Optimal In-Place Algorithms for 3-d Convex Hulls & 2-d Segment Intersection

Timothy Chan Eric Chen
School of CS
U of Waterloo

History Recap: 3-d Convex Hull Alg'ms

· O(n log n) time, O(n) space

```
[Preparata, Hong'77] by divide&conquer [Clarkson, Shor'88] by rand. incremental [Fortune'86] by sweep (for 2-d Voronoi diagrams)
```

History Recap: 2-d Line Segment Intersection Alg'ms

- $O((n + K) \log n)$ time, O(n + K) (or O(n)) space [Bentley,Ottmann'79] (+ [Brown'81]) by sweep
- O(n log n + K) time, O(n + K) space
 [Chazelle, Edels brunner'88] by a "complicated" sweep

Sublinear space ??

CONSTANT space!!

In-Place Alg'ms

Example: heapsort

The model

array of n elements (RAM, read/write)

(+ write-only output stream)

Known In-Place Results/Techniques

- In-place merging
 - O(n) time, O(1) space ['80s]
- In-place stable partitioning
 - O(n) time, O(1) space ['80s]
- In-place sorting with O(n) moves
 - O(n log n) time, O(1) space [Franceschini, Geffert'03]

Known In-Place Results/Techniques

- In-place/"implicit" data structures for searching
 - O(log² n) query/update time/space [Munro'84]
 - O(log² n/loglog n) " "[Franceschini, Grossi, Munro, Pagli'02]
 - O(log n loglog n) " "[Franceschini, Grossi'03]
 - O(log n) " ", O(1) space [Franceschini, Grossi'03]

- · Recent renaissance
 - In-place radix-sort ['07], in-place suffix sorting ['09], ...

Known In-Place CG Alg'ms

- 2-d convex hull
 - O(n log h) time, O(1) space [Brönnimann, Iacono, Katajainen, Morrison, Toussaint'02]
 - Simple polygonal chains: O(n) time, O(1) space [Brönnimann, Chan'04]
- · 2-d maxima layers
 - O(n log n) time, O(1) space [Blünck, Vahrenhold'06]
- · 2-d red/blue closest pair
 - O(n log n) time, O(1) space [Bose, Maheshwari, Morin, Morrison, Smid, Vahrenhold'04] by simple divide&conquer

Known In-Place CG Alg'ms (Cont'd)

- · 2-d orthogonal segment intersection
 - O(n log n + K) time, O(1) space
 [Bose, Maheshwari, Morin, Morrison, Smid, Vahrenhold'04] by simple divide&conquer
- 2-d segment intersection
 - O((n + K) log² n) time, O(log² n) space [Chen,Chan,CCCG'03] by modifying Bentley-Ottmann
 - $O(n log^2 n + K)$ time, O(1) space [Vahrenhold, WADS'05] by modifying Balaban

Known In-Place CG Alg'ms (Cont'd)

- 3-d convex hull
 - O(n log³ n) time, O(1) space [Brönnimann, Chan, Chen, SoCG'04] by clever divide&conquer
- · 2-d nearest neighbor search
 - $O(\log^2 n)$ time, O(1) space [Brönnimann, Chan, Chen, SoCG'04]
 - $O(\log^{1.7096} n)$ time, O(1) space [Chan, Chen, SODA'08]

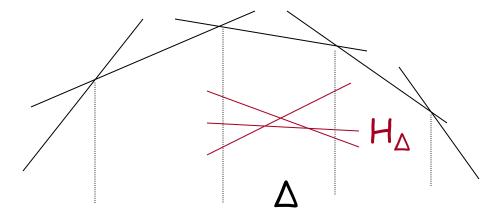
New Results

- 3-d convex hulls
 - O(n log n) time (rand.), O(1) space
- 2-d segment intersection
 - $O(n \log n + K)$ time (rand.), O(1) space

OPTIMAL!

