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APSP

e Given weighted dense graph G = (V, E) with n vertices,
for every pair u,v € V, compute D[u, v] = shortest path
distance from u to v



APSP: Background

O(n3) Floyd—Warshall'62
O*(n3/1og1/3n)  Fredman'75
O*(n3/+/Togn) Takaoka’92, Dobosiewicz’90
O*(n3/ 1095/ n) Han’04

O*(n3/logn) Takaoka’04, Zwick’04, C.05
O*(n3/10g%/%4n)  Han'06

O*(n3/log?n) C.07

O*(n3/log3n) C.)17

O(n3/cV1097) rand. Williams'14
O(n3/cV1091) det.  C.—Williams'15

e APSP Hypothesis: no O(n37¢) algm (even for integer weights)



Hardness from APSP

lots of dynamic problems < m?

[Patrascu’10, AV’14, KPP’IG]T
AE-Sparse-Triangle < m?*/3

[Vassilevska W.Xu’ZO/

[BGMW’17] Zero-Triangle < n?

\
APSP < n3 %’11]
<— (min,+)-Product < n?

+— Negative-Triangle < n?
< Shortest-Cycle < n?

@adius <«ns

Tree-Edit-Distance < n?>

[Patrascu’10]

VW11, AGV'15]

(note: assumes integer input)



This Talk

e hardness from APSP for unweighted graphs
(or small O(1) integer weights)
[C.—Vassilevska W.—Xu, ICALP’21]



unwt-APSP: Background

unweighted undirected:
O(n¥) < 0O(n2373)  Alon-Galil-Margalit91, Seidel’92

unweighted directed:
O(nwt3)/2) < 0O(n2687)  Alon—-Galil-Margalit'91
O(n2t+r) <10(n%°29) Zwick'98

(where p satisfies w(1,p,1) = 1 4 2p)

e unwt-dir-APSP Hypothesis: no O(n2->—¢) alg'm



Prelims on Matrix Multiplication

e given nq X no matrix A and no, X ng matrix B
with integer entries in [¢] := {0, ..., ¢}

e let M (nq,no,n3) be time to compute standard product

(AB)[i,j] = Zk: Ali, k] B[k, J]

e Current bds:
M(n,n,n) = O(n?373) Stothers’10, Vassilevska W12
M (n,n9313 n) = O(n2to(1)) Le Gall-Urrutia'17
M(n,n%222 n) = O(n?9°8) LeGall-Urrutia'17



Prelims on Matrix Multiplication

e given nq X no matrix A and no, X ng matrix B
with integer entries in [¢] := {0, ..., ¢}

e let M (nq,no,n3) be time to compute standard product

(AB)[i,j] = Zk: Ali, k] B[k, J]

e let M*(nq,no,n3 | £) be time to compute (min,+) product

(A B)[i,j] = min (Ali, K] + BIk, j))

o Trivial: M*(nl,ng,ng, | f) = O(nlngng)

e Fact: M*(ny,n2,n3|£) = O - M(n1,n2,n3))

e Proof: can compute (max,+) product from standard product of
A'li, k] = UAlLF] g Bk, 7] = U Blk.j] (large O(£)-bit integers)



Why (min,+) Product is Useful to APSP

e Suppose we have computed all shortest paths of length < ¢/2

e To compute all shortest paths of length < ¢:

= time O(M*(n,n,n | £))

e try all £'s that are powers of 2. ..
but doesn’t work well as ¢ gets large!



Hitting Set

e Observation: 4 subset H, C V that hits all shortest paths of
length > ¢, with |H)| = O(n/¢)

e Proof: just take random H, C V/, with sampling prob. p
= for any fixed u, v € V with shortest path = [u, v] of length > ¢,

Pr[H, not hit 7[u, v]] (1 —p)*

A IA A
QN
=
N

1/n°  bysettingp = (¢/£) Inn

(Alternate Proof: greedy hitting set)



First unwt-dir-APSP Alg'm

e short shortest paths of length < /j:
= total time O(M (n,n,n | £g)) = O(4on®)

e long shortest paths of length > £j:

compute single-source shortest paths from each = € Hy,
& single-sink shortest paths to each x € Hy,

