
Faster Approximate Diameter and Distance1

Oracles in Planar Graphs2

Timothy M. Chan1 and Dimitrios Skrepetos2
3

1 Department of Computer Science, University of Illinois at Urbana-Champaign4

tmc@illinois.edu5

2 Cheriton School of Computer Science, University of Waterloo6

dskrepet@uwaterloo.ca7

Abstract8

We present an algorithm that computes a (1 + ε)-approximation of the diameter of a weighted,9

undirected planar graph of n vertices with non-negative edge lengths inO
(
n logn

(
logn+ (1/ε)5))10

expected time, improving upon the O
(
n
(
(1/ε)4 log4 n+ 2O(1/ε)))-time algorithm of Weimann11

and Yuster [ICALP 2013]. Our algorithm makes two improvements over that result: first and12

foremost, it replaces the exponential dependency on 1/ε with a polynomial one, by adapting and13

specializing Cabello’s recent abstract-Voronoi-diagram-based technique [SODA 2017] for approx-14

imation purposes; second, it shaves off two logarithmic factors by choosing a better sequence of15

error parameters during recursion.16

Moreover, using similar techniques, we improve the (1 + ε)-approximate distance oracle of17

Gu and Xu [ISAAC 2015] by first replacing the exponential dependency on 1/ε on the prepro-18

cessing time and space with a polynomial one and second removing a logarithmic factor from the19

preprocessing time.20

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems21

Keywords and phrases planar graphs, diameter, abstract Voronoi diagrams22

Digital Object Identifier 10.4230/LIPIcs.ESA.2017.123

1 Introduction24

In this paper we study the problem of computing the diameter of a weighted, undirected25

planar graph of n vertices with non-negative edge lengths1, defined as the longest shortest26

path distance between two vertices of the graph. Since Frederickson in 1983 [7] solved the27

problem in O
(
n2) time (by determining the all-pairs shortest paths distance matrix and28

returning the largest value therein), a natural question arose as to whether the diameter can29

be computed in subquadratic time. Poly-logarithmic speedups were given by Chan [5] in30

2006 and by Wulff-Nilsen [22] in 2010; the algorithm of the former works for the unweighted31

case and requires O
(
n2 log logn/ logn

)
time; the algorithm of the latter requires the same32

amount of time for the unweighted case and O
(
n2(log logn)4/ logn

)
time for the weighted.33

However, a truly subquadratic algorithm, i.e., an algorithm running in O
(
n2−δ) time for34

some constant δ > 0, still eluded researchers for many years.35

Thus, not surprisingly, the dearth of truly subquadratic algorithms led to the consid-36

eration of approximation algorithms. A c-approximation of the diameter, ∆, of a graph is37

a value ∆̃ such that ∆ ≤ ∆̃ ≤ c∆. Using the linear-time SSSP algorithm of Henzinger et38

1 For the rest of the introduction, we assume, unless otherwise stated, that all the discussed graphs are
weighted, undirected planar graphs with non-negative edge lengths.

© Timothy M. Chan and Dimitrios Skrepetos;
licensed under Creative Commons License CC-BY

25th Annual European Symposium on Algorithms (ESA 2017).
Editors: Kirk Pruhs and Christian Sohler; Article No. 1; pp. 1:1–1:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ESA.2017.1
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

1:2 Faster Approximate Diameter and Distance Oracles in Planar Graphs

al. [12] one can trivially compute a 2-approximation. The first non-trivial approximation39

result was given by Berman et al. [2] in 2007; their algorithm requires O
(
n3/2) time and40

gives a 3/2-approximation. Weimann and Yuster [21] in 2012, in a breakthrough, presented41

an algorithm computing a (1+ε)-approximation of the diameter in near-linear time, namely42

O
(
n
(
(1/ε)4 log4 n+ 2O(1/ε))). Nevertheless, their solution did not settle the problem com-43

pletely because the running time has exponential dependency on 1/ε. Another problem with44

their solution is the multiple (four) logarithmic factors.45

Unexpectedly, the next result came in the context of exact algorithms. In 2017, Ca-46

bello [3] (full paper in [4]) made headway, by giving the first exact truly subquadratic47

algorithm, requiring Õ
(
n11/6) expected time. The techniques used by Cabello are as inter-48

esting as the result itself, as he used a seemingly alien concept to planar graphs, abstract49

Voronoi diagrams, originating from computational geometry.50

Cabello’s seminal result bifurcates the study of the diameter problem into two main51

avenues. First, one could try to improve its running time. This has been partially treated in52

a recent paper by Gawrychowski et al. [8], who presented an algorithm requiring Õ
(
n5/3)

53

worst-case time. No lower bound is available presently, but Cabello [4] conjectured that the54

diameter cannot be computed exactly in time faster than O
(
n1+δ), for some constant δ > 0.55

Second, one could try to use some of the techniques in Cabello’s paper to approximate the56

diameter.57

In this paper we take the second avenue. Namely, we improve the running time of58

Weimann and Yuster [21] by eliminating the 2O(1/ε) factor. To do this, we adapt Cabello’s59

technique involving abstract Voronoi diagrams. It turns out that a much simplified version60

of his technique is sufficient for approximation purposes, and can be combined nicely with61

Weimann and Yuster’s algorithm. Our contribution however does not stop here; we also62

eliminate two of the four logn factors along the way, by using a better sequence of error63

parameters in the recursion from Weimann and Yuster’s algorithm. Our main result is64

summarized by the following theorem.65

I Theorem 1 (Diameter). Given a weighted, undirected planar graph of n vertices with non-66

negative edge lengths, we can compute a (1 + ε)-approximation of its diameter in expected67

O
(
n logn

(
logn+ (1/ε)5)) time.68

Another important problem in planar graphs is the construction of efficient (1 + ε)-69

approximate distance oracles, i.e., data structures that in a query for a pair of vertices u, v70

of a planar graph G, return a value d̃ such that dG(u, v) ≤ d̃ ≤ (1+ε)dG(u, v), where dG(u, v)71

is the shortest path distance from u to v in G. Thorup [20] presented a (1 + ε)-approximate72

distance oracle, requiring O
(
(1/ε)2n log3 n

)
preprocessing time, O ((1/ε)n logn) space, and73

O(1/ε) query time, later simplified by Klein [15]. Kawarabayashi et al. [14] improved the74

dependency on 1/ε of the space-query time product from 1/ε2 to 1/ε. Gu and Xu [9]75

combined the ideas of those results with the techniques of the diameter algorithm of Weimann76

and Yuster [21] to obtain the first distance oracle with constant query time (independent77

of both n and ε); it requires O
(
n logn

(
(1/ε)2 log3 n+ 2O(1/ε))) preprocessing time and78

O
(
n logn

(
(1/ε) logn+ 2O(1/ε))) space.79

Using similar techniques as the ones for our diameter result, we can also improve the80