3-d Convex Hulls: Preliminaries

- Dual problem: Given n planes H in 3-d, output the vertices of the lower envelope (LE) of H
- · Basic rand. divide&conquer approach:
 - Take sample R of size r
 - For each cell Δ of "canonical triangulation" of LE of R:
 - Compute "conflict list" H_{Δ} = all planes intersecting Δ
 - Recursively compute LE of H_{Δ} inside Δ



⇒ O(r) subproblems of size ~ O(n/r) (by Clarkson, Shor)

An Intermediate Model: "Permutation+Bits"

array of n elements

extra array of bits

- Allow possibly large (O(n polylog n)) # of extra bits
- But each bit access costs O(1) time
- Note: pointers can be stored in the array of bits, but each pointer op would cost O(log n)
- Ex: binary search in an arbitrary list now costs $O(\log^2 n)$

Permutation+Bits Implies In-Place

• Reduction 1: S(n) bits of space \Rightarrow ~ $S(n/\log n)$ bits

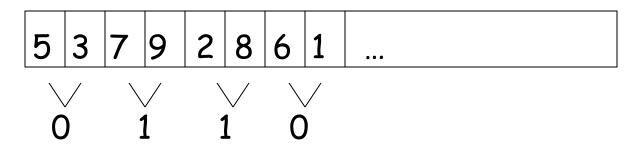
Pf: Take sample of small size r ~ log n

Solve each subproblem one by one

Conflict lists computable in O(n log n) time

• Reduction 2: ϵ n bits of space \Rightarrow in-place

Pf: By "bit-encoding trick" (permuting pairs)



CH Alg'ms in the Permutation+Bits Model

Standard divide&conquer alg'm:

```
T(n) = 2T(n/2) + O(n) in standard model

T(n) = 2T(n/2) + O(n \log n) in permutation+bits model

\Rightarrow T(n) = O(n \log^2 n)
```

 New idea: can't reduce overhead O(n log n), but try to divide into larger # of subproblems in O(n log n) time...

Our CH Alg'm in Permutation+Bits Model

- Take sample of large size r
- For each plane h, can determine the conflict lists that h participates in, by point location
- \Rightarrow T(n) = O(r) T(n/r) + O(time for n pt location queries in 2-d subdivision of size O(r))
- Standard point location methods:
 - O(log r) query time in standard model
 O(log² r) query time in permutation+bits model
 TOO MUCH!!

Our Method for Point Location

- Modify a known pt location method?
 - Lipton, Tarjan's separator method
 - Kirkpatrick's hierarchical method
 - Preparata's trapezoid method
 - Edelsbrunner, Guibas, Stolfi's chain method
 - Sarnak, Tarjan's persistent search trees
 - Mulmuley's rand. incremental method

- ...

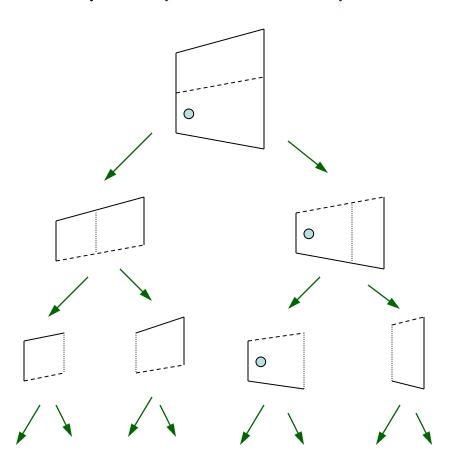
Our Method for Point Location

- Modify a known pt location method?
 - Lipton, Tarjan's separator method
 - Kirkpatrick's hierarchical method
 - Preparata's trapezoid method ← BINGO!!
 - Edelsbrunner, Guibas, Stolfi's chain method
 - Sarnak, Tarjan's persistent search trees
 - Mulmuley's rand. incremental method

- ...

