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Abstract. We revisit a classical problem in computational geometry
that has been studied since the 1980s: in the rectangle enclosure problem
we want to report all k enclosing pairs of n input rectangles in 2D.
We present the first deterministic algorithm that takes O(n logn + k)
worst-case time and O(n) space in the word-RAM model. This improves
previous deterministic algorithms with O((n logn+ k) log logn) running
time. We achieve the result by derandomizing the algorithm of Chan,
Larsen and Pătraşcu [SoCG’11] that attains the same time complexity
but in expectation.
The 2D rectangle enclosure problem is related to the offline dominance
range reporting problem in 4D, and our result leads to the currently
fastest deterministic algorithm for offline dominance reporting in any
constant dimension d ≥ 4.
A key tool behind Chan et al.’s previous randomized algorithm is shal-
low cuttings for 3D dominance ranges. Recently, Afshani and Tsakalidis
[SODA’14] obtained a deterministic O(n logn)-time algorithm to con-
struct such cuttings. We first present an improved deterministic con-
struction algorithm that runs in O(n log logn) time in the word-RAM;
this result is of independent interest. Many additional ideas are then
incorporated, including a linear-time algorithm for merging shallow cut-
tings and an algorithm for an offline tree point location problem.

1 Introduction

We study the problem of rectangle enclosure: given a set of n axis-aligned rect-
angles on the plane, report all k pairs (r1, r2) of input rectangles where r1 com-
pletely encloses r2. This is a classic problem in the field of computational geom-
etry [19] with applications to VLSI design, image processing, computer graphics
and databases [21,15,12,6].
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Previous Results. An early paper by Bentley and Wood [3] presented anO(n log n+
k) worst-case time and linear-space algorithm for the related rectangle intersec-
tion problem (reporting all k pairs (r1, r2) where r1 intersects r2), raising the
question whether the same bound could be achieved for rectangle enclosure.
Vaishnavi and Wood [21] first addressed the question presenting an O(n log2 n+
k)-time algorithm that uses O(n log2 n) space. Lee and Preparata [15] improved
the space bound to linear.

Further improvements were discovered in the 1990s. The linear-space al-
gorithm of Gupta, Janardan, Smid and Dasgupta [12] and an alternative im-
plementation by Lagogiannis, Makris and A. Tsakalidis [14] take O((n log n +
k) log log n) worst-case time. Recently, Chan, Larsen and Pătraşcu [6] succeeded
in improving the running time to the desired bound of O(n log n+ k) using lin-
ear space. However their algorithm uses randomization and thus the time bound
holds in expectation. All presented algorithms operate in the word-RAM model
with word size w ≥ log n. (In fact, for all time bounds that are Ω(n log n), they
hold in the standard RAM model with w = log n, since we can pre-sort and
reduce to rank space.)

It is well-known that the rectangle enclosure problem is reducible to the 4D
version of the offline dominance reporting problem: given n input and query
points in Rd, report the input points that are dominated by each query point
((p1, . . . , pd) is dominated by (q1, . . . , qd) if pi < qi for all i). For the reduc-
tion it suffices to map each input rectangle [x1, x2] × [y1, y2] to a 4D point
(x1, y1,−x2,−y2) and equate the query points with the input points.

Offline dominance reporting is a fundamental problem in the area of orthog-
onal range searching; it has even found applications outside of computational
geometry [4]. Chan, Larsen and Pătraşcu’s result implies an algorithm with
O(n logd−3 n + k) expected time for any constant dimension d ≥ 4, where k
is the total number of reported points. However their algorithm is random-
ized. The best deterministic algorithm known requires O(n logd−2 n + k) or
O((n logd−3 n+ k) log log n) time.

Our Contributions. We present the first deterministic algorithm for rectangle
enclosure that takes O(n log n+ k) worst-case time and O(n) space in the stan-
dard word-RAM model. Our result thus improves over the previous deterministic
algorithms of Gupta et al. [12] and Lagogiannis et al. [14] and removes random-
ization from the algorithm of Chan et al. [6].

Our approach also gives the currently fastest deterministic algorithm for the
offline dominance reporting problem for any constant dimension d ≥ 4, with
worst-case running time O(n logd−3 n+ k).

