
Reducing 3SUM to Convolution-3SUM

Timothy M. Chan∗ Qizheng He∗

Abstract

Given a set S of n numbers, the 3SUM problem asks to

determine whether there exist three elements a, b, c ∈ S such

that a + b + c = 0. The related Convolution-3SUM problem

asks to determine whether there exist a pair of indices i, j

such that A[i] + A[j] = A[i + j], where A is a given array of

n numbers.

When the numbers are integers, a randomized reduction

from 3SUM to Convolution-3SUM was given in a seminal

paper by Pǎtraşcu [STOC 2010], which was later improved

by Kopelowitz, Pettie, and Porat [SODA 2016] with an

O(logn) factor slowdown. In this paper, we present a simple

deterministic reduction from 3SUM to Convolution-3SUM

for integers bounded by U . We also describe additional

ideas to obtaining further improved reductions, with only a

(log logn)O(1) factor slowdown in the randomized case, and

a logO(1) U factor slowdown in the deterministic case.

1 Introduction

The main topic of this paper is the well-known 3SUM
problem: given a set S of n numbers, determine whether
there exist three elements a, b, c ∈ S such that a+b+c =
0. (An alternative, equivalent variant is to determine
the existence of a, b, c ∈ S with a + b = c.) Find-
ing an O(n2)-time algorithm is a standard textbook
exercise. A popular conjecture is that 3SUM has no
truly subquadratic (n2−Ω(1)) time algorithm, even when
the input numbers are integers (a slightly stronger con-
jecture states that the problem remains hard even for
integers bounded by nO(1)). The current best algo-
rithm for 3SUM for arbitrary real numbers has a de-
terministic time bound of O((n2/ log2 n)(log log n)O(1)),
as given by Chan [5], building on the breakthrough by
Grönlund and Pettie [9]. For integers, a randomized
O((n2/ log2 n)(log logn)2)-time algorithm was known
much earlier, by Baran, Demaine, and Pǎtraşcu [4], us-
ing hashing and bit-packing techniques.

The 3SUM problem has received considerable at-
tention and has been at the center of recent activities
surrounding fine-grained complexity [12], since (polyno-
mial) conditional lower bounds on the time complexity

∗Department of Computer Science, University of Illinois at

Urbana-Champaign, USA, {tmc,qizheng6}@illinois.edu. Work
supported in part by NSF Grant CCF-1814026.

of problems can be established by giving (efficient) re-
ductions from 3SUM, if one believes in the above con-
jecture. An early paper by Gajentaan and Overmars [8]
described the first (real-)3SUM-hardness results for a
long list of problems in computational geometry; many
more have been found since. More recently, a number of
integer-3SUM-hardness results have been discovered for
problems from other areas, including graph algorithms
(for example, triangle enumeration [11, 10]), dynamic
data structures (for example, dynamic subgraph con-
nectivity, dynamic reachability, and dynamic maximum
matching [11, 10, 1]), and string algorithms (for exam-
ple, local alignment [2] and histogram indexing [3]).

Following the seminal work by Pǎtraşcu [11],
many integer-3SUM-hardness results were established
by reductions via an intermediate problem called
Convolution-3SUM:1 given an array A of n numbers, de-
termine whether there exist i, j such that A[i] +A[j] =
A[i+ j]. Convolution-3SUM is easily reducible to 3SUM,
and may be viewed as a more “structured” variant of
3SUM, which is more convenient to work with; for ex-
ample, Convolution-3SUM is more trivially solvable in
O(n2) time.

In one part of his paper, Pǎtraşcu [11] gave a simple
randomized reduction from 3SUM to Convolution-3SUM
for integers, showing that 3SUM and Convolution-3SUM
are “subquadratic-time equivalent”: if Convolution-

3SUM can be solved in O(n2

f(n·f(n))2) time, then 3SUM

can be solved in O(n2

f(n)) randomized (Las Vegas) time.

For example, if Convolution-3SUM for integers could
be solved in O(n2−ε) time, then 3SUM for integers

could be solved in O(n2−ε/2+O(ε2)) randomized time.
Kopelowitz, Pettie, and Porat [10] refined Pǎtraşcu’s
result and gave a more efficient randomized reduction
with only an O(log n) factor slowdown: if Convolution-
3SUM for integers can be solved in T0(n) time, then
3SUM for integers can be solved in O(T0(n) log n) ran-
domized time.

Two questions remain: (i) can the reduction
be made deterministic, and (ii) can the slowdown

1 The earliest reference we can find to a problem simi-
lar to Convolution-3SUM is from a 2005 blog post by Jeff Er-

ickson: https://3dpancakes.typepad.com/ernie/2005/08/easy_
but_not_th.html.