(1 + ε)-approximate distance oracle of Gu and Xu [9]; namely, we eliminate the exponential81

dependency on 1/ε on the preprocessing time and space and at the same time remove a82

logarithmic factor from the preprocessing time.83

I Theorem 2 (Distance Oracle). Given a weighted, undirected planar graph of n vertices with84

non-negative edge lengths, we can construct a (1 + ε)-approximate distance oracle, requiring85

T.M. Chan and D. Skrepetos 1:3

O(1) query time, O
(
n logn

(
logn

(
logn+ (1/ε)5)+ (1/ε)6)) expected preprocessing time,86

and O
(
n logn

(
logn+ (1/ε)6)) space.87

Throughout the paper we operate under the standard RAM model of computation. Let88

[W] = {1, . . . ,W}. We assume that all the planar graphs under discussion have a fixed,89

combinatorial embedding and are triangulated.90

2 A Streamlined Version of Cabello’s Technique91

The main purpose of this section is to construct the following farthest neighbor data struc-92

ture, which will be crucial in obtaining our diameter result in Section 3:93

I Theorem 3 (Farthest neighbor). Let H be a weighted, undirected planar graph of n vertices94

with non-negative edge lengths and W be an integer. Let X be a set of b vertices on the95

boundary of the outer face of H. Let H+ be the graph obtained by adding to H a vertex z0,96

with an edge from z0 to each vertex x ∈ X of unspecified length.97

We can preprocess H in O
(
nb3W 2) expected time, such that the following query can be98

answered in O(b log b) time: given lengths drawn from [W] for the b edges z0x (x ∈ X), find99

the distance to the farthest neighbor of z0 in H+, i.e., compute maxu∈V (H) dH+(z0, u).100

In our application, b = W = O(1/ε), so the preprocessing time would be near linear101

in n. Cabello established a similar theorem [4, Theorem 21] for the more general setting102

where each edge z0x (x ∈ X) may have a real length, but his preprocessing time bound is103

Õ
(
n2b3 + b4

)
. We show that when the length of each edge z0x (x ∈ X) is a small integer,104

the preprocessing time can be greatly improved, and at the same time the method becomes105

simpler.106

To avoid degeneracies we need to ensure uniqueness of the shortest paths. That can be107

done by perturbing the lengths of the edges of H with known techniques (e.g., see [11]).108

Note that we do not need to perturb the weights of the sites, which remain integers.109

2.1 Defining Voronoi diagrams in planar graphs110

The general concept of abstract Voronoi diagrams in R2 was defined by Klein [17]. Ca-111

bello [4] applied the concept to planar graphs with weighted sites. We reiterate here the112

main definitions for the sake of completeness.113

Each site s of a Voronoi diagram in a planar graph is a pair (vs, ws), where vs is the114

site’s placement, i.e., a vertex of the graph, and ws is its weight. Given a graph G and a115

set of sites S, the Voronoi region of a site s ∈ S is defined as VRG(s, S) = {u ∈ V (G) |116

dG(vs, u) + ws ≤ dG(vt, u) + wt, ∀ t ∈ S − {s}}, i.e., as the set of all vertices closer to s117

than to any other site under the weighted metric; the Voronoi diagram of S is defined as118

VDG(S) = R2 \
⋃
s∈S VRG(s, S).119

A key concept in Voronoi diagrams is bisectors. The bisector of two sites s and t,120

bisG(s, t), is defined as the set of the duals of the edges in EG(s, t) = {uv ∈ E(G) |121

dG(u, vs) + ws ≤ dG(u, vt) + wt and dG(v, vt) + wt ≤ dG(v, vs) + ws}, i.e., the bisector122

contains the duals of all the edges whose endpoints are not both closer to the same site.123

Let {p, q} be a generic (i.e., for each u ∈ V (G) we have dG(u, vp) + wp 6= dG(u, vq) + wq)124

and independent (i.e., each Voronoi region is non-empty) set of sites on the boundary of the125

outer face of a planar graph G. Then the bisector of p and q is a simple cycle in the dual,126

passing through the dual vertex, v∞, of the outer face ([4, Lemma 5]).127

ESA 2017

1:4 Faster Approximate Diameter and Distance Oracles in Planar Graphs

As Cabello [4] showed, a Voronoi diagram in a planar graph for b sites on the boundary128

of the outer face fulfills Klein’s axioms of abstract Voronoi diagrams [17], so it can be129

represented abstractly as a collection of Voronoi vertices and Voronoi edges, forming a130

planar graph itself of size O(b). A Voronoi edge corresponds to a simple path in the dual131

(subpath of a bisector), and a Voronoi vertex corresponds to the meeting point of three132

Voronoi edges.133

2.2 Computing abstract Voronoi diagrams in planar graphs134

Since abstract Voronoi diagrams can be constructed efficiently by an existing algorithm by135

Klein et al. [18] based on randomized incremental construction, we have:136

I Theorem 4 (Abstract Voronoi diagram construction). We can construct the abstract Voronoi137

diagram in a planar graph with b sites on the outer face, using an expected O(b log b) number138

of elementary operations. Here, an elementary operation refers to the computation of the139

abstract Voronoi diagram of any four sites.140

To prove Theorem 3, we need to construct the abstract Voronoi diagram in the graph141

H for the b sites at X quickly for any given assignment of weights on X from [W], after142

an initial preprocessing that does not depend on the weights. By Theorem 4, it suffices to143

show how to compute the abstract Voronoi diagram of any four such sites.144

We start by showing how to compute all different bisectors, given two vertices of X as145

placements of sites, whose weights are drawn from [W], by building upon [4, Lemma 17].146

We need O(nW) total time for constructing the bisectors, whereas Cabello needed O
(
n2)

147

time for general real weights; we can return a pointer to a bisector in O(1) time instead of148

