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Abstract

We revisit classical problems about searching in totally monotone matrices, which have many
applications in computational geometry and other areas. In a companion paper, we gave new
(near-)linear-time algorithms for a number of such problems. In the present paper, we describe
new subquadratic results for more basic problems, including the following:

• A randomized algorithm to select the K-th smallest element in an n × n totally mono-
tone matrix in O(n4/3 polylog n) expected time; this improves previous O(n3/2 polylog n)
algorithms by Alon and Azar [SODA’92], Mansour et al. (1993), and Agarwal and Sen
(1996).

• A near-matching lower bound of Ω(n4/3) for the problem (which holds even for Monge
matrices).

• A similar result for selecting the ki-th smallest in the i-th row for all i.

• In the case when all ki’s are the same, an improvement of the running time to
O(n6/5 polylog n).

• Variants of all these bounds that are sensitive to K (or
∑

i ki).

These matrix searching problems are intimately related to problems about arrangements of
pseudo-lines. In particular, our selection algorithm implies an O(n4/3 polylog n) algorithm for
computing incidences between n points and n pseudo-lines in the plane. This improves, extends,
and simplifies a previous method by Agarwal and Sharir [SODA’02].

1 Introduction

Selection in totally monotone matrices. Totally monotone matrices arise in many subareas
of algorithms, including computational geometry, dynamic programming speedups, shortest paths
in planar graphs, and combinatorial optimization (see various surveys, e.g., [9, 25]). An m × n
matrix A is totally monotone iff for every i < i′ and j < j′,

A[i, j] ≥ A[i, j′] =⇒ A[i′, j] ≥ A[i′, j′].

Early work on matrix searching focused on the basic problem of computing the minimum of
each row: the well-known result by Aggarwal, Klawe, Moran, Shor, and Wilber [5] showed that all
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row minima in a totally monotone matrix can be found in linear time. The input matrix may be
given implicitly—we only assume that any matrix entry can be evaluated on demand in constant
time. (In fact, their algorithm only requires comparisons of elements in a common row.)

Two important lines of research have subsequently followed, investigating (i) the row minima
problem in more general types of totally monotone “partial” matrices, as well as (ii) other, more
general searching problems in totally monotone matrices. The focus of this paper is on the second
direction. We study the following fundamental matrix searching problems:

• K-selection: compute the K-th smallest element.

• t-ranking : count the number of elements that are at most t.

• row (k1, . . . , km)-selection: for each i = 1, . . . ,m, output the ki-th smallest in the i-th row.

• row (t1, . . . , tm)-ranking : for each i = 1, . . . ,m, count the number of elements in the i-th row
that are at most ti.

We reuse K to denote the output count in the t-ranking problem, or
∑

i ki in the row (k1, . . . , km)-
selection problem, or the total output count in the row (t1, . . . , tm)-ranking problem.

For example, the row minima problem corresponds to row (1, . . . , 1)-selection. Ranking and
selection problems are closely related (ranking easily reduces to selection by binary search, and
ranking algorithms can often be modified to yield selection algorithms). Frederickson and John-
son [23, 24] gave optimal algorithms for these types of problems for sorted matrices (which are
less general), but the corresponding problems for totally monotone matrices have not yet been
satisfactorially solved.

Previous results. For small K, there were algorithms with running time close to O(m+n+K),
as first described by Kravets and Park [30] in SODA’90 and improved and extended by the author
in a companion paper [13]. These algorithms actually solve stronger versions of the problems, for
example, selecting the K smallest elements rather than just the K-th smallest. However, in the
worst case when K = Θ(n2), the running time is near-quadratic.

A series of papers in the early 1990s aimed for subquadratic algorithms for these problems:

• Alon and Azar [6] (in SODA’92) showed that the row (k1, . . . , km)-selection problem can be
solved using O(n

√
m log n

√
logm) comparisons. However, the running time may be large.

• Mansour et al. [32] gave an algorithm for row (k, . . . , k)-selection running in O(n
√
m log n+m)

time. However, their algorithm could not be generalized to row (k1, . . . , km)-selection.

• Agarwal and Sen [3] described algorithms for K-selection and row (k1, . . . , km)-selection run-
ning in O((m+ n)

√
n log n) time.

Notice that in the case of square matrices with m = n, all three results achieve the same bound of
Õ(n3/2), ignoring logarithmic factors.1 Agarwal and Sen explicitly posed the question of whether
the time complexity could be improved to Õ(n4/3), but no improvements have been reported in
two and a half decades.

1Throughout the paper, the Õ notation hides polylogarithmic factors.
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Figure 1: Columns in a totally monotone matrix map to pseudo-lines. (Figure taken from [13].)

New results. We present new algorithms for all four problems, K-selection, t-ranking, row
(k1, . . . , km)-selection, and row (t1, . . . , tm)-ranking, with expected running time Õ((mn)2/3+m+n).
The algorithms are randomized (Las Vegas). For example, in the square matrix case, the time bound
is Õ(n4/3). This substantially improves the previous algorithms, and answers the open question by
Agarwal and Sen.

Moreover, our result is near-optimal! We prove that any algorithm (randomized or determin-
istic) for these problems must access Ω((mn)2/3 + m + n) entries of the matrix in the worst case.
Our lower bound holds even for Monge matrices—most totally monotone matrices arising from
applications actually satisfy the stronger Monge property : A[i, j] + A[i′, j′] ≤ A[i, j′] + A[i′, j] for
all i < i′ and j < j′.

We can further make the time bound sensitive to K, namely, Õ((mnK)1/3 + m + n). This
K-sensitive bound smoothly interpolates between Ω((mn)2/3 + m + n) and the above-mentioned
Õ(m+ n+K) bound. We prove optimality of this result as well.

Of particular interest is row (k, . . . , k)-selection, which was the case studied by Mansour et
al. [32] (and also previously considered by Kravets and Park [30]). For this special case, we get
a further improved bound: Õ(m2/5n3/5k1/5 + n). For example, for square matrices, and in terms
of n alone, the bound is Õ(n6/5). While our earlier n4/3 bound might be what an expert would
expect, this n6/5 bound is more of a surprise. This result may not be optimal though (but further
improvement might require a breakthrough in combinatorial geometry).

Applications. Agarwal and Sen [3] mentioned direct applications of the K-selection problem
in totally monotone matrices to selecting the K-th smallest geodesic distance for the vertices of
a simple polygon (following observations by Hershberger and Suri [27]). Bein et al. [7] described
another application of the selection problem to a k-link bottleneck shortest path problem for com-
plete DAGs satisfying a certain “bottleneck Monge property”. With our Õ(n4/3) algorithm, we
immediately get improved results for these problems as well.

