
Adaptive and Approximate Orthogonal Range Counting∗

Timothy M. Chan† Bryan T. Wilkinson‡

Abstract
We present three new results on one of the most basic
problems in geometric data structures, 2-D orthogonal range
counting. All the results are in the w-bit word RAM model.

• It is well known that there are linear-space data struc-
tures for 2-D orthogonal range counting with worst-
case optimal query time O(logw n). We give an
O(n log log n)-space adaptive data structure that im-
proves the query time to O(log log n + logw k), where
k is the output count. When k = O(1), our bounds
match the state of the art for the 2-D orthogonal
range emptiness problem [Chan, Larsen, and Pătraşcu,
SoCG 2011].

• We give an O(n log log n)-space data structure for ap-
proximate 2-D orthogonal range counting that can com-
pute a (1 + δ)-factor approximation to the count in
O(log log n) time for any fixed constant δ > 0. Again,
our bounds match the state of the art for the 2-D or-
thogonal range emptiness problem.

• Lastly, we consider the 1-D range selection problem,
where a query in an array involves finding the kth least
element in a given subarray. This problem is closely
related to 2-D 3-sided orthogonal range counting. Re-
cently, Jørgensen and Larsen [SODA 2011] presented
a linear-space adaptive data structure with query time
O(log log n+logw k). We give a new linear-space struc-
ture that improves the query time to O(1 + logw k),
exactly matching the lower bound proved by Jørgensen
and Larsen.

1 Introduction

Orthogonal range searching [4, 14, 32] is among the most
extensively studied topics in algorithms and computa-
tional geometry and has numerous applications (for ex-
ample, in databases and stringology). In this paper, we
study one of the most basic versions of the problem:
static 2-D orthogonal range counting. In this problem,
we want to preprocess a set P of n points from R2 so
that given a query rectangle Q ⊆ R2, we can efficiently
compute |P ∩Q|. By contrast, in the reporting problem,
we want to output all points in P ∩Q, and in the empti-
ness problem, we want to decide whether P ∩Q = ∅.
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The model we use in this paper is the standard w-
bit word RAM [15]. In this model, the coordinates of
the points of P and the vertices of Q are taken from
a fixed-size universe [U ] = {1, . . . , U}. Furthermore,
operations on single words take constant time, and it
is assumed that w = Ω(logU) and w = Ω(log n) so
that any coordinate or index into the input array fits
in a single word. Bounds on the space requirements
of data structures are given in words, unless stated
otherwise. We will assume that U = O(n), since we
can operate in rank space [16] (i.e., replace coordinates
of points with their ranks), at the expense of performing
an initial predecessor search during each query. For
example, by using van Emde Boas trees for predecessor
search [34, 36], we only need to add an O(log logU) term
to all the query bounds.

The classic “textbook” solution to orthogonal range
searching is the range tree [7, 14, 32]. The space usage in
2-D is O(n log n), and the query time (assuming that we
use a standard layered version of the range tree [37]) is
O(log n) for counting orO(log n+k) for reporting, where
k denotes the number of points in the query range. A
long line of research [12, 29, 5, 22, 10] has been devoted
to finding improved solutions. For example, for 2-D
reporting, the current best upper bounds in the word
RAM model were obtained recently by Chan, Larsen,
and Pătraşcu [10], using a new form of compressed range
tree, achieving the tradeoffs shown in the first three lines
of Table 1. The current best bounds for 2-D emptiness
are obtained by setting k = 1 in these query times.
There is an Ω(log log n) lower bound on the query time
for range emptiness, which holds for data structures
using up to n logO(1) n space [31].

For 2-D counting, Chazelle [12] described a com-
pressed range tree which reduces space to O(n) and
keeps query time O(log n). JaJa, Mortensen, and
Shi [22] used a wε-ary version of this compressed range
tree to reduce the query time to O(logw n). (Since
w = Ω(log n), the query bound is sometimes written
as O(log n/ log log n).) Pătraşcu [30] gave a matching
Ω(logw n) lower bound on the query time for range
counting, which holds for data structures using up to
n logO(1) n space.

Adaptive Range Counting. In this paper, we in-
vestigate the possibility of obtaining better query times



Reference Problem Space Query Time

[10] Reporting O(n) O((1 + k) logε n)
[10] Reporting O(n log log n) O((1 + k) log log n)
[10] Reporting O(n logε n) O(log log n+ k)
[22] Counting O(n) O(logw n)

Table 1: Known results for 2-D orthogonal range searching. (For the emptiness problem, set k = 1 in the first
two lines.)

for 2-D orthogonal range counting when the output
count k is small. We give an adaptive data structure
whose query time is sensitive to k: with O(n log log n)
space, the query time is O(log log n+ logw k). This new
query bound simultaneously encompasses the known
O(log log n) query time for emptiness when k = 1 (which
requires O(n log log n) space, as given in the second line
of Table 1), and the known nonadaptiveO(logw n) query
time for counting when k = Θ(n).

Previously, an adaptive data structure with O(n)
space and O(log log n+logw k) query time was obtained
by Jørgensen and Larsen [23] only for 2-D 3-sided
orthogonal range counting (by way of a problem called
range selection, defined below), but not for general 4-
sided ranges.