O(logn) time.149

I Lemma 5 (Bisectors). Given two vertices vs, vt ⊆ X as placements of sites, the family of150

bisectors bisH((vs, ws), (vt, wt)), over all possible weights ws and wt drawn from [W], has151

at most O(W) different bisectors. We can compute all these bisectors in O(nW) total time,152

such that, given two weights ws, wt ∈ [W], we can return a pointer to the relevant bisector153

in O(1) time.154

Proof. Assuming w.l.o.g. that ws ≥ wt, we can write bisH((vs, ws), (vt, wt)) as155

bisH((vs, w), (vt, 0)), where w = ws − wt, so we need to consider only bisH((vs, w), (vt, 0)),156

where w ∈ [W]. Hence, there can be at most O(W) different bisectors for a pair of sites.157

Let s = (vs, ws), t = (vt, wt), and S = {s, t}. For each vertex u ∈ V (H) we compute158

the value ηu = dH(vt, u) − dH(vs, u), by first running the linear-time SSSP algorithm of159

Henzinger et al. [12] from vs and vt and then visiting each vertex; u ∈ V (H) belongs to160

VDH(s, {s, t}) when w ≤ ηu and to VDH(t, {s, t}) otherwise. For each w ∈ [W] we compute161

the bisector bisH((vs, w), (vt, 0)), by marking each edge uv ∈ E(G) such that w ≤ ηu and162

w > ηv. The bisector is composed of the duals of the marked edges and is a cycle in the dual,163

passing through v∞; we represent it as a linked list, LLs,t,w. Finally, we store the linked-list164

representation of every different bisector bisH((vs, w), (vt, 0)) in a table, Ts,t, indexed by w.165

The total time spent is O(nW) because we have at most W different bisectors, and166

computing each takes O(n) time. Given two sites s and t with weights ws and wt ∈ [W]167

respectively, we can return a pointer to the pertinent bisector in O(1) time by looking up168

Ts,t[w], assuming w.l.o.g. that ws ≥ wt. J169

Next, we show how to compute all different Voronoi diagrams, given three vertices of X170

as placements of sites, whose weights are drawn from [W], by building upon [4, Lemma 18].171

T.M. Chan and D. Skrepetos 1:5

We need O
(
nW 2) time, whereas Cabello had O

(
n2); we can return a pointer to a Voronoi172

diagram in O(1) time instead of O(logn). Furthermore, our proof is simpler since it does173

not involve line arrangements and amortization.174

I Lemma 6 (Abstract Voronoi diagrams of three sites). Given three vertices vs, vt, vq ⊆ X as175

placements of sites, the family of Voronoi diagrams over all possible weights ws, wt, wq ∈ [W],176

has at most O
(
W 2) different Voronoi diagrams. We can compute all these Voronoi diagrams177

in O
(
nW 2) total time, such that given weights ws, wt, wq ∈ [W] we can return a pointer to178

the relevant Voronoi diagram in O(1) time.179

Proof. We invoke Lemma 5 to compute and store all the different bisectors of each pair180

of the three sites in O(nW) time. We can assume w.l.o.g. that wq = 0, so there are at181

most O
(
W 2) different Voronoi diagrams. Let s = (vs, ws), t = (vt, wt), q = (vq, wq), and182

S = {s, t, q}. For each vertex u ∈ V (H) we compute the values ηstx = dH(vs, u)− dH(vt, u),183

ηqtx = dH(vq, u)− dH(vt, u), and ηsqx = dH(vs, u)− dH(vq, u) by running the SSSP algorithm184

of [12]; u belongs to VRH(s, {s, t, q}) if ηstu ≤ wt − ws and ηsqu ≤ −ws; similar statements185

can be made for VRH(t, {s, t, q}) and VRH(q, {s, t, q}).186

For every ws, wt ∈ [W], we find in linear time the Voronoi diagram VDH(S) as follows.187

Each bisector (i) does not participate at all, (ii) participates wholly, or (iii) only a subpath188

of it, passing through v∞, participates in VDH(S) (that is implied by that fact that VDH(S)189

has at most one vertex besides v∞; see [4, Lemma 13]). We provide two pointers for each190

bisector, which mark the bisector’s part that constitutes a Voronoi edge: one for its first and191

one for its last edge participating in VDH(S). Starting from v∞, we scan the edges of each192

bisector in clockwise order; the first pointer of bisH(s, t) is created for the first encountered193

edge uv such that u is closer to s than to t and to q, and v is closer to t or q than to s194

(which can be determined using their η values). The second pointer is created for the last195

such edge. If no such edges are encountered, both pointers are set to NULL. We can find196

in O(1) time if there exists a Voronoi vertex; to do so, we scan each triple of pointers of197

the bisectors to see if the corresponding edges meet at a common dual vertex. If that is the198

case, we set that vertex to be a Voronoi vertex.199

The representation of VDH(S) for weights ws, wt ∈ [W] is composed of (i) a linked list200

of each bisector participating in it, (ii) the first and last pointers of each such bisector, and201

(iii) the one, if any, Voronoi vertex therein, besides v∞. Each different Voronoi diagram is202

stored in a two-dimensional table Ts,t,q, indexed by ws and wt. Given weights ws, wt, and203

wq, where w.l.o.g ws, wt ≥ qq we can return a pointer to the pertinent Voronoi diagram204

in O(1) time by looking up Ts,t,q[ws − wq, wt − wq], assuming w.l.o.g that ws ≥ wq and205

wt ≥ wq. J206

The final step before using Theorem 4 is to provide a data structure that, given four207

vertices ofX as placements of sites, whose weights are drawn from [W], returns their Voronoi208

diagram. The following lemma builds upon [4, Lemma 19]; we refer the reader therein for209

the proof. Our preprocessing time is O
(
nb3W 2), whereas Cabello had O

(
n2b3

)
; also our210

query time is O(1) instead of O(logn).211

I Lemma 7 (Abstract Voronoi diagrams of four sites). We can construct a data structure,212

such that (i) its preprocessing time is O
(
nb3W 2), and (ii) for any four vertices of X as213

placements of sites that are generic, independent and have weights drawn from [W], their214

abstract Voronoi diagram can be computed in O(1) time.215

Now we can use Lemma 7 and Theorem 4 to compute the abstract Voronoi diagram of b216

sites, given all the vertices of X as placements of sites, whose weights are drawn from [W].217

ESA 2017

1:6 Faster Approximate Diameter and Distance Oracles in Planar Graphs

Our preprocessing time is O
(
nb3W 2) expected, whereas Cabello had O

(
n2b3

)
; our query218

time is O(b log b), while Cabello had multiple logn factors.219

I Theorem 8 (Abstract Voronoi diagrams in planar graphs). Let H,X, n, b, and W be as in220