Connection with pseudo-lines. Totally monotone matrices can be viewed geometrically in
terms of arrangements of pseudo-lines: A set of n curves in the plane forms a pseudo-line family if
each curve is x-monotone (i.e., each vertical line intersects the curve exactly once) and each pair of
curves intersects at most once. From an m×n totally monotone matrix A, for each j = 1, . . . , n, we
can form a polygonal curve γj passing through the points (1, A[1, j]), (2, A[2, j]), . . . , (m,A[m, j]).
Total monotonicity implies that these curves are indeed pseudo-lines (assuming no degeneracies),
as illustrated in Figure 1. The t-ranking problem corresponds to counting the number of pairs
of points (i, t) and pseudo-lines γj with the point (i, t) above the pseudo-line γj ; this reduces to
answering n “offline pseudo-halfplane range counting queries” on a set of m points in the plane.
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The observation that the columns of a totally monotone matrix may be viewed as pseudo-lines
is not new (for example, see [28, 29] and our companion paper [13]), but this observation was not
used in the previous selection algorithms by Alon and Azar [6], Mansour et al. [32], or Agarwal
and Sen [3]. The geometric perspective allows us to tap into the rich body of techniques from
computational geometry, on range searching and arrangements of lines, to attack matrix searching
problems.

Some techniques for lines can be generalized to pseudo-lines without much effort. For example,
existing algorithms for constructing the arrangement of n lines [19] can be adapted for pseudo-lines,
taking Õ(n2) time. Primitive operations such as computing the intersection of two pseudo-lines
can be done in logarithmic time by binary search instead of constant time, but since optimizing
logarithmic factors is not a main concern in the present paper, this is acceptable. So, it is not
difficult to obtain an Õ(n2 +m) algorithm for the ranking problem. By a standard trick of dividing
the pseudo-lines into n/

√
m groups of size

√
m, this would already give an algorithm with running

time Õ(dn/
√
me ·m) = Õ(n

√
m+m).

However, certain techniques are not generalizable. Even some very simple operations about
points and lines are no longer doable. For example, we cannot easily form a pseudo-line through
two input points. We cannot determine the orientation of three points, since a “correct” answer
would require knowing the relationship of the points with respect to all pseudo-lines, which would
be expensive (not Õ(1)-time doable).

In traditional settings, it is well known that n halfplane or simplex range counting queries on m
points in the plane can be answered in Õ((mn)2/3 +m+n) time [2, 14, 33, 34]. Standard solutions
involve a combination of cutting trees and partition trees. Cuttings can be generalized for pseudo-
lines, since they can be constructed from arrangements of random subsets of pseudo-lines. But
the simplicial partition trees of Matoušek [33, 34] appear difficult to generalize (even the simpler
suboptimal partition trees of Willard [44] are not obviously generalizable). In the offline setting
where all the queries are given, partition trees can usually be avoided completely by switching
to dual space, interchanging points and lines; interpolating between an Õ(n2 + m) solution and
its dual Õ(m2 + n) solution would then yield the desired result. However, this would require a
generalization of duality between points and pseudo-lines.

In SODA’02, Agarwal and Sharir [4] (extending an earlier result of Goodman [26]) actually
described such a duality transform between points and pseudo-lines. Their technique would fix
many of the issues mentioned above (for example, orientation of three points can be determined
by examining the intersections formed by the three dual pseudo-lines). However, Agarwal and
Sharir’s algorithm for constructing the transform requires efficient data structures for performing
certain operations on the pseudo-lines (namely, dynamic pseudo-halfplane range emptiness). For
pseudo-lines that are defined by polynomials of constant degree, they showed there is such a data
structure with O(nε) time per operation for an arbitrarily small constant ε > 0. However, such
data structures are not available for general pseudo-line families (and pseudo-line families formed
by general totally monotone matrices do not have “constant description complexity”).2

Our new algorithm will not explicitly use duality but will work entirely in primal space. We
exploit a simple observation that faces in the dual arrangement roughly correspond to equivalence
classes of points in the primal (the correspondence isn’t perfect but is good enough for our pur-
poses). The existence of a duality transform is needed in the analysis of our algorithm, but not in

2 If the matrix is Monge, some form of duality is possible, as observed in the companion paper [13], but in the
present paper, our goal is in obtaining results for general totally monotone matrices.
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the algorithm itself. With this approach (and some standard data structures for dynamic lower en-
velopes), we obtain a (relatively simple) randomized incremental algorithm with Õ(m2 +n) running
time. Combined with standard cuttings, we then get the desired Õ((mn)2/3 +m+ n) result.

As byproduct, we obtain an algorithm with the same time bound for computing incidences
between points and pseudo-lines in the plane. One of the key applications of Agarwal and Sharir’s
duality transform [4] was in solving this incidence problem, a so-called “Hopcroft’s problem” for
pseudo-lines. Our new algorithm for incidence is thus (i) slightly faster (replacing nε with poly-
logarithmic factors in their time bound of O(m2/3−εn2/3+2ε + m1+ε + n1+ε)), (ii) more general
(working for any pseudo-line family, not just pseudo-lines defined by constant-degree polynomial
arcs), and most importantly, (iii) simpler (not just avoiding the O(nε)-time data structures but
also bypassing the explicit construction of the duality transform). We think this new algorithmic
result is of independent interest to computational geometers, regardless of the connection to matrix
searching. (Agarwal and Sharir’s algorithm for the duality transform is still a powerful result, but
our point is that it is not necessary for solving the incidence problems.)

The problems addressed here are also related to a line of research started in the late 1990s on
solving computational geometry problems with restricted predicates [8, 10, 31, 37]. Motivated by
precision issues and cost of exact arithmetic, the goal was to understand to what extent higher-
degree predicates could be avoided in solving geometric problems. Our work here shows that
Hopcroft’s problem and its relatives can be solved with very limited primitive operations or predi-
cates (just deciding whether an input point is above a pseudo-line, and whether one pseudo-line is
above another pseudo-line at the x-coordinate of an input point); the time complexity is unaffected
by the predicate restriction (ignoring logarithmic factors). It should not be taken for granted that
the same time bound is always achievable; for example, Boissonnat and Snoeyink [8] showed that
the complexity of the pseudo-line segment intersection problem changes drastically when restricted
to a certain natural set of predicates.