Our Approach. Our algorithm may be viewed as a derandomization of Chan,
Larsen and Pătraşcu’s [6], but significant new ideas are required.

In Chan et al.’s algorithm, randomization was used to construct combina-
torial objects that have properties similar to those of shallow cuttings for 3D
dominance ranges. Shallow cuttings were introduced by Matoušek [18], and a
complicated randomized O(n log n)-time algorithm was given by Ramos [20] for
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constructing shallow cuttings in the more general setting of 3D halfspace ranges.
In a recent SODA’14 paper, Afshani and K. Tsakalidis [2] presented the first de-
terministic O(n log n)-time algorithm for constructing shallow cuttings for 3D
dominance ranges using linear space in the pointer machine model. In Section 2
we begin by improving their algorithm to run in O(n log log n) worst-case time
on the word-RAM. As an immediate consequence we obtain a deterministic algo-
rithm for offline 3D dominance reporting that takes O(n log log n+k) worst-case
time and linear space in the word-RAM (Section 4); this result is new. Previously
only O(n log n+k) worst-case time could be achieved using linear space [1,17,2].

Much further work is needed to derive our result on offline 4D dominance
reporting and 2D rectangle enclosure. The crucial new ingredient is an algorithm
that can merge two shallow cuttings for 3D dominance ranges in linear time;
this result is obtained by modifying our shallow cutting construction algorithm
in interesting ways and is described in Section 3. Then in Section 5 we use an
intricate combination of Chan et al.’s approach with the deterministic shallow
cutting construction and merging subroutines to achieve our final result. The
combination requires a re-organization of the previous algorithm. In particular
we isolate a subproblem we call tree point location for which we obtain a deter-
ministic algorithm by incorporating planar separators [16] to ideas from Chan et
al. This problem may be viewed as a new 2D variant of fractional cascading [9]
and is thus of independent interest.

Notation and Definitions. Point p dominates point q if and only if each coordi-
nate of p is greater than or equal to that of q. To avoid ambiguity for points on
the plane we use the term “covers” (instead of “dominates”). Let P be a set of n
points in Rd. The level of any point p ∈ Rd (with respect to P ) is the number of
points in P that are dominated by p. The region of Rd dominated by p is called
a cell . The conflict list of a cell is the subset of P that lies inside the cell.

A k-shallow cutting for dominance ranges on point set P is a set of vertices
(points) S such that (i) every vertex in S has level at most cmaxk in P for a
constant cmax > 1 and (ii) any point in Rd with level in P at most k is dominated
by some vertex of S. Shallow cutting S is optimal when it contains at most cmax

n
k

vertices. A planar shallow cutting has the shape of an orthogonal staircase curve
c1d1c2 · · · dt−1ct of alternating vertical line segments cidi = [ci(x)]× [ci(y), di(y)]
and horizontal line segments dici+1 = [di(x), ci+1(x)]× [di(y)] (Fig. 1a). We call
points ci, di, the corners of the planar shallow cutting.

2 Construction of 3D Dominance Shallow Cuttings

Theorem 1. An optimal k-shallow cutting for 3D dominance ranges on n input
points and for any integer k can be constructed deterministically in O(n log log n)
worst-case time and O(n) space.
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Algorithm Sketch. Following [2] we sort the points and sweep a plane parallel to
the xy-plane considering the points in non-decreasing z-coordinate. This reduces
the problem to the problem of maintaining a 2D shallow cutting under only
insertions, specifically the planar shallow cutting of the xy-projection of the
points of P that lie below the sweep plane. When the point with the next highest
z-coordinate is considered (i.e., the next insertion), we update the corresponding
2D shallow cutting. The idea is that we do not need to change the planar shallow
cutting for most insertions. However each insertion can increase the level of the
shallow cutting corners. Thus, once in a while, the planar shallow cutting needs to
be fixed. This is done by removing some consecutive parts of it and then adding
new staircase “patches” that are covered by the parts just removed (details
will follow). Every time a planar shallow cutting cell is removed, a 3D shallow
cutting cell is created using the z-coordinate of the sweep plane (i.e., when a
planar staircase corner with coordinates (x, y) is removed, a 3D vertex (x, y, z)
is created where z is the coordinate of the sweep plane). Finally when the sweep
terminates, the remaining planar shallow cutting cells are turned into 3D shallow
cutting cells using +∞ as the z-coordinate. It is easily verified that the produced
3D shallow cutting of P is correct and its size is equal to the number of planar
shallow cutting corners removed throughout the algorithm plus the number of
planar shallow cutting corners that remain when the sweep terminates.

