Instance-Optimal
Geometric Algorithms

Timothy Chan
School of CS
U. Waterloo

joint work with

Peyman Afshani (MADALGO, Aarhus V)
Jérémy Barbay (U. Chile)

Theme

» Beyond worst-case analysis
+ "Adaptive” algorithms

[a theory w. connections to output-sensitive alg'ms,
average-case alg'ms, decision-tree lower bds,
partition frees, adversary arguments, entropy,
distribution-sensitive data structures...]

Example: 2D Convex Hull

Example: 2D Convex Hull

- Background:

- O(n log n) time alg'ms
* Graham's scan'72
» Divide&conquer [Preparata,Hong'77]
» Randomized incremental [Clarkson,Shor'88]

- ()(n log n) lower bd [Ben-Or'83]

2D Convex Hull (Cont'd)

+ "Output-Sensitive" Alg'ms

- O(nh) time
- Jarvis' march'73

- O(nlog h) time
- Kirkpatrick,Seidel'86 ["ultimate.. ?"]
» Clarkson,Shor'88 [random sampling]
» Chan,Snoeyink,Yap'95 [prune, divide&conquer]
* Chan'95 [grouping+Jarvis]

-)(nlog h) lower bd

2D Convex Hull (Cont'd)

* "Average-Case" Alg'ms

- O(n) expected time for
» uniformly distributed pts inside square/disk/...
. nor'mally distributed pTs [Bentley,Shamos78]

2D Convex Hull (Cont'd)

Easy vs. Hard Point Sets

New Result for 2D Convex Hull

* An adaptive alg'm that is optimal
in terms of every parameter imaginable !

New Result for 2D Convex Hull

* An adaptive alg'm that is optimal
for every point set |l

New Result for 2D Convex Hull

* An adaptive alg'm that is optimal
for every instance |

Def'n of "Instance Optimality”
(First Attempt)

+ Let T4(S) = runtime of alg'm A on input sequence S

* Let OPT(S) = min T,(S) over all algms A

*+ Ais instance-optimal if T,(S) < O(1) - OPT(S) VS

Def'n of "Instance Optimality”
(First Attempt)

+ Let T4(S) = runtime of alg'm A on input sequence S

* Let OPT(S) = min T,(S) over all algms A

*+ Ais instance-optimal if T,(S) < O(1) - OPT(S) VS

.. but not possible for 2D convex hull Il
[for every input sequence S, there is an alg'm with runtime O(n) on S]

Our Def'n of "Instance Optimality”

+ Let T,(S) = max runtime of algm A over all
permutations of input set S

* Let OPT(S) = min T,(S) over all algms A

A s instance-optimal in the order-oblivious setting if
T,(S) < O(1)- OPT(S) vS

Our Def'n of "Instance Optimality”

+ Let T,(S) = max runtime of algm A over all
permutations of input set S

* Let OPT(S) = min T,(S) over all algms A

A s instance-optimal in the order-oblivious setting if
T,(S) < O(1)- OPT(S) vS

[subsumes output-sensitive alg'ms, & any alg'm that does not exploit
input order, etc.]

Our Def'n of "Instance Optimality”
(Slightly Stronger Version)

+ Let t4(S) = average runtime of alg'm A over all
permutations of input set S

+ Let opt(S) = min t,(S) over all algms A

+ A is instance-optimal in the random-order setting if
TA(S) ¢ O1) - opt(S) VS

Our Def'n of "Instance Optimality”
(Slightly Stronger Version)

+ Let t4(S) = average runtime of alg'm A over all
permutations of input set S

+ Let opt(S) = min t,(S) over all algms A

+ A is instance-optimal in the random-order setting if
TA(S) ¢ O1) - opt(S) VS

[subsumes average-case alg'ms for any distribution, & randomized
incremental alg'ms, etfc.]

Related Work on Instance Optimality

Fagin,Lotem,Naor'0O3 [in database]

Competitive binary search trees [Sleator,Tarjan'85's
“dynamic optimality conjecture”]

Competitive analysis of on-line alg'ms

Various adaptive alg'ms, e.g.,
[Demaine Lopez-Ortiz,Munro'00: set union/intersection;
Baran,Demaine’04: approx problems about "black-box" curves; etc.]

