG Alg'ms (Cont'd)

2-d orthogonal segment intersection

- O(n log n + K) time, O(1) space
[Bose , Maheshwari,Morin,Morrison,Smid,Vahrenhold'04] by
simple divide&conquer

2-d segment intersection
- O((n + K) log® n) time, O(log® n) space
[Chen,Chan,CCCG'03] by modifying Bentley-Ottmann

- O(n log®n + K) time, O(1) space [Vahrenhold, WADS'05] by
modifying Balaban

Known In-Place CG Alg'ms (Cont'd)

- 3-d convex hull

- O(n log® n) time, O(1) space
[Brénnimann,Chan,Chen,SoCG'04] by clever divide&conquer

» 2-d nearest neighbor search

- O(log® n) time, O(1) space [Brsnnimann,Chan,Chen,SoC6'04]
- O(log*7%%¢ n) time, O(1) space [Chan,Chen,SODA'08]

New Results

- 3-d convex hulls

- O(n log n) time (rand.), O(1) space

+ 2-d segment intersection
- O(n log n + K) time (rand.), O(1) space

OPTIMAL Il

3-d Convex Hulls: Preliminaries

* Dual problem: Given n planes H in 3-d, output the vertices
of the lower envelope (LE) of H

- Basic rand. divide&conquer approach:

- Take sample R of size r

- For each cell A of "canonical triangulation” of LE of R:
» Compute “conflict list" H, = all planes intersecting A
» Recursively compute LE of H, inside A

= O(r) subproblems
of size ~ O(n/r)
(by Clarkson,Shor)

An Intermediate Model:
"Permutation+Bits”

array of n elements extra array
of bits

+ Allow possibly large (O(n polylog n)) # of extra bits

* But each bit access costs O(1) time

* Note: pointers can be stored in the array of bits, but
each pointer op would cost O(log n)

- Ex: binary search in an arbitrary list now costs O(log® n)

Permutation+Bits Implies In-Place

* Reduction 1: S(n) bits of space = ~ S(n/log n) bits

Pf: Take sample of small size r ~ log n
Solve each subproblem one by one
Conflict lists computable in O(n log n) time

» Reduction 2: en bits of space = in-place

Pf: By "bit-encoding trick" (permuting pairs)

53 |7 2

9
VoV
0 1

8161
AV
1 O

CH Alg'ms in the Permutation+Bits Model

» Standard divide&conquer alg'm:

T(n) = 2T(n/2) + O(n) in standard model
T(n) = 2T(n/2) + O(nlog n) in permutation+bits model
= T(n) =| O(n log®n)

- New idea: can't reduce overhead O(n log n), but try to

divide into larger # of subproblems in O(n log n) time...

Our CH Alg'm in Permutation+Bits Model

+ Take sample of large size r

* For each plane h, can determine the conflict lists that h
participates in, by point location

= T(n) = O(r) T(n/r) + O(time for n pt location queries
in 2-d subdivision of size O(r))

» Standard point location methods:
O(log r) query time in standard model
O(log® r) query time in permutation+bits model
TOO MUCH I

Our Method for Point Location

Modify a known pt location method?

- Lipton,Tarjan's separator method

- Kirkpatrick's hierarchical method

- Preparata’s trapezoid method

- Edelsbrunner,Guibas,Stolfi's chain method
- Sarnak,Tarjan's persistent search trees

- Mulmuley's rand. incremental method

Our Method for Point Location

Modify a known pt location method?

- Lipton,Tarjan's separator method

- Kirkpatrick's hierarchical method

- Preparata’s trapezoid method < BINGO !l
- Edelsbrunner,Guibas,Stolfi's chain method

- Sarnak,Tarjan's persistent search trees

- Mulmuley's rand. incremental method

Our Method for Point Location

* Modify Preparata’s trapezoid method:

tree of
height O(log r)
size O(r log r)

Our Method for OFFLINE Point Location

* Modify Preparata’s trapezoid method:

tree of
height O(log r)
size O(r log r)

Our Method for OFFLINE Point Location

* Modify Preparata’s trapezoid method:

cost of partitioning

/ AN = O(nlogr)
pointer ops = O(r log r)
/ ~ N cost of pointer ops
= O(r log®r)

/N /\ /\ '/\(no‘re: similarity to quicksort)

Final Analysis
= T(n) = O(r) T(n/r) + O(nlogr +rlog°r)
* Choose r=n/logn

= T(n) = O(n/log n) T(logn) + O(nlog n)

= T(n) =|0O(n log n)

Remark:

A "New" CH Alg'm in Standard Model

+ Take sample of sizer = n

1-¢

= T(n) = cn' T(n®) + O(time for n pt location queries

in 2-d subdivision of size n'®)

= T(n) = cn’* T(n¥) + O(nlog n)

= T(n) = |O(nlog n)

by choosing €< 1/c

* Note: compare with other O(n log n) rand. 3-d CH alg'ms
(e.g. [Clarkson,Shor'88], ... [Amenta,Choi,Rote,S0C6'03])

Remark:

A "New" CH Alg'm in Standard Model

+ Take sample of size r = n

1-¢

= T(n) = cn' T(n®) + O(time for n pt location queries

in 2-d subdivision of size n'®)

= T(n) = cn’* T(n¥) + O(nlog n)

= T(n) = |O(nlog n)

by choosing €< 1/c

* Note: leads to new optimal rand. cache-oblivious alg'ms
for 3-d CH (simplifies [Kumar,Ramos'02]) & 2-d segment
intersection (extends [Arge,Molhave,Zeh ESA'08])

Some Open Problems

+ Optimal deterministic in-place alg'ms for 3-d CH or 2-d
segment intersection?

» In-place and cache-oblivious?
* In-place 2-d EMST?
* In-place nearest neighbor search in O(log n) time?

+ General point location in o(log® n) time in
permutation+bits model??