Our lower bound for selection in totally monotone or Monge matrices is also obtained using
the above geometric perspective, and turns out to be a simple consequence of standard incidence
bounds from combinatorial geometry (the Szemerédi–Trotter theorem) [35, 42]. Lower bounds on
Hopcroft’s problem or offline range searching are difficult to prove in general models of computation;
for example, see Erickson’s work [22] on lower bounds in a restricted model of so-called “partitioning
algorithms”. Our lower bound is easier to prove due to the more abstract setting, but it is still nice
to see a super-linear, and near-tight, lower bound for a basic problem in a natural setting.

Finally, our unusual Õ(n6/5) result on the row (k, . . . , k)-selection problem is obtained by com-
bining the Õ(m2 + n) algorithm with combinatorial results on the well-known k-level or k-set
problem [18, 35]. The result is new even for the case of lines (for example, we can determine which
of n given points are above the k-level of n lines in 2D in Õ(n6/5) time). Any improvement on the
k-set problem could potentially lead to improvement in our bound.

2 Ranking

We focus on the row (t1, . . . , tm)-ranking problem (which includes the t-ranking problem) for an
m × n totally monotone matrix A. Solution to the selection problems will follow once we have
solved the ranking problem.

In geometric terms, the problem is equivalent to the following, which is a form of offline pseudo-
halfplane range counting :
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Given a set P of m points and a set L of n pseudo-lines in the plane, count the number
of pseudo-lines below p for each point p ∈ P .

Let X be the set of all x-coordinates of P . Define the pseudo-slope of a pseudo-line to be the
rank of its y-value at x =∞ among the n pseudo-lines of L. The only allowed primitive operations
are testing whether a point p ∈ P is above a pseudo-line ` ∈ L, and testing whether a pseudo-
line ` ∈ L is above another pseudo-line `′ ∈ L at the x-coordinate of X (which correspond to
comparisons of the form A[i, j] ≤ A[i, j′] or A[i, j] ≤ ti). For simplicity, we assume no degeneracies
(no point incident on a pseudo-line). It is straightforward to modify our algorithm in degenerate
cases (or apply symbolic perturbation to avoid such cases).

It is useful to imagine altering each pseudo-line ` in the following manner: between two con-
secutive x-values xj , xj+1 ∈ X, make ` stay horizontal from x = xj to x = xj+1 − δi, and from
x = xj+1 − δi to x = xj+1, with a vertical jump at x = xj+1 − δi, where i is the pseudo-slope
of ` and δ > 0 is an infinitesimal. The alteration allows us to explicitly compute the intersection
of two pseudo-lines in O(logm) time without needing to change the required primitive operations
(since we can find the two consecutive x-values between which the intersection is located, by binary
search, and then the intersection point itself can be determined from the pseudo-slopes of the two
pseudo-lines).

We first review known data structures for dynamic lower (or upper) envelopes that we will use.
(These are easier than the dynamic pseudo-halfplane range emptiness data structures needed by
Agarwal and Sharir [4]—the data structures below work for general pseudo-lines.)

Lemma 2.1. Let X be a set of m x-values and L be a set of n pseudo-lines. There is a dynamic
data structure for maintaining a subset C ⊆ L of pseudo-lines, supporting the following operations:

• insert a pseudo-line to C;

• delete a pseudo-line from C;

• given a query value x ∈ X, find the lowest (or highest) pseudo-line of C at x-coordinate x.

• given a query value x ∈ X, find the leftmost vertex of the lower (or upper) envelope of C with
x-coordinate > x.

Each insertion or deletion takes O(log2 n logm) time, and each query takes O(log n) time.

Proof. (Sketch) This follows from a dualized version of Overmars and van Leeuwen’s hull tree
structure [40]. (Agarwal et al. [1] described the dualized method specifically for pseudo-lines, but
the solution is simpler in our setting, where we know all pseudo-lines and points in advance and
we don’t care about extra logarithmic factors.) For the sake of completeness, we include a quick
sketch:

Let LE(C) denote the lower envelope of C. (We can handle the upper envelope similarly.) For
each dyadic interval I, let CI be the subset of all pseudo-lines of C with pseudo-slope in I. Divide I
into two dyadic subintervals I1 and I2 (with I1 left of I2). of half the length. Store the intersection
point zI of LE(CI1) and LE(CI2). (The intersection point is unique since the pseudo-lines in CI1
have smaller pseudo-slopes than CI2 .)

For the first type of query, if the given value x is less than the x-coordinate of zI , then we
recursively find the lowest pseudo-line of CI2 at the x-coordinate x; otherwise, we recursively find
the lowest pseudo-line of CI1 at x. The query time is O(log n).
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For the second type of query, if the given value x is less than the x-coordinate of zI , then we
recursively query in CI2 , but if the returned answer is to the right of zI , return zI instead; otherwise,
we recursively query in CI1 .

To insert/delete a pseudo-line ` in CI : if the pseudo-slope of ` is in I2, we recursively in-
sert/delete ` in CI2 ; otherwise, we recursively insert/delete ` in CI1 . We then recompute zI by
binary search over X, using O(logm) calls to the query algorithm, in O(log n logm) time. The
overall update cost is O(log2 n logm).

Corollary 2.2. Let X be a set of m x-values and L be a set of n pseudo-lines. There is a dynamic
data structure for maintaining a collection C of disjoint subsets of L, supporting the following
operations:

• given a query value x ∈ X, report the lowest (or highest) pseudo-line of C at x-coordinate x;

• given a point q, split a subset C ∈ C into two subsets C≺q = {` ∈ C : ` is below q} and
C�q = {` ∈ C : ` is above q}.

The total time over all splits is O(n log3 n logm), and each query takes O(logm) time.

Proof. We use a standard amortization trick, of splitting a set by repeatedly deleting elements of
the smaller from the larger set.

To split C for a given point q, first initialize k = 1. Find the k lowest and highest pseudo-lines
of C at the x-coordinate of q, by making O(k) queries and deletions (and re-insertions). If q is
below the k-th lowest pseudo-line, then move the pseudo-lines below q to a new subset C≺q, by
O(k) deletions and insertions. Otherwise, if q is above the k-th highest pseudo-line, move the
pseudo-lines above q to a new subset C�q, by O(k) deletions and insertions. Otherwise, double k
and repeat. This way, the split is accomplished by making a total of O(min{|C≺q|, |C�q|}) queries,
insertions, and deletions. We can charge each query/insertion/deletion operation to a member of
the smaller of the two sets C≺q or C�q. Each time a pseudo-line ` is charged, the subset containing
` decreases by at least a factor of 2. Thus, the total number of queries, insertions, and deletions
over a sequence of splits is O(n log n), which has total cost O(n log3 n logm) by Lemma 2.1.