New Result for 2D Convex Hull

* An alg'm that is instance-optimal in the
order-oblivious (& random-order) setting

Outline

1. What is OPT(S)?
2. Upper Bound
3. Lower Bound

4. Applications to Other Problems

1. What is OPT(S)?

A Measure of Difficulty

* Given point set S of size n
+ Consider a partition P of S into subsets S; s.t.

each subset can be enclosed in a triangle inside (*)
convex hull(S)

+ Let H(P) := X IS log (n/|Si])

A Measure of Difficulty

* Given point set S of size n
+ Consider a partition P of S into subsets S; s.t.

each subset can be enclosed in a triangle inside (*)
convex hull(S)

+ Let H(P) := X IS log (n/|Si])

A Measure of Difficulty

* Given point set S of size n
+ Consider a partition P of S into subsets S; s.t.

each subset can be enclosed in a triangle inside (*)
convex hull(S)

+ Let H(P) := X IS log (n/|Si])

A Measure of Difficulty

* Given point set S of size n
+ Consider a partition P of S into subsets S; s.t.

each subset can be enclosed in a triangle inside (*)
convex hull(S)

+ Let H(P) := X IS log (n/|Si])

* Define the difficulty of S fo be

H(S) := min H(P) over all valid partitions P
satisfying (*)

Connections

» Multiset sorting requires time O(Z; n. log (n/n.)) for
multiplicities n,

- Biased search trees require average query time
O(Z; p; log (1/p;)) (the entropy) for probabilities p,

+ H(P) = Z; |Si| log (n/|S;]) corresponds to the “entropy”
of the partition P [after dividing by n]

- Sen,Gupta'99...

2. Upper Bound

UpperHull(S):)
1.

o0k W

Kirkpatrick,Seidel's Algm

if |S| <2 return ... o O

X, = median x in S
find hull edge pq ("bridge") at x = x,, [by 2D LP]
prune all pts below pq

UpperHull({all pts left of x = x,,})
UpperHull({all pts right of x = x,})

Kirkpatrick,Seidel's Alg'm (Slightly Modified)

UpperHull(S): A K

0.
1.

o0k wh

© @)

if |S| <2 return ... R

a O ..

(@ YT —————

prune all pts below ab, where o
a = leftmost pt, b = rightmost pt
X, = median x in S

find hull edge pq ("bridge") at x = x,, [by 2D LP]
prune all pts below pq

UpperHull({all pts left of x = x,.})
UpperHull({all pts right of x = x,.})

Analysis

At level k of recursion:

Analysis

- At level k of recursion:

* Let P be any valid partition

+ Let S; be any subset of P, enclosed in triangle A,

— # ptsin S, that survive level k < min{ |S,|, 3n/2%}

= total # pts that survive level k < O(Z; min {|S;|, n/2%})

Analysis (Cont'd)

* Runtime
O(Z, 2, min{|S], n/2¥})

B A

log (n/]S,;]) times

O(Z; 2 min{ 1S, n/Zk})
O(S, (15| +..+ S| +1S,|/2+|S|/4 + ..

= O(Z; IS log (n/|S]])) = O(H(P))

= Runtime < O(min, H(P)) =

O(H(S))

))

3. Lower Bound

Traditional £2(n log n) Pfs (via Topology)

Van Emde Boas'80: linear decision trees
[but convex hull not solvable in this model 1]

* Yao'82: quadratic decision tree

Steeles,Yao'82: const-deg algebraic decision trees
[but not quite successful for convex hull...]

Ben-Or'83: const-deg algebraic decision trees
& algebraic computation trees

.. but none of these gives instance-specific lower bds |

A Different, Simple {)(n log n) Pf
(No Topology Required !)

- Toy Problem: given n pts x;,..., X, in R!, are they distinct?
- Pf by adversary argument

- Simulate alg'm on unknown input
* Maintain an interval I, for each x; (initially I; = [0,1])

Simple €2(n log n) Pf (Cont'd)

* When alg'm compares x; ? x; :
- if midpoint(I) < midpoint(I;) then
set I. < left half of I,
I; < right half of I; & declare "<
- else similar

- Let depth(x;) := log (1/length(I)))
+ After T comparisons, total depth < O(T)

+ At the end, can't have 2 pts whose intervals
coincide/overlap [otherwise, answer could change]

= can't have > n/2 pts with depth < log(n/2)
= T 2 ()(total depth) > 2(nlog n) Q.E.D.

