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Approximating the Minimum Closest Pair Distance and Nearest Neighbor
Distances of Linearly Moving Points
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Abstract

Given a set of n moving points in Rd, where each point
moves along a linear trajectory at arbitrary but con-
stant velocity, we present an Õ(n5/3)-time algorithm1

to compute a (1 + ε)-factor approximation to the min-
imum closest pair distance over time, for any constant
ε > 0 and any constant dimension d. This addresses an
open problem posed by Gupta, Janardan, and Smid [12].

More generally, we consider a data structure version
of the problem: for any linearly moving query point
q, we want a (1 + ε)-factor approximation to the min-
imum nearest neighbor distance to q over time. We
present a data structure that requires Õ(n5/3) space and
Õ(n2/3) query time, Õ(n5) space and polylogarithmic
query time, or Õ(n) space and Õ(n4/5) query time, for
any constant ε > 0 and any constant dimension d.

1 Introduction

In the last two decades, there has been a lot of re-
search on problems involving objects in motion in dif-
ferent computer science communities (e.g., robotics and
computer graphics). In computational geometry, main-
taining attributes (e.g., closest pair) of moving objects
has been studied extensively, and efficient kinetic data
structures are built for this purpose (see [17] and ref-
erences therein). In this paper, we pursue a different
track: instead of maintaining an attribute over time,
we are interested in finding a time value for which the
attribute is minimized or maximized.

Let P be a set of moving points in Rd, and denote by
p(t) the position (trajectory) of p ∈ P at time t. Let
d(p(t), q(t)) denote the Euclidean distance between p(t)
and q(t). The following gives the formal statements of
the two kinetic problems we address in this paper, gener-
alizing two well-known standard problems for stationary
points, closest pair and nearest neighbor search:

• Kinetic minimum closest pair distance: find a pair
(p, q) of points in P and a time instant t, such that
d(p(t), q(t)) is minimized.
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1The notation Õ is used to hide polylogarithmic factors. That
is, Õ(f(n)) = O(f(n) logc n), where c is a constant.

• Kinetic minimum nearest neighbor distance: build
a data structure so that given a moving query
point q, we can find a point p ∈ P and a time
instant t such that d(p(t), q(t)) is minimized.

Related work. The collision detection problem, i.e.,
detecting whether points ever collide [10], has attracted
a lot of interest in the context. This problem can triv-
ially be solved in quadratic time by brute force. For a set
P of n linearly moving points in R2, Gupta, Janardan,
and Smid [12] provided an algorithm, which detects a

collision in P in O(n5/3 log6/5 n) time.
Gupta et al. also considered the minimum diameter

of linearly moving points in R2, where the velocities
of the moving points are constant. They provided an
O(n log3 n)-time algorithm to compute the minimum di-
ameter over time; the running time was improved to
O(n log n) using randomization [7, 9]. Agarwal et al. [2]
used the notion of ε-kernel to maintain an approxima-
tion of the diameter over time. For an arbitrarily small
constant δ > 0, their kinetic data structure in R2 uses
O(1/ε2) space, O(n+1/ε3s+3/2) preprocessing time, and
processes O(1/ε4+δ) events, each in O(log(1/ε)) time,
where s is the maximum degree of the polynomials of
the trajectories; this approach works for higher dimen-
sions.

For a set of n stationary points in Rd, the closest
pair can be computed in O(n log n) time [5]. Gupta et
al. [12] considered the kinetic minimum closest pair dis-
tance problem. Their solution is for the R2 case, and
works only for a limited type of motion, where the points
move with the same constant velocity along one of the
two orthogonal directions. For this special case their al-
gorithm runs in O(n log n) time. Their work raises the
following open problem: Is there an efficient algorithm
for the kinetic minimum closest pair distance problem in
the more general case where points move with constant
but possibly different velocities and different moving di-
rections?

For a set of stationary points in Rd, there are data
structures for approximate nearest neighbor search with
linear space and logarithmic query time [4]. We are not
aware of any prior work on the kinetic minimum nearest
neighbor distance problem. Linearly moving points in
Rd can be mapped to lines in Rd+1 by viewing time as
an extra dimension. There have been previous papers
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on approximate nearest neighbor search in the setting
when the data objects are lines and the query objects
are points [13], or when the data objects are points and
the query objects are lines [16] (in particular, the lat-
ter paper contains some results similar to ours for any
constant dimension d). However, in our problem, both
data and query objects are mapped to lines; moreover,
our distance function does not correspond to Euclidean
distances between lines in Rd+1.

