
Fast String Dictionary Lookup with One Error

Timothy Chan1? and Moshe Lewenstein2??

1 University of Waterloo
2 Bar-Ilan University

Abstract. A set of strings, called a string dictionary, is a basic string
data structure. The most primitive query, where one seeks the existence
of a pattern in the dictionary, is called a lookup query. Approximate
lookup queries, i.e., to lookup the existence of a pattern with a bounded
number of errors, is a fundamental string problem. Several data struc-
tures have been proposed to do so efficiently. Almost all solutions con-
sider a single error, as will this result. Lately, Belazzougui and Venturini
(CPM 2013) raised the question whether one can construct efficient in-
dexes that support lookup queries with one error in optimal query time,
that is, O(|p|/ω + occ), where p is the query, ω the machine word-size,
and occ the number of occurrences.
Specifically, for the problem of one mismatch and constant alphabet size,
we obtain optimal query time. For a dictionary of d strings our proposed
index uses O(ωd log1+ε d) additional bit space (beyond the space required
to access the dictionary data, which can be maintained in compressed
form). Our results are parameterized for a space-time tradeoff.
We propose more results for the case of lookup queries with one in-
sertion/deletion on dictionaries over a constant sized alphabet. These
results are especially effective for large patterns.

1 Introduction

Data mining, information retrieval, web search and database tasks are often
variants of string processing. Many of these tasks involve storing a set of strings,
also known as a string dictionary. These dictionaries may be very large, for
example such is the case for search engines, applications in bioinformatics, RDF
graphs, and meteorological data. Hence, it is desired to maintain the dictionaries
in some succinct format while still allowing quick access to the data at hand.
One basic primitive operation necessary on a dictionary is a lookup query. A
lookup query on a string dictionary is a string for which the answer is yes if it
exists in the dictionary, or more generally returns a pointer to the satellite data
of that string in the dictionary. Maintaining the dictionaries in a compressed
form while allowing lookups has garnered much interest in the last decade.

? Cheriton School of Computer Science, University of Waterloo (tm-
chan@uwaterloo.ca). The research is supported by an NSERC grant.

?? Department of Computer Science, Bar-Ilan University (moshe@cs.biu.ac.il). This
research is supported by a BSF grant 2010437 and a GIF grant 1147/2011.

While exact lookups are interesting, often one desires approximate lookups.
For example, if one queries a search engine and there is one or two typing errors
in the query, it is advantageous to find the correct answer nevertheless. In this
case, one actually needs to propose all answers that are within the criteria of the
number of errors. Clearly, in many applications one desires to find approximate
matches and not only matches.

Errors come in different forms. Three of the most common errors are substi-
tutions, insertions, and deletions of characters. Two widely considered distances
between strings are based on these errors. The former is Hamming distance,
which is the minimal number of substitutions necessary to transform one string
into another. The latter is edit distance [18], which is the minimal number of any
combination of the three operations needed to transform one string into another.

Approximate lookups for one error have received a lot of attention, e.g. [3,
4, 7, 8, 24] and along this similar line also text indexing with one error [1], dic-
tionary matching with one error [1, 14, 16] and both with one wildcard [2, 5, 20].
Extensions to k errors, even to 2 errors, is much more difficult. See [10, 9, 12, 17,
21, 23] for results of this form.

In numerous data structure papers over the last decade there has been a
separation between the encoding model and the indexing model. In the encoding
model we preprocess our input I (in our case the dictionary of strings) to create
a data structure enc and queries have to be answered using enc only, without
access to I. In the indexing model, we create an index idx and are able to refer to
I when answering queries. In the indexing model we measure the additional space
required. This model difference was already noted in [13]. For more discussion
on the modeling differences see [6].

Interestingly, Belazzougui and Venturini [4] proposed a data structure for
lookups with edit distance at most one that answers queries in O(|p|+occ) time,
where p is the query string and occ is the number of answers. The space required
is 2nHk + o(n) + 2d log d, where d is the number of strings in the dictionary,
n is the total length of the dictionary and Hk is the k-th order entropy of the
concatenated strings of the dictionary. While the model is set as an encoding
model result, it actually is an indexing result with nHk + o(n) dedicated to the
compressed dictionary and nHk + o(n) + 2d log d additional bits necessary for
the data structure.