Approximate Range Counting. Next, we con-
sider the approximate 2-D orthogonal range counting
problem, which involves computing an approximation
k′ such that (1 − δ)k ≤ k′ ≤ (1 + δ)k for a given fixed
constant δ > 0.

Much of the early research in the area of approx-
imate range counting has focused on (nonorthogonal)
halfspace range queries. Since approximate counting is
at least as difficult as deciding emptiness, the ultimate
goal is to get bounds matching those of emptiness. For
example, for approximate 3-D halfspace range counting,
Afshani et al. [2, 3] (improving earlier results [6, 24]) ob-
tained linear-space data structures with O(log n) query
time. These algorithms can be adapted to solve the
related 3-D 3-sided orthogonal range counting problem
(i.e., 3-D dominance counting), which includes 2-D 3-
sided range counting as a special case. However, for or-
thogonal problems in the word RAM model, one should
really aim for sublogarithmic query time. The tech-
niques of Afshani et al. seem to inherently require sub-
optimal Ω((log log n)2) query time, due to their use of
recursion.

We give data structures for approximate 2-D or-
thogonal range counting with O(n log log n) space and
O(log log n) query time, or alternatively with O(n)
space and O(logε n) query time. These bounds com-
pletely match the state of the art for the 2-D range
emptiness problem as stated in Table 1.

A previous work by Nekrich [27] described data
structures for approximate orthogonal range counting
using a more precise notion of approximation. His
data structures compute an approximation k′ such that
k − δkp ≤ k′ ≤ k + δkp, where δ > 0 and 0 < p < 1.
His 2-D data structure requires O(n log4 n) space and
O((1/p) log log n) query time, if p can be specified at
query time. If p is fixed during preprocessing, the space
requirement can be reduced to O(n log2 n). In either
case, these data structures require much more space
than our new data structures.

Adaptive 1-D Range Selection. Given an array
A of n elements from [U ], designing data structures
to compute various aggregate functions over a query
subarray A[` : r] have been the subject of many papers
in the literature. For example, the range minimum
query problem (where we want to find the minimum
of A[` : r] for a given ` and r) has been studied
since the 1980s [21]. Here, we examine a generalization
that has gained much attention recently: in the range
selection query problem, we want to find the kth least
element in a given subarray, where k is specified at query
time. The problem is also known as range median in
the case when k = d(r − ` + 1)/2e. Range selection
in an array is closely related to a special case of 2-D
orthogonal range counting: deciding whether the kth
smallest element in a subarray is less than a given value
is equivalent to answering a range counting query for a
3-sided 2-D orthogonal range, by treating array indices
as x-coordinates and array values as y-coordinates.
Improving a series of previous results [25, 19, 17, 11],
Brodal and Jørgensen [8] eventually obtained a linear-
space data structure that can answer range selection
queries in O(logw n) time.

At last year’s SODA, Jørgensen and Larsen [23]
investigated adaptive data structures for range selec-
tion that have query times sensitive to the parameter
k. They proved a lower bound of Ω(logw k) on the
query time, which holds for data structures using up
to n logO(1) n space. They also gave a data structure re-
quiring O(n) space and O(log log n+logw k) query time.
Note that for small k, there is still potential for im-
provement in the initial log log n term; for example, the



classical results for range minimum queries (k = 1) [21]
achieve constant query time.

In this paper, we obtain an O(n)-space data struc-
ture that improves the query time to O(1 + logw k).
Thus, our bounds exactly match the the lower bound
of Jørgensen and Larsen, and simultaneously extends
the known result for range minimum and the known
nonadaptive result for range median. (Note that for
problems on 1-D arrays, the x-coordinates are already
in rank space and we do not need to pay for an initial
O(log logU) predecessor search cost.)

Techniques. Our new solutions, as one might
guess, use a combination of existing techniques. For
example, in order to match the bounds for range
emptiness, we need to adapt Chan, Larsen, and
Pătraşcu’s compressed range tree and ball inheritance
structure [10]. One of the main tools for approximate
range counting, which was also used in Larsen and
Jørgensen’s adaptive range selection data structure, is
shallow cuttings [26]; we will make extensive use of such
cuttings, but with additional space-saving ideas inspired
by the realm of succinct data structures. Note that al-
though the common ingredient is shallow cuttings, our
range selection algorithm proceeds quite differently from
Larsen and Jørgensen’s (which uses a recursion that in-
herently causes the extra log log n term). Finding the
right way to combine all these techniques is the main
challenge, and the combination is not straightforward—
as one can see from the outline in Figure 1.

2 K-Capped 3-Sided Range Counting

We begin with a problem we call K-capped range count-
ing : we are given a fixed value K during preprocessing,
and our goal is again to compute |P ∩Q| given a query
Q, but if |P ∩ Q| > K, we are allowed to report fail-
ure. Query times are to be bounded in terms of the cap
K rather than the actual count k. Our adaptive and
approximate data structure will use K-capped range
counting data structures as black boxes.

In this section, we first consider K-capped range
counting for 3-sided ranges, i.e., rectangles of the form
[`, r] × [1, t]. We begin with a simple solution using
shallow cuttings.