Remark. The sketched algorithm is a variant of Afshani and Tsakalidis’ [2, Sec-
tion 3] with the significant difference that it is insertion-only (sweeping upwards)
as opposed to their deletion-only algorithm (sweeping downwards). Their algo-
rithm has the advantage that it can compute O(log n) different shallow cuttings
in total O(n log n) time. However a crucial ingredient of that algorithm is an
auxiliary data structure ([2, Lemma 2]) that needs to be updated at every sweep
point. Unfortunately, we cannot see a way to update the auxiliary data structure
in O(log log n) time in the word RAM model. Fortunately, as we shall see later,
we can achieve the desired O(n log log n) running time without any auxiliary
data structures, by just changing the direction of the sweep.

The Invariant. The planar shallow cutting is maintained in the form of a stair-
case S = c1d1 · · · ct, composed of inner corners d1, . . . , dt−1 and outer cor-
ners c1, . . . , ct. The outer corners c1 and ct are (conceptually) at infinity, i.e.
c1(y) = +∞ and ct(x) = +∞ (Fig. 1a). We maintain the invariant that the
inner corners dominate at least k and the outer corners at most 10k points.
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Details. We now discuss the details of the algorithm. Let p = (x, y, z) be the
next point swept by the sweep plane. Remember that we need to insert the point
p′ = (x, y) into the dynamic planar shallow cutting. To do that we maintain
the following structures: first, we use a dynamic van Emde Boas tree on the x-
coordinates of the staircase, and second, for every outer corner c of the staircase,
we keep track of the number of points it covers, `(c) (Fig. 1b), as well as a linked
list containing them, L(c) (i.e., the conflict list and its size). Using these we can
now insert the point p′. The dynamic van Emde Boas tree enables us to find
the inner corner di immediately to the left of the point p′, helping us decide
whether p′ lies above or below the staircase (Fig. 1c). In the former case, we
are done. In the latter case, for every outer corner cj that covers p′, we increase
`(cj) by one and then append p′ to L(cj). If for all such corners we still have
`(cj) ≤ 10k, then the invariant is maintained and thus we are done. However,
it is possible that for some corners this invariant is violated. Below we describe
how to “patch” such violated invariants.

Complexity. Sorting by z-coordinate takes O(n log log n) time in total [13]. Find-
ing di takes O(log log n) time [22] and thus O(n log log n) time in total. It turns
out the rest of the algorithm consumes linear time. If there are m(p′) corners
that cover p′, then updating their relevant information takes O(m(p′)) time.
Note that p′ is now added to the conflict lists of m(p′) corners. Notice that since
the size of each conflict list is O(k), the total running time of this step is O(Tk)
where T is size of the shallow cutting. If we can prove that T = O(n/k), then
this running time is linear. Now we describe how to maintain the invariant which
also guarantees the upper bound on T .

Patching. Let ci be the leftmost outer corner whose invariant is violated. Let a1

and a2 be the largest integers such that all the outer corners ci−a1 , ci−a1+1, . . . , ci+a2
have levels greater than 3k. To patch the staircase we begin by finding a new
outer corner c′0 at the same y-coordinate as ci−a1 , such that it covers 3k points,
as depicted in Fig. 1d. c′0 can be found in O(k) time using a linear time se-
lection algorithm on the conflict list of ci−a1 . Next, we find the inner corner
d′0 directly below c′0 that covers k points. Now, we alternate between finding
new outer and inner corners: at the j-th step, we find the outer corner c′j that
dominates 2k points, and then the inner corner d′j that dominates k points. As
before, using the right conflict list, each of these corners can be found in O(k)
time. The patching is terminated at a point c′r+1 with level 3k that lies below
the outer corner ci+a2 (Fig. 1d). Finally, the new outer and inner corners (from
c′0 to c′r+1) are incorporated into the staircase, the old corners (ci−a1 , . . . , ci+a2)
are removed, and the van Emde Boas tree is also updated to reflect the changes
in the staircase.