An approach to solve the kinetic minimum closest pair
distance and nearest neighbor distance problems would
be to track the closest pair and nearest neighbor over
time using known kinetic data structures [3, 18, 19].
The chief drawback of this approach is that the closest
pair can change Ω(n2) times in the worst case, and the
nearest neighbor to a query point can change Ω(n) times
(even if approximation is allowed). The challenge is to
solve the kinetic minimum closest pair distance problem
in o(n2) time, and obtain a query time o(n) for the
kinetic minimum nearest neighbor distance problem. To
this end, we will allow approximate solutions.

Our contributions. We focus on the setting where each
point in P (and each query point) has an arbitrary, con-
stant velocity, and moves along an arbitrary direction.

We present an algorithm to compute a (1 + ε)-factor
approximation to the minimum closest pair distance in
Õ(n5/3) time for any constant ε > 0. More generally,
we present a data structure for the kinetic minimum
nearest neighbor distance problem with approximation
factor 1 + ε with Õ(m) preprocessing time and space,
and Õ(n/m1/5) query time for any m between n and
n5. For example, setting m appropriately, we obtain a
data structure with Õ(n5/3) space and Õ(n2/3) query
time, Õ(n5) space and Õ(1) query time, or Õ(n) space
and Õ(n4/5) query time. The results hold in any con-
stant dimension d. Our solution uses techniques from
range searching (including multi-level data structures
and parametric search).

Perhaps the most notable feature of our results is that
the exponents do not grow as a function of the dimen-
sion. (In contrast, for the exact kinetic minimum clos-
est pair problem, it is possible to obtain subquadratic-
time algorithms by range searching techniques, but with
much worse exponents that converge to 2 as d increases.)

2 Kinetic Minimum Nearest Neighbor Distance

Let p(t) = p′+tp′′ denote the linear trajectory of a point
p ∈ P , where p′ ∈ Rd is the initial position vector of p,
and p′′ ∈ Rd is the velocity vector of p. For any moving
query point q with a linear trajectory q(t) = q′ + tq′′,
we want to approximate the minimum nearest neighbor
distance to q over time.

We first consider the following decision problem:

Decision Problem 1 Given a point q and a real pa-
rameter r, determine whether there exists p ∈ P with

min
t∈R

d(p(t), q(t)) ≤ r. (1)

Afterwards we use the parametric search technique to
find the minimum nearest neighbor distance of q in P .

Approximating Decision Problem 1. Let w be a vec-
tor in Rd. The Euclidean norm ‖w‖ of w can be ap-
proximated as follows [6]. Assume θ = arccos(1/(1+ε)),
for a small ε > 0. The d-dimensional space around
the origin can be covered by a set of b = O(1/θd−1) =
O(1/ε(d−1)/2) cones of opening angle θ [20]. i.e., there
exists a set V = {v1, . . . ,vb} of unit vectors in Rd that
satisfies the following property: for any w ∈ Rd there is
a unit vector vi ∈ V such that ∠(vi,w) ≤ θ. Note that
∠(vi,w) = arccos(vi ·w/‖w‖), where vi ·w denotes the
inner product of the unit vector vi and w. Therefore,

‖w‖/(1 + ε) ≤ max
i∈B

vi ·w ≤ ‖w‖, (2)

where B = {1, . . . , b}.
From (2), we can use the following as an approxima-

tion of d(p(t), q(t)):

max
i∈B

vi · (p′ − q′ + t(p′′ − q′′)).

Let p′i = vi · p′, p′′i = vi · p′′, q′i = vi · q′, and
q′′i = vi · q′′. From the above discussion, a solution to
Decision Problem 1 can be approximated by deciding
the following.

Decision Problem 2 Given a point q and a real pa-
rameter r, test whether there exists p ∈ P with

min
t∈R

max
i∈B

(p′i − q′i) + t(p′′i − q′′i ) ≤ r. (3)

Solving Decision Problem 2. Consider the inequality
in (3). Minimizing the maximum of γi(t) = (p′i − q′i) +
t(p′′i − q′′i ), over i ∈ B, is equivalent to finding the low-
est point on the upper envelope of the linear functions
γi(t) in the tγ-plane; see Figure 1(a). Thus (3) is equiv-
alent to checking whether the lowest point of the upper
envelope is on or below the line γ = r.

Let ti = (r − p′i + q′i)/(p
′′
i − q′′i ) denote the time that

γi(t) intersects with γ = r, i.e., the root for γi(t) = r.
Let mi = p′′i − q′′i denote the slope of the linear function
γi(t).