2.1 Warm-up: Õ(m3 + n) algorithm

We are now ready to describe a simple incremental algorithm to solve the row ranking problem.
We say that a point q is completely above (resp. completely below) a set C of pseudo-lines if q is

above (resp. below) all pseudo-lines in C. We say that q conflicts with C if q is neither completely
above nor completely below C. For two pseudo-lines `, `′ ∈ L, we say that ` and `′ are equivalent
w.r.t. a point set Q iff {q ∈ Q : ` is above q} and {q ∈ Q : `′ is above q} are identical. (See
Figure 2(a).)

The idea is to incrementally maintain the equivalence classes of L as we insert points one at
a time. More precisely, let P = {p1, . . . , pn}. In the i-th iteration, we maintain the collection
C of all equivalence classes of L w.r.t. {p1, . . . , pi}, which are stored in the data structure from
Corollary 2.2. The counts can be computed along the way.
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Figure 2: (a) An equivalence class C of pseudo-lines w.r.t. {p1, . . . , pi}, and a point p in conflict
with C. (b) A cell in the dual arrangement in the zone of p corresponding to C.

Pseudocode.

0. let p1, . . . , pm be the points of P (in any order), and initialize C = {L}
1. for i = 1 to m do
2. for each C ∈ C do
3. if pi conflicts with C then split C into C≺pi and C�pi in C
4. for each C ∈ C do
5. if pi is completely above C then add |C| to count[pi]

Correctness of the algorithm is easy to see.

Running time. To analyze the running time of the algorithm, we need to bound the number of
equivalence classes. To this end, we use Agarwal and Sharir’s duality transform [4]: they showed
that given a set P of points and a set L of pseudo-lines, there exists a mapping of points p ∈ P to
pseudo-lines p∗, and of pseudo-lines ` ∈ L to points `∗, such that p is above ` iff p∗ is above `∗.

Let Ai be the arrangement of the dual pseudo-lines p∗1, . . . , p
∗
i . Observe that each equiv-

alence class C w.r.t. {p1, . . . , pi} maps to a face in the dual arrangement Ai: if the points
`∗ and (`′)∗ are in the same face of Ai, then {p∗ ∈ {p∗1, . . . , p∗i } : p∗ is below `∗} and {p∗ ∈
{p∗1, . . . , p∗i } : p∗ is below (`′)∗} are identical, i.e., ` and `′ are equivalent w.r.t. {p1, . . . , pi}. On
the other hand, if the points `∗ and (`′)∗ are in different faces of Ai, then there is a pseudo-
line p∗ ∈ {p∗1, . . . , p∗i } separating the two points, so {p∗ ∈ {p∗1, . . . , p∗i } : p∗ is below `∗} and
{p∗ ∈ {p∗1, . . . , p∗i } : p∗ is below (`′)∗} are not identical, i.e., ` and `′ are not equivalent w.r.t.
{p1, . . . , pi}.

Any arrangement of i pseudo-lines has O(i2) faces, and so Ai has O(i2) faces, and so the
number of equivalence classes at the i-th iteration is O(i2). The tests in lines 3 and 5 require a
query (at the x-coordinate of pi) in the data structure from Corollary 2.2. The entire algorithm
makes O(

∑m
i=1 i

2) = O(m3) queries, costing Õ(m3) time. The total cost of the split operations is

Õ(n). The total time bound is Õ(m3 + n).

Remarks. The mapping of equivalence classes in primal space to faces in dual space is not nec-
essarily surjective, as some faces in the dual arrangement may be empty of points. Explicitly
generating all faces seems to require Agarwal and Sharir’s duality transform algorithm (which
works only for restricted families of pseudo-lines). But the above demonstrates that working with
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equivalence classes instead of faces is sufficient for our problem, although the resulting near-cubic
algorithm is slower than the standard quadratic algorithm for constructing the faces in an arrange-
ment of lines [19]. We will remedy the situation and improve the running time to near-quadratic
in the next subsection.

2.2 Õ(m2 + n) algorithm

We next improve the running time by using a randomized incremental approach, well-known in
computational geometry [17, 16, 38]—in other words, we insert points in a random order. Ran-
domization was not needed in the standard incremental algorithm for constructing an arrangement
of lines [19], but will be crucial here.

As in the previous subsection, we maintain the equivalence classes C as we insert points. The
bottleneck in the previous algorithm is in the loop in lines 2–3 for finding all equivalence classes
that a point conflicts with (there may be O(i2) classes in total, but only O(i) classes may conflict
with a point). Our approach is to explicitly maintain for each point p ∈ P a list of all classes C ∈ C
that p conflicts with—the resulting bipartite graph between points and classes is called the conflict
graph. (Similar conflict graphs were used in the original randomized incremental algorithms by
Clarkson and Shor [16] for many geometric problems.)

Pseudocode.

0. let p1, . . . , pm be the points of P in a random order, and initialize C = {L}
1. for i = 1 to m do
2. for each C ∈ C that pi conflicts with, do
3. split C into C≺pi and C�pi in C
4. for each p ∈ P that conflicts with C, and for each C ′ ∈ {C≺pi , C�pi} do
5. test whether p conflicts with C ′

6. if p is completely above C ′ then add |C ′| to count[p]

In line 2, the conflict graph enables us to loop through all classes that pi conflicts with, in time
linear in the number of such classes (using linked lists). However, after a class C is split in line 3,
the conflict graph needs to be updated, which is the purpose of the loop in lines 4–5.

At the end, count[p] gives us the correct answer, since a pseudo-line below p will eventually
belong to a class completely below p and will be counted the first time this happens.

Expected running time. Let µ−i (p, C) be 1 if p conflicts with C and the class C is destroyed
(i.e., gets split) in the i-th iteration, and 0 otherwise. Let µ+

i (p, C) be 1 if p conflicts with C and
the class C is created in the i-th iteration, and 0 otherwise.

Lines 5–6 require a query in the data structure from Corollary 2.2. The number of queries
in the i-th iteration is O(

∑
p∈P

∑
C µ
−
i (p, C)). The total is O(

∑m
i=1

∑
p∈P

∑
C µ
−
i (p, C)). Clearly,∑m

i=1 µ
−
i (p, C) ≤

∑m
i=1 µ

+
i (p, C), since a class destroyed must have been created in some earlier

iteration. Thus, the total number of queries is at most O(
∑m

i=1

∑
p∈P

∑
C µ

+
i (p, C)).

