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Abstract

A favorite open problem in combinatorial geometry is to determine the worst-case complexity
of a level in an arrangement. Up to now, nontrivial upper bounds in three dimensions are known
only for the linear cases of planes and triangles. We propose the first technique that can deal with
more general surfaces in three dimensions. For example, in an arrangement of n “pseudo-planes”
or “pseudo-spherical patches” (where the main criterion is that each triple of surfaces has at most
two common intersections), we prove that there are at most O(n2.997) vertices at any given level.

1 Introduction

Given an arrangement of n surfaces in IRd, the level of a point p ∈ IRd is the number of surfaces

strictly below p. Combinatorial and computational geometers have been baffled by the following

simple, basic question:

Consider the number of vertices in the arrangement that have level equal to k. How large

can this number be, asymptotically as a function of n and k?

This question has relevance to the analysis of algorithms for a number of fundamental geometric

problems [14, 20, 22, 24].

Here is a summary of what is known:

• The most famous case—dually related to the so-called k-set problem—concerns lines in 2-d.

The early papers by Lovász [18] and Erdős et al. [16] showed that every arrangement of n lines

has at most O(n
√
k) vertices at level k, and furthermore, there exist arrangements of lines

with Ω(n log k) such vertices. Major improvements did not come for more than twenty years,

until Dey [12] and Tóth [28] improved the upper bound to O(nk1/3) and the lower bound to

n2Ω(
√

log k).

• For planes in 3-d, Bárány, Füredi, and Lovász [5] were to first to obtain a nontrivial, subcubic

upper bound of O(n3−1/343) = O(n2.9971). After a series of improvements (in chronological

order, [4, 15, 13, 1]), Sharir, Smorodinsky, and Tardos [25] gave the current best upper bound

of O(nk3/2). The current lower bound is nk2Ω(
√

log k) [28].

∗A preliminary version of this work appeared in Proc. 16th ACM–SIAM Sympos. Discrete Algorithms, 2005 [9]. This
work was supported in part by an NSERC grant.
†School of Computer Science, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada, tmchan@uwaterloo.ca
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• For planes in 4-d, Sharir [23] obtained the most recent upper bound O(n4−1/18) (improving a

previous result by Matoušek et al. [21]). By a technique of Agarwal et al. [1], the bound can

be made sensitive to k, namely, O(n2k2−1/18).

• For hyperplanes in a fixed dimension d > 3, Bárány et al.’s proof in combination with the

multicolored Tverberg theorem [29, 6] yielded an upper bound of O(nd−αd) for a very small

αd = 1/(2d)d. As Agarwal et al. [1] observed, the bound can be made sensitive to k, namely,

O(nbd/2ckdd/2e−αd).

• The more general case of nonlinear curves in 2-d has also been studied extensively. Previous

proofs for arrangements of lines, including Dey’s O(nk1/3) result, can be adapted to arrange-

ments of pseudo-lines, where each pair of curves intersects at most once [26]. For more general

families, however, new techniques are required. Tamaki and Tokuyama [27] were the first to

suggest the approach of “cutting” curves and obtained an O(n23/12) upper bound on the num-

ber of vertices of any level in an arrangement of n pseudo-parabolas, where each pair intersects

at most twice. The bound for pseudo-parabolas has eventually been reduced to O(nk1/2 log k),

after a series of improvements ([7, 2, 8, 19, 10] in chronological order). In 2005, the author [8]

proposed a new, simple approach that yielded an Õ(nk1−1/2s) upper bound for general curve

families, where each pair intersects at most a constant s number of times, and the Õ notation

hides small, inverse-Ackermann-like factors; further improvements were also given for even val-

ues of s and for specific curve families (for example, graphs of fixed-degree polynomials in one

variable). A follow-up paper [10] obtained yet more improvements.

• For polyhedral surfaces comprising O(n) triangles in 3-d, Agarwal et al. [1] gave an Õ(n2k7/9)

upper bound, which was improved to Õ(n2k2/3) by Katoh and Tokuyama [17].

In this paper, we give upper bounds for nonlinear surfaces in 3-d. The surface families that can

be handled by our proof are fairly general, and include a certain definition of pseudo-planes and

pseudo-triangles, where the main condition is that each triple of surfaces intersects at most once,

and pseudo-spherical patches, where the main condition is that each triple of surfaces intersects at

most twice (see Section 2.3 for the precise general requirement and specific definitions used). For

these particular surface families, our upper bound is O(n3−1/286.97) = O(n2.9966),which can be made

k-sensitive, namely, O(nk1.9966) for pseudo-planes and Õ(n2k0.9966) for the other families, by Agarwal

et al.’s observations [1]. It should be emphasized that while this barely subcubic bound may not look

very impressive, it is the first demonstration that a nontrivial result is possible, and with any luck,

improvements might subsequently follow.1 (The reader is asked to take a historical perspective and

compare our result with Bárány et al.’s for planes [5].) Rather than the specific bound, the proof

technique itself should be regarded as the main contribution.

Why can’t previous techniques be adapted to handle general surfaces? The existing upper-bound

proofs for planes [4, 5, 13, 15, 25] and triangles [1, 17] in 3-d are all similar in that they are based

(in part) on Lovász’s original approach [18]. It is not unthinkable that this approach could work

for pseudo-planes, although finding an appropriate extension of Lovász’s main lemma was posed by

Agarwal et al. [1] some time ago and is still unanswered. In any case, an extension of this approach

to more general surfaces in 3-d (or even general curves in 2-d) is less imaginable due to a variety

1In fact, the bound presented here is already an improvement over the O(n3−1/705.48) = O(n2.9986) bound that was
originally announced in the conference version of this paper [9].
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of obstacles (for starters, Lovász’s lemma is typically applied to points in dual space, but no point-

surface duality is known). We therefore need a proof that is completely different from all previous

proofs for planes. The author’s new technique for curves in 2-d [8] turns out to be just what is

needed, but the extension to 3-d is not easy and requires a number of additional ideas, together with

an intricate charging argument.

