All-Pairs Shortest Paths and Fine-Grained Complexity

Timothy Chan

(joint work with Virginia Vassilevska Williams (MIT) & Yinzhan Xu (MIT))

(CALDAM'22)

APSP

• Given weighted dense graph G=(V,E) with n vertices, for every pair $u,v\in V$, compute D[u,v]= shortest path distance from u to v

APSP: Background

 $O(n^3)$ Floyd-Warshall'62 $O^*(n^3/\log^{1/3} n)$ Fredman'75 $O^*(n^3/\sqrt{\log n})$ Takaoka'92, Dobosiewicz'90 $O^*(n^3/\log^{5/7} n)$ Han'04 $O^*(n^3/\log n)$ Takaoka'04, Zwick'04, C.'05 $O^*(n^3/\log^{5/4} n)$ Han'06 $O^*(n^3/\log^2 n)$ C.'07 $O^*(n^3/\log^3 n)$ C.'17 $O(n^3/c^{\sqrt{\log n}})$ rand. Williams'14 $O(n^3/c^{\sqrt{\log n}})$ det. C.-Williams'15

• APSP Hypothesis: no $O(n^{3-\varepsilon})$ alg'm (even for integer weights)

Hardness from APSP

lots of dynamic problems $\ll m^{\delta}$

AE-Sparse-Triangle $\ll m^{4/3}$

Tree-Edit-Distance $\ll n^3$

 $APSP \ll n^{3}$ $\longleftrightarrow (\min,+)\text{-Product} \ll n^{3}$ $\longleftrightarrow Negative\text{-Triangle} \ll n^{3}$ $\longleftrightarrow Shortest\text{-Cycle} \ll n^{3}$ $\longleftrightarrow Radius \ll n^{3}$ \vdots

[VW'11, AGV'15]

(note: assumes integer input)

This Talk

• hardness from APSP for unweighted graphs (or small $\widetilde{O}(1)$ integer weights) [C.–Vassilevska W.–Xu, ICALP'21]

hardness from APSP for real-weighted graphs
 [C.–Vassilevska W.–Xu, STOC'22, to appear]

unwt-APSP: Background

unweighted undirected:

$$\widetilde{O}(n^{\omega}) \leq O(n^{2.373})$$
 Alon-Galil-Margalit'91, Seidel'92

unweighted directed:

$$\widetilde{O}(n^{(\omega+3)/2}) \leq O(n^{2.687})$$
 Alon–Galil–Margalit'91 $\widetilde{O}(n^{2+\rho}) \leq O(n^{2.529})$ Zwick'98 (where ρ satisfies $\omega(1,\rho,1)=1+2\rho$)

• unwt-dir-APSP Hypothesis: no $O(n^{2.5-\varepsilon})$ alg'm

Prelims on Matrix Multiplication

- given $n_1 \times n_2$ matrix A and $n_2 \times n_3$ matrix B with integer entries in $[\ell] := \{0, \dots, \ell\}$
- let $M(n_1, n_2, n_3)$ be time to compute standard product

$$(AB)[i,j] = \sum_{k} A[i,k]B[k,j]$$

Current bds:

$$M(n,n,n) = O(n^{2.373})$$
 Stothers'10, Vassilevska W.'12 $M(n,n^{0.313},n) = O(n^{2+o(1)})$ Le Gall-Urrutia'17 $M(n,n^{0.529},n) = O(n^{2.058})$ Le Gall-Urrutia'17

Prelims on Matrix Multiplication

- given $n_1 \times n_2$ matrix A and $n_2 \times n_3$ matrix B with integer entries in $[\ell] := \{0, \dots, \ell\}$
- let $M(n_1, n_2, n_3)$ be time to compute standard product

$$(AB)[i,j] = \sum_{k} A[i,k]B[k,j]$$

• let $M^*(n_1, n_2, n_3 \mid \ell)$ be time to compute (min,+) product

$$(A*B)[i,j] = \min_{k} (A[i,k] + B[k,j])$$

- Trivial: $M^*(n_1, n_2, n_3 \mid \ell) = O(n_1 n_2 n_3)$
- Fact: $M^*(n_1, n_2, n_3 \mid \ell) = \widetilde{O}(\ell \cdot M(n_1, n_2, n_3))$
- Proof: can compute (max,+) product from standard product of $A'[i,k] = U^{A[i,k]} \& B'[k,j] = U^{B[k,j]}$ (large $\tilde{O}(\ell)$ -bit integers)