Copyright c© 2020 by SIAM
Unauthorized reproduction of this article is prohibited

https://3dpancakes.typepad.com/ernie/2005/08/easy_but_not_th.html
https://3dpancakes.typepad.com/ernie/2005/08/easy_but_not_th.html

be lowered further? As mentioned, many integer-
3SUM-hardness reductions go through Convolution-
3SUM (though to be fair, Kopelowitz et al. [10] showed
how to avoid it in some reductions), so these basic ques-
tions are of interest if one cares about proving determin-
istic conditional hardness results, and about the efficien-
cies of reductions. On the first question, Kopelowitz et
al. wrote: “. . . it would be surprising if our construc-
tion can be efficiently derandomized. . . ”. On the sec-
ond, they wrote: “We leave it as an open problem to
show that 3SUM and Convolution-3SUM are asymptot-
ically equivalent, without the O(log n)-factor gap.” In
this paper, we make progress on both questions.

In Section 3, we present an alternative reduction
from 3SUM to Convolution-3SUM which is deterministic:
for example, if Convolution-3SUM could be solved in de-
terministic O(n2−ε) time, our proof gives an algorithm

for 3SUM running in deterministic O(n2− ε
5+ε logO(1) U)

time, assuming that the input numbers are integers
bounded by U . The extra logO(1) U factor is small when
the universe size U is polynomially bounded (and as
mentioned, the 3SUM conjecture is generally believed
to be true even for the case of U = nO(1)). The reduc-
tion is simple, and fit for presentation in a classroom.

In Section 4, we present a randomized (Las
Vegas) reduction from 3SUM to Convolution-3SUM
that further improves Kopelowitz et al.’s result,
with a much smaller (log log n)O(1) factor slowdown.
More precisely, if Convolution-3SUM can be solved
in O(n2/f(n)) time, then 3SUM can be solved in
O((n2/f(n))(log log f(n))O(1)) randomized time. The
result is obtained by a simple recursive algorithm, al-
though the analysis of the recurrence gets a bit tricky
(but is nevertheless interesting).

Finally, in Section 5, we combine our recursive
approach with extra derandomization ideas to obtain
a still better deterministic reduction from 3SUM to
Convolution-3SUM, with only a logO(1) U factor slow-
down. The resulting algorithm gets a little more com-
plicated, however.

We should note that reductions can be viewed
not just as conditional hardness results, but also as
potential tools for deriving positive results. If one
were to aim for an improved integer-3SUM algorithm
with, say, O((n2/ log3 n)(log logn)c) expected time, our
randomized reduction suggests that it is sufficient to
concentrate on solving the simpler Convolution-3SUM
problem in O((n2/ log3 n)(log log n)c−ε) time.

2 Preliminaries

Problem statements. There are multiple similar ver-
sions for 3SUM in the literature. In the main text of this
paper we will use the following definition, where the in-

put numbers are from three sets. In the appendix, we
will show that this is equivalent to the standard version
with one set:

Definition 2.1. (3SUM) Given three sets of n integers
S1, S2 and S3, determine whether there exist three
elements a ∈ S1, b ∈ S2, c ∈ S3 such that a+ b+ c = 0.

The analogous 2SUM problem (testing if there exist
two elements a ∈ S1 and b ∈ S2 with a + b = 0) can
easily be solved in O(n) time after sorting.

We will use the following version of the Convolution-
3SUM problem:

Definition 2.2. (Convolution-3SUM) Given three ar-
rays of n integers A1, A2 and A3, determine whether
there exist indices i, j such that A1[i]+A2[j] = A3[i+j].

It is easy to reduce Convolution-3SUM to 3SUM
without increasing the time complexity: assuming that
all array elements are nonnegative integers, we can just
let S1, S2, S3 contain numbers of the form i + 2nA1[i],
j + 2nA2[j], and −k − 2nA3[k] respectively. We are
interested in reducing 3SUM to Convolution-3SUM.

Hashing. Let [U] := {0, 1, . . . , U − 1}. Our reductions
will make use of a family H of hash functions from
[U]→ [m] satisfying the following properties:

• almost linearity [10]: For any hash function h ∈ H,
and for any pair of integers x, y ∈ [U], we have
h(x)+h(y) = h(x+y)+∆ for some ∆ ∈ Ch, where
Ch is a set of constant size.

• d-universality : For any pair of integers x, y ∈ [U]
with x 6= y, Prh∈H[h(x) = h(y)] ≤ d

m .