= total ime O(|Hy, | - n?) = O(n>/¢p)

e Set 60 — n(3_w)/2 = 5(n(w+3)/2)




Zwick’s unwt-dir-APSP Alg'm ('98)

e Suppose we have computed all shortest paths of length < 2¢/3

e To compute all shortest paths of length in (2¢/3, ¢]:

u

D <plu,v] = min

p

\

< 20/3 . <A,
(/3
D<5¢/3lu, v]

xg}{i?/:%(DSQE/B[uv 27] + DSQE/?,[x) ’U]}

= time O(M*(n, ]H£/3|,n 1 0)) = O(M*(n,n/l,n|L))

e try all /'s that are powers of 3/2

= total time O <max M*(n,n/l,n | E))

14




Zwick’s unwt-dir-APSP Alg'm ('98)

—_—

O
~~

max M*(n,n/6n e>>

< 5<m£ax min{¢- M(n,n/¢,n), n-(n/l) n})
< 5(60 - M(n,n/lg,n) + n3/€O)

e set 60 — n0.471 — O(n2'529)




can Zwick’s alg'm be improved?

Is there a more graph-theoretical approach?



New: Zwick’'s Alg'm is “Optimal”!
e Zwick's Alg’'m: unwt-dir-APSP(n) < O <m£a>< M*(n,n/l,n | €)>

e Claim: max M*(n,n/t,n|£) < O(unwt-dir-rAPSP(n))



New: Zwick’'s Alg'm is “Optimal”!
e Claim: max M*(n,n/t,n|£) < O(unwt-dir-rAPSP(n))

e Proof: (min,+) product of n x n/¢ matrix A and n/¢ x n matrix B
with entries in [¢] reduces to APSP on this unweighted graph:

U (n/¢ x O(L) vertices) U



o O A~ WO

Consequences: Equivalences

. dir-APSP with small O(1) integer wts is equally hard as unwt.
. dir-APSP with small O(1) integer wts is equally hard with or

without negative wis

. unwt-dir-APSP is equally hard for DAGs as for general dir. graphs
. unwt-APSP and unwt-APLP are equally hard for DAGs
. for unwt-dir-APSP, computing distances is equally hard as paths

. unwt-(< 2)-red-APSP is equally hard for undir. as for dir. graphs

(related to all-pairs lightest shortest paths [Zwick’99])

. approximate unwt-dir-APSP with O(1) additive error is equally

hard as exact (related to [Roditty—Shapira’08])

. unique unwt-dir-APSP is equally hard as unwt-dir-APSP

(related to APSP counting)



Hardness from unwt-dir-APSP: Example

e Variants of matrix product for n x n matrices having alg’ms with

“Intermediate” complexity:

— min-witness product (min{k : A[i, k] A B[k, j]}) in O(n2-229)

— dominance product (AL[A[4, k] < B[k, 7]]) in O(n2-84)
[Matousek’91]

— equality product (V.[A[4, k] = B[k, 4]]) in O(n2-58%)

— min-witness equality product (min{k : A[i, k] = B[k, j]}) In
O(n2-688)

— (min,=) product (min{Al[i, k] : A[i, k] = B[k, j]}) in O(n2-088)

— (min,max) product (min, max{A[i, k], B[k, j]}) in O(n2-5383)
[Duan—Pettie’09]

e Claim: unwt-dir-APSP reduces to min-witness equality product



Hardness from unwt-dir-APSP: Example

e Claim: unwt-dir-APSP reduces to min-witness equality product

e Proof: (min,+) product of n x n/¢ matrix A and n/¢ x n matrix B
with entries in [¢] reduces to min-witness equality product of:

A'li, (k, 2)] = Ali, k] and B'[(k, 2), j] = z — Blk, j]

where we order (k,z) € [n/¢] x [O(£)] by z



Hardness from unwt-dir-APSP

(min,max) product < n?°

+— AP-Bottleneck-Paths < n??°

min-witness equality product < n?°

[LPV’20]

new

unwt-dir-APSP <« n?
+—— unwt-DAG-APSP < n??®
+—— unwt-DAG-APLP <« n??
¢ (< 2)-red-unwt-undir-APSP <« n*?|

e Open: min-witness product? equality product?