Shallow cuttings were introduced by Matoušek [26]
and were initially studied for arrangements of hyper-
planes. Afshani [1] observed that shallow cuttings are
applicable to 3-D 3-sided orthogonal range searching,
i.e., 3-D dominance range searching. (Specifically in the
context of 3-D dominance, a similar concept called “ap-
proximate boundaries” was also proposed by Vengroff
and Vitter [35].) Assume queries are dominance regions
of the form [1, x] × [1, y] × [1, z]. We use the following
definition: a K-shallow cutting consists of O(n/K) cells,

each of which is a subset of O(K) points of P , with the
property that for every queryQ containing no more than
K points, there exists a shallow cutting cell C such that
C ∩ Q = P ∩ Q. It is known that a K-shallow cutting
always exists with the stated size bounds. Furthermore,
for every query Q, we can find its corresponding cell C
by 2-D orthogonal point location.

Our interest is in 2-D 3-sided ranges, but these
ranges are special cases of 3-D dominance regions, by
simply mapping each point (a, b) in 2-D to (a, b,−b)
in 3-D. Shallow cuttings immediately imply an efficient
data structure forK-capped 2-D 3-sided range counting:

Lemma 2.1. There exists a data structure for K-capped
2-D 3-sided orthogonal range counting requiring O(n)
space and O(log log n+ logwK) query time.

Proof. We construct a K-shallow cutting of P . In each
cell C of the shallow cutting we build the standard
(nonadaptive) range counting data structure [22]. Each
of the O(n/K) cells thus requires O(K) space, for a
total of O(n) space.

We can determine the cell that resolves a 3-sided
query rectangle Q, if any, using a 2-D orthogonal point
location query. We build the linear-space point location
data structure of Chan [9] which answers queries in
O(log log n) time. If no shallow cutting cell is found,
then k > K, so we report failure. If shallow cutting cell
C is found, then we forward Q on to the standard range
counting data structure stored for C. Since |C| = O(K),
the standard query takes O(logwK) time. �

Before we deal with general 4-sided queries, we need
a 3-sided data structure that uses even less space than
in the above lemma, i.e., a succinct data structure that
uses a sublinear number of words of storage. For a
sublinear space bound to be possible, we need to assume
that the input point set is given in an implicit manner.
Specifically, we assume an oracle is available that, given
any index i, can return the point with x-rank i.

For example, Chan, Larsen, and Pătraşcu’s data
structure [10] for general 4-sided emptiness relies on a
succinct data structure for 3-sided emptiness queries,
which is provided by the well-known Cartesian tree [16].
Cartesian trees are not sufficient for K-capped counting.
Instead we need a new succinct representation of K-
shallow cuttings, which we are able to obtain for the
case of the 2-D 3-sided problem.

In the design of succinct data structures, a common
technique involves finding ways to store pointers to
input elements in fewer than O(log n) bits. An easy
way to achieve this is to divide the input into blocks
of size logO(1) n. Then, local pointers within a block
require only O(log log n) bits of space. We improve the
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Figure 1: Outline of the techniques used in our data structures.

space bound of Lemma 2.1 with this idea in mind. We
need the following succinct van Emde Boas structure for
predecessor search.

Lemma 2.2. (Grossi et al. [18]) There exists a data
structure for predecessor search in a universe of size n
requiring O(n log log n) bits of space and O(log log n +
A(n)) query time, where A(n) is the time required for
oracle access to an input element given its rank.

Theorem 2.1. There exists a data structure for K-
capped 2-D 3-sided orthogonal range counting requir-
ing O(n log(K log n)) bits of space and O(log log n +
logwK + A(n)) query time, where A(n) is the time re-
quired for oracle access to a point given its x-rank in P .

Proof. We partition P by x-coordinate into n/B vertical
slabs S1, S2, . . . , Sn/B , each containing a block of B =
K log n points. We decompose a 3-sided query of the
form [`, r]× [1, t] into at most two 3-sided queries within
slabs and at most one slab-aligned query: a 3-sided
query whose vertical sides align with slab boundaries.

In each slab Si we build the standard (nonadaptive)
range counting data structure [22] for the points in Si’s
rank space, which requires O(B logB) bits of space. We
also build the succinct predecessor search data structure
of Lemma 2.2 for the points of Si along both the x-
and y-axes. These succinct data structures require only
O(B log log n) bits of space, but during a search they

require oracle access to the full (log n)-bit coordinates
of O(1) points, given their x- or y-ranks within Si. For
now, we simply convert oracle access given x- or y-rank
within Si to oracle access given x-rank within P . Given
an x-rank j within Si, the corresponding x-rank within
P is (i− 1)B + j, which we can easily compute in O(1)
time. Given a y-rank j within Si, it is now sufficient
to find the corresponding x-rank within Si. We create
an array requiring O(B logB) bits to map y-ranks to
x-ranks within Si in constant time. Across all slabs
we require O(n logB) = O(n log(K log n)) bits of space.
Given a query Q within Si, we first convert Q into a
query Q′ in Si’s rank space via predecessor search in
O(log log n+A(n)) time, where A(n) is the time required
for oracle access to a point given its x-rank in P . We
then forward Q′ onto the standard range counting data
structure stored for Si. Since |Si| = B = K log n, the
standard query takes O(logw |Si|) = O(logwK) time.