2 The Proof Plan

We may assume (by perturbation arguments) that the given arrangement is nondegenerate. To

make it easier to understand, we first describe our proof plan for the case of pseudo-planes, which

we formally define as surfaces satisfying the following requirement:

The surfaces are graphs of total bivariate functions such that (i) the intersection of each pair

is an x-monotone curve, and (ii) the intersection of each triple is a single point.

Note that a more common definition of pseudo-planes would omit condition (i). Later in Section 2.3,

we will consider generalizations that would relax both conditions and allow for certain non-pseudo-

plane families.

2.1 The Previous Approach

As mentioned, the main approach is from the author’s previous paper [8]. The idea is to extend the

problem by looking at the number of vertices at nearby levels. A nontrivial upper bound is then

obtained by solving a recurrence/difference equation.

Given an arrangement of n pseudo-planes in IR3 and an integer k, let ti be the number of vertices

in the arrangement with levels in the range (k− i, k+ i). Let ∆ti = ti+1−ti be the number of vertices

with level k − i or k + i. Our problem is to bound t1, the number of vertices in the arrangement at

level k. (A more common version of the problem is to bound the combinatorial complexity of the

k-level , defined as the boundary of the set of all points in IR3 with level at most k; the two versions

are known to be asymptotically equivalent—e.g., see [3].)

In the previous proof in 2-d [8], we bound ti in terms of ∆ti by a simple charging argument,

yielding an inequality of the form

ti ≤ c0i∆ti + [some overhead term]. (1)

(In the pseudo-line case, c0 = 2.) With the base case tn = O(n2), this recurrence gives ti =

O(n2−1/c0i1/c0), implying a subquadratic bound for t1.

We would like to derive a similar inequality in 3-d (this time, with tn = O(n3)). Unfortunately,

there seems no obvious way to make the original charging argument work in 3-d. Further ideas are

needed. . .

2.2 Reduction to 2-d

As it turns out, the difficulties arising in 3-d can be resolved by not working in 3-d at all. More

precisely, we consider the 2-d subarrangement inside each of the n given surfaces, prove a general

inequality in 2-d, and then “sum up” to get the 3-d inequality. (At least one previous proof, by

3



Figure 1: A “bad” example of a bichromatic arrangement, with all vertices shown having the same

level. In all figures, unbold lines are red and bold lines are blue.

Sharir et al. [25], was also in part based on summing up contributions from various 2-d subproblems,

though in a very different way; our idea here was indirectly inspired by Sharir et al.’s proof.)

The subarrangement within a given surface σ is a pseudo-line arrangement when projected to

the xy-plane. In studying this subarrangement, we need to classify each pseudo-line γ as one of two

types, “red” or “blue”, depending on whether within σ, points above γ in the y-direction are above

or below the surface defining γ in the z-direction.

We now need to prove an inequality in 2-d that more generally applies to a bichromatic arrange-

ment.

Definition 2.1 Consider an arrangement of pseudo-lines in IR2, where each curve is colored red or

blue. For a red curve γ, we say that a point p violates γ if p is strictly above γ; for a blue curve γ, p

violates γ if p is strictly below γ. Define the level of p to be the number of curves violated by p. Call

an intersection of two curves a monochromatic vertex if the two curves have the same color; call it

a bichromatic vertex otherwise. Call a vertex at level in the range (k − i, k + i) an interior vertex,

and a vertex at level k − i or k + i a boundary vertex.

Let tmo
i and tbi

i be the number of interior monochromatic and bichromatic vertices respectively,

and ∆tmo
i = tmo

i+1 − tmo
i and ∆tbi

i = tbi
i+1 − tbi

i be the number of boundary monochromatic and

bichromatic vertices respectively.

We would like to bound the number of interior vertices (tmo
i or tbi

i ) in terms of the number of

boundary vertices (∆tmo
i or ∆tbi

i ), as in (1). Unfortunately, this is not possible in the bichromatic

setting, because as Figure 1 indicates, both tmo
i and tbi

i can be quadratic in the worst case.

To overcome this problem, we need yet another idea: charge interior monochromatic vertices

(tmo
i ) not only to boundary vertices (∆tmo

i and ∆tbi
i ) but also to interior bichromatic vertices (tbi

i ).

Intuitively, if tmo
i is large, then tbi

i would be large too, as the example from Figure 1 seems to suggest.

We thus aim to prove the following:

Theorem 2.2 (Main Inequality) For any bichromatic arrangement of n pseudo-lines in IR2,

tmo
i ≤ (c1i+O(1))(∆tmo

i + ∆tbi
i ) + (c2 +O(1/i))tbi

i +O(nii),

where ni denotes the number of curves that have level in [k − i, k + i] at x =∞ or x = −∞, and c1

and c2 are specific constants with c2 < 2.

In our 3-d application, interior bichromatic vertices are fortunately rarer than interior monochro-

matic vertices, by a factor of 2. We claim that the above inequality implies a subcubic bound for a

level in 3-d:
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Corollary 2.3 For any arrangement of n pseudo-planes in IR3, the number of vertices at level k is

O(n3−1/c0), where c0 = 3c1
2−c2 , and c1 and c2 are the constants in the main inequality.