Overview of Pǎtraşcu’s reduction. We briefly re-
view Pǎtraşcu’s randomized reduction from 3SUM to
Convolution-3SUM [11]. Intuitively, if we have a linear
hash function h, i.e., h(x) + h(y) = h(x + y) for every
x and y, then we can place each 3SUM element x ∈
Si (i ∈ {1, 2}) in the location Ai[h(x)] of Convolution-
3SUM and the negation of each element x ∈ S3 in the
location A3[h(−x)]. If there exist a ∈ S1, b ∈ S2, c ∈ S3

with a+ b+ c = 0, then h(a) + h(b) = h(−c). However,
we need to deal with two issues: first, we do not have
linear hash function; second, there could be collisions,
i.e. h(x1) = h(x2) for x1 6= x2.

The first issue is resolved by using almost linear
hash functions, as defined above. For any fixed x and y,
there are only constant number of possibilities for h(x+
y). Pǎtraşcu uses Dietzfelbinger et al.’s family [6, 7] of
hash functions h(x) = b(a · x mod 2w)/2w−sc, where a
is a random odd number in [2w], U = 2w, and m = 2s.
This family is known to be almost linear and 2-universal.

Copyright c© 2020 by SIAM
Unauthorized reproduction of this article is prohibited

To deal with the second issue, we let each location of Ai
be a bucket, which may contain multiple elements. We
then solve multiple Convolution-3SUM instances, where
in each instance, we pick out (at most) a single element
from each bucket.

A more naive hash family. It is not easy to efficiently
derandomize Dietzfelbinger et al.’s hash functions [6],
so in order to get a deterministic reduction, we use a
simpler hash function, by just taking the input number
modulo a random prime. (This idea is of course not
new.)

Lemma 2.3. The family of hash functions h(x) =
x mod p, over a uniform random prime p selected in
[m2 ,m), is almost linear and O(logU)-universal.

Proof. It is easy to verify that this hash function is
almost linear, because either h(x) + h(y) = h(x + y)
(when h(x) + h(y) < p), or h(x) + h(y) = h(x+ y) + p.

From the prime number theorem we know there are
Θ(m

logm) primes in [m2 ,m). For any pair of integers

x, y ∈ [U] where x 6= y, there are only O(logm U) =
O(logU

logm) distinct prime factors of x−y, so Prh∈H[h(x) =

h(y)] = Pr[(x − y) mod p = 0] ≤ O(logU
logm)

Θ(m
logm) = O(logU

m).

Therefore the hash family is O(logU)-universal.

Bucket size. Pǎtraşcu’s reduction needs an additional
“load-balancing” property (which was shown by Baran
et al. [4] for any exactly 1-universal hash family, in
particular, for one variant of Dietzfelbinger’s hash fam-
ily [6]), stating that if we hash n elements to m buckets,
then the expected number of elements in buckets with
size > 3n

m is at most O(m). Our reduction does not
need this property—we only need the following simpler
lemma on the bucket sizes, whose proof follows from an
easy application of Markov’s inequality. The lemma al-
lows m > n (i.e., having more buckets than elements),
which will be useful later in some of our reductions.

Lemma 2.4. Let H be a family of hash functions from
[U] → [m] which is d-universal, and we randomly take
h ∈ H. Let S be a set of N integers in [U]. For each
element x ∈ S, we hash x to the bucket h(x). We call
an element x bad, if the size of x’s bucket > t, where t
is a parameter (here the bucket size excludes x itself).
Then the expected number of bad elements x in S is at
most dN

m ·
1
t ·N .

Proof. Fix an element x ∈ S. For any other ele-
ment y ∈ S with x 6= y, Prh∈H[h(x) = h(y)] ≤
d
m by d-universality. By linearity of expectation,
E[size of x’s bucket] =

∑
y∈S,y 6=x Pr[h(x) = h(y)] ≤

(N − 1) · dm ≤
dN
m .

By Markov’s inequality, the probability of an el-
ement x being bad is at most Pr[size of x’s bucket >

t] ≤ E[size of x’s bucket]
t ≤ dN

m · 1
t . Therefore the ex-

pected number of bad elements x in S is at most
Pr[size of x’s bucket > t] ·N = dN

m ·
1
t ·N .

