
A Simpler Linear-Time Algorithm for
Intersecting Two Convex Polyhedra

in Three Dimensions

Timothy Chan
(U. of Waterloo)

The Problem

Given 2 convex polyhedra in 3D,
compute their intersection

(apologies for pictures in 2D!)

Equiv. Dual Problem

Given 2 convex polyhedra in 3D,
compute their convex hull

Previous Alg’ms: Special Cases

• Shamos&Hoey’75: O(n) time for merging vertical
separated 2D Delaunay triangulations

• Preparata&Hong’77: O(n) time for merging vertically
separated 3D convex hulls

• Kirkpatrick’79: O(n) time for merging arbitrary 2D
Delaunay triangulations

Previous Alg’ms: General Case

• Chazelle’89: O(n) time for arbitrary 3D convex
polyhedra. . .

but it’s complicated (25-page paper!)

As Chazelle put it. . .
(http://www.cs.princeton.edu/˜chazelle/linernotes.html)

“There is a genre of geometric problems whose solutions are
conceptually trivial yet fiendishly tricky to implement. . . Oddly
enough, intersecting two n-vertex convex polyhedra is not. In fact, I
know few geometric problems whose exploration offers such
breathtaking vistas. Picture stitching together the two polyhedra’s
boundaries as the act of hiking in a valley surrounded by tall
mountains. The valley, as it happens, consists of disjoint parts that
can be reached only by climbing the neighboring peaks. Bad idea!
Ah, but from a dual perspective, you see, the structure of the
mountain peaks very much resembles that of the valley. So say hello
to primal–dual trekking. Soon, though, we need tunnels across the
mountains to use as shortcuts, a job we subcontract to the
Dobkin–Kirkpatrick hierarchy. Alas, we can’t dig too deeply into the
mountains lest we get hit with an extra log factor, so the hiking
metaphor stops there. . . ”

Chazelle’s Approach

• Navigate in the Dobkin–Kirkpatrick hierarchies of the
given convex polyhedra. . . in both primal & dual space

“. . . Salvation comes in the shape of a ‘cloning’ recursion. What’s
that? In the world of algorithms, it is useful to distinguish among three
types of recursion: binary search gives your the nonbranching kind;
quicksort gives you the no-clone branching sort (no data replication);
linear selection (median finding) gives you the cloning branching
variety (with data replication). This last flavor is the tastiest of them all
because it features two competing exponential growths (as in
fractional cascading). Confession time: I’ve always had a weakness
for linear selection and its sky-high coolness-to-simplicity ratio. I’ll
admit that RSA and FFT have enviable ratios, too, but both owe their
sparkle to algebra whereas median finding is pure algorithmic sizzle.
Just as Hume is said to have interrupted Kant’s ‘dogmatic slumber,’ so
linear selection interrupted the sorting snoozefest I once endured in
Algorithms 101.”

Chazelle’s Approach (Cont’d)

• Recurrence:

T (n) = 4T (δn) +O(n) ⇒ T (n) = O(n)

[Martin’91 (Master’s thesis): “improves” this to
T (n) = 2T (δn) +O(n) ⇒ T (n) = O(n)]

New Alg’m

• Much simpler (6-page paper!)

• More “mundane” recurrence:

T (n) = T (δn) +O(n) ⇒ T (n) = O(n)

• Also use Dobkin–Kirkpatrick hierarchies but stays in
primal space

• Borrow more “modern” ideas from randomized
geometric alg’ms (canonical triangulations, conflict
lists, . . .)

Setup

• Work with lower envelope P(A) of n (nonredundant)
planes A

• Problem: given P(A) and P(B), compute
P = P(A) ∩ P(B)

Idea 0: Dobkin–Kirkpatrick

• Find independent set I of faces of P(A)

with |I| ≥ n/24, face size ≤ 11

• Set A′ = A \ I (B′ similar)

• Recursively compute P ′ = P(A′) ∩ P(B′)

Idea 1: Conflict Lists

• Consider canonical triangulation T (P ′)

• For each cell ∆ of T (P ′):
– generate conflict list
A∆ = { all planes of A intersecting ∆ } (B∆ similar)

– compute P(A∆) ∩ P(B∆) inside ∆ in O(1) time

• Glue results to get P = P(A) ∩ P(B) & done!

P ′
A∆

• But how to generate conflict lists?

• Suffices to generate the vertex-conflict lists
Av = { all planes of A below v }
for the 3 vertices v of ∆. . .

P ′

v

Av

Idea 2: Using Witnesses

• For each vertex v of P ′:
– v is below P(A′) ⇒ ∃ vertices w1, w2, w3 of
P(A′) s.t. v is below4w1w2w3

– Assume we are given these “witnesses” w1, w2, w3

– Can generate the vertex-conflict list Av from
Aw1, Aw2, Aw3, which are trivial, in O(1) time

P ′ = P(A′) ∩ P(B′)
Av

v P(A′)w1

w2

Aw1
Aw2

• But how to find witnesses?

• Suffice to describe how to get new witnesses for P
from old witnesses for P ′. . .

Idea 3: Finding New Witnesses

• For each vertex v of P :
– say v is in cell ∆ of T (P ′)
– search for new witnesses for v “locally” among the

following candidate vertices:

∗ old witnesses for the 3 vertices of ∆ (# ≤ 9)

∗ vertices of P(A) on { planes of I that are below
old witnesses of the 3 vertices of ∆ } (# ≤ 9× 11)

in O(1) time [see paper for correctness proof. . .]

• Really done!

Finale

• Recurrence:

T (n) = T (23
24n) +O(n) ⇒ T (n) = O(n)

• Moral of the story: old “solved” problems may still be
worth a second look. . .

• An open problem: merge 2D additively weighted
Voronoi diagrams in O(n) time?