Why (min,+) Product is Useful to APSP

- Suppose we have computed all shortest paths of length $\leq \ell/2$
- To compute all shortest paths of length $\leq \ell$:

$$u \leq \ell/2 \qquad x \leq \ell/2 \qquad v$$

$$D_{\leq \ell}[u, v] = \min_{x \in V} \left(D_{\leq \ell/2}[u, x] + D_{\leq \ell/2}[x, v] \right)$$

$$\Rightarrow$$
 time $O(M^*(n, n, n \mid \ell))$

try all ℓ's that are powers of 2...
 but doesn't work well as ℓ gets large!

Hitting Set

- Observation: \exists subset $H_{\ell} \subset V$ that hits all shortest paths of length $\geq \ell$, with $|H_{\ell}| = \widetilde{O}(n/\ell)$
- Proof: just take random $H_{\ell} \subset V$, with sampling prob. p \Rightarrow for any fixed $u, v \in V$ with shortest path $\pi[u, v]$ of length $\geq \ell$,

$$\Pr[H_\ell \text{ not hit } \pi[u,v]] \leq (1-p)^\ell$$
 $\leq e^{-p\ell}$ $\leq 1/n^c$ by setting $p=(c/\ell) \ln n$

(Alternate Proof: greedy hitting set)

First unwt-dir-APSP Alg'm

- short shortest paths of length ≤ ℓ₀:
 - \Rightarrow total time $\widetilde{O}(M(n, n, n \mid \ell_0)) = \widetilde{O}(\ell_0 n^{\omega})$
- long shortest paths of length ≥ ℓ₀:
 - compute single-source shortest paths from each $x \in H_{\ell_0}$ & single-sink shortest paths to each $x \in H_{\ell_0}$
 - \Rightarrow total time $O(|H_{\ell_0}| \cdot n^2) = O(n^3/\ell_0)$
- set $\ell_0 = n^{(3-\omega)/2} \Rightarrow \widetilde{O}(n^{(\omega+3)/2})$

Zwick's unwt-dir-APSP Alg'm ('98)

- Suppose we have computed all shortest paths of length $\leq 2\ell/3$
- To compute all shortest paths of length in $(2\ell/3, \ell]$:

$$D_{\leq \ell}[u,v] = \min \left\{ \begin{array}{l} D_{\leq 2\ell/3}[u,v] \\ \min_{x \in \pmb{H_{\ell/3}}} (D_{\leq 2\ell/3}[u,x] + D_{\leq 2\ell/3}[x,v]) \end{array} \right.$$

$$\Rightarrow$$
 time $O(M^*(n, |H_{\ell/3}|, n \mid \ell)) = \widetilde{O}(M^*(n, n/\ell, n \mid \ell))$

• try all ℓ 's that are powers of 3/2

$$\Rightarrow$$
 total time $\left|\widetilde{O}\left(\max_{\ell} M^*(n, n/\ell, n \mid \ell)\right)\right|$

Zwick's unwt-dir-APSP Alg'm ('98)

$$\widetilde{O}\left(\max_{\ell} M^*(n, n/\ell, n \mid \ell)\right)$$

$$\leq \widetilde{O}\left(\max_{\ell} \min\left\{\ell \cdot M(n, n/\ell, n), n \cdot (n/\ell) \cdot n\right\}\right)$$

$$\leq \widetilde{O}\left(\ell_0 \cdot M(n, n/\ell_0, n) + n^3/\ell_0\right)$$

• set
$$\ell_0 = n^{0.471} \Rightarrow O(n^{2.529})$$

can Zwick's alg'm be improved? is there a more graph-theoretical approach?

New: Zwick's Alg'm is "Optimal"!