3 Simple Deterministic Reduction

We now present a simple deterministic reduction from
3SUM to Convolution-3SUM. We proceed like in
Pǎtraşcu’s randomized reduction, but we choose the
more naive hash function h(x) = x mod p for a random
prime p in [m2 ,m), where m = dn

B for a parameter B to
be set later, and d = O(logU). Throughout the paper,

we let the Õ(·) notation conceal logO(1) U factors.
Assume Convolution-3SUM can be solved in deter-

ministic O(n2−ε) time. Apply Lemma 2.4 to each
input set Si, with d = O(logU), m = dn

B , N =
n, and another parameter t to be set later. Then
the expected number of bad elements (as defined in
Lemma 2.4) is at most dN

m · 1
t · N = Bn

t . By
Markov’s inequality, Pr {# of bad elements in Si ≥
4 · E[# of bad elements in Si]} ≤ 1

4 , so there must
exist a hash function h ∈ H (which corresponds to a
prime p) such that for each of the three sets Si, the
number of bad elements is at most 4 times the expec-
tation. We can find such a hash function naively by
trying all O(m

logm) possible primes in the range [m2 ,m)

(which can be generated in Õ(m) time) and computing
the bucket sizes and the number of bad elements, which

takes O(m
logm) ·O(n) = Õ(n

2

B) time.
To determine whether there exist a ∈ S1, b ∈ S2

and c ∈ S3 such that a+ b+ c = 0, we need to consider
two cases:

• Case I. If any of a, b, or c is a bad element, we

can solve the problem in O(Bnt) · Õ(n) = Õ(Bn
2

t)
time, by enumerating each bad element and solving
2SUM in Õ(n) time to find the other two elements.

• Case II. For solutions that involve three good
elements, we follow Pǎtraşcu’s approach: for any
triple of indices i, j, k ∈ [t], we search for solutions
where a is the i-th element in its bucket, b is the j-th
element, and c is the k-th element, by invoking the
Convolution-3SUM algorithm on O(m) numbers.
This reduces to O(t3) instances of Convolution-
3SUM, so it takes O(t3 · m2−ε) = Õ(t3 · (nB)2−ε)
time.

The total running time is

Õ

(
n2

B
+
Bn2

t
+ t3 ·

(n
B

)2−ε
)
.

Copyright c© 2020 by SIAM
Unauthorized reproduction of this article is prohibited

By setting t = B2 to balance the first two terms,

the bound becomes Õ(n
2

B + B4+εn2−ε). By setting

B = n
ε

5+ε , the running time is Õ(n2− ε
5+ε).

Theorem 3.1. If Convolution-3SUM can be solved in
deterministic O(n2−ε) time, where ε > 0 is a constant,
then we can solve 3SUM in deterministic Õ(n2− ε

5+ε)
time.

4 Randomized Reduction

Now we present our randomized reduction from 3SUM
to Convolution-3SUM. Let the size of the input sets S1,
S2 and S3 be n

k1
, n
k2

and n
k3

, respectively.

A simple randomized recursive algorithm. Let
t1, t2, t3 and B be parameters to be set later. We
use Dietzfelbinger et al.’s hash function [6], and apply
Lemma 2.4 to Si, with d = 2, m = 8n

B , N = n
ki

, and
t = ti. Then the expected number of bad elements in Si
(as defined in Lemma 2.4) is at most dN

m ·
1
t ·N ≤

Bn
4tik2i

.

We repeatedly choose the hash function indepen-
dently, until the number of bad elements is at most 4
times the expectation for each of the three sets S1, S2

and S3. By a union bound, we succeed with probability
≥ 1

4 , so with high probability we only need to repeat
O(log n) times.

To determine whether there exist a ∈ S1, b ∈ S2,
c ∈ S3 where a + b + c = 0, we need to consider two
cases:

• Case I. If any of a, b, or c is a bad element—say,
a is bad—then instead of directly solving this case,
we recursively solve 3SUM on the following three
sets: S′1 containing all bad elements in S1 (which
has size at most Bn

t1k21
), S2, and S3.

• Case II. For solutions that involve three good
elements, we can reduce to O(t1t2t3) instances of
Convolution-3SUM on O(m) numbers, with running

time O(t1t2t3
(
n
B

)2−ε
).

When the size of one of the sets Si drops below a
constant, we can stop the recursion and directly solve
the problem in linear time (by reducing to 2SUM).

The total running time satisfies the following
recurrence with high probability:

T

(
n

k1
,
n

k2
,
n

k3

)
≤ T

(
Bn

t1k2
1

,
n

k2
,
n

k3

)
+

T

(
n

k1
,
Bn

t2k2
2

,
n

k3

)
+

T

(
n

k1
,
n

k2
,
Bn

t3k2
3

)
+

O

(
t1t2t3

(n
B

)2−ε
+ n log n

)
.

It remains to set the parameters and solve the recur-
rence.

Solving the recurrence: rough analysis. One sim-
ple choice of the parameters is to set t1 = t2 = t3 = 2
and B = 1. Then the recurrence simplifies to:

T

(
n

k1
,
n

k2
,
n

k3

)
≤ T

(
n

2k2
1

,
n

k2
,
n

k3

)
+

T

(
n

k1
,
n

2k2
2

,
n

k3

)
+

T

(
n

k1
,
n

k2
,
n

2k2
3

)
+

O(n2−ε).