Proof: We apply Theorem 2.2 to the subarrangement inside each given surface, with the color

scheme described above. Observe that the level of each vertex v in the 2-d (bichromatic) subarrange-

ment is equal to the level of v in the 3-d arrangement. Each vertex v lies in three subarrangements.

We claim that it is monochromatic in two of them and bichromatic in one of them: Consider the

lower envelope of the three surfaces σ1, σ2, σ3 that define v. One edge of the envelope—say, σ1∩σ2—is

to the left of v, and the other two are to the right of v, or vice versa. Then v is monochromatic in

the subarrangement inside σ1 and the subarrangement inside σ2, but bichromatic inside σ3.

Therefore, summing the left- and right-hand sides of the main inequality over all the n subar-

rangements gives the following upper bound:

2ti ≤ (3c1i+O(1))∆ti + (c2 +O(1/i))ti +O(n2i) =⇒ ti ≤ (c0i+O(1))∆ti +O(n2i).

So, ti ≤ (c0i + O(1))(ti+1 − ti) + O(n2i), i.e., ti ≤ (1 + 1
c0i+O(1)) ti+1 + O(n2). As base case,

tn = O(n3). Solving this recurrence is straightforward (as described in the appendix of [8]) and

yields ti = O(n3−1/c0i1/c0). 2

In Section 3, we will establish the 2-d main inequality for a certain choice of constants c1 and c2.

2.3 Generalization to Other Surface Families

The preceding proof plan can be adapted to handle other types of surfaces in 3-d besides pseudo-

planes. The precise requirement for the surfaces is as follows:

(∗) The n given surfaces are graphs of total bivariate functions such that the 2-d subarrangement

within each surface (when projected to xy-plane) forms a collection of O(n) x-monotone curve

segments in a family with subquadratic cutting number.

Here, a family of curve segments has subquadratic cutting number if any N curve segments in

the family can be cut into O(N2−κ) pseudo-segments (where each pair intersects at most once),

for some constant κ > 0.

The restriction to graphs of total functions is not crucial, since we can add near-vertical extensions

to make them total.

The cutting number in 2-d arrangements was introduced by Tamaki and Tokuyama [27], who

proved the first nontrivial results for pseudo-parabolas (graphs of total univariate functions that

pairwise intersect twice); the current best bound for pseudo-parabolas has κ ≈ 1/2 [2, 19]. Other

curve families known to have subquadratic cutting number include pseudo-parabolic segments (x-

monotone curve segments that pairwise intersect at most twice) with κ = 1/3 [7], and graphs of

univariate degree-s polynomial functions with κ ≈ 1/2s−1 [7, 19].

Some examples of surface families that satisfy (∗) thus include the following:

• pseudo-triangles, which we formally define as a collection of the graphs of n bivariate functions

such that after near-vertical extensions are added, each 2-d subarrangement forms a family of

O(n) pseudo-segments;

5



• pseudo-spherical patches, which we formally define as a collection of the graphs of n bivariate

functions such that after extensions are added, each 2-d subarrangement forms a family of O(n)

pseudo-parabolic segments;

• surfaces each having equation z = p(x) +ay for some degree-s polynomial p(x) and constant a.

(In these three examples, we have κ = 1, κ ≈ 1/2, and κ ≈ 1/2s−1 respectively.)

We can apply the same reduction to 2-d (in the proof of Corollary 2.3, we should consider the

lower envelope of σ1, σ2, σ3 only locally around v). All that is needed is a main inequality for 2-d

curve families with subquadratic cutting number. It is not obvious how to obtain such an inequality

for general curves directly without blowing up the coefficient c2 beyond 2. One idea is to cut the

curves first (which increases the number of endpoints) and then prove the same main inequality

for pseudo-segments (with ni redefined as the number of pseudo-segment endpoints with level in

[k − i, k + i]). The overhead term increases (to O(n3−κi)), but this can still yield a subcubic result.

However, for better results, we follow instead an idea from the previous paper [8] of not explicitly

cutting the curves but charging features to certain “lenses”:

Definition 2.4 If two curves γ1 and γ2 intersect more than once, the part of γ1 ∪ γ2 between two

consecutive intersection points is called a lens. We say that a lens is i-light if every vertical line

segment inside the lens intersects at most i red curves and at most i blue curves.

We will prove the following generalization of the main inequality for arbitrary 2-d x-monotone

curves:

Theorem 2.5 (Main Inequality) For any bichromatic arrangement of n curves that are graphs

of total univariate functions,

tmo
i ≤ (c1i+O(1))(∆tmo

i + ∆tbi
i ) + (c2 +O(1/i))tbi

i +O(nii+ |Λi|),

where Λi denotes the collection of (c3i)-light lenses, ni denotes the number of curves that have level

in [k − i, k + i] at x =∞ or x = −∞, and c1, c2, c3 are specific constants with c2 < 2.

The same result would then hold for curve segments (with ni replaced by O(n)), since we can add

near-vertical (upward if red, downward if blue) extensions at the endpoints to make the functions

total—this increases |Λi| by at most O(ni), as this generates at most O(i) extra lenses in Λi incident

to each endpoint.

The collection of lenses Λi has depth O(i), i.e., a point can be lie on at most O(i) lenses in Λi.

By a random sampling technique from the previous paper [8, Lemma 4.1] (see also [27]), we know

that |Λi| = O(n2−κiκ). The new recurrence in 3-d becomes

ti ≤ (c0i+O(1))∆ti +O(n3−κiκ).