They raised the question in [4] whether one can answer queries in optimal
O(|p|/ω + occ) time while maintaining succinct space. We answer this question
affirmatively. For the case of Hamming distance we propose a data structure that
requires O(ωd log1+ε d) additional bit space (beyond the dictionary which can
be maintained in compressed form). For the case of edit distance we can obtain
δ|p|d, for arbitrarily small constant δ > 0, additional bit space (|p|d is the size
of the open dictionary) and O((|p|/ log |p|) logε d + occ) query time. This is an
improvement over the times in [4] for |p| � log d. However, we do note that the
alphabet size in [4] is general, whereas the alphabet size here is constant. Our
solution can be generalized to an alphabet of size σ at a cost of a σ factor in
time and space.

2 Previous work

Yao and Yao [24] were the first to consider string dictionaries that support lookup
queries with one mismatch. The dictionary they suggested had, wlog, all strings
of equal size m. The alphabet was binary. They suggested an algorithm in the bit
probe model that uses O(md logm) bits and answers queries in O(m log log d) bit
probes. Brodal and Gasieniec [7] considered the standard unit-cost RAM model
in the same setting, i.e., one mismatch, all strings of length m and a binary
alphabet. They proposed a different solution using a trie for the lexicographically
ordered strings of D and a trie for the lexicographically ordered reversed strings
of D. The space they used was O(md) words. The query time was O(m). Later,
Brodal and Venkatesh [8] considered a perfect-hash solution in the cell-probe
model with word-size ω and string size m = ω. They proposed a data structure
that uses space O(d logω). We elaborate on and generalize their solution in
Section 5.

Belazzougui [3] proposed the first O(|p|+ occ) time algorithm. The space of
the solution is O(n) bits, where n is the total dictionary size. The solution used
Karp–Rabin fingerprinting and, hence, runs with high probability. As formerly
mentioned, in [4] a result was obtained for dictionary lookups with edit distance
one that answers queries in O(|p|+ occ) time, and with 2nHk + o(n) + 2d log d,
where n is the total length of the dictionary and Hk is the k-th order entropy of
the concatenated strings of the dictionary.

3 Outline of Our Results

Our goal is to solve the dictionary matching with one error where the query
time is optimal O(|p|/ω+occ) and the space is succinct. Our method is based on
succinct bidirectional indexing structures and range searching data structures,
see [19]. The method of this search has been used numerous times before, and
was first used to solve a one-error problem in [1]. However, the unique feature
in this paper is a succinct code for each string which allows optimal query time
while maintaining very efficient space. The encoding of the string is a novel
folding of the string which turns out to do the trick. The idea is to take a string
s, partition it into equal length substrings, say of length b. Then we do a bitwise
exclusive-or among the substrings. This folding of strings reduces the space of
the string down to a small size and allows to obtain succinct representations of
the strings. The encoding, assisted by the range searching techniques, remains
powerful enough to deduce the answers required.

4 Preliminaries

Given a string S, |S| is the length of S. An integer i is a location or a position
in S if i = 1, . . . , |S|. The substring S[i . . . j] of S, for any two positions i ≤ j, is
the substring of S that begins at index i and ends at index j.

A set of strings is called a dictionary and is denoted with D = {S1, . . . , Sd}.
That is the number of strings is d and we denote the total size n =

∑d
i=1 |Si|.

We may safely assume that all strings in the dictionary are of the same size. If
this is not the case then D can be partitioned into Dl = {s ∈ D | |s| = l}. For
one substitution one accesses D|p| and for insertion/deletion one accesses D|p|+1

and D|p|−1.

Let D = {S1, S2, . . . , Sd} be a dictionary of strings. The problem of String
Dictionary with Distance One is the problem of indexing D to support lookup
queries at distance 1, that is, for a lookup query p find all strings in the dictionary
within distance 1 of p. The desired distance will be either Hamming distance or
edit distance, depending on the problem at hand. We will consider both. The
desire will be to maintain the dictionary in some compressed form and to answer
the lookup queries of distance 1 quickly.