Theorem 3. We can preprocess H in O
(
nb3W 2) time, such that, given the vertices of X as221

placements of sites, whose weights are drawn from [W], we can compute the Voronoi diagram222

of the sites in O(b log b) expected time.223

Proof. We first construct the data structure of Lemma 7, which after O
(
nb3W 2) prepro-224

cessing time can compute the abstract Voronoi diagram of any set of four sites in O(1) time.225

Then, using Theorem 4, we compute the abstract Voronoi diagram of the b sites in O(b log b)226

time. J227

2.3 Constructing the farthest neighbor data structure228

As one last ingredient for our farthest neighbor data structure, we need the following lemma,229

taken almost verbatim from [4, Corollary 6].230

I Lemma 9. Let F be an undirected planar graph of n vertices, each having a cost c(u) > 0,231

and let q0 be one of them. Let Π = {π1, . . . , π`} be a family of simple paths in the dual of F232

with a total of h edges, counted with multiplicity. After O(n+h) preprocessing time, we can233

answer the following query in O(k) time: given a q0-star-shaped cycle γ in the dual, i.e., a234

cycle such that (i) q0 is in the interior of γ, and (ii) for every vertex in the interior of γ its235

shortest path to q0 is fully contained in γ, described as a concatenation of k subpaths from236

Π, return maxu∈U (Vint (γ, F)), where Vint(γ, F) is the set of vertices of F enclosed by γ.237

We can now prove the main theorem of this section.238

Proof of Theorem 3. We construct the data structure of Theorem 8 for H, for a set S of b239

sites where each one is placed in a different vertex of X and apply Lemma 5 to compute the240

bisector of each pair of sites. For each site s ∈ S and each bisector bisH(s, ·), we assign a cost241

to every vertex u ∈ V (H), equal to dH(vs, u), and construct the data structure of Lemma 9242

(a bisector bisH(s, t) enclosing s is an s-star shaped cycle in the dual), where F = H, Π is243

the set of bisectors, ` = bW , h = nbW , and k = b. The preprocessing time is O
(
nb3W 2).244

In a query, we compute the abstract Voronoi diagram of H, where for each s ∈ S we245

set ws to be equal to the given length of the edge w0vs, by using the data structure of246

Theorem 8. For each site s ∈ S, we query the data structure of Lemma 9 for s to find the247

vertex of VRH(s, S) with the largest distance from s by walking along its boundary, which248

is the concatenation of at most b subpaths of the bisectors bisH(s, ·). From Lemma 9 we249

need O(b) time to find maxu∈VRH(s,S){dH(vs, u) + ws}. We return the maximum of those250

distances. Thus, the total query time is O(b log b). J251

3 Improving Weimann and Yuster’s Diameter Approximation252

Algorithm253

For approximating the diameter, we employ the recursive scheme of Weimann and Yuster [21],254

which is as follows.255

Let G be the original graph and N its size. Let d (G1, G2, G3) denote the longest shortest256

path distance between a marked vertex of G1 and a marked vertex of G2 in G3. Initially257

G = G, n is the size of G, all vertices are marked, and we want to approximate d (G,G,G).258

Let ε > 0. The outline of the recursive scheme is as follows.259

T.M. Chan and D. Skrepetos 1:7

1. Find a cycle C of G, such that the removal of C’s vertices decomposes G into two disjoint260

and connected planar graphs A and B, each having between n/3 and 2n/3 vertices; C261

may have up to n vertices. Let Gin = A∪C and Gout = B ∪C and assume w.l.o.g. that262

A (resp. B) lies inside (resp. outside) C.263

2. Approximate d (Gin, Gout, G) (Sections 2.1 and 2.2 in [21]).264

3. Unmark all vertices of C and build graphs G+
in and G+

out such that (i) they are planar,265

and connected graphs, (ii) each of G+
in and G+

out has at most roughly 2n/3 vertices, (iii)266

together they have at most roughly n vertices, and (iv) d
(
Gin, Gin, G

+
in
)
is a (1 + ε′)-267

approximation of d (Gin, Gin, G) for an appropriate choice of parameter ε′. Then recurse268

in G+
in to approximate d

(
Gin, Gin, G

+
in
)
and do the same for G+

out (Section 2.3 in [21]).269

4. Return max
{
d (Gin, Gout, G) , d

(
Gin, Gin, G

+
in
)
, d
(
Gout, Gout, G

+
out
) }

.270

3.1 Decomposing G to Gin and Gout271

To decompose the graph G into two subgraphs Gin and Gout, we use a shortest path separa-272

tor, similarly to Thorup’s work [20]. We compute the shortest path tree T of an arbitrarily273

selected marked vertex z of G in linear time by employing the algorithm of Henzinger et274

al. [12]. Let ∆̃ = maxu∈V (G) dG(v, u); we know that ∆̃ ≤ ∆ ≤ 2∆̃. We can find in linear275

time (see [19, Lemma 2]) two paths P and Q, both starting at v, such that the removal of276

the vertices on V (C), where C = P ∪ Q, from G gives us two disjoint planar subgraphs A277

and B, where V (A) (resp. V (B)) contains the vertices of V (G) that are strictly inside (resp.278

outside) C and |V (A)|, |V (B)| ≤ 2n/3. The size of C, however, can be as big as n. The279

graph Gin (resp. Gout) is the graph induced by A∪C (resp. B∪C). The time to decompose280

the graph is O(n).281

3.2 Reducing d (Gin, Gout, G) to d (Gin, Gout, Gp)282

Before approximating d (Gin, Gout, G) we need to address the following issue. A shortest283

path between a marked vertex of Gin and another in Gout has to go through a vertex of284

C. However, since C can have as many as n vertices, we cannot consider for each such pair285

all the vertices of C; instead, we select only a small subset of vertices of C and construct286

a graph Gp that allows us to approximate the distance between every aforementioned pair.287

The following lemma can be found in [21, Section 2.1 and Lemma 2.1].288

I Lemma 10. We can select a set Y of O(1/ε) vertices (called portals) on C in linear time,289

such that if d (Gin, Gout, G) ≥ ∆̃, then maxu∈V (Gin),v∈V (Gout) miny∈Y {dG(u, y) + dG(y, v)}290

is a (1 + 2ε)-approximation of d (Gin, Gout, G). Otherwise, it is at most (1 + 2ε)∆̃.291