The solution of this recurrence (e.g., see the appendix of [8]) leads to:

Corollary 2.6 For any arrangement of n surfaces in IR3 satisfying (∗), the number of vertices at

level k is O(n3−1/c0) if κ > 1/c0, and O(n3−κ) if κ < 1/c0. Here, c0 = 3c1
2−c2 , where c1 and c2 are the

constants in the main inequality.
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v (forward, interior,
gets a charge)

j

u
}

v (boundary,
gets ci− j charges)

m

}j ≤ ci
u

}m ≤ (c+ 1)i+ δv + 1

}

γ1

γ0

γ2
γ2

γ0

γ1` `

Figure 2: The basic charging scheme.

3 Proof of the 2-d Main Inequality

It remains to prove the (generalized) main inequality, Theorem 2.5. This is done in the next three

subsections.

3.1 The Basic Charging Scheme

We start with a natural but more involved extension of the author’s charging argument for monochro-

matic 2-d arrangements [8].

Let c be a positive constant, to be determined later. To avoid special cases, we treat the O(ni)

points with level in [k − i, k + i] at x = ±∞ as boundary vertices. We also pad the arrangement

with (c+ 2)i+ 1 extra curves below and (c+ 2)i+ 1 extra curves above all the given curves of both

colors, without creating any new intersections. We introduce some notation and terminology:

Definition 3.1

• Call a vertex exceptional if it is a vertex of some lens in Λi, and ordinary otherwise.

• For any point v, let δv be the number such that the level of v is k + δv.

• For a point v and a curve γ, let χv,γ be +1 if v violates γ, and −1 otherwise.

• Given a vertex u defined by curves γ0 and γ1 and a vertex v defined by curves γ1 and γ2, we

say that v is forward w.r.t. u if γ2 lies between γ0 and γ1 at a vertical line slightly to the right

(resp. left) of v, assuming that v is to the right (resp. left) of u. Otherwise, v is backward

w.r.t. u. (Figure 2 (left) shows an example of a forward vertex v and Figure 2 (right) shows

an example of a backward vertex v.)

• Given curves γ0 and γ1 of the same color and given a vertical line `, let m(γ0, γ1, `) be the

number of curves of the same color as γ0, γ1 that lie between γ0 and γ1 at `; let j(γ0, γ1, `) be

the the number of curves of the opposite color as γ0, γ1 that lie between γ0 and γ1 at `.

• We say that (γ0, γ1, `) is within range if j(γ0, γ1, `) ≤ ci and both δγ0∩`, δγ1∩` ∈ [−i,+i].
Otherwise, (γ0, γ1, `) is out of range.

Observation 3.2 Given curves γ0 and γ1 of the same color and a vertical line ` intersecting γ1 at

the point v, if (γ0, γ1, `) is within range, then

m(γ0, γ1, `) ≤ j(γ0, γ1, `) + i+ χv,γ0δv + 1 ≤ (c+ 1)i+ χv,γ0δv + 1 ≤ (c+ 2)i+ 1.
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}≤ (c+ 2)i+ 1

}≤ (c+ 2)i+ 1

}≤ (c+ 2)i+ 1

γ1

γ0

γ0

γ1

v
v

u
u

γ2 γ2

u′

Figure 3: If more than one vertex on γ0 were to send a charge to v, then a lens in Λi would be

formed.

Proof: W.l.o.g., say γ0 is below v and is red (the other cases are similar). By the definition of levels

in a bichromatic arrangement, m(γ0, γ1, `) − j(γ0, γ1, `) ≤ δv − δγ0∩` + 1. Since δv, δγ0∩` ∈ [−i,+i],
we have m(γ0, γ1, `) ≤ j(γ0, γ1, `) + δv + i+ 1 ≤ (c+ 1)i+ δv + 1 ≤ (c+ 2)i+ 1. 2

We now describe a scheme of charging interior monochromatic vertices to interior bichromatic

vertices and boundary vertices (see Figure 2).

Definition 3.3 Suppose u is an ordinary interior monochromatic vertex u defined by curves γ0 and

γ1, and v is a vertex defined by curves γ1 and γ2 and lies on the vertical line `.

• For an interior bichromatic vertex v, we say that u sends a charge to v if

(A1) (γ0, γ1, `
′) is within range for all vertical lines `′ between u and v, and

(A2) v is forward w.r.t. u.

• For a boundary (monochromatic or bichromatic) vertex v, we say that u sends ci− j(γ0, γ1, `)

charges to v if (A1) holds (regardless of whether (A2) holds).

Remarks: Note that if u sends a charge to v, then γ0 cannot cross γ1 between u and v, because

otherwise u would define a lens that is ((c+ 2)i+ 1)-light (by condition (A1), with Observation 3.2)

and would thus be exceptional for a sufficiently large c3 > c + 2 (see Figure 3 (left)). For a similar

reason, we cannot have v receiving a charge from both a vertex u left of v and another vertex u′

right of v (see Figure 3 (right)). Consequently, at most one vertex on γ0 can send a charge to v.

Lemma 3.4

(i) Each ordinary interior monochromatic vertex u sends at least 2ci charges.

(ii) Each interior bichromatic vertex v receives at most 4(c+ 1)i+O(1) charges.

(iii) Each boundary (monochromatic or bichromatic) vertex v receives at most 2c(c + 2)i2 + O(i)

charges.

Proof:
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(i) Suppose u is defined by γ0 and γ1. Imagine moving a vertical sweep line ` from left to right,

starting at u. As ` passes through a bichromatic forward vertex on γ0 ∪ γ1 (w.r.t. u) while

(γ0, γ1, `) stays within range, the “counter” j(γ0, γ1, `) increases by 1 and a charge is sent from

u to that vertex. (On the other hand, as ` passes through a bichromatic backward vertex,

the counter decreases by 1.) As soon as (γ0, γ1, `) gets out of range, i.e., j(γ0, γ1, `) reaches

ci or ` passes through a boundary vertex on γ0 ∪ γ1, terminate the sweep. In the latter case,

ci − j(γ0, γ1, `) charges are sent from u to the boundary vertex. Thus, at least ci charges are

sent from u during this left-to-right sweep. Similarly, at least ci charges are sent during a

right-to-left sweep.