5 The Brodal–Venkatesh Algorithm

The Brodal and Venkatesh [8] algorithm is defined on a dictionary in which all
strings are binary and have length exactly ω. However, this can be generalized.
We describe this now. We still assume, wlog, that all strings are of the same
length.

The proposed scheme is a straightforward solution for the problem based
on hashing. Let Ham(s, x) denote the Hamming distance between two equal
length strings s and x. Let H(s) = {x ∈ {0, 1}|s| | Ham(s, x) = 1} and let
H = ∪s∈DH(s), i.e., all strings at Hamming distance 1 from a string s ∈ D.
Generate a perfect hash function for H ∪D. Queries p, also of the same length
as the strings of the dictionary, are read. Applying the hash function on p yields
the answers. Recall that the strings are over a binary alphabet. So, by reading
ω bits at a time, that is, treating each ω bits as one ω-bit character, the hashing
can be implemented on strings with query time of O(|p|/ω + occ). The space
required is the size of the hash table, which is O(d|p| log d) bit-space3.

6 Algorithm for Dictionary Lookup with One Mismatch

We are interested in solving the one mismatch case with the same O(|p|/ω+occ)
time. We still consider a binary alphabet, but point out that a general alphabet
of size σ is reducible to the binary alphabet with σ blowup. Note that the size
of the dictionary is O(|p|d) bits. Hence, the Brodal and Venkatesh [8] algorithm
is unsatisfactory as it uses O(d|p| log d) bits. The dictionary is not even included
in this space, but it is not really necessary for their result.

3 The space attributed to this algorithm in [4] is O(d|p|2 log d) bits. However, this
is probably because it was assumed that the generated strings, which are of size
O(d|p|2 log d) bits, need to be maintained. However, this is not the case. It is sufficient
to maintain the hash function and not the fully generated strings.

We desire to obtain a result where the additional bit space is strictly sublinear
in the size of the dictionary. Our method will use range queries on strings.
However, the encoding of the strings to maintain a small data structure is the
essence of our algorithm. We now describe the details of the solution.

Define for string s ∈ D a point (x(s), y(s)) on a 2D d× d geometric grid. Let
x(s) = the rank of s in the lexicographical sort of D and y(s) = the rank of sR,
s reversed, in the lexicographical sort of D after reversing all strings.

String encodings: Fix a parameter b (think of b as polylogarithmic and assume,
wlog, that b divides s). Divide each of the strings s into b-bit words s1, . . . , s|s|/b

and let c(s) = ⊕|s|/bi=1 si, where ⊕ denotes the bitwise exclusive-or of the si’s. Note
that c(s) itself is a b-bit word. Let C(s) be all b-bit words that have Hamming
distance 1 from c(s). Note that |C(s)| = b. We think of s as a point (x(s), y(s))
in 2D, assigned multiple colors, one from each member of C(s). See [22] for a
string encoding along the same lines.

We are now ready to construct the data structure.

The data structure: We build an orthogonal range reporting structure for
each non-empty color class. There are 2b color classes, but each point is in b
color classes. Specifically, consider string s ∈ D and c(s) that is associated with
it. There are exactly b strings with one bit of c(s) flipped, which is the set C(s).
Now, visualize a 3D grid of d×d×2b where for every string s ∈ D we generate grid
points (x(s), y(s), c), where c ∈ C(s). However, we maintain separate orthogonal
range reporting structure for each possible c.

Overall there are db points, hence the number of non-empty color classes is
bounded by db, but will likely be a lot less. We will use a perfect hash function
on these non-empty color classes ⊆ [2b] so that we can access the, at most, db
orthogonal range reporting structures that exist in constant time.

The data structure supports dictionary lookup queries with one error as
follows.