Analysis of Patching. It easy to see that the overall cost of patching is O(Tk)
since each new inner or outer corner can be found in O(k) time. Moreover, the
facts that the levels of the removed corners differ from the levels of the created
ones by at least k (except for only c′0 and c′r+1) and that at least 5 corners are
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created for every patch, suffice to claim that T ≤ C0
n
k for a positive constant

C0. We set cmax := max{C0, 10}. A detailed proof on the symmetric approach
is found in [2, Section 3].

3 Merging Two 3D Dominance Shallow Cuttings

We begin by a naive merging algorithm.

Lemma 1. Consider two point sets P1 and P2 that contain n1 and n2 points
respectively. For i = 1, 2, assume we are given a ki-shallow cutting Ci on Pi of
size mi such that the conflict list of every cell contains at most βiki points of Pi.
A (min {k1, k2})-shallow cutting C on the union point set P = P1 ∪ P2 can be
built in O ((m1 +m2) log log(m1 +m2)) time, such that C contains O(m1 +m2)
cells and the conflict list of every cell in C contains ≤ β1k1 + β2k2 input points.

Proof. Let R be the subset of R3 that is dominated by at least one vertex in C1

and at least one vertex in C2. It is easily seen that R is orthogonally convex and in
fact any orthogonal ray to y = −∞ or x = −∞ crosses the boundary of R at most
one. Thus, the complexity of the boundary of R is O(|C1|+ |C2|) = O(m1 +m2).
Furthermore, the boundary of R can be computed with a straightforward sweep
plane algorithm in O((m1 + m2) log log(m1 + m2)) time by employing a van
Embe Boas tree as the search structure [22]. The shallow cutting C is defined by
the vertices of the boundary of R. It is clear that every such vertex dominates
either k1 points from P1 or k2 points from P2 and thus it dominates at least
min {k1, k2} points of P . Similarly, each vertex on R can dominate at most β1k1

points of P1 and β2k2 points of P2. ut

While the above merging algorithm is quite fast, it worsens the constants
behind the parameters of the shallow cutting and thus it cannot be applied
more than a constant number of times. In the next theorem, we show how such
a “bad” shallow cutting can be refined into an optimal one. For this purpose we
also use the following lemma.

Lemma 2. [5, Theorem 4.3] Online point location queries on a planar orthog-
onal subdivision of size n can be supported in O(log log n) worst-case time and
O(n) space.

Theorem 2. Let P be a set of n points in R3 with presorted z-coordinates and
let C be a k-shallow cutting on P of size αn/k, where the conflict list of every
cell has size at most βk, for arbitrary constants α, β > 0. Then C can be refined
into an optimal k′-shallow cutting C ′ on P in O(n + n

k log log n) time, such

that k′ = k
cmax

for a universal constant cmax that does not depend on α and β.
Furthermore, C ′ contains at most cmax

n
k′ cells and the conflict list of every cell

in C ′ contains at most cmaxk
′ points of P .

Proof. We build C ′ using the plane sweep algorithm from the previous section.
To review, the algorithm maintains a planar shallow cutting in the form of a
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staircase S′. To process the next point p, a predecessor query is used to find one
corner of the staircase that covers the projection p′ of p. As we noted during the
proof of Theorem 1, other than this predecessor search, the rest of the algorithm
runs in linear time. To remove this bottleneck, we use C to augment each point
of P with a correct pointer to a staircase corner that covers it, thus negating the
need for the predecessor search.

Hence we project the cutting C on the xy-plane and obtain an orthogonal
planar decomposition of disjoint polygonal regions in order to support online
planar orthogonal point location queries, i.e. report the region that any given
query point lies in. Thus, Lemma 2 enables us to perform the following operation
in O(log log n) time: given a point q in the xy-plane, find the shallow cutting
vertex C(q) in C with the largest z-coordinate whose projection covers q.

Observe that the level of every vertex in C ′ is at most cmaxk
′ = k; thus,

every vertex of C ′ is contained in at least one cell of C. We thus maintain one
additional invariant in our sweep. Consider a staircase corner v ∈ S′, the shallow
cutting vertex C(v) ∈ C and its conflict list `(C(v)). We maintain the invariant
that if the projection p′ of a point p ∈ `(C(v)) lies below the staircase S′, then p
is assigned a pointer to a staircase corner that covers p′. This invariant removes
the need for the predecessor search during the sweep.