Observe that in the recursion, the parameters k1,
k2 and k3 grow rapidly. To be precise, define the
sequence d0 = 1, di+1 = 2d2

i ; then di ≥ 22i−1

. Let
h′ be the smallest number such that dh′ ≥ n; then
h′ = O(log log n). There are h ≤ 3h′ = O(log logn)
levels in the recursion tree, so there are at most 3h =
logO(1) n nodes in the recursion tree. At each node, the
cost is O(n2−ε). Therefore, the total running time is

O(n2−ε logO(1) n) (with high probability).

Solving the recurrence: refined analysis. We will
now reduce the extra logO(1) n factor by a more clever
choice of parameters.

First permute indices so that k1 ≥ k2 ≥ k3. Let
δ ∈ (0, 1) be a constant, and s = log log n. Set t1 = s,
t2 = s, t3 = sB and B = kδ2.

The total running time satisfies the following recur-
rence:

T

(
n

k1
,
n

k2
,
n

k3

)
≤ T

(
n

sk2−δ
1

,
n

k2
,
n

k3

)
+

T

(
n

k1
,

n

sk2−δ
2

,
n

k3

)
+

T

(
n

k1
,
n

k2
,

n

sk2−δ
3

)
+

O

(
s3n2−ε

k
δ(1−ε)
2

)
.

(Note that in upper-bounding the function, we have
replaced sk2

3 with sk2−δ
3 in the third term.)

To analyze the recurrence, this time we define the
sequence d0 = 1, di+1 = sd2−δ

i ; then di ≥ s(2−δ)i−1

.
Let h′ be the smallest number such that dh′ ≥ n; then
h′ = O(log2−δ logs n). There are h ≤ 3h′ = O(log log n)
levels in the recursion tree.

For each node at the j-th level of the recursion tree,
we have k1 = di, k2 = di′ , k3 = di′′ , for some indices
i ≥ i′ ≥ i′′ with i + i′ + i′′ = j. We label such a node
by the triple (i, i′, i′′). The number of nodes labeled

Copyright c© 2020 by SIAM
Unauthorized reproduction of this article is prohibited

(i, i′, i′′) in the recursion tree is at most
(
j
i′

)(
j−i′
i′′

)
. We

know k2 = di′ , so k2 ≥ s(2−δ)i
′−1

, and the cost at a node

labeled (i, i′, i′′) is O

(
s3n2−ε

k
δ(1−ε)
2

)
= O

(
n2−ε

s(2−δ)i
′−1δ(1−ε)−3

)
.

The total cost over all nodes in the recursion tree is
bounded by the sum

h∑
j=0

j/2∑
i′=0

i′∑
i′′=0

(
j

i′

)(
j − i′

i′′

)
O

(
n2−ε

s(2−δ)i′−1δ(1−ε)−3

)

≤
h∑
j=0

j/2∑
i′=0

j2i′+1O

(
n2−ε

s(2−δ)i′−1δ(1−ε)−3

)

≤ n2−ε ·
h/2∑
i′=0

O

(
h2i′+2

s(2−δ)i′−1δ(1−ε)−3

)

≤ n2−ε ·
h/2∑
i′=0

O(log log n)2i′+2−(2−δ)i
′−1δ(1−ε)+3

because s = log log n and h = O(log log n). The first
O(1) terms in the summation dominate the running
time, because the exponent decreases rapidly towards
−∞. So the total running time is O(n2−ε(log log n)O(1))
(with high probability).

Theorem 4.1. If Convolution-3SUM can be solved in
randomized (Las Vegas) O(n2−ε) time, where ε > 0 is a
constant, then we can solve 3SUM in randomized (Las
Vegas) O(n2−ε(log log n)O(1)) time.

With more calculations, one can give explicit
bounds on the exponent of the (log log n)O(1) factor. For
example, as ε approaches 0, it is possible to show that
the exponent approaches 3 by a more careful choice of
parameters.

More generally, we may consider the case when

Convolution-3SUM takes O(n2

f(n)) time for some function

f(n). The analysis can be modified as follows.
We set parameters t1, t2, t3, B as in the above

refined analysis, but with s = log log f(n). Also, when

we have reached nodes at level ĥ = c0 log log f(n) for
some constant c0, we stop recursion and directly solve
3SUM at those nodes by a brute-force method, i.e.,
enumerating each element in the smallest set, then
reducing to 2SUM. At each of those nodes, we know

the smallest set S1 has size n
k1

, where k1 ≥ s(2−δ)
ĥ
3
−1

≥
f(n)2 for a sufficiently large constant c0.