Query: Given a pattern p, divide it into b-bit words p1, . . . , p|p|/b and let c(p) =

⊕|p|/bi=1 pi. For each i, we want to search for all s in D such that:

1. s has prefix p1 . . . pi−1 and
2. s has suffix pi+1 . . . p|p|/b and
3. si and pi have Hamming distance 1.

Property (1) is equivalent to having x(s) lie in the interval of the lexicograph-
ical sort of D that is associated with the prefix p1 . . . pi−1, and (2) is equivalent
to having y(s) lie in the interval of the lexicographical sort of the reversed strings
of D that is associated with the suffix pi+1 . . . p|p|/b.

To implement (1) and (2) one needs to find the above-described intervals.
This can be done using bidirectional tries, as has been done in some of the
previous results.

Specifically, divide s into ω-bit words s1, . . . , s|s|/ω. The b discussed previously
will be a multiple of ω. The current partition of words into |s|/ω is our choice
for the compacted tries construction, whereas the partition of words into |s|/b
words will be for the range searching structure.

Construct a compacted trie T of all lexicographically sorted dictionary strings,
treating each as a string over alphabet = [2ω]. To allow constant time traversal
from each node in the trie we generate a hash on all first (ω-length) characters
emanating from a node. That is if edge e is labeled in the compacted trie with
l(e) then for the set {(v, a, u) | e = (v, u) ∈ T, l(e) = ax} we generate a perfect
hash function h where, in constant time, we can access u from h(v, a). When,
traversing with the pattern p, which we also partition into p1, . . . , p|p|/ω, we only
evaluate the appropriate (ω-length) character of p with the first (ω-length) char-
acter on the edge. Once we reach a leaf, or cannot traverse further in the trie
- in which case we choose an arbitrary descendant leaf, we use the dictionary
string s represented by the leaf to evaluate how far p matches in the trie, by
comparing p and s, in comparisons of ω-length characters using the compressed
text. We construct a symmetric compacted trie TR over the reversed strings of
the dictionary.

Once we know the path know where p matches in T we traverse this path
to compute the boundaries of the range searches described above. That is, after
every b binary characters or, in other words, after every b/ω ω-length characters,
we need the range of the array of lexicographically ordered strings described by
this node. At each such node, we maintain two indices to describe the range.
This is the information needed for the range queries. In T we traverse the path
from top to bottom and in TR we traverse from bottom to top.

Now, assuming that (1) and (2) are true, we can show an appropriate condi-
tion for (3) to hold.

Lemma 1. Assume that s has prefix p1 . . . pi−1 and s has suffix pi+1 . . . p|p|/b.
Then c(s) and c(p) have Hamming distance 1, i.e., c(p) ∈ C(s), iff si and pi
have Hamming distance 1.

Proof. Since s has prefix p1 . . . pi−1 and suffix pi+1 . . . pd/b it follows that ∀j 6=
i and ∀l : s[jb + l] = p[jb + l]. Hence, s[ib + l] = p[ib + l] iff for the l-th bit
c(s)l = c(p)l. So we can conclude that c(s) and c(p) have Hamming distance 1
iff si and pi have Hamming distance 1. ut

It follows from the lemma that it is sufficient to verify whether c(p) ∈ C(s)
for all dictionary strings s that have prefix p1 . . . pi−1 and suffix pi+1 . . . pd/b.
This translates into a single orthogonal 4-sided range reporting query with the
2 ranges defined by prefix p1 . . . pi−1 and suffix pi+1 . . . pd/b found using the
bidirectional tries. The query is asked in the orthogonal range searching structure
associated with the color class of c(p). We access this range searching structure,
in constant time, with the above-described hash function. Once we have accessed
the correct data structure it is a straightforward range query.

6.1 Time and Space

We note that the time and space have interdependencies which we will shortly
address. These are affected by the way the dictionary text is saved, by the
implementation of the range searching data structures and by the choice of our
parameter b. We first explain the space and time and then offer a couple of
possible choices of parameters.

Space: Since we only save the skeleton of T , and TR, their size, including the
data saved on the edges and nodes, is O(d) words, or O(d log d) bits. The perfect
hash function table for the data on the edges is also of size O(d log d) bits.