Deciding the following is equivalent to deciding
whether the lowest point on the upper envelope of γi(t)
is on or below the line γ = r.

• The maximum root of the linear functions γi(t) =
r with negative slope is less than or equal to the
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Figure 1: The intersections of γi with γ = r are shown
by empty circles (#) if the slope mi of γi is positive,
or empty squares (2) if mi < 0. (a) The lowest point
(bullet point  ) on the upper envelope is below γ = r.
(b) The lowest point on the upper envelope is above
γ = r, m3 < 0, m4 > 0, and t3 > t4.

minimum root of the linear functions with positive
slope. In other words,

max
i:mi<0

ti ≤ min
j:mj>0

tj . (4)

Note that if the lowest point of the upper envelope
is above the line γ = r, then there exists a pair (i, j) of
indices such that the clause (mi > 0)∨ (mj < 0)∨ (ti <
tj) is false (see Figure 1(b)); otherwise, the conjunction
of all clauses (for all i, j ∈ B) is true. Therefore, we can
obtain the following.

Lemma 1 The inequality of (3) is satisfied iff the fol-
lowing conjunction is true:∧

i,j∈B
((p′′i > q′′i ) ∨ (p′′j < q′′j ) ∨ (ti < tj)),

where ti = (r − p′i + q′i)/(p
′′
i − q′′i ).

Each condition in the clauses in Lemma 1 may be
represented as a half-space in the following manner.

Consider the inequality ti < tj , i.e.,

r − p′i + q′i
p′′i − q′′i

<
r − p′j + q′j
p′′j − q′′j

.

Assuming (p′′i < q′′i )∧ (p′′j > q′′j ), ti < tj is equivalent to

(r − p′i + q′i)(p
′′
j − q′′j )− (r − p′j + q′j)(p

′′
i − q′′i ) > 0,

which can be expanded as

rp′′j − rq′′j − p′ip′′j + p′iq
′′
j + q′ip

′′
j − q′iq′′j − rp′′i + rq′′i

+ p′jp
′′
i − p′jq′′i − p′′i q′j + q′′i q

′
j > 0.

By factoring some terms in the above inequality, we
obtain

p′i(q
′′
j ) + p′′i (−r − q′j) + p′j(−q′′i ) + p′′j (r + q′i) + p′′i p

′
j

− p′ip′′j + rq′′i − rq′′j − q′iq′′j + q′′i q
′
j > 0,

which can be expressed in the form

A1X1 +A2X2 +A3X3 +A4X4 +X5 > A5,

where X1 = p′i, X2 = p′′i , X3 = p′j , X4 = p′′j , X5 =
p′′i p
′
j − p′ip′′j , A1 = q′′j , A2 = −r − q′j , A3 = −q′′i , A4 =

r + q′i, and A5 = −rq′′i + rq′′j + q′iq
′′
j − q′′i q′j .

Lemma 2 For each pair (i, j) of indices, the clause
(p′′i > q′′i ) ∨ (p′′j < q′′j ) ∨ (ti < tj) in Lemma 1 can
be represented as

(X2 > −A3) ∨ (X4 < A1) ∨ (5)

(A1X1 +A2X2 +A3X3 +A4X4 +X5 > A5). (6)

From Lemmas 1 and 2, we have reduced Decision
Problem 2 to a searching problem S, which is the con-
junction of O(b2) simplex range searching problems Sl,
l = 1, . . . , O(b2). Each Sl is a 5-dimensional simplex
range searching problem on a set of points, each with
coordinates (X1, X2, X3, X4, X5) that is associated with
a point p ∈ P . The polyhedral range (5–6) for Sl, which
can be decomposed into a constant number of simplicial
ranges, is given at query time, where A1, . . . , A5 can be
computed from the query point q and the parameter r.

Data structure for the searching problem S. Multi-
level data structures can be used to solve complex range
searching problems [1] involving a conjunction of mul-
tiple constraints. In our application, we build a multi-
level data structure D to solve the searching problem S
consisting of O(b2) levels. To build a data structure for
a set at level l, we form a collection of canonical subsets
for the 5-dimensional simplex range searching problem
Sl, and build a data structure for each canonical subset
at level l + 1. The answer to a query is expressed as
a union of canonical subsets. For a query for a set at
level l, we pick out the canonical subsets correspond-
ing to all points in the set satisfying the l-th clause by
5-dimensional simplex range searching in Sl, and then
answer the query for each such canonical subset at level
l + 1.