It remains to handle slab-aligned queries. Assume
we are given one such query Q. If |Q ∩ Si| > K, then
we know that the K + 1 points in Si with the least
y-coordinates lie in Q. The converse is also trivially
true. Let S′i be the set of K + 1 points in Si with
the least y-coordinates. Then, for the purposes of K-
capped range counting, computing |Q ∩ S′i| instead of
|Q∩ Si| is sufficient for a single slab Si: if |Si ∩Q| ≤ K
then |S′i ∩ Q| = |Si ∩ Q| and if |Si ∩ Q| > K then
|S′i ∩Q| > K. To handle multiple slabs simultaneously,



we construct a set of points P ′ =
⋃n/B
i=1 S

′
i and build

the data structure of Lemma 2.1 over these points.
Since |P ′| = (n/B)K = n/ log n, this data structure
requires only O(n) bits of space. We compute |P ′ ∩Q|
in O(log log n + logwK) time. If |P ′ ∩ Q| ≤ K then
k = |P ∩ Q| = |P ′ ∩ Q|. If |P ′ ∩ Q| > K then
k = |P ∩Q| > K and we report failure. �

3 K-Capped 4-Sided Range Counting

We now solve the general K-capped 2-D orthogonal
range counting problem. Our intention is to use a
range tree in combination with Theorem 2.1 in order
to support 4-sided queries.

We use the compressed range tree of Chan, Larsen,
and Pătraşcu [10]. Their ball inheritance technique
supports rank and select queries in the y dimension at
every node of the range tree. Let Pv be the points stored
at a node v of a range tree. Given a node v and the y-
rank in Pv of a point p ∈ Pv, a select query returns
the full (log n)-bit coordinates of p. Given a node v
and a (log n)-bit y-coordinate y0, a rank query returns
the y-rank in Pv of the point in Pv with the greatest y-
coordinate less than or equal to y0. Let S0(n) and Q0(n)
be the space and time required for such rank and select
queries. The ball inheritance technique can achieve the
following tradeoffs:

1. S0(n) = O(n) and Q0(n) = O(logε n), or

2. S0(n) = O(n log log n) and Q0(n) = O(log log n).

Theorem 3.1. There exists a data structure for
K-capped 2-D orthogonal range counting requiring
O(n log(K log n) + S0(n)) space and O(log log n +
logwK +Q0(n)) query time.

Proof. Assume for simplicity of presentation that n is a
power of 2. Given a 4-sided query, we find the node v of
the range tree that contains the two vertical sides of the
query in different child nodes. Finding v can be done
in constant time by simple arithmetic since the tree is
perfectly balanced. We decompose the query into two
3-sided queries in child nodes of v.

At each node of the range tree, we build the data
structure of Theorem 2.1 to handle 3-sided queries of the
form [1, r]×[b, t] and [`,∞)×[b, t]. These data structures
require oracle access to points given their y-ranks. The
ball inheritance technique provides precisely such an
oracle, with access cost A(n) = Q0(n). Excluding the
ball inheritance structure, the 3-sided data structures
require O(n log(K log n)) bits of space at each node of
the range tree, for a total of O(n log(K log n) log n) bits,
which are at most O(n log(K log n)) words. Given a 3-
sided query Q at a child u of node v, we first convert

Q into a query Q′ in u’s rank space in Q0(n) time. We
then forward Q′ to the 3-sided data structure stored for
u. The query time is thus O(log log n+logwK+Q0(n)).
�

The extra log(K log n) factor in the space bound in
Theorem 3.1 is a concern, especially for large K. In
Theorem 3.2 below, we show that the factor can be
completely eliminated without hurting the query time.
For this, we need a known result about orthogonal range
counting in a narrow [D]× [n] grid.

Lemma 3.1. (JaJa et al. [22]) There exists a data
structure for 2-D orthogonal range counting on a [D]×
[n] grid, for any D ∈ {1, . . . , n}, requiring O(n logD)
bits of space and O(logwD) query time.

The above lemma was implicitly shown by JaJa,
Mortensen, and Shi [22] when they derived their non-
adaptive orthogonal range counting structure with O(n)
space and O(logw n) query time. (They first solved the
[wε] × [n] grid case with O(n logw) bits of space and
O(1) query time, and then solved the general problem
by building a wε-ary range tree. The height of the range
tree would be O(logwD) if the x values were in [D]. See
also a paper by Nekrich [28].)

Theorem 3.2. There exists a data structure for K-
capped 2-D orthogonal range counting requiring O(n +
S0(n)) space and O(log log n + logwK + Q0(n)) query
time.

Proof. We follow the proof of Theorem 3.1 but use a
D-ary range tree, for some parameter D which will be
chosen later and is assumed to be a power of 2.

A given 4-sided query is now decomposed into at
most two 3-sided queries in child nodes of v and at
most one slab-aligned query in v: a 4-sided query whose
vertical sides align with the boundaries of children
of v. The two 3-sided queries are handled as before.
For oracle access, we can still use the ball inheritance
technique: since B is a power of 2, every node in
our range tree corresponds to some node in a binary
range tree. Because the height of the D-ary range
tree is O(logD n), the 3-sided structures now require a
total of O(n log(K log n) logD n) bits, which are at most
O(n log(K log n)/ logD) words.