(ii) Suppose v is defined by red curve γ1 and blue curve γ2. By Observation 3.2, if v receives a charge

from a vertex defined by γ1 and a red curve γ0 below v, then m(γ0, γ1, `) ≤ (c + 1)i + δv + 1.

Thus, there are at most (c+1)i+δv+1 candidates for γ0 below v, and by a symmetric argument

at most (c + 1)i − δv + 1 candidates for γ0 above v, yielding a total of at most 2(c + 1)i + 2

charges received by v from vertices on γ1. Similarly, there are at most 2(c + 1)i + 2 charges

from vertices on γ2.

(iii) Suppose v is defined by γ1 and γ2. W.l.o.g., say γ1 is red. By Observation 3.2, j(γ0, γ1, `) ≥
m(γ0, γ1, `)− i−δv−1 for red curves γ0 below v. Thus, v receives at most the following number

of charges from vertices defined by γ1 and red curves below v:

b(c+1)i+δv+1c∑
m=0

min{ci− (m− i− δv − 1), ci} ≤ (i+ δv)(ci) + (bcic+ · · ·+ 1) +O(i)

≤ (i+ δv)(ci) +
c2i2

2
+O(i).

By a symmetric argument, the number of charges received by v from vertices defined by γ1 and

curves above v is at most (i− δv)(ci) + c2i2

2 +O(i), yielding a total of at most 2ci2 + c2i2 +O(i)

charges received by v from vertices on γ1. Similarly, there are at most 2ci2 +c2i2 +O(1) charges

from vertices on γ2. 2

By the above lemma, the total number of charges is at least 2ci(tmo
i −O(|Λi|)) (there are O(|Λi))

exceptional vertices) and is at most (4(c+ 1)i+O(1))tbi
i + (2c(c+ 2)i2 +O(i))(∆tmo

i + ∆tbi
i +O(ni)).

Dividing by 2ci, we get

tmo
i ≤

(
2 +

2

c
+O(1/i)

)
tbi
i + ((c+ 2)i+O(1))(∆tmo

i + ∆tbi
i ) +O(nii+ |Λi|).

We have thus obtained an inequality of the form stated in Theorem 2.5. There is just one (major!)

problem: the coefficient c2 of the tbi
i term here is greater than 2, regardless of the choice of c, but in

order for Corollaries 2.3 and 2.6 to yield any nontrivial bound for levels in 3-d, we need the coefficient

to be strictly less than 2.

3.2 Helpers

Despite the apparent problem, we will not abandon the above charging scheme but will amend it by

looking for places for improvement. Specifically, the following kinds of configurations (see Figure 4

(left)) help reduce our bound on the number of charges received:
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v

}≤ (c+ 1)i+ δv + 1

no intersection here
or no charge to v

γ0

γ2

γ1
v

u1

u2

Figure 4: (Left) A helper. (Right) An example where there are no helpers at v, but there are helpers

at u1 and u2.

Definition 3.5 Suppose v is a vertex defined by curves γ1 and γ2 and lies on the vertical line `. Let

γ0 be a curve with the same color as γ1.

• For a bichromatic interior vertex v, we say that (v, γ0) is a helper (at v) if

(B1) m(γ0, γ1, `) ≤ (c+ 1)i+ χv,γ0δv + 1, and

(B2) no intersection of γ0 and γ1 sends a charge to v.

• For a (monochromatic or bichromatic) boundary vertex v, we say that (v, γ0) forms ci −
j(γ0, γ1, `) helpers (at v) if the same conditions (B1) and (B2) hold.

By inspecting the proofs of Lemma 3.4(ii) and (iii), we immediately see that

Lemma 3.6

(i) Each interior bichromatic vertex v receives at most 4(c+1)i−[the number of helpers at v]+O(1)

charges.

(ii) Each boundary (monochromatic or bichromatic) vertex v receives at most 2c(c + 2)i2 −
[the number of helpers at v] +O(i) charges.

Is it always possible to find many helpers in an arrangement? A “canonical” example where there

are no helpers at a vertex v is shown in Figure 4 (right), but in this example one can find helpers at

nearby vertices. This suggests hope of a positive answer. . .

We now classify helpers into a few specific types. The list of definitions below is somewhat

elaborate, because of the desire to obtain better constants c1, c2 in our proof and to handle general

non-pseudoline curves.

Definition 3.7 Suppose u is an ordinary (not necessarily interior) monochromatic vertex defined

by curves γ0 and γ1, and v is a vertex defined by curves γ1 and γ2 and lies on the vertical line `.

• For an interior bichromatic vertex v, we say that (v, γ0) is a strong helper (from u) if

(C1) (γ0, γ1, `
′) is within range for all vertical lines `′ between u and v, and

(C2) v is backward w.r.t. u.

• For an interior bichromatic vertex v, we say that (v, γ0) is a moderate helper (from u) if
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(D1) (γ0, γ1, `) is within range, and

(D2) (γ0, γ1, `
′) is out of range for some vertical line `′ between u and v, and

(D3) m(γ0, γ1, `
′), j(γ0, γ1, `

′) ≤ c3i for all vertical lines `′ between u and v.

