Three Problems about Dynamic Convex Hulls

Timothy Chan
School of CS
U of Waterloo

I. Dynamic 2D Convex Hulls

Maintain point set in 2D under insertions & deletions s.t. we can answer queries about the convex hull (CH)

History

- Overmars, van Leeuwen '80 ("Hull Tree")
 O(log² n) update time, O(log n) query time
- C. [FOCS'99] $O(\log^{1+\epsilon} n)$ update (amort.), $O(\log n)$ query
- Brodal, Jacob [SWAT'00]
 O(log n loglog n) update (amort.), O(log n) query
- Brodal, Jacob [FOC5'02]
 O(log n) update, O(log n) query
 [current full page > 100 pages!]

Problem Solved... NOT!

- · C. & Brodal, Jacob apply to "Type-A" Queries:
 - decide whether CH intersects a query line
 - extreme pt along a query direction
 - neighbor of a query vertex
 - tangent to a query pt
- But not "Type-B" Queries:
 - decide whether CH contains a query pt
 - intersect CH with a query line
 - outer/separating tangents between 2 disjoint CHs

What's Known for Type-B Queries

- C. [FOC5'99] $O(\log^{3/2} n) \text{ update (amort.), } O(\log^{3/2} n) \text{ query}$
- · Open: better??
- · New Result

```
O(\log^{1+\epsilon} n) update (amort.), O(\log^{1+\epsilon} n) query (rand.)
```

```
[or O( log n \cdot 2^{O(loglog n logloglog n)^{1/2}}) update, query!]
```

Technique

- Work in dual \Rightarrow LP queries
- Based on C. [FOCS'99]:

Logarithmic Method + Delete-Only DS

- + Interval Tree
- + Bootstrapping

NEW: + Randomized LP-type Alg'm

(where "basis evaluation" oracle is implemented by bootstrapping)

II. Dynamic 2D Halfplane Range Reporting

 Maintain point set S in 2D under insertions & deletions s.t. we can report all k pts inside a query halfplane

[generalizes dynamic CH (k=0)...]

What's Known

- · Overmars, van Leeuwen
 - \Rightarrow O(log² n) update, O(log n + k log² n) query by k repeated deletions or O(log n + k log n) query by direct recursion
- · Brodal, Jacob
 - \Rightarrow O(log n) update, O(log n + k log n) query
- Static case: Chazelle, Guibas, Lee '85
 O(n) space, O(log n + k) query
- Agarwal, Matoušek '92:
 O(n^ε) update, O(log n + k) query

Open: O(polylog) update, O(polylog n + k) query??

· New Result

 $O(\log^{6+\epsilon} n)$ update (amort., rand.), $O(\log n + k)$ query

Technique

- Based on C. [SODA'06] on dynamic 3D convex hull: Logarithmic Method
 - + Deletion by Re-insertion
 - + Hierarchy of Shallow Cuttings

```
NEW: + Auxiliary DSs for Conflict Lists (+ bootstrap twice)
```

Applications

· Dynamic 3D halfspace range reporting:

```
O(\log^{6+\epsilon} n) update (amort., rand.), O(\log^2 n/\log\log n + k) query
```

Dynamic 3D dominance range reporting:

$$O(\log^{6+\epsilon} n)$$
 update (amort., rand.), $O(\log n + k)$ query

· Dynamic 3D orthogonal range reporting:

```
O(\log^{9+\epsilon} n) update (amort., rand.), O(\log n + k) query
```

III. (Semi-)Dynamic 2D Lower Envelopes of Line Segments

 Maintain set S of line segments in 2D under insertions & deletions s.t.

we can answer queries about the lower envelope (LE)

[generalizes dynamic CH \Leftrightarrow LE of lines]

What's Known

Decomposable search problem!

- O(polylog) update, query is straightforward for "Type-A" queries:
 - decide whether a query pt is below LE
 - intersect LE with vertical line
 - decide whether a query line segment is completely below LE (or partially above LE)
 - ray shooting from a pt below LE
- But not "Type-B" queries:
 - decide whether a query line segment is completely above LE (or partially below LE)
 - ray shooting from a pt above LE

What's Known for Type-B Queries

- $O*(n^{1/2})$ update, query for insert-only by a method of C. [SODA'02]
- O*(n^{1/2}) update, query for fully dynamic by dividing into n^{1/2} slabs [noted by Agarwal]
- Open: better?? (say, for insert-only)
- · New Result:

```
O(n<sup>ε</sup>) update (amort.), O(log n) query
for insert-only (or "semi-online")
```

[or $O(2^{O(\log n)^{1/2}})$ update, query]

Technique

Maintain upper hull of lower envelope

- Overmars, van Leeuwen's Hull Tree
 - + An Unusual Variant of Segment Tree

An Application

 Given triangulated terrain in 3D & a viewpt, can find all faces that are partially visible (or completely hidden) in

$$O(n^{1+\varepsilon})$$
 time

Open Problems

- Dynamic CH:
 Type-B queries with O(log n) update, query??
- Dynamic halfplane range reporting:
 O(log n + k) query with better than O(log⁶ n) update??
- Dynamic LE of line segments:
 O(polylog) update, query for insert-only??
 fully dynamic??