It remains to handle slab-aligned queries. At each
node we construct a point set P ′ by rounding the x-
coordinates of all of the points of P to the boundaries of
child nodes. Then, for any query Q whose boundaries
align with those of child nodes, |Q ∩ P ′| = |Q ∩ P |,
so computing |Q ∩ P ′| is sufficient. Since the points
of P ′ lie on a narrow [D] × [n] grid, we construct the



data structure of Lemma 3.1 to handle these queries in
O(logwD) time. The space requirement at every node
is O(n logD) bits, for a total of O(n) words of space
across the entire D-ary range tree.

To summarize, the space usage is
O(n log(K log n)/ logD + S0(n)) and the query time
is O(log log n + logwK + logwD + Q0(n)). Choosing
D = Θ(K log n) proves the theorem. �

Substituting the known bounds on S0(n) and
Q0(n), we obtain:

Corollary 3.1. There exists a data structure for
K-capped 2-D orthogonal range counting requiring
O(n log log n) space and O(log log n + logwK) query
time, or alternatively O(n) space and O(logε n+logwK)
query time.

4 Adaptive Range Counting

We can now get our adaptive data structure for 2-D
orthogonal range counting, by building the K-capped
data structures from Section 3 for different values of K.

Theorem 4.1. There exists a data structure for 2-D
orthogonal range counting requiring O(n log log n) space
and O(log log n+ logw k) query time.

Proof. We build the K-capped data structure of Theo-
rem 3.2 for K = 22i

for i ∈ {1, . . . , dlog log ne}. Observe
that the same compressed range tree and ball inheri-
tance structure can be used across all O(log log n) of
these data structures. The total space requirement is
thus O(n log log n).

Given a query, we answer K-capped queries for
K = 22i

starting with i = dlog log(wlog logn)e and
incrementing i until failure is no longer reported. If k <
wlog logn, then the answer would be found in the first
capped query in O(log log n) time. Otherwise, the query

time is upper-bounded by O(
∑dlog log ke
i=1 logw 22i

) =
O(logw k). �

5 Approximate Range Counting

We present an approximate data structure for 2-D
orthogonal range counting, based on the following idea:
if the count k is small, we can directly use the K-capped
data structures from Section 3; if k is large, we can
approximate k by random sampling , which reduces the
input size and allows us to switch to a less space-efficient
solution.

The idea of sampling has been used in previous
approximate range counting papers [2, 20]. Consider
a random sample R ⊆ P where each point is chosen
independently with probability r/n. For any fixed range
Q with |P ∩ Q| = k, the standard Chernoff bound

implies that for any 0 < ε < 1, Pr[||R ∩ Q| − kr/n| >
εkr/n] ≤ e−Ω(ε2kr/n). If k > c(n/r) log n, we can set
ε =

√
cn/(kr) log n for a sufficiently large constant c to

keep this probability smaller than o(1/n4). Since there
are O(n4) combinatorially different orthogonal ranges,
if follows that there exists a subset R of size O(r) such
that

(5.1)

||R ∩Q| − kr/n| ≤ O(
√

(kr/n) log n)

for all ranges Q with

|P ∩Q| = k > c(n/r) log n.

Theorem 5.1. There exists a data structure for (1 +
1/k1/2−O(1/ logw))-approximate 2-D orthogonal range
counting requiring O(n+S0(n)) space and O(log log n+
Q0(n)) query time.

Proof. We build the K-capped data structure of The-
orem 3.2, setting K = wlog logn. This data structure
requires O(n+S0(n)) space and computes exact counts
for queries with k ≤ wlog logn in O(log log n+ logwK +
Q0(n)) = O(log log n+Q0(n)) time.

To handle queries such that k > wlog logn, we take

a subset R satisfying (5.1) with size r = n/ logc
′
n

for a constant c′. For this subset R, we build a
data structure for approximate 2-D orthogonal range

counting with O(|R| logc
′
|R|) space (which is O(n))

and O(log log |R|) query time. In particular, we use
Nekrich’s O(|R| log2 |R|)-space approximate data struc-
ture [27], which gives O(

√
k) additive error. (When we

allow extra logarithmic factors in space, the problem
becomes more straightfoward: we can start with a 2-
sided approximate counting structure and “add sides”
by using the standard range tree.)

Given a query Q such that k > wlog logn, we first
compute an approximate count k′′ for R ∩ Q with ad-
ditive error O(

√
|R ∩Q| = O(

√
k). This count is found

using Nekrich’s data structure in O(log log n) time. We
then output k′ = (n/r)k′′. Then, k′ is an approxima-
tion of (n/r)|R ∩ Q| with additive error O((n/r)

√
k).

By (5.1), the difference between (n/r)|R ∩ Q| and k
is at most O(

√
k(n/r) log n). So, k′ is an approx-

imation of k with additive error O(
√
k logO(1) n) =

O(k1/2+O(1/ logw)), since k > wlog logn. Thus, k′ is a
(1 + 1/k1/2−O(1/ logw))-factor approximation of k. �

Corollary 5.1. There exists a data structure for
(1 + δ)-approximate 2-D orthogonal range counting re-
quiring O(n log log n) space and O(log log n) query time,
or alternatively O(n) space and O(logε n) query time.

6 K-Capped Range Selection

Given an array A of n elements from [U ], we consider
in the next two sections the problem of preprocessing A



so that we can efficiently compute the kth least element
in subarray A[` : r], given k, `, r ∈ {1, . . . , n} such that
` ≤ r and k ≤ r−`+1. We may assume that U = n, via
an array representation of the elements of A indexed by
rank; no predecessor search cost is required to reduce to
rank space.