A moderate helper is further classified as a moderate forward or moderate backward helper

depending on whether v is forward or backward w.r.t. u.

• For an interior bichromatic vertex v, any helper (v, γ0) that is not strong or moderate are

classified as a weak helper.

• For a boundary vertex v, we say that (v, γ0) forms ci− j(γ0, γ1, `) moderate helpers (from u) if

(D1)–(D3) hold. These moderate helpers are classified as moderate forward helpers (regardless

of whether v is actually forward or backward w.r.t. u).

Remarks: Note that if (v, γ0) is a strong or moderate helper from u, then γ0 cannot cross γ1 between

u and v, because otherwise u would define a lens that is (c3i)-light (by condition (C1) or (D3)) and

would thus be exceptional for a sufficiently large c3 (like in Figure 3 (left), with “(c+2)i+1” replaced

by “c3i”). For a similar reason, (v, γ0) cannot be a strong or moderate helper from both a vertex u

left of v and another vertex u′ right of v (like in Figure 3 (right)). Nor can we have both a strong

or moderate helper (v, γ0) from a vertex u left of v, and v receiving a charge from another vertex u′

right of v.

It can then be checked that each helper (v, γ0) can indeed be only one of the classified types:

strong, moderate forward, moderate backward, and weak; and furthermore, a strong or moderate

helper is indeed a helper (because (B1) is implied by (C1) or (D1), and (B2) is implied by (C2) or

(D2)).

The following lemma is useful in further improving constants. It turns out that strong helpers

can not only reduce the number of charges received but also boost the number of charges sent.

Furthermore, an abundance of moderate backward helpers automatically imply an abundance of

moderate forward helpers.

Lemma 3.8

(i) Each ordinary interior monochromatic vertex u sends at least 2ci + [the number of strong

helpers from u] charges.

(ii) From each ordinary (not necessarily interior) monochromatic vertex u, the number of moderate

forward helpers is at least the number of moderate backward helpers.

Proof:

(i) This follows by inspecting the proof of Lemma 3.4(i). During the sweep for vertex u, when `

passes through a bichromatic backward vertex v on γ0 ∪ γ1, we get a strong helper at v from

u and the counter j(γ0, γ1, `) decreases by 1, allowing for one more subsequent increment (and

thus a charge to one more interior vertex) or a lower final value for j(γ0, γ1, `) (and thus an

extra charge to a boundary vertex).
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(ii) Perform the same left-to-right sweep starting at u, except this time the sweep is terminated

only when j(γ0, γ1, `) or m(γ0, γ1, `) exceeds c3i. The regions swept by ` during which (γ0, γ1, `)

is within range form a union of disjoint “windows”. Take one such window, excluding the initial

window containing u (there is no initial window if u is not an interior vertex). When ` passes

through a bichromatic forward (resp. backward) vertex v on γ0∪γ1 within this window, we get

a moderate forward (resp. backward) helper at v from u and the counter j(γ0, γ1, `) increases

(resp. decreases) by 1. At the right boundary of the window, j(γ0, γ1, `) reaches ci or ` passes

through a boundary vertex v on γ0 ∪ γ1. In the latter case, we get ci − j(γ0, γ1, `) moderate

forward helper at v. Thus, there are at least as many moderate forward helpers as moderate

backward helpers within each window. A similar argument holds for a right-to-left sweep. 2

Let Hstrong, Hfor, Hback, and Hweak denote the number of strong, moderate forward, moderate

backward, and weak helpers respectively.

By Lemmas 3.8(i) and 3.6, the total number of charges is at least 2ci(tmo
i −O(|Λi|))+Hstrong and is

at most (4(c+1)i+O(1))tbi
i +(2c(c+2)i2+O(i))(∆tmo

i +∆tbi
i +O(ni))−Hstrong−Hfor−Hback−Hweak.

Dividing by 2ci and using the fact that Hfor −Hback ≥ 0 by Lemma 3.8(ii), we get

tmo
i ≤

(
2 +

2

c
+O(1/i)

)
tbi
i + ((c+ 2)i+O(1))(∆tmo

i + ∆tbi
i ) +O(nii+ |Λi|)

− Hstrong + (0.5− λ)Hfor + (0.5 + λ)Hback + 0.5Hweak

ci
∀λ ≥ 0. (2)

3.3 A More Sophisticated Charging Scheme

We now prove the abundance of helpers by devising a second charging scheme, this time, with charges

sent from interior bichromatic vertices to helpers. Let α > 2/c and β ∈ (α, 1 − α) be constants, to

be set later.

Sweeping. Take an ordinary interior bichromatic vertex v, defined by red curve γ1 and blue curve

γ2. W.l.o.g., say γ1 is below γ2 slightly to the left of v (the other case is symmetric). Let h be the

number of helpers of the form (v, γ) with γ red and below v, or blue and above v.

Move a vertical sweep line ` from right to left, starting at v. Maintain the following counters (see

Figure 5 (left)):

• Let j1 (resp. j2) be the number of blue (resp. red) curves between γ1 and γ2.

• Let mσ (resp. m′σ) be the number of bichromatic forward (resp. backward) vertices on γσ
between ` and v (σ ∈ {1, 2}). Let m = m1 +m2.

• Let pσ (resp. p′σ) be the number of monochromatic forward (resp. backward) vertices on γσ
between ` and v.

As ` passes through a bichromatic forward vertex on γ1 ∪ γ2, the counter m increases by 1. As soon

as ` hits a boundary vertex on γ1 ∪ γ2 or m reaches (1− α)ci− h− 1, terminate the sweep.