We use backwards analysis [38, 41] to bound E[
∑

C µ
+
i (p, C)] for each fixed i and each fixed

p ∈ P , as follows:
As in the earlier analysis, we use Agarwal and Sharir’s duality transform [4]. Let Ai be the

arrangement of the dual pseudo-lines p∗1, . . . , p
∗
i . Let C∗ = {`∗ : ` ∈ C}. If p conflicts with a class
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C at the end of the i-th iteration, then the pseudo-line p∗ is above some point in C∗ and below
some point in C∗, and so it must intersect the face of Ai containing C∗ (the converse may not be
true but is not important). Furthermore, if C is created in the i-th iteration, then p∗i must appear
on the boundary of the face of Ai containing C∗.

Thus, if µ+
i (p, C) is true, then p∗ intersects the face of Ai containing C∗, and p∗i appears on the

boundary of this face. (See Figure 2(b).)
So,

∑
C µ

+
i (p, C) is upper-bounded by the number of appearances of p∗i on the boundaries of

the faces of Ai intersected by the pseudo-line p∗, i.e., the number of appearances of p∗i in the zone
of the pseudo-line p∗ in Ai. By the Zone Theorem [20], the sum of the number of edges in the faces
of the zone is O(i). Conditioned to a fixed subset {p∗1, . . . , p∗i } (and thus a fixed A∗i ), we can think
of p∗i as a random element that is equally likely to be any element in this subset, with probability
1/i. It follows that E[

∑
C µ

+
i (p, C)] = O(i/i) = O(1). Since this expectation bound is independent

of the subset, it holds unconditionally.
Therefore, the entire algorithm makes O(E[

∑m
i=1

∑
p∈P

∑
C µ

+
i (p, C)]) = O(m2) queries, costing

Õ(m2) time, in expectation. The total cost of the split operations is Õ(n). The total expected time
bound is Õ(m2 + n).

Remarks. As in other randomized incremental algorithms, the conflict graph may alternatively
be replaced by a history dag (or, in this case, a “history tree”) [38].

There are similarities with a randomized algorithm by Mulmuley and Sen [39], although their
goal was in developing dynamic point location data structures in hyperplane arrangements for
random update sequences. It is also interesting to compare the above algorithm with the standard
(non-randomized) incremental algorithm for constructing an arrangement of (pseudo-)lines [19]. To
find all the faces intersected by the current line, the standard algorithm navigates from faces to
adjacent faces, viewing the arrangement as a planar graph, which we cannot do without explicitly
constructing the duality map (faces that are empty of points are essential for navigation). In
contrast, our algorithm basically navigates from parent faces to child faces in the history tree. The
analysis of the standard algorithm uses the Zone Theorem in a straightforward way; the randomized
analysis of our algorithm uses the Zone Theorem in a subtler way.

Note that by dividing points into groups of size
√
n, the above result automatically implies an

algorithm with expected running time Õ(dm/
√
ne · n) = Õ(m

√
n+ n). This bound is already new,

but we will improve it further.

2.3 Õ((mn)2/3 +m+ n) algorithm

For the final algorithm, we combine the Õ(m2+n) algorithm with the standard geometric technique
of cuttings, which are generalizable to pseudo-lines without any extra effort. Below, a cell refers
to a “pseudo-trapezoid”, which has two vertical sides, and a top and bottom side that are parts of
the input pseudo-lines. We assume that the intersection of two pseudo-lines can be computed in
Õ(1) time, which is true after altering the pseudo-lines as described previously.

Lemma 2.3. (Cutting Lemma) Let L be a set of n pseudo-lines, ∆0 be an initial cell, and a ≤ n.
We can cut ∆0 into O(a2) cells each intersecting O(na log a) pseudo-lines of L.

In fact, the expected number of cells is bounded by O(a + ν∆0( an)2), where ν∆0 denotes the

number of intersections in ∆0 among the pseudo-lines of L. The construction takes Õ(naO(1))
expected time.

10



Proof. (Sketch) With randomization, a standard, simple way to construct cuttings [15, 38] is to just
take a random sample R of size a, and construct the vertical decomposition of the arrangement
formed by R. This construction immediately generalizes to pseudo-lines. (We cannot use the
canonical triangulation, but the vertical decomposition is fine, and yields pseudo-trapezoidal cells.)

Corollary 2.4. Let L be a set of n pseudo-lines, and r ≤ n. We can cut the plane into O(r2)
cells, each intersecting at most n/r pseudo-lines of L. Furthermore, we can compute the cell, the
list L∆ of all pseudo-lines of L intersecting each cell ∆, and the number count∆ of pseudo-lines
of L below each cell ∆, in total expected time Õ(nr). Given a set P of m points, we can compute
P ∩∆ for all cells ∆, in O(m log r) additional time.

Proof. (Sketch) This follows from Chazelle’s hierarchical cutting method [14]. The description can
be simplified with randomization, and for the sake of completeness, we include a quick sketch:

Let b be a sufficiently large constant. Construct a constant-degree tree of cells, where the root
cell is the entire plane. We maintain the invariant that each cell ∆ at level j intersects |L∆| ≤ n/bj

pseudo-lines of L. By applying the Cutting Lemma with a = (c0b log b) |L∆|
n/bj

for a sufficiently large

constant c0, we can subdivide a given cell ∆ at level j into an expected O(a + ν∆( a
|L∆|)

2) =

O(b log b + (b2j+2 log2 b)ν∆
n2 ) number of child cells, each intersecting at most c′0

|L∆|
a log a ≤ n/bj+1

pseudo-lines for some constant c′0. Let tj be the number of cells at level j. Then tj+1 ≤ O(b log b)tj+
O(b2j+2 log2 b), implying that tj+1 = O(b2j+2 log b) = O(b2j) for a sufficiently large constant b. We
output the cells at level ` = dlogb re. The total number of cells is thus O(r2), and each intersects
at most n/r pseudo-lines.

For each child cell ∆′ of ∆, we can compute L∆′ and count∆′ from L∆ and count∆ in
O(|L∆|) = O(n/bj) time. The total expected time is Õ(

∑
j≤` b

2j · n/bj) = Õ(nr). The leaf cell
containing a given point p can be located in O(log r) time by following a path in the tree.

We now apply the above corollary. Further subdivide each cell so that each cell contains at
most dm/r2e points of P ; the number of cells needed remains O(r2). For each cell ∆, solve the
subproblem for the O(m/r2) points of P ∩ ∆ and the O(n/r) pseudo-lines of L∆, by using the
algorithm in Section 2.2. Afterwards, for each p ∈ P∆, we add count∆ to the current count for p.

The total expected running time is

Õ(r2 · ((m/r2)2 + n/r) + nr +m) = Õ(m2/r2 + nr +m).