By looking at the algorithm in Section 2, it is clear that the invariant can only
be violated when a new staircase corner v is created on S′ (during the patching
phase). To fix the invariant, by Lemma 2 we can find the vertex C(v) and its
conflict list `(C(v)). We go through each point in `(C(v)) and if its projection
is covered by v, then we assign it a pointer to v. This takes O(k) time, which is
proportional to the time required for creating the staircase corner v. Thus, this
incurs only an additive O(log log n) time factor per shallow cutting vertex. ut

Corollary 1. Given two point sets A,B ∈ R3 presorted by z-coordinate and
their respective k-shallow cuttings, for an integer k = Ω(log log(|A| + |B|)), an
optimal k

cmax
-shallow cutting on the union point set A ∪ B can be constructed

deterministically in O(|A|+ |B|) worst-case time.

4 Offline 3D Dominance Reporting

Theorem 3. Offline 3D dominance reporting on n input points, n query points
and k reported points can be solved deterministically in O(n log log n+ k) worst-
case time and O(n) space.

Proof. We follow the approach of Afshani [1] for online 3D dominance report-
ing queries in internal memory. We presort all coordinates [13] and construct a
single (log n)-shallow cutting for 3D dominance ranges by using the algorithm
of Theorem 1 in O(n log log n) worst-case time. We assign every query point
to a cell of the cutting whose vertex dominates it by (offline) point location
in a planar orthogonal subdivision obtained from the projection of the cutting.
By Lemma 2 this takes O(n log log n) worst-case time [5]. We resolve all the
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assigned queries by solving independently for each of the O( n
logn ) cells an of-

fline 3D dominance reporting subproblem on the conflict list of the cell. The
3D dominance reporting algorithm of [17] reports all (at most k) output points
in O( n

logn log n log log n + k) = O(n log logn + k) total worst-case time. This

leaves at most O( k
logn ) queries unresolved, since each unresolved query reports

Ω(log n) points. We can also decrease the number of input points to O( k
logn )

in the same way by repeating the above with the roles of the input and query
points reversed. Finally we solve a single offline 3D dominance reporting problem
on all the remaining input points and unresolved queries by the more expensive
O(n log n+ k)-time algorithm of [17], which now takes O(k) time. ut

Corollary 2. Offline 3D dominance reporting on n input points, n query points
and k reported points can be solved deterministically in O(n+k) worst-case time
and O(n) space, if n < w̄O(1) and a global look-up table has been constructed in
o(2w̄) worst-case time for a parameter w̄ ≤ w.

Proof. We modify the proof of Theorem 3. In the construction of the (log n)-
shallow cutting we replace van Emde Boas trees [22] with atomic heaps [10],
which decreases the O(log log n) search cost to O(logw̄ n) = O(1). The offline
planar point location queries can be answered in O(logw̄ n) = O(1) time per
query, by a straightforward plane sweep implemented using an atomic heap.
The conflict list of each cell has size O(log n) = O(log(w̄O(1))) = o(w̄). Thus by
table lookup, the subproblem on each conflict list can be solved in O(1) time. ut

5 Offline 4D Dominance Reporting

A preliminary O(n log n log log n+k) worst-case time and linear-space algorithm
for the rectangle enclosure problem is implied by Theorem 3. We obtain a faster
deterministic algorithm for rectangle enclosure.

Theorem 4. Offline 4D dominance reporting problem on n input points, n
query points and k reported points can be solved deterministically in O(n log n+k)
worst-case time and O(n) space.

Algorithm. We follow the approach of Chan, Larsen and Pătraşcu [6, Section
4.3]. We build a complete binary range tree T over the fourth coordinate of the
input points. For each query point, we consider the path from the root of T
to the leaf that contains its successor input point; we associate the query point
with the left siblings (if they exist) of the nodes along this path. It then suffices
to solve in every node of T an offline 3D dominance reporting problem between
the 3D projections of its input point set and its associated query point set.