The range selection query problem is very closely
related to 2-D 3-sided range counting. Consider the 2-
D point set P = {(i, A[i]) | i ∈ {1, . . . , n}}. Finding
the kth least element in A[` : r] is equivalent to finding
the point pi = (i, A[i]) with the kth lowest y-coordinate
in P ∩ Q, where Q = [`, r] × [n]. Equivalently, pi is
the point for which |P ∩ Q′| = k, where Q′ is the 3-
sided range [`, r] × [1, A[i]]. Going forward, we work
with this geometric interpretation of the range selection
query problem.

We begin with the K-capped version of the range
selection problem, where we are given a fixed value K
during preprocessing, and all queries are known to have
k ≤ K. Query times are to be bounded in terms of K
rather than k.

Our K-capped range selection data structure uses
techniques similar to our K-capped 3-sided counting
data structure from Section 2. However, we need new
ideas to overcome two issues:

1. We use shallow cuttings but can no longer afford to
spend O(log log n) time to find the cell that resolves
a query by 2-D point location, since the goal is now
to get O(1 + logw k) query time.

2. To get a succinct version of the K-capped data
structure, we use the idea of dividing the input into
slabs or blocks. The approach taken in the proof
of Theorem 2.1 implicitly uses the fact that range
counting is a decomposable problem—knowing the
answers for two subsets, we can obtain the answer
for the union of two subsets in constant time.
However, range selection is not a decomposable
problem.

Note that although we do not need to later extend the
3-sided structure to 4-sided and use Chan, Larsen, and
Pătraşcu’s technique, we still require a succinct version
of the K-capped data structure, since the final adaptive
selection data structure is obtained by building multiple
K-capped data structures for different values of K.

To address the first issue, we use a shallow cutting
construction by Jørgensen and Larsen [23] that is spe-
cific to 2-D 3-sided ranges or 1-D range selection. In
the context of the range selection query problem, a K-
shallow cutting of P is again a set of O(n/K) cells, each
consisting of O(K) points from P . If a query Q of the
form [`, r]×[n] contains at least k ≤ K points, then there

must exist a cell C such that the point with the kth low-
est y-coordinate in C∩Q is the point with the kth lowest
y-coordinate in P ∩ Q. We say shallow cutting cell C
resolves query Q. The cells used in the construction are
all 3-sided, i.e., subsets of the form P ∩ ([`, r]× [1, t]).

In the construction of the shallow cuttings of
Jørgensen and Larsen [23], a horizontal sweep line passes
from y = 1 to y = n. Throughout the sweep, we main-
tain a partition of the plane into vertical slabs, initially
containing a single slab (−∞,∞) × [n]. During the
sweep, if any slab contains 2K points on or below the
sweep line y = y0, this slab is split in two at the median
m of the x-coordinates of the 2K points. Let (m, y0)
be a split point. Throughout the sweep, we build a set
S = {s1, s2, . . . , s|S|} of all split points sorted in order
of x-coordinate.

Let X = {x1, x2, . . . , x|X|} be the x-coordinates of
all split points immediately following the insertion of a
new split point with x-coordinate xi. Assume the sweep
line is at y = y0. After the insertion of the split point,
we construct two shallow cutting cells. The first cell
contains all points of P that lie in [xi−2, xi+1]× [1, y0].
The second cell contains all points of P that lie in
[xi−1, xi+2] × [1, y0]. Each cell is assigned a key, which
is a horizontal segment used to help determine in which
cell a query range lies. The key for the cell defined by the
range [xi−2, xi+1]× [1, y0] is the segment with x-interval
[xi−1, xi] at height y0. The key for the cell defined by the
range [xi−1, xi+2]× [1, y0] is the segment with x-interval
[xi, xi+1] at height y0. For each pair of adjacent slabs in
the final partition of the plane, we create an additional
keyless shallow cutting cell containing all points in both
slabs. Note that every cell in this shallow cutting is
the intersection of some range of the form [`, r] × [1, t]
with P .

Note that an invariant of the sweep is that all slabs
contain at most O(K) points on or below the sweep line.
All cells (keyless or not) also contain O(K) point as each
cell overlaps a constant number of slabs (at the time of
its creation) and only contains points on or below the
sweep line. A new slab is created only when the number
of points in an existing slab on or under the sweep line
grows by at least K. Thus, the shallow cutting contains
O(n/K) cell.

Assume we are given a query Q = [`, r] × [n]. If
Q does not contain any key, then Q lies in one of the
keyless shallow cutting cells. Otherwise, consider the
lowest key contained in Q and let X = {x1, x2, . . . , x|X|}
be the x-coordinates of all split points at the time of its
creation. Assume without loss of generality that the
key has x-interval [xi, xi+1] and height y0. Assume that
` < xi−1. Then, there is a key in Q with x-interval
[xi−1, xi+1] and height less than y0: a contradiction.



Figure 2: Split points and horizontal keys. The thin
dashed rectangle is the shallow cutting cell that resolves
the thick dashed query range.

Thus, ` ≥ xi−1. Similarly, r ≤ xi+2. So, the x-
interval of Q lies in the x-interval of the key’s cell C.
Additionally, since there are exactly K points on or
below the key, C contains at least K points. For any
k ≤ K, the kth lowest point in Q must then lie in C.
See Figure 2 for an example of a shallow cutting cell
resolving a query range.