By a similar argument to the above refined analysis,
the total running time for the nodes at level up to ĥ in

the recursion tree is O(n2

f(n) (log log f(n))O(1)), assuming

that n2

f(n)/n
1+ρ is monotonically increasing for some

constant ρ > 0.

The brute-force algorithm for each node at level ĥ

takes O(nk1 · n) time, and there are at most O(3ĥ) ≤
(log f(n))O(1) such nodes, so the total cost at those

nodes is O(3ĥ · n
f(n)2 · n) = o(n2

f(n)). Combining

these two parts, we obtain the total running time

O(n2

f(n) (log log f(n))O(1)) (with high probability).

Theorem 4.2. If Convolution-3SUM can be solved

in randomized (Las Vegas) O(n2

f(n)) time, then

we can solve 3SUM in randomized (Las Ve-

gas) O(n2

f(n) (log log f(n))O(1)) time, assuming that
n2

f(n)/n
1+ρ is monotonically increasing for some

constant ρ > 0.

As a special case, if f(n) = logO(1) n (as in the
state-of-the-art algorithms), the total running time is

O(n2

f(n) (log log log n)O(1)).

We leave open the question of whether the remain-
ing (log log f(n))O(1) factor could be removed (which
seems difficult with our method).

5 Improved Deterministic Reduction

A derandomized recursive algorithm. Now we
improve the running time of the deterministic reduction,
by using the recursive algorithm in Section 4. Set t1 =
t2 = t3 = 8B, and use the hash function h(x) = x mod p
for a random prime p in [m2 ,m). Apply Lemma 2.4 to

Si, with d = O(logU), m = dn
B , N = n

ki
, and t = ti.

Then the expected number of bad elements in Si (as
defined in Lemma 2.4) is at most dN

m ·
1
t ·N ≤

n
8k2i

. At

each node of the recursion, by union bound there exist
a prime p ensuring the number of bad elements is at
most 4 times the expectation for each of the three sets
S1, S2 and S3, and we can find p naively by trying all

primes in Õ(mn) = Õ(n
2

B) time. The cost of solving

the Convolution-3SUM instances is Õ(t1t2t3(nB)2−ε) =

Õ(B1+εn2−ε). The total running time thus satisfies the
following recurrence:

T

(
n

k1
,
n

k2
,
n

k3

)
≤ T

(
n

2k2
1

,
n

k2
,
n

k3

)
+

T

(
n

k1
,
n

2k2
2

,
n

k3

)
+

T

(
n

k1
,
n

k2
,
n

2k2
3

)
+

Õ

(
n2

B
+B1+εn2−ε

)
.

From the analysis in Section 4, there are
3O(log logn) = logO(1) n nodes in the recursion tree, so

the total running time is Õ(n
2

B + B1+εn2−ε). Setting

B = n
ε

2+ε yields Õ(n2− ε
2+ε) time.

Copyright c© 2020 by SIAM
Unauthorized reproduction of this article is prohibited

Still faster derandomization. We can derandomize
the hash function more efficiently, by choosing the
modulus in two stages.

Instead of choosing the modulus to be a random
prime in [m2 ,m) with m = Õ(nB), we randomly choose
two primes p ∈ [m1

2 ,m1) and q ∈ [m2

2 ,m2) with m1m2 =

Õ(nB) and set the modulus to be p·q, i.e., we will use the
hash function h(x) = x mod (pq) instead (which is still
almost linear). It is straightforward to modify the proof
of Lemma 2.3 to show that this hash family is O(log2 U)-
universal. By the Chinese remainder theorem, x and y
are hashed into the same bucket iff x mod p = y mod p
and x mod q = y mod q.

Now we show how to efficiently derandomize this
hash function. At the first stage, we will choose p. Let
τ be a parameter. Apply Lemma 2.4 to S = Si and
the hash family h(x) = x mod p, with d = O(logU),
m = m1, N = n

ki
, and t = τ . Then the expected number

of bad elements in Si (as defined in Lemma 2.4) is at

most dN
m ·

1
t ·N = Õ((n/ki)

2

m1τ
). By Markov’s inequality,

Pr {(# elements with bucket size ≥ τ) ≥
4 log n · E[# elements with bucket size ≥ τ]} ≤ 1

4 logn .