Setting r = dm2/3/n1/3e gives Õ((mn)2/3 + m + n), assuming that m ≤ n2. For m > n2, we can
divide into groups of n2 points and solve the problem for each group in Õ(n2) time, yielding Õ(m)
total time.

Theorem 2.5. Given an m × n totally monotone matrix and values t1, . . . , tm, we can count the
number of elements at most ti in the i-th row, for all i = 1, . . . ,m, in Õ((mn)2/3 +m+n) expected
time.

Remarks. The number of hidden logarithmic factors is small (in the low single-digit), but we
have not attempted to optimize it and so will left it unspecified.

It is straightforward to modify our algorithms to compute all incidences between n points and
m pseudo-lines in Õ((mn)2/3 + m + n) expected time, using the same primitive operations. We
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just have to pay more careful attention to degeneracies. (For example, in defining equivalence
of two pseudo-lines ` and `′ w.r.t. Q, we should additionally insist that {q ∈ Q : q is on `} and
{q ∈ Q : q is on `′} are identical.)

Cuttings can be constructed deterministically [14], but the toughest part to derandomize is the
Õ(m2 + n) randomized incremental algorithm. (In the Monge case, we might be able to avoid
this part, however, by duality or symmetry [13].) The more straightforward Õ(m3 + n) algorithm
is already deterministic, so it should be possible to obtain some improved (but not necessarily
near-optimal) deterministic algorithms with our approach.

3 Consequences

3.1 K-sensitive running time

We can make the running time of our row (t1, . . . , tm)-ranking algorithm sensitive to K, the sum
of the row ranks of the ti’s, i.e., the sum of the levels of the points in P . Here, the level of a point
p is the number of pseudo-lines of L below p.

Assume that an upper bound K0 of K is given. Let k∗ = K0
m . Take a random sample R

of size n
4k∗

and compute the lower envelope LE(R) and its vertical decomposition VD(R). The

decomposition has O( nk∗ ) cells, and each cell intersects Õ(k∗) pseudo-lines of L w.h.p. (by Clarkson
and Shor’s analysis [16, 38]). For each cell ∆ ∈ VD(R), let L∆ be its conflict list (the subset of all
pseudo-lines of L intersecting ∆). To compute the conflict lists, for each pseudo-line `, we find a
vertex of LE(R) that is above `, by binary search, and then find all cells ∆ ∈ VD(R) intersected
by `, by a linear search in both directions starting at that initial vertex. The total running time is
Õ(n +

∑
∆ |L∆|) = Õ(n + ( nk∗ )k∗) = Õ(n) w.h.p. We further subdivide the cells so that each cell

contains at most m/( nk∗ ) points; the number of cells remains O( nk∗ ). For each cell ∆, we solve the
subproblem for P ∩∆ and L∆ by the algorithm from the previous section. The total time is

Õ(( nk∗ ) · ((m/(
n
k∗

)) · k∗)2/3 + k∗ +m/( nk∗ )) = Õ(n1/3m2/3k
1/3
∗ +m+ n) = Õ((mnK0)1/3 +m+ n).

The above handles all points of P that are below LE(R). We repeat the process for all remaining
points above LE(R). Observe that at least half of the points of P have level at most 2k∗. For each
point with level at most 2k∗, the probability that it is above LE(R) is at most 2k∗ · n/(4k∗) = 1/4.
Thus, the expected number of points of P below LE(R) is at least n/4. Consequently, the process
stops after an O(log n) expected number of iterations. Therefore, the expected running time of
the algorithm is Õ((mnK0)1/3 +m+ n); by repeating logarithmically many times, the time bound
holds w.h.p. To finish, we try K0 = 1, 2, 4, 8, . . . until the algorithm successfully runs to completion
(which is true w.h.p. when K0 ≥ K). The total time bound remains Õ((mnK)1/3 +m+ n).

Theorem 3.1. Given an m × n totally monotone matrix and values t1, . . . , tm, we can count the
number of elements at most ti in the i-th row, for all i = 1, . . . ,m, in Õ((mnK)1/3+m+n) expected
time, where K is the sum of the counts.

Remark. A similar K-sensitive bound, Õ(n2/3K1/3 + n), was known before for the problem of
selecting the K-th smallest distance (under the Euclidean metric) for a set of n points in the
plane [11].
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3.2 Column (t, . . . , t)-ranking

Our algorithms can be modified to solve the column (t, . . . , t)-ranking problem: counting the number
of elements at most a given value t, in each column. In geometric terms, the problem reduces to
counting the the number of points of P above ` for each pseudo-line `—this is offline pseudo-
halfplane range counting. We briefly describe the changes:

In the Õ(m+n2) algorithm, for each equivalence class C, we maintain the number count[C] of
points completely above C. In line 3, we initialize count[C≺pi ] and count[C�pi ] to count[C]. In
line 6, if p is completely above C ′, we increment count[C ′]. At the end, the count for a pseudo-line
` is the count for `’s equivalence class.

In the Õ((mn)2/3+m+n) algorithm: In Corollary 2.4, we also compute the number count[`] of
points of P in the cells completely above `. To do so, if ∆′ is a child of ∆ and ` ∈ L∆ is completely
below ∆′, we add |P ∩∆′| to count[`].

In the K-sensitive algorithm, the changes are straightforward.

Theorem 3.2. Given an m× n totally monotone matrix and a value t, we can count the number
of elements at most t in the j-th column, for all j = 1, . . . , n, in Õ((mnK)1/3 + m + n) expected
time, where K is the sum of the counts.

3.3 Row successors

In the row successor problem, we are given values t1, . . . , tm, and want to find the smallest element
greater than ti in the i-th row, for all i = 1, . . . ,m. In geometric terms, the problem corresponds to
offline vertical ray shooting : for each p ∈ P , find the first pseudo-line of L hit by a vertical upward
ray from p. We observe that our algorithms can be modified to solve this problem:

In the Õ(m + n2) algorithm, in line 6, if p is completely below C ′, we can find the lowest
pseudo-line ` of C ′ at the x-coordinate of p by querying the data structure in Corollary 2.2; if ` is
lower than the current answer for p, reset the current answer for p to `.

In the Õ((mn)2/3 + m + n) algorithm, no major changes are required (since the answer for p
may be found in the cell containing p). The K-sensitive algorithm also requires no major changes.

3.4 Row (k1, . . . , km)-selection

There are several ways to adapt our ranking algorithm to solve the row (k1, . . . , km)-selection
problem.3 If we don’t mind some extra logarithmic factors, there is a general randomized reduction
from row (k1, . . . , km)-selection to row ranking and row successors (this reduction does not require
geometry, and is based on standard sampling ideas, though this particular variant might be new):

Choose a hierarchy of random samples R1 ⊂ R2 ⊂ · · · ⊂ R` = {1, . . . , n} with ` = log n, where
Rj has size 2j . Let Aj be the submatrix formed by the columns in Rj .