Hence, the two main space factors are the dictionary size and the range
searching data structures. The dictionary itself is only accessed to read sub-
strings. Hence, it can be saved either in open format, in which case the space
used will be |p|d bits of space for the dictionary or it can be saved in accessible
compressed format. This allows one to analyze the results in either the encoding
or indexing model. We give a parameter allowing the user to insert the data
structure of their choice. One possible data structure is the following:

Lemma 2. [15] Given a text T of length t over constant-sized alphabet there
exists a compressed data structure that supports the access in constant time of
any substring of T of length O(log t) bits requiring tHk(T) + o(t), where Hk(T)
denotes the kth empirical entropy of T and k = o(log t).

Finally the space required by the range searching data structures is dependent
on the implementation used which affects the query time as well. To summarize
the space: we maintain the dictionary itself in |DS(D)| bit space, where DS(T)
is the data structure of choice for maintaining T . The additional space required
is O(d log d+ bSrs(d)) bits of space, where Srs(d) is the number of bits required
by the implementation of the range searching data structure on d values.

Query time: First we read the pattern in O(|p|/ω) time. We also generate the
encoding c(p) in this time. Finally, we find all the ranges within the bidirectional
tries within O(|p|/ω) time. This is true because we make one pass on the trie
for each pattern using the hash functions on the nodes and access the dictionary
text in parallel which we assume can be done in O(1) for each machine word.
While walking down in the tree ω bits at a time, we stop on the nodes which are
at depths of multiples of b (bits), that is, after every b/ω characters (of ω-bits
each). There we learn the ranges by the data stored in the trie. Hence, all the
above is done in O(|p|/ω) time.

The next phase is the query on the orthogonal data structure. We need to
access the orthogonal range data structure maintaining the data for color class
c(p). This is accessed by hashing c(p). This is done in O(|p|/ω) time whilst gen-
erating c(p). Finally the query itself is a tradeoff based on the implementation of
the range searching data structure in use. Let us denote with Qrs(d)+occ Q′rs(d)
the query cost of the 2D orthogonal range reporting of our choice. Hence, the
overall query time is:

O(|p|/ω + (|p|/b)Qrs(d) + occ Q′rs(d)).

The current best results on 2D orthogonal range reporting in the word
RAM model are due to Chan, Larsen, and Pǎtraşcu [11]. One possible choice is
Srs(d) = O(d), Qrs(d) = O(logε d), and Q′rs(d) = O(1). In this case we have a so-
lution for lookups with 1 mismatch in the binary alphabet setting which requires
O(bd log d) additional bits of space and O(|p|/ω+(|p|/b) logε d+occ) query time.
Set b = ω logε d, and we have optimal query time with O(dω log1+ε d)-bit space.
We note that if the string lengths = |p| are ≤ ω logε d then one can use the data
structure of [8].

Another option is as follows. Assume that the additional bits of space is
bounded by c(bd log d), for some constant c. We can set b = δ|p|/c log d for
arbitrary small constant δ and get δ|p|d bits and O((1/δ) log1+ε d+ |p|/ω+ occ)
query time. This answers the open question of Belazzougui and Venturini [4] in
the uncompressed setting for sufficiently large |p| � ω log1+ε d.

Another range searching alternative [11] has Srs(d) = O(d log log d) and
Qrs(d) = Q′rs(d) = O(log log d). This gives O(|p|d) bits and O(log d log2 log d +
|p|/w + occ log log d) time.

7 Dictionary Lookup with Edit Distance One

We would like to extend the previous idea of using the xor function to the case of
one insertion or deletion. However, an insertion or deletion can skew the entire b-
bit encoding and make the dictionary string encodings and the pattern encodings
incompatible. Hence, we do something slightly different. We still maintain the
idea of the xor encoding, and we generate range queries for them, but we do it
differently.

For every u ∈ {0, 1}b+1 and v ∈ {0, 1}b, define the subset:
D(u, v) = {s ∈ D : c(s)⊕ v can be obtained by deleting 1 character from u}

Now build a 2D orthogonal range searching structure for {(x(s), y(s)) | s ∈
D(u, v)}, where x(s) and y(s) are defined as before.