By a union bound, there exists a prime p such that
for all τ that are powers of 2 and for all i ∈ {1, 2, 3},
we have (# of elements in Si with bucket size ≥ τ) ≤
Õ((n/ki)

2

m1τ
). We can find such a p naively by trying all

primes in [m1

2 ,m1) in Õ(m1n) time.
At the second stage, we will choose q. Consider

each bucket β from the first stage with bucket size in
[τ, 2τ). Apply Lemma 2.4 to S = β and the hash
family h(x) = x mod q, with d = O(logU), m = m2,
N = |β|, and t = ti. Then the expected number
of bad elements in β (as defined in Lemma 2.4) is

at most dN
m · 1

t · N = Õ(|β|
2

m2ti
) ≤ Õ(τ |β|m2ti

). Now,
the sum of |β| over all first-stage buckets β of size in

[τ, 2τ) is Õ((n/ki)
2

m1τ
). Thus, the total expected num-

ber of bad elements in all such buckets for a fixed τ is
Õ(
∑
β
τ |β|
m2ti

) = Õ(τ
m2ti

· (n/ki)
2

m1τ
) = Õ((n/ki)

2

m1m2ti
). By sum-

ming over all τ that are powers of 2, we see that the to-

tal expected number of bad elements in Si is Õ((n/ki)
2

m1m2ti
).

By Markov’s inequality, Pr {# of bad elements in Si ≥
4 · E[# of bad elements in Si]} ≤ 1

4 , so there must ex-
ist a prime q such that for each of the three sets Si, the
number of bad elements is at most 4 times the expecta-
tion. We can find such a q naively by trying all primes
in [m2

2 ,m2) in Õ(m2n) time.
Now set t1 = t2 = t3 = 1 and m1 = m2 =√

n logc0 U for a constant c0, so that the number of

bad elements in Si is Õ((n/ki)
2

m1m2ti
) = Õ(n

k2i log2c0 U
), which

can be made smaller than n
2k2i

by making c0 sufficiently

large. The cost for finding p and q is then Õ((m1 +

m2)n) = Õ(n
3
2).

The total running time satisfies the following recur-
rence:

T

(
n

k1
,
n

k2
,
n

k3

)
≤ T

(
n

2k2
1

,
n

k2
,
n

k3

)
+

T

(
n

k1
,
n

2k2
2

,
n

k3

)
+

T

(
n

k1
,
n

k2
,
n

2k2
3

)
+

Õ(n
3
2 + n2−ε).

Therefore the total running time is Õ(n2−ε), assuming
that ε ≤ 1/2.

Theorem 5.1. If Convolution-3SUM can be solved in
deterministic O(n2−ε) time, where 0 < ε ≤ 1

2 is
a constant, then we can solve 3SUM in deterministic
O(n2−ε logO(1) U) time.

It should be possible to relax the requirement that
ε ≤ 1/2, by working with more than two primes.

More generally, it is not difficult to modify the anal-
ysis to show that if Convolution-3SUM can be solved
in deterministic T0(n) time, then we can solve 3SUM

in deterministic O(T0(n) logO(1) U) time, assuming that
T0(n)/n1+ρ is monotonically increasing for some con-
stant ρ > 0.

We leave open the question of whether the depen-
dencies on U could be eliminated in our deterministic
reductions (this is related to the question of whether
3SUM for arbitrary integers could be reduced determin-
istically to 3SUM for integers bounded by nO(1)), and
whether a similar reduction from 3SUM to Convolution-
3SUM is possible for real numbers.

References

[1] Amir Abboud and Virginia Vassilevska Williams. Pop-
ular conjectures imply strong lower bounds for dy-
namic problems. In Proceedings of the 55th IEEE An-
nual Symposium on Foundations of Computer Science
(FOCS), pages 434–443, 2014.

[2] Amir Abboud, Virginia Vassilevska Williams, and Oren
Weimann. Consequences of faster alignment of se-
quences. In Proceedings of the 41st International Col-
loquium on Automata, Languages, and Programming
(ICALP), Part I, pages 39–51, 2014.

[3] Amihood Amir, Timothy M. Chan, Moshe Lewenstein,
and Noa Lewenstein. On hardness of jumbled indexing.
In Proceedings of the 41st International Colloquium
on Automata, Languages, and Programming (ICALP),
Part I, pages 114–125, 2014.

Copyright c© 2020 by SIAM
Unauthorized reproduction of this article is prohibited

[4] Ilya Baran, Erik D Demaine, and Mihai Pǎtraşcu.
Subquadratic algorithms for 3SUM. Algorithmica,
50(4):584–596, 2008.

[5] Timothy M Chan. More logarithmic-factor speedups
for 3SUM, (median,+)-convolution, and some geo-
metric 3SUM-hard problems. In Proceedings of the
29th Annual ACM-SIAM Symposium on Discrete Al-
gorithms, pages 881–897, 2018.

[6] Martin Dietzfelbinger. Universal hashing and k-wise
independent random variables via integer arithmetic
without primes. In Proceedings of the 13th Annual
Symposium on Theoretical Aspects of Computer Science
(STACS), pages 567–580. Springer, 1996.