Lemma 6.1. There exists a data structure representa-
tion of a K-shallow cutting that requires O(n) bits of
space and that can find a shallow cutting cell that re-
solves a query in O(1) time.

Proof. Assume we are given a query Q = [`, r]× [n]. In
order to determine whether or notQ lies in a keyless cell,
it is sufficient to count the number of split points in Q.
If there are fewer than two, then Q lies in a keyless cell.
We can count the number of split points in Q as well as
determine the keyless cell containing Q via predecessor
search in S. Predecessor search in a universe of size n
can be solved by a rank operation on a binary string
of length n. There exists a succinct data structure for
the rank operation on a binary string that requires only
O(n) bits of space and constant query time [13].

If Q contains at least one key, it is sufficient to find
the lowest key in Q. Consider first the lowest split point
si in Q. There are two keys that share si as an endpoint.
The other endpoint of each of these keys must either
be directly above another split point or at negative or
positive infinity along the x-axis. In the former case,
since si is the lowest split point in Q, the key must
extend to the x-coordinate of some split point that is
outside of Q. In the latter case, the key is infinitely
long. In either case, Q cannot contain the key.

Consider the second highest split point sj in Q and
assume without loss of generality that it lies to the left

of si. Then, there is a key whose left endpoint is sj
and whose right endpoint lies above si. This key is thus
contained in Q. It is also the lowest key in Q since
neither of the keys associated with si are in Q. Thus,
we have reduced finding the lowest key in Q to finding
the second lowest split point in Q.

We build a Cartesian tree over the points of S.
We encode the tree succinctly (e.g., Sadakane and
Navarro [33]), allowing constant-time LCA queries and
requiring only O(n/K) bits of space. Finding the second
lowest point in S ∩ Q reduces to a constant number
of predecessor searches in S and LCA queries in the
Cartesian tree. Since we have succinct data structures
for both of these problems with constant query time, we
can find the second lowest point in constant time. �

To address the second issue, in making shallow
cuttings succinct, we modify the proof of Theorem 2.1
applying shallow cuttings twice: once to the original
point set P and again to the subset P ′.

Lemma 6.2. There exists a data structure rep-
resentation of a K-shallow cutting that requires
O(n log(K log n) + (n/K) log n) bits of space and that
can access the full (log n)-bit coordinates of a point with
a given x-rank in a given cell in O(A(n)) time, where
A(n) is the time required for oracle access to a point
given its x-rank in P .

Proof. We adapt the technique of Theorem 2.1. We
partition P by x-coordinate into n/B vertical slabs
S1, S2, . . . , Sn/B , each containing a block of B = K log n
points. Since the size of each cell in our K-shallow
cutting is O(K), there exists some constant c such that
each cell of our K-shallow cutting has size no greater
than cK. Let S′i be the set of cK points in Si with

the least y-coordinates. Let P ′ =
⋃n/B
i=1 S

′
i so that

|P ′| = O(n/ log n). We construct a cK-shallow cutting
of P ′. This shallow cutting has O(n/(K log n)) cells,
each containing O(K) points.

Consider a cell C of our K-shallow cutting of P .
Recall that in Jørgensen and Larsen’s construction, the
points of C are exactly P ∩ R for some 3-sided range
R of the form [`, r] × [1, t]. Let Sa be the slab that
contains the left vertical side of R and let Sb be the
slab that contains the right vertical side of R. Finally,
consider the points C ′ = C \ (Sa ∪ Sb). Assuming C ′

is not empty, these points are exactly P ∩R′, where R′

is a 3-sided rectangle whose vertical sides are aligned
with the slab boundaries of Sa and Sb and whose top
side is at the same height as R. Since C ′ ⊆ C, we
have |C ′| ≤ cK. Assume towards contradiction that
there is a point p ∈ C ′ such that p /∈ P ′. Let Si be
the slab containing p. Since p /∈ P ′, it must also be



that p /∈ S′i. Since the vertical sides of R′ are aligned
with slab boundaries, C ′ must contain all points in Si
that are lower than p, including all points of S′i. Since
|S′i| = cK, we have that |C ′| > cK, a contradiction.
Therefore, C ′ ⊆ P ′ and C ′ = P ′ ∩R′. Since |C ′| ≤ cK,
R′ must lie in one of the cK-shallow cutting cells of P ′.
Let this cell be C∗. Each point p ∈ C must either be in
Sa, Sb, or C∗.

We store pointers to Sa, Sb, and C∗ for C, which
requires O(log n) bits. Across all cells of the K-shallow
cutting of P , the space requirement is O((n/K) log n)
bits. For each point p ∈ C, we store in a constant
number of bits which of these three sets contains p. Let
this set be X. We also store the x-rank of p within
X. Since |X| ≤ max{|Sa|, |Sb|, |C∗|} = O(K log n), we
require O(log(K log n)) bits per point. We store this
information in an array TC indexed by x-rank in C.
Across all points of all cells of the K-shallow cutting of
P , the space requirement is O((n/K)·K ·log(K log n)) =
O(n log(K log n)) bits. Given a point p ∈ C and its x-
rank i in C, we can then lookup TC [i], the x-rank of p
in X, in constant time.