Note that each s ∈ D belongs to O(b2b) D(u, v)’s (because there are 2b

choices for v and O(b) ways to insert 1 character to c(s) ⊕ v). So, space blows
up by a factor O(b2b).

7.1 Query algorithm for one character deletion from p

Once again we use a trie for the lexicographically sorted strings of D and a
trie for the sorted reversed strings of D. We traverse both similarly to the one
mismatch case.

At the i-th iteration, write p as αipiβi with |αi| = bi, |pi| = b + 1, |βi| =
b(|s|/b− i− 1). We are looking for all s ∈ D such that

1. s has prefix αi and

2. s has suffix βi and
3. si can be obtained by deleting 1 character from pi.

We make a claim here that is appropriate for the case of one deletion from
the pattern.

Lemma 3. Given that s has prefix αi and suffix βi, si can be obtained by deleting
1 character from pi ⇐⇒ s ∈ D(pi, c(αi)⊕ c(βi)).

Proof. Given that s has prefix αi and suffix βi, we have c(s) = si⊕ c(αi)⊕ c(βi)
which directly implies that si = c(s) ⊕ c(αi) ⊕ c(βi). Set u = pi and v =
c(αi) ⊕ c(βi). Hence, si(= c(s) ⊕ v) can be obtained by deleting 1 character
from pi(= u) is equivalent by definition to s ∈ D(u, v) = D(pi, c(αi)⊕ c(βi)). ut

We use the same technique on the trie and reverse trie as for the one mismatch
case. That is, we have a range in the trie of the dictionary that is appropriate to
αi and a range defined by βi in the trie of reversed strings. During the traversal
of the query we compute c(αi) ⊕ c(βi) at every stage. Now we need to access
the orthogonal range reporting structure that is D(pi, c(αi) ⊕ c(βi)) which is
accessible in constant time by a hash based on u and v to D(u, v), which in our
case is pi and c(αi)⊕ c(βi) to D(pi, c(αi)⊕ c(βi)). Once in the right orthogonal
range reporting data structure we ask a 4-sided query based on the ranges we
found.

Time and space analysis By following an analysis similar to the mismatch
case, we can conclude the following.

The space and time analysis is: O(b2bd log d) additional bits of space (over
the compressed or uncompressed dictionary) and O(|p|/ω + (|p|/b) logε d+ occ)
query time.

We can set b = log(δ|p|/ log d log(δ|p|)) for an arbitrary constant δ > 0 and
get δ|p|d bits and O(((δ|p|)/ log |p|) logε d+occ) query time for |p| � log d, which
is a speedup when |p| is large.

Alternatively, we can get O((|p|/ log |p|) log log d+ occ log log d).

7.2 Query algorithm for inserting one character to p

The case for insertion to p is symmetrical to the deletion case. Hence, we only
give the changed definition of D(u, v).

For every u ∈ {0, 1}b−1 and v ∈ {0, 1}b, redefine the subset D(u, v) = {s ∈
D | c(s)⊕ v can be obtained by inserting 1 character to u}.

References

1. A. Amir, D. Keselman, G. M. Landau, M. Lewenstein, N. Lewenstein, and
M. Rodeh. Text indexing and dictionary matching with one error. Journal of
Algorithms, 37(2):309–325, 2000.

2. A. Amir, A. Levy, E. Porat, and B. R. Shalom. Dictionary matching with one
gap. In Combinatorial Pattern Matching - 25th Annual Symposium, CPM 2014,
Moscow, Russia, June 16-18, 2014. Proceedings, pages 11–20, 2014.

3. D. Belazzougui. Faster and space-optimal edit distance ”1” dictionary. In Com-
binatorial Pattern Matching, 20th Annual Symposium, CPM 2009, Lille, France,
June 22-24, 2009, Proceedings, pages 154–167, 2009.