We run an SSSP algorithm from each portal of Y in G; let ` be the largest distance292

found. We construct a graph Gp = Gp,in ∪ Gp,out, such that V (Gp,in) = V (A) ∪ Y and293

V (Gp,out) = Y ∪ V (B). We create an edge between each vertex of Gp,out and each portal,294

whose length is equal to their shortest path distance in G, after rounding it to the closest295

multiple of ε` and dividing it by that number. The edges between vertices of Gp,in are the296

same as in G, but their lengths are also divided by ε`. The total time for the reduction is297

O((1/ε)n).298

3.3 Approximating d (Gin, Gout, Gp)299

We construct the farthest neighbor data structure of Theorem 3 for H = Gin, X = Y ,300

b = O(1/ε), and W = 1/ε. Then, we query it n times, by using each vertex u ∈ V (Gout)301

ESA 2017

1:8 Faster Approximate Diameter and Distance Oracles in Planar Graphs

as z0 and setting w(z0, x) = dGout(u, x) for each x ∈ X, to find its farthest neighbor among302

the vertices of V (Gin). Finally, we return the maximum of the distances found, multiplied303

by ε`. The total time for approximating d (Gin, Gout, Gp) is thus O
(
nb3W 2 + nb log b

)
=304

O
(
(1/ε)5n

)
.305

Weimann and Yuster’s paper [21] did not use a farthest neighbor data structure but306

instead employed a brute-force search, observing that there are only 2O(1/ε) combinatorially307

different vertices in A and B (in terms of their vectors of distances to the portals). This is308

where we eliminate the exponential dependency on ε from their algorithm.309

3.4 Reducing d (Gin, Gin, G) to d (Gin, Gin, G+
in)310

After approximating d (Gin, Gout, G), we need to approximate d (Gin, Gin, G) and311

d (Gout, Gout, G); however, we cannot directly recurse in Gin and Gout respectively because312

two problems arise (since the treatment is symmetrical for both Gin and Gout, we concern313

ourselves only with the former). First, a path realizing d (Gin, Gin, G) could have a subpath314

lying in Gout. Second, Gin can have up to O(n) vertices because C, which is part of Gin,315

itself could have that many. However, Gin has at most 2n/3 marked vertices, which are the316

only ones used for computing d (Gin, Gin, G). Therefore, we need to construct graphs G+
in317

and G+
out such that (i) they are planar, and connected graphs, (ii) each of G+

in and G+
out has318

at most roughly 2n/3 vertices, (iii) together they have at most roughly n vertices, and (iv)319

d
(
Gin, Gin, G

+
in
)
is a (1 + ε′)-approximation of d (Gin, Gin, G) for an appropriate choice of320

parameter ε′. The following lemma is from [21, Lemma 2.3].321

I Lemma 11. If d (Gin, Gin, G) ≥ ∆̃, then d
(
Gin, Gin, G

+
in
)
is a (1 + 2ε′)-approximation of322

d (Gin, Gin, G). Otherwise, d
(
Gin, Gin, G

+
in
)
≤ (1 + 2ε′)∆̃.323

As in the algorithm of Weimann and Yuster, to construct G+
in, we start by umarking324

all vertices of C and selecting O(1/ε′) vertices therein, called dense portals, similarly to325

Section 3.2. Let Bin be the union of the shortest paths between every pair of dense portals326

in Gout. We produce a graph B′in, where we keep all the vertices of Bin of degree more than327

two and shrink the rest. Since there are O(1/ε′) dense portals, there are O
(
(1/ε′)2) such328

shortest paths. Also, any pair of those paths shares at most one subpath since we assume329

that shortest paths are unique, so there are at most O
(
(1/ε′)4) vertices of Bin of degree330

more than two, i.e., V (B′in) = O
(
(1/ε′)4). It remains to show (i) how to compute B′in and331

(ii) how to set ε′. These two points are where we deviate from the approach of Weimann332

and Yuster.333

First, to construct B′in, we do not construct Bin explicitly, as their algorithm does, which334

would require O ((1/ε′)n) time. By using a slightly modified version of the multiple-source335

shortest paths data structure of Klein [16] we construct B′in in O
(
n logn+ (1/ε′)4 logn

)
336

time instead. Second, Weimann and Yuster chose a fixed value for ε′ for every recursive337

call. Since the recursion has O(logN) levels and error accumulates, they were forced to338

set ε′ = ε/ logN , and so the (1/ε′)4 factors in the running time resulted in four logN339

factors. Here, we make ε′ adaptive, i.e., dependent on the current input size n. Specifically,340

we set ε′ = ε/n1/8. With this choice of ε′ we show that the approximation factor of our341

algorithm remains 1 + O(ε) (Section 3.5) and the final running time has only two logN342

factors (Section 3.5).343

I Theorem 12. We can build the graph B′in in O
(
n logn+ (1/ε′)4 logn

)
time.344

Proof. We apply the multiple-source shortest paths data structure of Klein, which prepro-345

cesses a planar graph F of n vertices in O(n logn) time, such that given a vertex u on the346

T.M. Chan and D. Skrepetos 1:9

boundary of the outer face and another vertex v, we can query the shortest path tree of u347

to find the distance to v in O(logn) time. We need to augment that data structure to also348

support the following two queries on the shortest path tree of a vertex on the boundary of349

the outer face: (i) find the lowest common ancestor of any two vertices; and (ii) find the level350

ancestor of any vertex and any level. To do that, we just replace the (persistent) dynamic351

trees used internally in Klein’s data structure with the (persistent) top-tree structures of352

Alstrup et al. [1], so we can support both queries in O(logn) time. We construct the data353

structure for F = Gout, after redrawing in linear time such that C lies on the outer face.354

We build a list Γ that contains all the vertices of Gout that have degree more than three355

in Bin; as argued before, |Γ| = O
(
(1/ε′)4). There are three possibilities for each pair of356

shortest paths between dense portals: the paths do not intersect, they intersect only at one357

vertex, or they share a common subpath starting on a vertex p1 and ending at another358

vertex p2. Our goal is to find for each such pair the vertices p1 and p2 (which may not exist,359

may be the same, or may be distinct) and insert them to Γ. We focus on finding p1 since360

finding p2 is similar. Suppose that the first shortest path is from a to b and the second from361

c to d. What makes the problem nontrivial is that the two paths are not available explicitly.362