Consider a fixed j ∈ {1, . . . , `}. For each i with ki ∈ [ n
2j
, n

2j−1 ), first compute the (c log n)-th
smallest element ti in the i-th row ofAj , for a sufficiently large constant c—we do this simultaneously
for all i, for example, by O(log n) calls to the row successors algorithm for Aj . By a Chernoff bound,
the answer for the i-th row (i.e., the ki-th smallest in the i-th row of A) is upper-bounded by ti,
and furthermore, the rank of ti in the i-th row of A is at most Õ(ki).

3 It is tempting to try parametric search [36], but one issue is that an efficient parallelization of the ranking
algorithm is required (so our randomized incremental algorithm would need change). Another issue is that the row
selection problem is seeking multiple values, not one. . .
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We now proceed in ` rounds and maintain a value ti for each row i. Before round j, we assume
that the answer for the i-th row lies between ti and the successor of ti in the i-th row of Aj−1.
Then w.h.p., the number of elements in the i-th row of Aj between these two values is O(log n).
We start with ti and generate the O(log n) successors of ti, but not exceeding the upper bound ti,
in the i-th row of Aj—we do this simultaneously for all i, by O(log n) calls to the row successors
algorithm for Aj . We compute the ranks of these elements in the i-th row of A—again we do this
simultaneously for all i, by O(log n) calls to the row ranking algorithm for A. (Because of the upper
bound ti, the total rank in each call is Õ(K).) As a result, we know where the answer lies among
these O(log n) candidates, and can then update ti so that the answer for the i-th row lies between
ti and the successor of ti in the i-th row of Aj .

At the end of the ` rounds, we know the answer for every row i. In total, we have made O(log2 n)
calls to the row successors algorithm and the row ranking algorithm.

Theorem 3.3. Given an m× n totally monotone matrix and numbers k1, . . . , km, we can find the
ki-th smallest element in the i-th row, for all i = 1, . . . ,m, in Õ((mnK)1/3 +m+n) expected time,
where K =

∑
i ki.

3.5 K-selection

There is a similar general randomized reduction from K-selection to row ranking and row successors:
Choose a hierarchy of random samples R1 ⊂ R2 ⊂ · · · ⊂ R` = {1, . . . , n} with ` = log n, where

Rj has size 2j . Let Aj be the submatrix formed by the columns in Rj .

First compute the ( cK logn
m )-th smallest element t in a random subset of n elements in the matrix,

in O(n) time. By a Chernoff bound, the answer (i.e., the K-th smallest in A) is upper-bounded by
t, and furthermore, the rank of t in the i-th row of A is at most Õ(K).

We now proceed in ` rounds and maintain a value ti for each row i. Before round j, we assume
that the answer lies between ti and the successor of ti in the i-th row of Aj−1. Then w.h.p., the
number of elements in the i-th row of Aj between these two values is O(log n). We start with ti
and generate the O(log n) successors of ti, but not exceeding the upper bound t, in the i-th row of
Aj—we do this simultaneously for all i, by O(log n) calls to the row successors algorithm for Aj .
Relative to all these O(m log n) elements, we determine where the answer lies; this can be done
by binary search with O(log(mn)) calls to the ranking algorithm. (Because of the upper bound t,
the rank in each call is Õ(K).) We can then update ti so that the answer lies between ti and the
successor of ti in Aj .

At the end of the ` rounds, we know the answer for every row i. In total, we have made O(log2 n)
calls to the row successors algorithm and the row ranking algorithm.

Theorem 3.4. Given an m × n totally monotone matrix and a number K, we can find the K-th
smallest element in Õ((mnK)1/3 +m+ n) expected time.

3.6 Row (k, . . . , k)-selection

We now describe a better time bound for row (k1, . . . , km)-selection in the case when k1 = · · · =
km = k.

In geometric terms, the problem corresponds to the following:

Given a set X of m values and a set L of n pseudo-lines in the plane, determine the
k-th lowest pseudo-line at each x-coordinate x ∈ X.
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In other words, we want to find the intersection of the k-level with the vertical lines at the x-
coordinates of X, where the k-level consists of all points that are on one pseudo-line and above
exactly k − 1 pseudo-lines.

We need two known facts about k-levels. The first is an efficient output-sensitive algorithm.
Here, we assume that the intersection of two pseudo-lines can be computed in Õ(1) time, which is
true after altering the pseudo-lines as described before.

Lemma 3.5. The k-level of a set L of n pseudo-lines can be constructed in Õ(n+ h) time, where
h is the number of vertices of the k-level.

Proof. This follows by adapting a known algorithm by Edelsbrunner and Welzl [21], which reduces
the k-level construction problem to dynamic lower/upper envelopes. We sweep the plane from left
to right by a vertical line x = xm. At any time, we maintain the k-th lowest pseudo-line ` of L
at x = xm, the subset L− of the k lowest pseudo-lines of L at x = xm, and the subset L+ be the
subset of the n− k + 1 highest pseudo-lines of L at x = xm (the only element in both L− and L+

is `). We store L− and L+ in the dynamic data structure in Lemma 2.1. In each iteration, we
find the next vertex of the upper envelope of L− to the right of x = xm and the next vertex of the
lower envelope of L+ to the right of x = xm, by querying the data structure. We change xm to
the smaller x-coordinate of these two vertices, and then make local changes to L− and L+ (O(1)
insertions/deletions) before proceeding to the next iteration. The number of insertion and deletion
operations is O(h).

Second, we need the current best known bound on the combinatorial complexity of the k-level
(which is famously still an open problem), or slightly more generally, the (k ± s)-levels:

Lemma 3.6. For n pseudo-lines in the plane and s ≤ k, the total number of vertices in the j-level
for j = k − s, . . . , k + s is at most O(nk1/3s2/3).

Proof. Dey [18] proved this bound for lines in his celebrated paper; Tamaki and Tokuyama [43]
provided the generalization to pseudo-lines.

From these two facts, we can immediately solve our problem just by constructing the k-level
in Õ(nk1/3) expected time, which is already an improvement for certain input parameters. The
bound could in fact be better if the worst-case k-level complexity turns out to be smaller. But
even with the current combinatorial bounds above, we can obtain a strict improvement, by a more
focused divide-and-conquer around the neighborhood of the k-level, as we now describe:

Let s ≤ k be a parameter to be set later. First choose a random number s′ ∈ {1, . . . , s}, and
compute the (k + s′)-level L+ and the (k − s′)-level L−. The expected size of these two levels
is O(nk1/3s2/3/s) = O(nk1/3/s1/3), and the expected construction time is thus Õ(nk1/3/s1/3) by
Lemma 3.5. We can repeat an O(1) expected number of times to guarantee this size bound.