Observation 3.9 j1 +m′1, j2 +m′2 ≤ m+ i+ δv + 1 < ci.
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{j1 < ci

}≤ (c+ 2)i+ 1 }≤ c3i

v

u
w

γ0
γ1

γ2

j1{
p1

m1

j2{

m′1
p′1

p2

m2

p′2
m′2

γ1

γ2

v

`

}< ci

`

Figure 5: The more sophisticated charging scheme. (Left) Counters jσ,mσ,m
′
σ, pσ, p

′
σ. (Right)

Case 1: a strong or moderate backward helper (w, γ2) from u.

Proof: By the definition of levels, m2 +p′2−m′2−p2 ≥ δγ2∩`−δv−1. Thus, j1 = m1 +p2−m′1−p′2 ≤
m1 +m2 −m′1 −m′2 + δv − δγ2∩` + 1, Since δv, δγ2∩` ∈ [−i,+i], we have j1 +m′1 ≤ m+ i+ δv + 1 ≤
(1− α)ci+ 2i < ci. The other inequality for j2 +m′2 is similar. 2

Remark : Note that during the right-to-left sweep, γ1 cannot cross γ2, because otherwise v would

define a lens that is (ci)-light (by Observation 3.9) and would thus be exceptional.

Actually, in the above sweep, ` cannot hit a boundary vertex on γ1 ∪ γ2. To see this, suppose

` reaches a boundary vertex w on γ1 (the other case is similar). For at least (c + 1)i + δv + 1 − h
red curves γ below v, some intersection yγ of γ and γ1 sends a charge to v (by the definition of

helpers and the number h); and yγ must be to the right of w (in order for yγ to send a charge to

v). Now, γ must cross the vertical line segment between w and γ2 ∩ `, or cross γ2 between γ2 ∩ `
and v, because otherwise γ would cross γ1 between w and yγ , and yγ would define a lens that is

(ci)-light (since j1 and j2 always stay below ci by Observation 3.9) and would thus be exceptional.

It follows that j2 + m′2 reaches at least (c + 1)i + δv + 1 − h, and by Observation 3.9, m reaches at

least ci− h > (1− α)ci− h− 1: a contradiction.

Charging. For each of the h helpers of the form (v, γ) with γ red and below v, or blue and above

v, as initialization, v sends 1 unit of charge to the helper.

Suppose ` passes through a forward interior bichromatic vertex w on γ1 ∪ γ2. W.l.o.g., say w is

defined by γ1 and a blue curve γ0 (the other possibility is similar). The heart of the proof lies in the

following case analysis (see Figures 5 and 6):

Lemma 3.10 At least one of the following cases must hold:

• Case 0: w is an exceptional vertex.

• Case 1: (w, γ2) is a strong or moderate backward helper.

• Case 2: (v, γ0) is a strong, moderate backward, or weak helper.

• Case 3: At some vertical line `′ between w and v, we have γ0 below γ1, and there are more

than ci blue curves or more than (c+ 2)i+ 1 red curves between γ0 and γ1.
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v

≤ ci}

γ2

γ0

w

γ1

v

> ci}{≥ (c+ 1)i+ δv + 1
w

γ0

γ1

γ2

zγyγ γ

m1

`′

`

− h− j2 −m′2

Figure 6: The more sophisticated charging scheme, continued. (Left) Case 2: a strong, moderate

backward, or weak helper (v, γ0). (Right) Case 3: strong helpers (zγ , γ1) from yγ for many γ’s.

Proof: Suppose that Case 3 does not hold. Then at every vertical line `′ between w and v, if γ0

is below γ1, there are at most ci blue curves and at most (c+ 2)i+ 1 red curves between γ0 and γ1.

In particular, if γ0 is below γ1 at `, there are at most ci ≤ (c+ 1)i+ δv + 1 blue curves between γ0

and γ1 at `.

We may assume that γ0 and γ1 do not cross between w and v (and thus γ0 is indeed below γ1 at

`), because otherwise w would define a lens that is ((c+ 2)i+ 1)-light and we would be in Case 0.

If v receives a charge from a vertex u on γ0, or if (v, γ0) is a moderate forward helper from u,

then (w, γ2) is a strong or moderate backward helper from u and we are in Case 1 ((D1) and (D3)

hold since j1 and j2 stay below ci by Observation 3.9, as one can see from Figure 5 (right) for a

sufficiently large c3 > 2c+ 2). On the other hand, if (v, γ0) is a strong, moderate backward, or weak

helper, then we are in Case 2. 2

Our charging scheme is as follows:

• In Case 0, v sends 1 unit of charge to the vertex w itself.

• In Case 1, v sends 1 unit of charge to the helper (w, γ2).

• In Case 2, v sends 1 unit of charge to the helper (v, γ0).

• In Case 3, note that for at least (c+1)i+ δv +1−h red curves γ below v, some intersection yγ
of γ and γ1 sends a charge to v (by definition of helpers and the number h). If yγ is to the right

of w, then γ must cross the vertical line segment between w and γ2 ∩ `, or cross γ2 between

γ2 ∩ ` and v, because otherwise γ would cross γ1 between w and yγ , and yγ would define a lens

that is (ci)-light (since j1 and j2 always stay below ci by Observation 3.9) and would thus be

exceptional. Thus, by excluding at most j2 +m′2 candidates for γ, we can ensure that yγ is to

the left of w.

Since yγ sends a charge to v, there are at most ci blue curves and at most (c + 2)i + 1 red

curves between γ and γ1 at `′ (by (A1), with Observation 3.2). In particular, γ must be above

γ0 at `′, due to the condition stated in Case 3. Thus, some intersection zγ of γ and γ0 must

be backward w.r.t. yγ , and so (zγ , γ1) is a strong helper from yγ (see Figure 6 (right); condition
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(C1) holds for this helper because yγ sends a charge to v). The number of candidates for γ is

at least (c+ 1)i+ δv + 1− h− j2 −m′2 ≥ ci− h−m by Observation 3.9. We make v send 1
βci

units of charge to each such strong helper.