To this end, we first equip each node at level i of T with an optimalKi-shallow
cutting for 3D dominance ranges of its input points for some Ki between log2 n
and log3 n. At each node every associated query point is assigned to a cell of the
equipped cutting whose vertex dominates it. All assigned queries are resolved
by solving independently for each cell in T an offline 3D dominance reporting
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subproblem on the cell’s conflict list. This leaves at most O( k
log2 n

) queries unre-

solved, since each unresolved query reports Ω(Ki) ≥ Ω(log2 n) points. We can
also decrease the number of input points to O( k

log2 n
) in the same way by re-

peating the above with the roles of the input and query points reversed. Finally
we solve a single offline 4D dominance reporting problem on all the remaining
input points and unresolved queries.

Complexity. There are O( n
Ki

) subproblems of size O(Ki) at each level i of T .
Hence the total cost T4D(n, k) of the algorithm on n input and query points and
k reported points is at most 2 times

TE(n) + TA(n) +

logn∑
i=1

O( n
Ki

)∑
j=1

T3D(O(Ki), kij) + T4D(O

(
k

log2 n

)
, k)

where (i) TE(n) represents the cost of equipping the nodes with shallow cuttings,
(ii) TA(n) represents the cost of assigning the queries to cells of the cuttings,
(iii) T3D(O(Ki), kij) represents the cost of solving a subproblem on a conflict

list of size O(Ki) with output size kij , and (iv) T4D(O
(

k
log2 n

)
, k) represents

the cost of handling the remaining input points and unresolved queries.
For (i) and (ii), we will show that TE(n), TA(n) = O(n log n). For (iii), we

have T3D(O(Ki), kij) = O(Ki + kij) by applying the algorithm of Corollary 2
with w̄ = log n, since Ki ≤ log3 n ≤ w̄O(1). Summing the cost over all i and
j yields O(

∑logn
i=1

n
Ki
Ki +

∑
i,j kij) = O(n log n + k). For (iv), we can use the

more expensive algorithm of [15] with O(n log2 n+ k) running time, which gives

T4D(O
(

k
log2 n

)
, k) = O(k). The overall running time is thus O(n log n+ k).

Equipping Nodes with Optimal Shallow Cuttings. To show that TE(n) = O(n log n),
we first construct optimal (log3 n)-shallow cuttings for the nodes at every level
of T that is a multiple of δ log log n, for a constant δ > 0, using the algorithm
of Theorem 1. In total this takes O(n log log n · logn

δ log logn ) = O(n log n) time.
For each j that is not a multiple of δ log log n, we equip the nodes at level

i of T with an optimal Ki-shallow cutting on its input points in T by merging
the optimal Ki−1-shallow cuttings of its two children nodes with the algorithm

of Corollary 1. Here, Ki = Ki−1

cmax
=⇒ log3 n ≥ Ki ≥ log3 n

(cmax)δ log logn ≥ log2 n as

desired, if we make δ sufficiently small. The entire merging process takes O(n)
time per level of T (since Ki = Ω(log log n)) and thus O(n log n) total time.

Assigning Queries to Cells. To show that TA(n) = O(n log n) we formulate a
general problem of independent interest.

Problem 1. [Offline 2D Tree Point Location] Given a binary tree where every
node contains a planar orthogonal subdivision with rectangular cells, and given
a set of query points each of which is associated with a root-to-leaf path in the
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tree, locate the cell containing q in the subdivisions at all the nodes along the
path associated with q, for every query point q.

Lemma 3. Offline 2D tree point location on n query points and a tree of subdi-
visions with total size N and tree height O(logN) can be solved deterministically
in O(N + n logN) worst-case time and O(n) space, assuming pre-sorted coordi-
nates.

Since the output to the problem consists of O(logN) cells per query, the
above result is optimal. Directly answering each of the O(n logN) 2D orthogonal
point location queries by known results (Lemma 2) would yield a slower O(N +
n logN log logN) running time. On the other hand, if the subdivisions in the
tree are one-dimensional, then the problem can be solved by the well known
technique of fractional cascading [9], achieving the same bound as in Lemma 3.
Thus, Lemma 3 may be viewed as a generalization of fractional cascading to 2D;
no such generalizations were known before (although to be fair our lemma works
only in the offline setting).