Our Method for Point Location

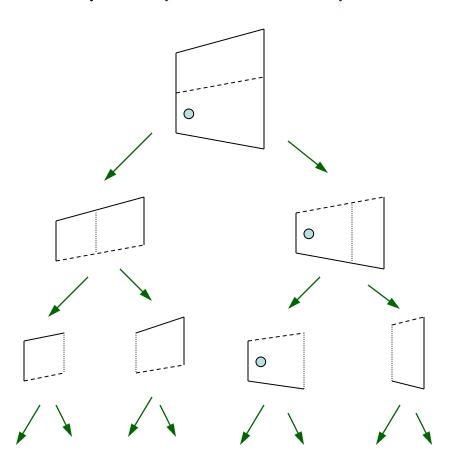
Modify Preparata's trapezoid method:



tree of height O(log r) size O(r log r)

Our Method for OFFLINE Point Location

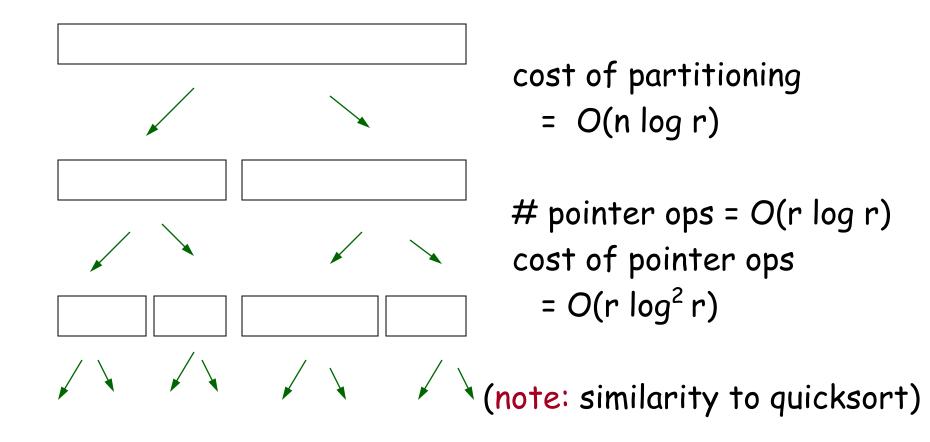
Modify Preparata's trapezoid method:



tree of height O(log r) size O(r log r)

Our Method for OFFLINE Point Location

Modify Preparata's trapezoid method:



Final Analysis

$$\Rightarrow T(n) = O(r) T(n/r) + O(n \log r + r \log^2 r)$$

• Choose $r = n/\log n$

$$\Rightarrow$$
 T(n) = O(n/log n) T(log n) + O(n log n)

$$\Rightarrow$$
 T(n) = $O(n \log n)$

Remark: A "New" CH Alg'm in Standard Model

- Take sample of size $r = n^{1-\epsilon}$
- \Rightarrow T(n) = cn^{1-\varepsilon} T(n^{\varepsilon}) + O(time for n pt location queries in 2-d subdivision of size n^{1-\varepsilon})
- $\Rightarrow T(n) = cn^{1-\epsilon} T(n^{\epsilon}) + O(n \log n)$
- \Rightarrow T(n) = O(n log n) by choosing $\varepsilon < 1/c$
- Note: compare with other O(n log n) rand. 3-d CH alg'ms (e.g. [Clarkson, Shor'88], ... [Amenta, Choi, Rote, SoCG'03])

Remark: A "New" CH Alg'm in Standard Model

- Take sample of size $r = n^{1-\epsilon}$
- \Rightarrow T(n) = cn^{1-\varepsilon} T(n^{\varepsilon}) + O(time for n pt location queries in 2-d subdivision of size n^{1-\varepsilon})
- $\Rightarrow T(n) = cn^{1-\epsilon} T(n^{\epsilon}) + O(n \log n)$
- \Rightarrow T(n) = O(n log n) by choosing $\varepsilon < 1/c$
- Note: leads to new optimal rand. cache-oblivious alg'ms for 3-d CH (simplifies [Kumar,Ramos'02]) & 2-d segment intersection (extends [Arge,Molhave,Zeh,ESA'08])

Some Open Problems

- Optimal deterministic in-place alg'ms for 3-d CH or 2-d segment intersection?
- In-place and cache-oblivious?
- In-place 2-d EMST?
- In-place nearest neighbor search in O(log n) time?
- General point location in o(log² n) time in permutation+bits model??