We store an array FC∗ containing the full (log n)-
bit coordinates of all of the points of C∗ indexed by
x-rank in C∗. Across all points of all cells of the
cK-shallow cutting of P ′, the space requirement is
O((n/K log n) ·K · log n) = O(n) bits. Assume we need
access to the full (log n)-bit coordinates of the point
p ∈ C with x-rank i in C∗. We then lookup FC∗ [i], the
full (log n)-bit coordinates of p, in constant time.

Without loss of generality, assume we need access
to a point p ∈ C with x-rank i in Sa. We cannot afford
to store the full (log n)-bit coordinates of all points of all
slabs, as doing so would require O(n log n) bits of space.
Instead we use an oracle that gives access to, in A(n)
time, the full (log n)-bit coordinates of a point given its
x-rank in P . The x-rank of p within P is (a− 1)B + i,
which we can easily compute in O(1) time. �

In addition, we need a succinct predecessor search
data structure for each cell, but we cannot afford the
O(log log n) cost of a van Emde Boas-type structure.
Fortunately, we can use a succinct fusion tree structure
(since a cell has O(K) points and we can tolerate an
O(logwK) cost):

Lemma 6.3. (Grossi et al. [18]) There exists a data
structure for predecessor search requiring O(n log log n)
bits of space and O(A(n) logw n) query time, where A(n)
is the time required for oracle access to an input element
given its rank.

Theorem 6.1. There exists a data structure for the
K-capped range selection query problem that requires

O(n log(K log n) + (n/K) log n) bits of space and
O(A(n)(1+logwK)) query time, where A(n) is the time
required for oracle access to a point given its x-rank
in P .

Proof. We build a K-shallow cutting of P and repre-
sent it with the data structures of Lemmata 6.1 and 6.2.
For each cell C of the shallow cutting, we build the suc-
cinct predecessor search data structure of Lemma 6.3 to
search amongst the points of C along the x-axis. Each
of the O(n/K) cells requires O(K log log n) bits of space
for a total of O(n log log n) bits. The succinct predeces-
sor search data structure in each cell C requires oracle
access to the full (log n)-bit coordinates of O(logwK)
points, given their x-ranks within C. We implement
this oracle access via Lemma 6.2.

In each cell C, we also build the standard (non-
adaptive) range selection data structure [8] in the rank
space of C. This data structure requires O(K logK)
bits. Across all O(n/K) cells, the space requirement is
O(n logK) bits.

Given a query range Q of the form [`, r] × [n] and
a query rank k ≤ K, we first find a cell C that resolves
Q in O(1) time via the data structure of Lemma 6.1.
Next, we reduce Q to a query range Q′ in the rank
space of C in O(A(n)(1+logwK)) time, via the succinct
predecessor search data structure for C. We forward
the query range Q′ and the query rank k on to the
standard range selection data structure for C, which
requires O(1 + logwK) time. The result is a point in
C’s rank space, which we convert to a point in P in
O(A(n)) time via Lemma 6.2. �

7 Adaptive Range Selection

Finally we obtain an adaptive range selection data
structure by using the K-capped data structure from
Section 6:

Theorem 7.1. There exists a data structure for the
range selection query problem that requires O(n) space
and O(1 + logw k) query time.

Proof. We build the K-capped data structure of Theo-
rem 6.1 for K = 22i

for i ∈ {1, . . . , dlog log ne}. Each
data structure requires the same oracle access to a point
in P given its x-rank in P . We implement this or-
acle access simply by sorting the points of P in an
array by x-rank. This implementation requires O(n)
space and access time A(n) = O(1). The total space in
bits required by all of our succinct capped data struc-

tures is
∑dlog logne
i=1 O(n log(22i

log n) + (n/22i

) log n) =
O(n log n).

Given a query rank k, we forward the query to the
22i

-capped data structure for i = dlog log ke. The query



runs in O(1 + logw 22i

) = O(1 + logw k) time. �

8 Conclusion

We conclude with some open problems:

1. Our data structure for adaptive 2-D orthogo-
nal range counting requires O(n log log n) space,
whereas JaJa et al.’s nonadaptive data struc-
ture [22] uses only O(n) space. Does there exist
a data structure for 2-D orthogonal range counting
requiring linear space and O(logε n+ logw k) query
time?

Note that in Corollary 3.1, we have already given
a linear-space K-capped data structure for 2-D or-
thogonal range counting that requires O(logε n +
logwK) query time. However, we cannot follow the
approach of building such a data structure for dou-
ble exponentially increasing values of K to create
an adaptive data structure, as the space require-
ment would increase by an O(log log n) factor.

2. The best known data structure for the 3-D
orthogonal range emptiness query problem re-
quires O(n log1+ε n) space and O(log log n) query
time [10]. The best known data structure for 3-
D orthogonal range counting requires O(n logw n)
space and O((logw n)2) query time [22]. Does
there exist a data structure for 3-D orthogonal
range counting requiring O(n log1+ε n) space and
O(log log n+(logw k)2) query time? Does there ex-
ist a data structure for (1 + δ)-approximate 3-D
orthogonal range counting requiring O(n log1+ε n)
space and O(log log n) query time?

Although K-shallow cuttings of size O(n/K) exist
for 3-D dominance regions, some of our techniques
(e.g., dividing the input into blocks) do not seem
to generalize well in 3-D.
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