[7] Martin Dietzfelbinger. Universal hashing via integer
arithmetic without primes, revisited. In Adventures
Between Lower Bounds and Higher Altitudes, pages
257–279. Springer, 2018.

[8] Anka Gajentaan and Mark H Overmars. On a class of
O(n2) problems in computational geometry. Compu-
tational Geometry: Theory and Applications, 5(3):165–
185, 1995.

[9] Allan Grønlund and Seth Pettie. Threesomes, degen-
erates, and love triangles. J. ACM, 65(4):22:1–22:25,
2018.

[10] Tsvi Kopelowitz, Seth Pettie, and Ely Porat. Higher
lower bounds from the 3SUM conjecture. In Proceed-
ings of the 27th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 1272–1287, 2016.

[11] Mihai Patrascu. Towards polynomial lower bounds for
dynamic problems. In Proceedings of the 42nd ACM
symposium on Theory of computing (STOC), pages
603–610, 2010.

[12] Virginia Vassilevska Williams. On some fine-grained
questions in algorithms and complexity. In Proceedings
of the ICM, volume 3, pages 3431–3472, 2018.

A Different Versions of 3SUM

In this appendix, we note the equivalence of different
versions of the 3SUM problem. For clarity, here we will
refer to the 3SUM version in the main text as 3SUM-for-
3-Sets. The following variants of 3SUM are commonly
used in the literature:

Definition A.1. (3SUM-without-Duplicates) Given a
set S of n integers, determine whether there exist three
elements a, b, c ∈ S such that a+ b+ c = 0, where a, b, c
are all distinct.

Definition A.2. (3SUM-with-Duplicates) Given a set
S of n integers, determine whether there exist three
elements a, b, c ∈ S such that a+ b+ c = 0, where a, b, c
may not be distinct.

Trivially (by setting S1 = S2 = S3 = S), 3SUM-with-
Duplicates reduces to 3SUM-for-3-Sets. Here we provide
a reduction from 3SUM-without-Duplicates to 3SUM-for-
3-Sets, which is more challenging:

Lemma A.3. If 3SUM-for-3-Sets can be solved in deter-
ministic T0(n) time, then we can solve 3SUM-without-
Duplicates in deterministic O(T0(n)) time, assuming
that T0(n)/n1+ρ is monotonically increasing for some
constant ρ > 0.

Proof. We describe a simple recursive algorithm to solve
3SUM-without-Duplicates, using the given 3SUM-for-3-
Sets oracle, where r is a sufficiently large constant:

1. Divide S into r subsets S1, . . . , Sr each of size at
most dnr e.

2. For all i, j ∈ {1, . . . , r} with i 6= j, solve 3SUM-for-
3-Sets for the three sets Si, Sj , and S \ (Si ∪ Sj).

3. For all i ∈ {1, . . . , r}, solve 3SUM-for-3-Sets for the
three sets Si, Si, and S \ (Si ∪ {−2a : a ∈ Si}).

4. For i ∈ {1, . . . , r}, recursively solve 3SUM-without-
Duplicates for the set Si∪({−2a : a ∈ Si}∩(S\Si)),
which has cardinality at most 2dnr e.

5. Return yes iff the answer to at least one of the above
subproblems is yes.

It is easy to see that if the algorithm returns yes,
then there exists distinct elements a, b, c ∈ S with
a+b+c = 0. (The only possibility of false positives due
to duplicates is in step 3, when a ∈ Si and b = a ∈ Si,
but then c = −a − b /∈ S \ (Si ∪ {−2a : a ∈ Si}).) On
the other hand, if there exist distinct elements a, b, c ∈ S
with a + b + c = 0, then the algorithm returns yes in
step 2 if a, b, c are in different subsets, and yes in step 3
or 4 if a and b are in the same subset Si, depending on
whether c /∈ {−2a : a ∈ Si} or not (all remaining cases
are symmetric).

The running time satisfies the recurrence

T (n) = rT (2n/r) +O(r2T0(n)).

For a sufficiently large constant r, this gives T (n) =
O(T0(n)) under the stated assumption.

The above reduction appears new to the best of
our knowledge. For example, Kopelowitz et al. [10]
explicitly mentioned false positives due to duplicates as
one of the technical difficulties to overcome if one wants
to improve their reduction.

There are also alternative versions to Convolution-
3SUM (one set vs. three, with or without duplicate
indices), which can also be seen to be equivalent.

Copyright c© 2020 by SIAM
Unauthorized reproduction of this article is prohibited

	Introduction
	Preliminaries
	Simple Deterministic Reduction
	Randomized Reduction
	Improved Deterministic Reduction
	Different Versions of 3SUM