Simple £)(n log n) Pf (Generalized Version)

* When alg'm tests f(x;, x;) ? O for const-deg alg. fn f:

1’ J
- take r grid subintervals I, of I.

r grid subintervals I of T, —_—
, - Do
- among the r° grid cells I x I, = I,
f = O intersects O(r) cells < \/%ﬂ
— for suff. large const r, I

can set I. < one of I
I, <—one of I; s.t.sign(f) is determined

Simple £)(n log n) Pf (Generalized Version)

When alg'm tests f(x;, x;) ? O for const-deg alg. fn f:
- take r grid subintervals I, of I,

r grid subintervals I of T, —_—
2 . ' [\J (\\/
- among the r° grid cells I x I, - I
f = O intersects O(r) cells < \/X%D
= for suff. large const r, I

can set I. < one of I i
I, <—one of I; s.t.sign(f) is determined

Note: extends to decision trees w. const-deg algebraic

test fns w. any const # of args [Moran,Snir,Manber'85 had
diff. pf for arbitrary test fns w. const # of args, via Ramsey
theory, but it's not instance-specific...]

An Instance-Specific Lower Bd Pf for
Convex Hull

- Note: holds for decision trees w. multilinear test fns w.

const # of args

© Ext f((X1.¥1).(X2.Y2)) = X1y, + X,y is multilinear

f((xl'Y1):(X2,Y2)) - lel + XZYZ |S I‘\OT
the determinant is...

Instance-Specific Lower Bd Pf (Cont'd)

* Partition Thm: [Willard'82,.. Matousek'91]

Any point set S can be partitioned info ~ r subsets S, of
size n/r, each enclosed in (disjoint) cell A, of size O(l)
s.t. each line crosses O(r*®) cells

Instance-Specific Lower Bd Pf (Cont'd)

Recurse = partition free
where each cell at depth k contains n/rk pts
i.e., depth of cell = log, (n/(# pts))

Make cell A a leaf if A is inside convex hull(S)
Let P** be the partition formed by the leaves

Pf by adversary argument again
Maintain a cell A, for each pt p in S (initially, A, = root)

Instance-Specific Lower Bd Pf (Cont'd)

* When alg'm tests f(p,q) ? O:
- take the ~ r subcells Ap' of Ap
~ r subcells Aq' of Aq

- among the ~ r? cells A’ x A, f = O intersects O(r®*)
cells [since f is multilinear & line crossing # is O(r'®)]

= can set A, <— one of A,
A, < one of A/ s.t.sign(f) is determined

* When A, = aleaf, fix p To an unassigned pt in S N A,
* Minor note: don't let > |S n A'| pts go under a child A' ...
— At the end, get a permutation of S

Instance-Specific Lower Bd Pf (Cont'd)

+ Let depth(p) := depth of A, in partition tree
+ After T comparisons, total depth < O(T)

+ At the end, each Ap must be a leaf [otherwise convex hull
could change]

= T > ()(total depth)
> (U Ziear o 1S N Al depth(A))
> QU Yot p 1SN Al log (n/|S m Al))
= QHP*™)) 2 QH(S)) Q.E.D.

4. Other Applications

3D Convex Hull

* Lower bd pf: same

* Upper bd: a new alg'm, using partition trees combined
w. grouping [Chan'95] ...

2D/3D Maxima

» Similar, except simpler: partition frees can be replaced

by k-d trees

2D/3D Red-Blue Dominance

easy instance

+ Consider a partition P of S into red/blue subsets S; s.t.

each red subset can be enclosed in a box where every
pt in the box is dominated by exactly the same set of
blue pts in S, & vice versa

* H(S) = min H(P) over all such partitions P

2D Orthogonal Segment Intersection

easy instance

» Lift each horizontal/vertical segment s into a red/blue

point s* in 3D...

2D Offline Point Location

+ Consider a partition P of S into subsets S, s.t.

each subset can be enclosed in a triangle completely
inside one region

* H(S) := min H(P) over all such partitions P

2D Point Location Queries

— Get a data structure with average query time O(H(S)/n),
i.e., O(entropy)

Note: re-proves known "distribution-sensitive" data
structures [Arya,Malamatos,Mount'O0; Iacono'0l; etc.]

Note: gets new distribution-sensitive data structures
for many other query problems, e.g., 2D orthogonal range
counting [answers open problem by Dujmovic,Howat,Morin'09], ...

Conclusions

Specific open problems:

- Nonorthogonal red-blue segment intersection
- Diameter/width of a 2D point set

- Beyond multilinear decision trees

Other instance-optimal/adaptive models? [order-dependent?]

* Problems w. worst-case complexity worse than n log n??
[e.g., of fline simplex range search]