This completes the description of the right-to-left sweeping and charging process for v. We

perform a similar process for v, this time, sweeping from left to right.

Analysis. Each ordinary interior bichromatic vertex v sends at least the following number of

charges in the right-to-left sweep (including the h initial charges):

h +

b(1−α)ci−h−1c∑
m=0

min

{
1, (ci− h−m)

1

βci

}

≥


h+ [(1− β)ci− h] + bβcic+···+bαcic

βci −O(1) if h ≤ (1− β)ci

h+ (ci−h)+···+bαcic
βci −O(1) if (1− β)ci < h ≤ (1− α)ci

h if h > (1− α)ci

≥


(1− β)ci+ (β2−α2)c2i2

2βci −O(1) if h ≤ (1− β)ci

h+ (ci−h)2−α2c2i2

2βci −O(1) if (1− β)ci < h ≤ (1− α)ci

h if h > (1− α)ci

It can be checked that this last expression is monotone increasing in h (ignoring the O(1) terms), and

so the number of charges is lower-bounded by the value in the first case, i.e.,
(
1− β

2 −
α2

2β

)
ci−O(1).

Therefore, v sends a total of at least (2− β − α2/β)ci−O(1) charges in both sweeps.

In regards to the number of charges received:

• Each exceptional vertex w receives O(i) charges due to Case 0, since m1,m2 ≤ (1 − α)ci

implies that given w, there are O(i) candidates for γ2, and thus for v.

• Each strong helper receives 1 charge initially, at most 1 charge due to Case 1, at most 1

charge due to Case 2, and at most (1 − α)ci 1
βci = (1 − α)/β charges due to Case 3, since

m1,m2 ≤ (1 − α)ci implies that given (zγ , γ1), there are at most (1 − α)ci candidates for γ2,

and thus for v.

• Each moderate forward helper receives 1 charge during initialization and no more afterwards.

• Each moderate backward helper receives 1 charge during initialization, at most 1 charge due

to Case 1, and at most 1 charge due to Case 2.

• Each weak helper receives 1 charge during initialization, and at most 1 charge due to Case 2.

To summarize, we have shown that the total number of charges in the above scheme is at least

((2 − β − α2/β)ci − O(1))(tbi
i − O(|Λi|)) and is at most (3 + (1 − α)/β)Hstrong + Hfor + 3Hback +

2Hweak +O(i|Λi|). Since 3 + (1− α)/β > 4,

Hstrong + 0.25Hfor + 0.75Hback + 0.5Hweak ≥
(

2− β − α2/β

3 + (1− α)/β
ci−O(1)

)
(tbi
i −O(|Λi|))−O(i|Λi|).
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The coefficient 2−β−α2/β
3+(1−α)/β exceeds 0.310102 by setting α = 0.15505 and β = 0.53485. (Note that

indeed β ∈ (α, 1− α).)

So finally, inequality (2) with λ = 0.25 yields

tmo
i ≤

(
2 +

2

c
− 0.310102 +O(1/i)

)
tbi
i + ((c+ 2)i+O(1))(∆tmo

i + ∆tbi
i ) +O(nii+ |Λi|).

The coefficient of the tbi
i term here is strictly less than 2 for a sufficiently large choice of the

parameter c. The proof of Theorem 2.5 is now complete. For Corollaries 2.3 and 2.6, we have

c0 = 3(c+2)
0.310102−2/c , which is below 286.97 by setting c = 13.8312, with c1 = 15.8312 and c2 < 1.834499.

(Note that indeed α > 2/c.) 2

4 Final Remarks

Just like in earlier work on levels in arrangements of curves, we have shown how a nontrivial cutting

number bound translates to a nontrivial level bound for any family of surfaces in 3-d. In light of this

result, we reiterate the following open problem [7]: do general fixed-degree algebraic curves in the

plane have a subquadratic cutting number? If so, a subcubic level bound would immediately follow

for graphs of fixed-degree bivariate polynomial functions in 3-d.

Perhaps it might be possible to obtain slight improvements on the constants in the 2-d main

inequality by lengthening the proof with an even more detailed case analysis, but it would be more

desirable to find a simpler yet smarter charging argument that could yield more drastic improvements.

An intriguing question is to determine what is the smallest value c2 attainable in the 2-d inequality.

Alternatively, can one prove the 3-d inequality directly?

It is doubtful that our approach could improve known upper bounds for levels for planes (i.e.,

the k-set problem) in 3-d. A more intriguing direction to pursue would be the case of hyperplanes

in higher dimensions, where the previous upper bounds are very weak. Unfortunately, our reduction

to 2-d fails to yield o(nd) bounds as soon as the dimension d reaches 4, because there could be

as many bichromatic vertices (tbi
i ) as monochromatic vertices (tmo

i ) on average in the resulting 2-d

subarrangements, and so we need the coefficient c2 to be strictly less than 1—an impossible demand

(as the example in Figure 1 indicates). Still, it is possible to adapt the approach of this paper to

obtain new k-sensitive upper bounds for hyperplanes in 4-d for a certain range of k values, as the

author has shown in a recent paper [11]. New k-sensitive upper bounds might also be possible in

higher dimensions if we could somehow get c2 closer to 1. In 2-d and 3-d, our approach has been

shown [11] to lead to new results for a bichromatic version of the k-set problem.
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