This Talk

e hardness from APSP for real-weighted graphs
[C.—Vassilevska W.—Xu, STOC'22, to appear]



Hardness from trtreal-APSP

lots of dynamic problems < n?°

T 6/5

AE-Sparse-Triangle < m*"®

new

new
real-

int=APSP < n?
int=(min,+)-product < n? real-




AE-Sparse-Triangle

e Given graph G = (V, E) with m edges,
for every edge uv € E, decide d triangle through uwv

X

SN

(V)

e Note: related to set disjointness queries (N (u) N N(v) 7%= 0?)

e Alon—Yuster—Zwick’94: O(m?2«/(w+1)) < O(m1408)



Fredman’s real-APSP “Alg’'m” ('75)

by known reduction,
real-APSP(n) < O(M*(n,n,n)) < O(n/d- M*(n,d,n))

suffice to compute (min,+) product of n x d matrix Aand d x n
matrix B

Fredman’s trick: A[:, k'] + B[K', j] < A, k] + Blk, j]
sort all A[i, k'] — A[s, k] and all B[k, j] — B[k, j] in O(d?n) time
afterwards, can compute A * B without any more comparisons!

total # comps O((n/d) - (d°n + n?))

setd = /n = O(n®/2) comps (but runtime still n31)




New: Fredman as a Reduction!

o first “guess” answers k;; = arg ming(A[i, k] + Bk, j])

e for each k € [d], solve AE-Sparse-Triangle on this graph G.:

1.
2.

for each i, j € [n] with k;; = k, create edge u[i]v[j]

for each ¢ € [n], k' € [d] and dyadic interval I, create edge
uli]x[K, I if rank(A[Z, k'] — A[z, k]) is in left half of I

. for each 5 € [n], &' € [d] and dyadic interval I, create edge

z[k', INv[j] if rank(BIk, 7] — B[k, 7]) is in right half of I

dyadic intervals




New: Fredman as a Reduction!

o first “guess” answers k;; = arg ming(A[i, k] + Bk, j])

e for each k € [d], solve AE-Sparse-Triangle on this graph G.:
1. for each i, j € [n] with k;; = k, create edge u[i]v[j]
2. for each ¢ € [n], k¥’ € [d] and dyadic interval I, create edge
uli]x[K, I if rank(A[Z, k'] — A[z, k]) is in left half of I

3. for each j € [n], k¥’ € [d] and dyadic interval I, create edge
z[k', INv[j] if rank(BIk, 7] — B[k, 7]) is in right half of I

e Observation: 3 triangle through w[i]v|[j]
<« Ik, A, k'] — A[i, k] < Bk, j] — B[K', j]
<« 3K/, A, k'] + B[K', 7] < Ali, k] + Blk, J]
< k isn't correct answer for k; ;!



New: Fredman as a Reduction!

o first “guess” answers k;; = arg ming(A[i, k] + Bk, j])

e for each k € [d], solve AE-Sparse-Triangle on this graph G.:
1. for each i, j € [n] with k;; = k, create edge u[i]v[j]

2. for each ¢ € [n], k¥’ € [d] and dyadic interval I, create edge
uli]x[K, I if rank(A[Z, k'] — A[z, k]) is in left half of I

3. for each j € [n], k¥’ € [d] and dyadic interval I, create edge
z[k', INv[j] if rank(BIk, 7] — B[k, 7]) is in right half of I

e Analysis: G has O(n2/d 4 dnlogn) edges on average
= total time O((n/d) - d - AE-Sparse-Triangle(n?/d + dn))

e setd =n = O(n- AE-Sparse-Triangle(n3/2))




New: Fredman as a Reduction!

e Theorem: real-APSP(n) < O(n - AE-Sparse-Triangle(n3/2))

e Corollary: if AE-Sparse-Triangle(m) < O(m?*/37¢), then
real-APSP(n) < O(n - (n3/2)4/3-¢) < O(n3—¢)



Conclusions

e Moral: reinterpret known alg’'ms as reductions!

e Many open questions:

— relationship between int-APSP, unwt-dir-APSP, & real-APSP
hypotheses?

— better understanding of problems with intermediate complexity
between n? and n3...

— counting variant of APSP in O(n3) time for weighted graphs?

(note: counts may be large O(n)-bit numbers!)

THE END