Divide the plane into z = Θ(nk1/3/s4/3) vertical slabs each containing O(s) vertices of L+ and
L−. Let Lσ be the pseudo-lines that participate in defining vertices of L+ and L− in σ; we have
|Lσ| = O(s). Let L′σ be the pseudo-lines that are between L− and L+ at the left wall of σ; we have
|L′σ| ≤ O(s). We can compute L′σ for all σ by sweeping the plane from left to right and maintaining
the subset of O(s) lines between L− and L+ at the sweep line (whenever we hit a vertex of L+ or
L−, we make local changes to L′σ). Inside σ, the k-level of L corresponds to the kσ-level of Lσ ∪L′σ
for some kσ. For example, we can take any fixed point p on L− and set kσ to be the level of p in
Lσ ∪ L′σ minus the level of p in L (the latter number is k − s′).
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Subdivide slabs further so that each slab contains O(m/z) x-values of X. The number of slabs
remains O(z).

For each slab σ, solve the subproblem for the O(m/z) x-values of X in σ and the O(s) pseudo-
lines in Lσ ∪ L′σ, by the algorithm from Section 2.2.

The total expected running time is

Õ(z · ((m/z)2 + s)) = Õ(m2/z + zs) = Õ((m2s4/3)/(nk1/3) + nk1/3/s1/3).

Setting s = min{d(nk1/3/m)6/5e, k} gives Õ(m2/5n3/5k1/5 +m+ n), assuming that m ≤ nk1/3.
If m > nk1/3, we can directly solve the problem using Lemma 3.5 in Õ(nk1/3) ≤ Õ(m) time.

Theorem 3.7. Given an m × n totally monotone matrix and a number k, we can find the k-th
smallest element in the i-th row, for all i = 1, . . . ,m, in Õ(m2/5n3/5k1/5 +m+ n) expected time.

Remarks. This result appears new even in the case of lines.
A similar strategy of doing divide-and-conquer around a neighborhood of the k-level was also

employed in an algorithm in the appendix of [12] but for a different problem (computing all local
minima of the k-level of n lines in the plane in Õ((nk)3/5 + n) time).

The same idea can be used to prove that given m lines and n points at level k in the plane, the
number of point-line incidences is O(m2/5n3/5k1/5 +m+n). An interesting combinatorial question
(which might potentially be easier than the original k-level problem) is whether this incidence
bound could be improved to near-linear.

4 Lower Bound

In this final section, we prove our lower bound for the t-ranking problem for an m × n totally
monotone matrix A. The proof works even if A is Monge. We will lower-bound the number of
accesses to the elements of A (which would automatically lower-bound the number of comparisons,
for whatever the class of comparisons we allow).

We start with a known construction of a set P of m points and a set L of n lines in the plane
that have Ω((mn)2/3 + m + n) incidences [35, 42]. We may assume that no two points of P have
the same x-coordinates, no lines are vertical, and no two lines of L have the same slope, because
we can apply a random affine transformation, which preserves incidences and guarantees that the
condition is true with probability 1.

Sort the points p1, . . . , pm of P in increasing x-order and the lines `1, . . . , `n of L in decreasing
order of slopes. Let the i-th point be (xi, yi) and the j-th line be y = mjx+ bj . Define

A[i, j] = mjxi + bj − yi.

We can check that the Monge property is strictly satisfied: for any i < i′ and j < j′, A[i, j] +
A[i′, j′] − A[i, j′] − A[i′, j] = (mj′ − mj)(xi′ − xi) < 0. This implies that A is (strictly) totally
monotone.

Let δ be the minimum of |(mj′ −mj)(xi′ − xi)| over all i < i′ and j < j′. Set t = δ/4.
Observe that if (pi, `j) is an incidence pair, then A[i, j] = 0. We claim that any correct deter-

ministic algorithm must evaluate A[i, j] for all incidence pairs (pi, `j). If this is not true for some
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incidence pair (pi, `j), then the adversary could reset A[i, j] from 0 to δ/2; the Monge property
would still be satisfied. But the rank of t would decrease by 1, and so the answer cannot be deter-
mined yet. This proves an Ω((mn)2/3 +m+ n) lower bound. (If degeneracies are not allowed, we
can first replace A[i, j] by A[i, j] + δij for some random δij ∈ (0, δ/100), which preserves the Monge
property.)

Similarly, any randomized algorithm with Ω(1) correctness probability must evaluate A[i, j] for
at least a fraction of the incidence pairs (pi, `j).

We can make the bound sensitive to K, by noting the existence of a set P and a set L with
Ω((mnK)1/3 +m+ n) incidences, where the sum of the levels of the points of P is bounded by K.
To this end, we construct n

k∗
groups, where k∗ = K

m , and each group consists of m/( nk∗ ) points and

k∗ lines with ((m/( nk∗ )) · k∗)
2/3 +m/( nk∗ ) + k∗) incidences. We place each group in a bounding box,

where the lines touch both the left and right sides of the box. Apply an affine transformation to
turn each box into a very thin rectangle, so that we get n

k∗
thin rectangles in concave position, with

sufficient spacing in between. This will ensure that no line from one group may intersect or go below
the rectangle of another group. The sum of the ranks of the points is at most O(( nk∗ )k

2
∗) = O(K).

The total number of incidences (and thus a lower bound on the number of evaluations) is

Θ(( nk∗ ) · ((m/(
n
k∗

)) · k∗)2/3 + k∗ +m/( nk∗ )) = Θ(n1/3m2/3k
1/3
∗ +m+ n) = Θ((mnK)1/3 +m+ n).

A similar argument applies to related problems includingK-selection, row (k1, . . . , km)-selection,
and row successors.

Theorem 4.1. For any m,n,K with K ≤ mn/c for some constant c, any (deterministic or ran-
domized) algorithm that counts the number of elements at most t in an m× n Monge matrix must
access Ω((mnK)1/3 +m+ n) elements, for some input with count K.

Any algorithm that finds the K-th smallest element in an m × n Monge matrix must access
Ω((mnK)1/3 +m+ n) elements.
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[33] Jiŕı Matoušek. Efficient partition trees. Discret. Comput. Geom., 8:315–334, 1992. doi:10.1007/

BF02293051.
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