4. D. Belazzougui and R. Venturini. Compressed string dictionary look-up with edit
distance one. In Proc. of the Symposium on Combinatorial Pattern Matching
(CPM), pages 280–292, 2012.

5. P. Bille, I. L. Gørtz, H. W. Vildhøj, and S. Vind. String indexing for patterns with
wildcards. Theory Comput. Syst., 55(1):41–60, 2014.

6. G. S. Brodal, P. Davoodi, and S. S. Rao. On space efficient two dimensional range
minimum data structures. Algorithmica, 63(4):815–830, 2012.

7. G. S. Brodal and L. Gasieniec. Approximate dictionary queries. In Combinatorial
Pattern Matching, 7th Annual Symposium, CPM 96, Laguna Beach, California,
USA, June 10-12, 1996, Proceedings, pages 65–74, 1996.

8. G. S. Brodal and S. Venkatesh. Improved bounds for dictionary look-up with one
error. Inf. Process. Lett., 75(1-2):57–59, 2000.

9. H. Chan, T. W. Lam, W. Sung, S. Tam, and S. Wong. Compressed indexes for
approximate string matching. Algorithmica, 58(2):263–281, 2010.

10. H.-L. Chan, T.-W. Lam, W.-K. Sung, S.-L. Tam, and S.-S. Wong. A linear size
index for approximate pattern matching. Journal of Discrete Algorithms, 9(4):358–
364, 2011.

11. T. M. Chan, K. G. Larsen, and M. Pǎtraşcu. Orthogonal range searching on the
RAM, revisited. In Proceedings of the 27th ACM Symposium on Computational
Geometry, Paris, France, June 13-15, 2011, pages 1–10, 2011.

12. R. Cole, L.-A. Gottlieb, and M. Lewenstein. Dictionary matching and indexing
with errors and don’t cares. In Proc. of Symposium on Theory of Computing
(STOC), pages 91–100, 2004.

13. E. D. Demaine and A. López-Ortiz. A linear lower bound on index size for text
retrieval. Journal of Algorithms, 48(1):2–15, 2003.

14. P. Ferragina, S. Muthukrishnan, and M. de Berg. Multi-method dispatching: A
geometric approach with applications to string matching problems. In Proc. of
Symposium on Theory of Computing (STOC), pages 483–491, 1999.

15. P. Ferragina and R. Venturini. A simple storage scheme for strings achieving
entropy bounds. Theor. Comput. Sci., 372(1):115–121, 2007.

16. W.-K. Hon, T.-H. Ku, R. Shah, S. V. Thankachan, and J. S. Vitter. Compressed
dictionary matching with one error. In Data Compression Conference (DCC),
2011, pages 113–122, 2011.

17. T.-W. Lam, W.-K. Sung, and S.-S. Wong. Improved approximate string matching
using compressed suffix data structures. Algorithmica, 51(3):298–314, 2008.

18. V. I. Levenshtein. Binary codes capable of correcting deletions, insertions, and
reversals. Soviet Physics Doklady, 10:707–710, 1966.

19. M. Lewenstein. Orthogonal range searching for text indexing. In Space-Efficient
Data Structures, Streams, and Algorithms, pages 267–302. 2013.

20. M. Lewenstein, J. I. Munro, Y. Nekrich, and S. V. Thankachan. Document retrieval
with one wildcard. In Mathematical Foundations of Computer Science 2014, pages
529–540. 2014.

21. M. Lewenstein, Y. Nekrich, and J. S. Vitter. Space-efficient string indexing for
wildcard pattern matching. In 31st International Symposium on Theoretical As-
pects of Computer Science (STACS 2014), pages 506–517, 2014.

22. A. Policriti and N. Prezza. Hashing and indexing: Succinct datastructures and
smoothed analysis. In Algorithms and Computation - 25th International Sympo-
sium, ISAAC 2014, pages 157–168, 2014.

23. D. Tsur. Fast index for approximate string matching. Journal of Discrete Algo-
rithms, 8(4):339–345, 2010.

24. A. C. Yao and F. F. Yao. Dictionary look-up with one error. J. Algorithms,
25(1):194–202, 1997.