We find p1 by performing a binary search on the a-to-b shortest path as follows. Let p′363

and p′′ be initially set to a and b respectively. Let p be the vertex midway between p′ and p′′364

on the a-to-b path, which can be found by a level ancestor query. We want to find whether365

p is (i) between p1 and p2 (i.e., on the c-to-d path), (ii) between a and p1, or (iii) between366

p2 and b. To do so, we find the lowest common ancestor lca of p and d on the shortest path367

tree of c. If lca = p, then we are in case (i). Else, we perform a level ancestor query for p and368

d to find the children p̂ and d̂ of lca that lie on the lca-to-p and lca-to-d paths respectively369

and compare the order of p̂ and d̂ around lca. We assume w.l.o.g. that c is between a and b370

in P . If p̂ is to the left of d̂, then we are in case (ii), else we are in case (iii).2 For case (i)371

or (iii) we recurse with p′′ = p; for case (ii) we recurse with p′ = p. We stop when p′ = p′′.372

Once we are done with every pair of paths, we shrink every vertex in V (Gout)− Γ, thus373

procuring B′in. J374

We unmark all vertices of B′in and append it to Gin to create the graph G′in, which is375

a planar graph and has |V (Gin)| + O
(
(1/ε′)4) vertices. Then, we have to shrink G′in, such376

that it will have at most 2n/3 vertices (remember that |V (Gin)| could be as big as O(n)).377

As in [21], we walk down on C and do the following steps. For any consecutive pair yi378

and yi+1 of dense portals on C we create an edge between them of weight equal to their379

shortest path distance in G. Then we visit all the vertices p1, . . . , pk between yi and yi+1380

on C. For each vertex u having an edge to such a vertex, we create an edge between u and381

yi of weight equal to minj{`(u, pj) + dG(pj , yi)}. Finally, we delete all vertices p1, . . . , pk382

and their incident edges. We call the resulting graph G+
in; it has 2n/3 +O

(
1/(ε′)4) vertices.383

G+
out is constructed similarly. The total time spent is O

(
n logn+ (1/ε′)4 logn

)
.384

3.5 Analyzing the approximation factor and the running time385

I Lemma 13. The approximation factor of our algorithm is 1 +O(ε).386

Proof. Let G(µ) be the graph of a node µ of the recursion tree, and G
(µ)
in and G

(µ)
out be387

the two graphs created by decomposing it, as in Section 3.1. We (1 + O(ε))-approximate388

d
(
G

(µ)
in , G

(µ)
out, G

(µ)
)

for each node µ of the recursion tree, so the approximation factor of389

2 If the shortest path tree is not unique, we pick the right-most one; see [16] for details.

ESA 2017

1:10 Faster Approximate Diameter and Distance Oracles in Planar Graphs

our algorithm is (1 +O(ε)) maxµ
d
(
G

(µ)
in ,G

(µ)
out,G

(µ)
)

d
(
G

(µ)
in ,G

(µ)
out,G

) ≤ (1 +O(ε))
∏
i

(1 + εi) where εi = ε/n
1/8
i ,390

for some sequence n1, n2, . . . , nk satisfying ni−1/3+Θ((1/εi)4) ≤ ni ≤ 2ni−1/3+Θ((1/εi)4)391

with n1 = N and nk = O
(
(1/ε)4).392

Now,
∏
i

(1 + εi) ≤ exp
(∑

i

εi

)
. Since ni decreases at least exponentially, εi grows at393

least exponentially; thus the sum
∑
i εi is similar to a geometric series and can be bounded394

by the last term, which is O(ε). Therefore, the approximation factor of our algorithm is395

(1+O(ε))(1+O(ε)) = 1+O(ε) (which can be refined to 1+ε after adjusting ε by a constant396

factor). J397

I Lemma 14. The running time of our algorithm is O
(
N logN

(
logN + (1/ε)5)).398

Proof. The running time satisfies the following recurrence relation:

T (n) ≤ max
1/3≤α≤2/3

(
T
(
αn+O

(
(1/ε)4√n

))
+ T

(
(1− α)n+O

(
(1/ε)4√n

))
+

O
(
n
(
logn+ (1/ε)5))) .

In the base case n = O
(
(1/ε)4), so we can run a quadratic-time APSP algorithm in O

(
n2)

399

time. Since we have O
(
ε4N

)
such graphs, the total time for the base case is O

(
(1/ε)4N

)
.400

The solution of the recurrence is T (N) = O
(
N logN

(
logN + (1/ε)5)). J401

This completes the proof of Theorem 1. It is not difficult to see that in the same amount402

of time we can also compute a (1 + ε)-approximation of the radius and of the Wiener index403

of the graph and of the eccentricity of each node.404

4 Conclusion405

Gawrychowski et al. [8] recently improved Cabello’s algorithm [4] for computing the exact406

diameter in planar graphs; their algorithm is deterministic instead of randomized and re-407

quires Õ(n5/3) time instead of Õ(n11/6). It is worth investigating whether the techniques408

therein could be used to make our approximation algorithm deterministic and perhaps shave409

off some 1/ε factors. Another possible research direction is generalizing the techniques for410

the case of directed graphs.411

An interesting consequence of our result is that we can compute the exact diameter of412

an unweighted planar graph in O
(
n logn

(
logn+ ∆O(1))) expected time, where ∆ is the413

diameter, simply by setting ε near 1/∆. If one wants running time near linear in n, the414

best previous result we are aware of was by Eppstein [6] and had exponential dependence415

in ∆ (namely, the time bound is O
(
n2∆ log ∆)). Note that our result beats Cabello’s or416

Gawrychowski et al.’s algorithm when the diameter is smaller than nδ for some constant δ.417

References418

1 Stephen Alstrup, Jacob Holm, Kristian de Lichtenberg, and Mikkel Thorup. Maintain-419

ing information in fully dynamic trees with top trees. ACM Transactions on Algorithms,420

1(2):243–264, 2005.421

2 Piotr Berman and Shiva Prasad Kasiviswanathan. Faster approximation of distances in422

graphs. In Proceedings of the Tenth International Workshop on Algorithms and Data423

Structures, pages 541–552. Springer, 2007.424

T.M. Chan and D. Skrepetos 1:11

3 Sergio Cabello. Subquadratic algorithms for the diameter and the sum of pairwise distances425

in planar graphs. In Proceedings of the Twenty-eighth Annual ACM-SIAM Symposium on426