- ullet Zwick's Alg'm: unwt-dir-APSP $(n) \leq \widetilde{O}\left(\max_{\ell} M^*(n,n/\ell,n\mid\ell)\right)$
- Claim: $\max_{\ell} M^*(n, n/\ell, n \mid \ell) \leq O(\text{unwt-dir-APSP}(n))$

New: Zwick's Alg'm is "Optimal"!

- Claim: $\max_{\ell} M^*(n, n/\ell, n \mid \ell) \leq O(\text{unwt-dir-APSP}(n))$
- Proof: (min,+) product of $n \times n/\ell$ matrix A and $n/\ell \times n$ matrix B with entries in $[\ell]$ reduces to APSP on this unweighted graph:

Consequences: Equivalences

- 1. dir-APSP with small $\widetilde{O}(1)$ integer wts is equally hard as unwt.
- 2. dir-APSP with small $\widetilde{O}(1)$ integer wts is equally hard with or without negative wts
- 3. unwt-dir-APSP is equally hard for DAGs as for general dir. graphs
- 4. unwt-APSP and unwt-APLP are equally hard for DAGs
- 5. for unwt-dir-APSP, computing distances is equally hard as paths
- 6. unwt- (≤ 2) -red-APSP is equally hard for undir. as for dir. graphs (related to all-pairs lightest shortest paths [Zwick'99])
- 7. approximate unwt-dir-APSP with $\widetilde{O}(1)$ additive error is equally hard as exact (related to [Roditty-Shapira'08])
- 8. unique unwt-dir-APSP is equally hard as unwt-dir-APSP (related to APSP counting)

Hardness from unwt-dir-APSP: Example

- Variants of matrix product for $n \times n$ matrices having alg'ms with "intermediate" complexity:
 - min-witness product (min $\{k : A[i,k] \land B[k,j]\}$) in $O(n^{2.529})$
 - dominance product $(\bigwedge_k [A[i,k] < B[k,j]])$ in $O(n^{2.684})$ [Matoušek'91]
 - equality product $(\bigvee_k [A[i,k] = B[k,j]])$ in $O(n^{2.684})$
 - min-witness equality product (min $\{k: A[i,k] = B[k,j]\}$) in $O(n^{2.688})$
 - (min,=) product (min $\{A[i,k]: A[i,k] = B[k,j]\}$) in $O(n^{2.688})$
 - (min,max) product (min_k max{A[i,k],B[k,j]}) in $O(n^{2.688})$ [Duan-Pettie'09]
- Claim: unwt-dir-APSP reduces to min-witness equality product

Hardness from unwt-dir-APSP: Example

- Claim: unwt-dir-APSP reduces to min-witness equality product
- Proof: (min,+) product of $n \times n/\ell$ matrix A and $n/\ell \times n$ matrix B with entries in $[\ell]$ reduces to min-witness equality product of:

$$A'[i, (k, z)] = A[i, k]$$
 and $B'[(k, z), j] = z - B[k, j]$

where we order $(k,z) \in [n/\ell] \times [O(\ell)]$ by z

Hardness from unwt-dir-APSP

Open: min-witness product? equality product?

This Talk

 hardness from APSP for unweighted graphs (or small \(\widetilde{O}(1)\) integer weights)
 [C.-Vassilevska W.-Xu, ICALP'21]

hardness from APSP for real-weighted graphs
 [C.–Vassilevska W.–Xu, STOC'22, to appear]

Hardness from intreal-APSP

lots of dynamic problems $\ll n^{\delta}$ AE-Sparse-Triangle $\ll m^{4/3}$ new new realint-APSP $\ll n^3$ $\rightarrow int$ -(min,+)-product $\ll n^3$ real- $\frac{1}{1}$ int-3SUM $\ll n^2$

AE-Sparse-Triangle

• Given graph G = (V, E) with m edges, for every edge $uv \in E$, decide \exists triangle through uv

- Note: related to set disjointness queries $(N(u) \cap N(v) \neq \emptyset?)$
- Alon-Yuster-Zwick'94: $O(m^{2\omega/(\omega+1)}) \leq O(m^{1.408})$

Fredman's real-APSP "Alg'm" ('75)