We will prove Lemma 3 in Section 6, but for now let’s see how the tree point
location is relevant to our original problem. At each node of T , we form a planar
orthogonal subdivision from the projection of the shallow cutting equipped at the
node’s left sibling. Then assigning queries to cells of the shallow cuttings of their
associated nodes is precisely the above tree point location problem. Here, the

total size of the planar subdivisions is N := O
(∑logn

i=1
n
Ki

)
≤ O(log n · n

log2 n
) =

o(n). The tree height is log n, thus by Lemma 3 we get TA(n) = O(N+n logN) =
O(n log n).

Remarks. The above algorithm description is actually conceptually cleaner than
Chan, Larsen and Pătraşcu’s [6], which worked with shallow cuttings of two
different ranges of K, namely K ≈ polylogn and K ≈ 2

√
w. We only need the

former, although the expression 2
√
w will appear later in the proof of Lemma 3.

As an immediate corollary to Theorem 4, we can then solve the 2D rectan-
gle enclosure problem in O(n log n + k) time. Also, we can solve the offline d-
dimensional dominance reporting problem inO(n logd−3 n+k) time by a straight-
forward divide-and-conquer, using the new algorithm for d = 4 as the base case.

6 Offline 2D Tree Point Location

To complete the presentation we now prove Lemma 3 and solve the offline 2D tree
point location problem. We adapt key ideas from Chan, Larsen and Pătraşcu [6],
but in addition incorporate planar separators to get a deterministic algorithm.

Preliminaries. An r-separator of a planar graph with n vertices is a subset of
O(
√
rn) vertices whose removal yields components of O(n/r) size each. Given

d-dimensional input points and query hyper-rectangles (boxes), the offline d-
dimensional orthogonal range reporting problem asks to report the input points
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that are contained in every query box. Given an orthogonal subdivision of the
plane into disjoint rectangles and query points, the offline 2D orthogonal point
location problem asks report the rectangle that every query point lies in.

Lemma 4. [11, Theorem 2.2] An r-separator of a planar graph of size n can be
computed deterministically in O(n) worst-case time and space.

Lemma 5. [6, Lemma 4.2] Offline d-dimensional orthogonal range reporting on
n input points, m query boxes and k reported points can be solved deterministi-
cally in O(n logd−1

b n+ bd−1m logd−1
b n+ k) worst-case time and O(n) space for

a given parameter b ≥ 2, assuming pre-sorted coordinates.

Lemma 6. [6, Lemma 4.1] Offline planar point location for n query points and
a orthogonal subdivision of size n can be solved deterministically in O(n) worst-
case time and space when n ≤ 2O(

√
w), assuming pre-sorted coordinates.

Lemma 5 follows from a b-ary variant of the standard range tree, while
Lemma 6 requires a bit-packing technique of Chan and Pătraşcu [8].

Proof of Lemma 3. First we compute a sparser subdivision at every node v
of T . Namely, if the subdivision at v has size nv, we compute a

(
nv
A

)
-separator

of the subdivision for a parameter A := 2
√
w with w = logN . This gives

O(
√
nv · nvA ) = O(nv/

√
A) separating rectangles; each remaining hole can be

further decomposed into rectangles to yield a subdivision of size O(nv/
√
A). By

Lemma 4 the computation of the separators takes O(N) time total. (This idea
of using separators for point location has been used before [5,7].)

Now we locate each query point q in the sparser subdivisions at the nodes
along q’s path. The key idea from Chan, Larsen and Pătraşcu [6] is to view all
these 2D point location queries collectively as a single offline orthogonal range
reporting problem in 3D. Namely, we lift each rectangle in the sparser subdivision
at node v to a box in 3D, where the range of the box in the third coordinate
corresponds to the range of v in the binary tree. This 3D problem involves n
points, O( N√

A
) boxes and output size k = O(n logN). By Lemma 5 the problem

can be solved in O(n log2
b N + b2( N√

A
) log2

b N + n logN) time. By choosing the

parameter b := A1/2−δ = 2Θ(
√

logN), we have log2
b N = O(logN) and the time

bound becomes O(n logN).
Knowing the cell of the sparser subdivision containing a query point q, we

still need to locate the cell of the original subdivision containing q. This reduces
to point location in a component, but since each component has size O(A) =
O(2

√
w) we can apply the offline point location algorithm of Lemma 6, to finish

in time linear to the size of the subdivisions O(N) and the number of queries
O(n logN). ut
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