Discrete Algorithms, pages 2143–2152, 2017.427

4 Sergio Cabello. Subquadratic algorithms for the diameter and the sum of pairwise distances428

in planar graphs. CoRR, abs/1702.07815v1, 2017.429

5 Timothy M. Chan. All-pairs shortest paths for unweighted undirected graphs in o(mn)430

time. ACM Transactions on Algorithms, 8:1–17, 2012.431

6 David Eppstein. Subgraph isomorphism in planar graphs and related problems. In SODA,432

volume 95, pages 632–640, 1995.433

7 Greg N. Frederickson. Fast algorithms for shortest paths in planar graphs, with applica-434

tions. SIAM Journal on Computing, 16(6):1004–1022, 1987.435

8 Paweł Gawrychowski, Haim Kaplan, Shay Mozes, Micha Sharir, and Oren Weimann.436

Voronoi diagrams on planar graphs, and computing the diameter in deterministic Õ(n5/3)437

time. CoRR, abs/1704.02793v1, 2017.438

9 Qian-Ping Gu and Gengchun Xu. Constant query time (1 + ε)-approximate distance or-439

acle for planar graphs. In Proceedings of the Twenty-sixth International Symposium on440

Algorithms and Computation, pages 625–636. Springer, 2015.441

10 Dov Harel and Robert Endre Tarjan. Fast algorithms for finding nearest common ancestors.442

SIAM Journal on Computing, 13(2):338–355, 1984.443

11 David Hartvigsen and Russell Mardon. The all-pairs min cut problem and the minimum444

cycle basis problem on planar graphs. SIAM Journal on Discrete Mathematics, 7(3):403–445

418, 1994.446

12 Monika R. Henzinger, Philip N. Klein, Satish Rao, and Sairam Subramanian. Faster447

shortest-path algorithms for planar graphs. Journal of Computer and System Sciences,448

55(1):3–23, 1997.449

13 Ken-ichi Kawarabayashi, Philip N. Klein, and Christian Sommer. Linear-space approximate450

distance oracles for planar, bounded-genus and minor-free graphs. In Proceedings of the451

Thirty-eight International Colloquium on Automata, Languages, and Programming, pages452

135–146. Springer, 2011.453

14 Ken-ichi Kawarabayashi, Christian Sommer, and Mikkel Thorup. More compact oracles454

for approximate distances in undirected planar graphs. In Proceedings of the Twenty-fourth455

Annual ACM-SIAM Symposium on Discrete Algorithms, pages 550–563, 2013.456

15 Philip N. Klein. Preprocessing an undirected planar network to enable fast approximate457

distance queries. In Proceedings of the Thirteenth Annual ACM-SIAM Symposium on Dis-458

crete Algorithms, pages 820–827, 2002.459

16 Philip N. Klein. Multiple-source shortest paths in planar graphs. In Proceedings of the460

Sixteenth Annual Annual ACM-SIAM Symposium on Discrete Algorithms, pages 146–155,461

2005.462

17 Rolf Klein. Concrete and abstract Voronoi diagrams, volume 400. Springer Science &463

Business Media, 1989.464

18 Rolf Klein, Kurt Mehlhorn, and Stefan Meiser. Randomized incremental construction of465

abstract Voronoi diagrams. In Informatik, pages 283–308. Springer, 1992.466

19 Richard J. Lipton and Robert Endre Tarjan. A separator theorem for planar graphs. SIAM467

Journal on Applied Mathematics, 36(2):177–189, 1979.468

20 Mikkel Thorup. Compact oracles for reachability and approximate distances in planar469

digraphs. Journal of the ACM, 51(6):993–1024, 2004.470

21 Oren Weimann and Raphael Yuster. Approximating the diameter of planar graphs in near471

linear time. ACM Transactions on Algorithms, 12(1):1–13, 2016.472

22 Christian Wulff-Nilsen. Algorithms for planar graphs and graphs in metric spaces. PhD473

thesis, PhD thesis, University of Copenhagen, 2010.474

ESA 2017

1:12 Faster Approximate Diameter and Distance Oracles in Planar Graphs

A Approximate Distance Oracles475

To construct an approximate distance oracle, we build upon the general framework of the476

oracles of Thorup, Kawarabayashi et al., and Gu and Xu ([20, 14] and [9] respectively).477

Given a weighted, undirected planar graph G with non-negative edge lengths, we will focus478

on constructing a distance oracle with additive stretch ε∆ (also called additive distance479

oracle), where ∆ is the diameter of G. Such an oracle returns, given two vertices u and v of480

G, an approximation d̂ of their distance dG(u, v) in G, such that dG(u, v) ≤ d̂ ≤ dG(u, v)+ε∆.481

A known scaling technique (see Kawarabayashi et al. [13] and Section 4 in [9]) can convert482

the additive distance oracle to a (1 + ε)-approximate distance oracle.483

To construct the additive distance oracle, we recursively decompose the given graph G484

as in Sections 3.1 and 3.4, but here we also store the graphs in a tree, called the recursive485

decomposition tree. Let N be the size of G. Let µ be an internal node of the recursive486

decomposition tree, G(µ) its graph, and n = |V
(
G(µ)) |. In the root ν of the tree, G(ν) = G.487

Let C(µ) be the shortest path separator used to decompose G(µ) into two disjoint and488

connected planar subgraphs G(µ)
in and G(µ)

out as described in Section 3.1. We find a set Y (µ)
489

of O(1/ε) vertices on C(µ), called portals, such that we can approximate any shortest path490

between any u ∈ V
(
G

(µ)
in

)
and v ∈ V

(
G

(µ)
out

)
by routing it through one of these portals.491

Let ∆̃ be a 2-approximation of the diameter of G, computed as in 3.1. To find the portals492

we use Lemma 10, slightly changed for the current setting.493

I Lemma 15. We can select a set Y (µ) of O(1/ε) vertices, where ε > 0, on C(µ) in linear494

time, such that dG(µ)(u, v) ≤ miny∈Y (µ){dG(µ)(u, y) + dG(µ)(y, v)} ≤ dG(µ)(u, v) + 2ε∆̃ for495

any u ∈ V
(
G

(µ)
in

)
and v ∈ V

(
G

(µ)
out

)
.496

We prove the following theorem (similar to Theorem 3), which is crucial into substituting497

the exponential dependency on 1/ε in the space and the preprocessing time of the additive498

distance oracle in [9] with a polynomial one, while retaining the constant query time.499