- by known reduction, real-APSP $(n) \leq \widetilde{O}(M^*(n,n,n)) \leq \widetilde{O}(n/d \cdot M^*(n,d,n))$
- suffice to compute (min,+) product of $n \times d$ matrix A and $d \times n$ matrix B
- Fredman's trick: A[i, k'] + B[k', j] < A[i, k] + B[k, j] $\iff A[i, k'] - A[i, k] < B[k, j] - B[k', j]$
- sort all A[i, k'] A[i, k] and all B[k, j] B[k', j] in $\widetilde{O}(d^2n)$ time
- afterwards, can compute A * B without any more comparisons!
- total # comps $\widetilde{O}((n/d) \cdot (d^2n + n^2))$
- set $d = \sqrt{n} \Rightarrow |\widetilde{O}(n^{5/2})|$ comps (but runtime still n^3 !)

- first "guess" answers $k_{ij} = \arg\min_k (A[i,k] + B[k,j])$
- for each $k \in [d]$, solve AE-Sparse-Triangle on this graph G_k :
 - 1. for each $i, j \in [n]$ with $k_{ij} = k$, create edge u[i]v[j]
 - 2. for each $i \in [n], k' \in [d]$ and dyadic interval I, create edge u[i]x[k',I] if rank(A[i,k']-A[i,k]) is in left half of I
 - 3. for each $j \in [n], k' \in [d]$ and dyadic interval I, create edge x[k', I]v[j] if rank(B[k, j] B[k', j]) is in right half of I

dyadic intervals

- first "guess" answers $k_{ij} = \arg\min_k (A[i,k] + B[k,j])$
- for each $k \in [d]$, solve AE-Sparse-Triangle on this graph G_k :
 - 1. for each $i, j \in [n]$ with $k_{ij} = k$, create edge u[i]v[j]
 - 2. for each $i \in [n], k' \in [d]$ and dyadic interval I, create edge u[i]x[k',I] if rank(A[i,k']-A[i,k]) is in left half of I
 - 3. for each $j \in [n], k' \in [d]$ and dyadic interval I, create edge x[k', I]v[j] if rank(B[k, j] B[k', j]) is in right half of I
- Observation: \exists triangle through u[i]v[j] $\iff \exists k', A[i,k'] A[i,k] < B[k,j] B[k',j]$ $\iff \exists k', A[i,k'] + B[k',j] < A[i,k] + B[k,j]$ $\iff k \text{ isn't correct answer for } k_{ij}!$

- first "guess" answers $k_{ij} = \arg\min_k (A[i,k] + B[k,j])$
- for each $k \in [d]$, solve AE-Sparse-Triangle on this graph G_k :
 - 1. for each $i, j \in [n]$ with $k_{ij} = k$, create edge u[i]v[j]
 - 2. for each $i \in [n], k' \in [d]$ and dyadic interval I, create edge u[i]x[k',I] if rank(A[i,k']-A[i,k]) is in left half of I
 - 3. for each $j \in [n], k' \in [d]$ and dyadic interval I, create edge x[k', I]v[j] if rank(B[k, j] B[k', j]) is in right half of I
- Analysis: G_k has $O(n^2/d + dn \log n)$ edges on average \Rightarrow total time $\widetilde{O}((n/d) \cdot d \cdot \text{AE-Sparse-Triangle}(n^2/d + dn))$
- set $d = \sqrt{n} \Rightarrow \widetilde{O}(n \cdot \text{AE-Sparse-Triangle}(n^{3/2}))$

- Theorem: real-APSP $(n) \leq \widetilde{O}(n \cdot AE$ -Sparse-Triangle $(n^{3/2})$)
- Corollary: if AE-Sparse-Triangle $(m) \le O(m^{4/3-\varepsilon})$, then real-APSP $(n) \le O(n \cdot (n^{3/2})^{4/3-\varepsilon}) \le O(n^{3-\varepsilon'})$

Conclusions

- Moral: reinterpret known alg'ms as reductions!
- Many open questions:
 - relationship between int-APSP, unwt-dir-APSP, & real-APSP hypotheses?
 - better understanding of problems with intermediate complexity between n^2 and n^3 ...
 - counting variant of APSP in $\widetilde{O}(n^3)$ time for weighted graphs? (note: counts may be large $\widetilde{O}(n)$ -bit numbers!)