I Theorem 16. Let H be a weighted, undirected planar graph of n vertices with non-negative500

edge lengths and W be an integer. Let X be a set of b vertices on the boundary of the outer501

face of H. Let H+ be the graph obtained by adding to H a vertex z0, with an edge from z0502

to each vertex x ∈ X of unspecified length. Let there be O(n) different b-tuples of lengths for503

those edges.504

We can preprocess H in O
(
nb3W 2 + b4W 2) expected preprocessing time and space, such505

that the following query can be answered in O(1) time: given an O(logn)-bit identifier of506

one of those tuples and a vertex u ∈ V (H), return dH+(z0, u).507

Proof. We create a set S of b sites where each site is placed on a different vertex of X. For508

each pair of sites we construct all the different bisectors by using Lemma 5. There are O(W)509

bisectors for each pair of sites (Lemma 5), so there are O
(
b2W

)
bisectors in total. For each510

bisector and each vertex we store a boolean flag which is set to true if the vertex is enclosed511

by the bisector and false otherwise (that can be done by a variant of BFS) in O
(
nb2W

)
512

time. We find all the O
(
b4W 2) pieces of the graph into which it is decomposed by all the513

bisectors in that much time. The boundary of each such piece is the concatenation of at514

most b bisectors. For each vertex of H we find in O(b) time the piece that it belongs to and515

store a pointer to it in O(nb) total time.516

For each tuple of lengths we construct the abstract Voronoi diagram of S in O
(
nb3W 2)

517

time, by using Lemma 8, find in O
(
b4W 2) time the Voronoi region enclosing each piece of518

the previous paragraph, and create a pointer to it. We store the pointer of each piece in519

T.M. Chan and D. Skrepetos 1:13

a hash table using the identifier of each tuple, but we do not store any abstract Voronoi520

diagram. The total preprocessing time is O
(
nb3W 2 + b4W 2) expected. The space required521

is O
(
n+ b4W 2).522

In a query, given a O(logn)-bits identifier representing a tuple of lengths and a vertex523

u ∈ V (H), we find the piece containing u, by using u’s pointer, and then query the hash524

table of that piece to find the site s, such that vs = arg mint∈S{dH(vt, u) + wt} by using525

the given identifier as key. Then, we return dH(vs, u) +ws, which is dH+(z0, u). The query526

time is constant. J527

We run an SSSP algorithm from the portals of every internal node µ of the recursive528

decomposition tree. Let ` be the largest distance found. We construct the data structure of529

Theorem 16 for H = G
(µ)
in , after dividing the length of every edge therein by ε`, X = Y (µ),530

b = O(1/ε), and W = 1/ε. Each of the n tuples of lengths corresponds to the tuple of531

the shortest path distances of a different vertex of G(µ)
out, after rounding each to the closest532

multiple of ε` and dividing by that number, to the portals. Each such tuple is provided with533

a unique O(logn)-bits identifier.534

We create graphs G(µ)+
in and G(µ)+

out , where ε′ = ε/n1/8, in O
(
n logn+ (1/ε′)4 logn

)
time,535

as in Section 3.4, assign them to the children of µ, and recurse. We stop when the size of the536

graph is O(1/ε). The height of the recursive decomposition tree is O(logn). For each leaf537

node of the tree we run a brute-force APSP algorithm and store the distance matrix. We538

also preprocess the tree as in [10], such that we can answer lowest common ancestor queries539

in O(1) time.540

To answer a query, given two vertices u and v, let µu and µv respectively be the nodes541

of the recursive decomposition tree containing it. If µu = µv and µu is a leaf, we return the542

shortest path distance from u to v by visiting the distance matrix therein. Else, we find in543

O(1) time their lowest common ancestor µu,v; supposing w.l.o.g. that u ∈ V
(
G

(µu,v)
in

)
and544

v ∈ V
(
G

(µu,v)
out

)
, we properly query the data structure of Theorem 16 of µu,v, and return545

the distance found, multiplied with ε`. Similarly to Lemma 13 we have the following lemma.546

I Lemma 17. For two vertices u, v ∈ V (G) the additive oracle returns an value d̂ such that547

dG(u, v) ≤ d̂ ≤ dG(u, v) +O(ε)∆.548

Finally, we bound the query time, the space, and the preprocessing time of our additive549

distance oracle.550

I Theorem 18. The space occupied by the additive oracle is O
(
N
(
logN + (1/ε)6)) , the551

preprocessing time required is O
(
N
(
logN

(
logN + (1/ε)5)+ (1/ε)6)) , and a query can be552

answered in O(1) time.553

Proof. It takes O(1) time to find the lowest common ancestor of two nodes and to query554

the distance of any vertices therein. It also takes O(1) time to query the distance matrix in555

a leaf. Therefore, the query time is O(1).556

The preprocessing time T (n) and space S(n) satisfy the following recurrence relations:557

T (n) ≤ max
1/3≤α≤2/3

(
T
(
αn+O

(
(1/ε)4√n

))
+ T

(
(1− α)n+O

(
(1/ε)4√n

))
+

O
(
n
(
logn+ (1/ε)5)+ (1/ε)6)) ,

S(n) ≤ max
1/3≤α≤2/3

(
S
(
αn+O

(
(1/ε)4√n

))
+ S

(
βn+O

(
(1/ε)4√n

))
+O

(
n+ (1/ε)6)) .

In the base case n = O
(
1/ε4), so we run a quadratic-time APSP algorithm in O

(
n2)

558

time. Since we have O
(
ε4N

)
such graphs, the total time for the base case is O

(
(1/ε)4N

)
.559

ESA 2017

1:14 Faster Approximate Diameter and Distance Oracles in Planar Graphs

The solutions to the recurrences are T (N) = O
(
N
(
logN

(
logN + (1/ε)5)+ (1/ε)6)) and560

S(N) = O
(
N
(
logN + (1/ε)6)) . J561

	Introduction
	A Streamlined Version of Cabello's Technique
	Defining Voronoi diagrams in planar graphs
	Computing abstract Voronoi diagrams in planar graphs
	Constructing the farthest neighbor data structure

	Improving Weimann and Yuster's Diameter Approximation Algorithm
	Decomposing a to a and a
	Reducing a to a
	Approximating a
	Reducing a to a
	Analyzing the approximation factor and the running time

	Conclusion
	Approximate Distance Oracles