A multi-level data structure increases the complexity
by a polylogarithmic factor (see Theorem 10 of [1] or
the papers [8, 14]). In particular, if S(n) and Q(n) de-
note the space and query time of 5-dimensional simplex
range searching, our multi-level data structure D re-

quires O(S(n) logO(b2) n) space and O(Q(n) logO(b2) n)
query time.

Assume n ≤ m ≤ n5. A 5-dimensional simplex range
searching problem can be solved in Õ( n

m1/5 ) query time
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with Õ(m) preprocessing time and space [8, 14]. We
conclude:

Lemma 3 Let n ≤ m ≤ n5. A data structure D for De-

cision Problem 2 can be built that uses O(m logO(b2) n)
preprocessing time and space and can answer queries in

O( n
m1/5 logO(b2) n) time.

Solving the optimization problem. Consider Decision
Problem 2, and denote by r∗ the smallest r satisfying
(3). We use Megiddo’s parametric search technique [15]
to find r∗. This technique uses an efficient parallel al-
gorithm for the decision problem to provide an efficient
serial algorithm for the optimization problem (comput-
ing r∗); the running time typically increases by loga-
rithmic factors. Suppose that the decision problem can
be solved in T time sequentially, or in τ parallel steps
using π processors. Then the running time to solve the
optimization problem would be O(τ · π + T · τ · log π).

In our case, T = π = O( n
m1/5 logO(b2) n) (by

Lemma 3) and τ = O(logO(b2) n), where b2 =
O(1/εd−1). Therefore, we obtain the main result of this
section:

Theorem 4 Let n ≤ m ≤ n5. For a set P of n lin-
early moving points in Rd for any constant d, there

exists a data structure with O(m logO(1/εd−1) n) prepro-
cessing time and space that can compute a (1+ε)-factor
approximation of the minimum nearest neighbor dis-
tance to any linearly moving query point over time in

O( n
m1/5 logO(1/εd−1) n) time.

Remark 1 Our approach can be modified to compute
the minimum distance over all time values inside any
query interval [t0, tf ]. The conjunction in Lemma 1 be-
comes

∧
i,j∈B((p′′i > q′′i ) ∨ (p′′j < q′′j ) ∨ (ti < tj) ∨ (ti >

tf ) ∨ (tj < t0)). The condition ti > tf is equivalent to
r − p′i + qi > tf (p′′i − q′′i ), which can be expressed in
the form B1Y1 + Y2 < B2, where Y1 = p′′i , Y2 = p′i,
B1 = tf , and B2 = r + qi + tfq

′′
i . This corresponds

to a 2-dimensional halfplane range searching problem.
The condition tj < t0 can be handled similarly. We can

expand the entire expression into a disjunction of 5O(b2)

subexpressions, where each subexpression is a conjunc-
tion of O(b2) conditions and can then be handled by a
multi-level data structure similar to D.

Remark 2 Our approach can be used to compute the
exact minimum nearest neighbor distance in the L∞
metric to any moving query point. Let vj and vd+j
be the unit vectors of the negative xj-axis and posi-
tive xj-axis, respectively, in the d dimensional Carte-
sian coordinate system, where 1 ≤ j ≤ d. We define
V = {v1, . . . ,vb} with b = 2d, and solve the problem as
before.

3 Kinetic Minimum Closest Pair Distance

To approximate the kinetic minimum closest pair dis-
tance, we can simply preprocess P into the data struc-
ture of Theorem 4, and for each point p ∈ P , approxi-
mate the minimum nearest neighbor distance to p. The

total time is O((m+ n2

m1/5 ) logO(1/εd−1) n) time. Setting
m = 5/3 gives the main result:

Theorem 5 For a set of n linearly moving points in Rd
for any constant d, there exists an algorithm to compute
a (1 + ε)-factor approximation of the minimum closest

pair distance over time in O(n5/3 logO(1/εd−1) n) time.

Remark 3 By Remark 2, we can compute the exact
minimum closest pair distance in the L∞ metric, of a set

of n linearly moving points in Rd, in O(n5/3 logO(d2) n)
time.

4 Discussion

For a set P of linearly moving points in Rd, we have
given efficient algorithms and data structures to ap-
proximate the minimum value of two fundamental at-
tributes: the closest pair distance and distances to near-
est neighbors. We mention some interesting related
open problems along the same direction:

• The Euclidean minimum spanning tree (EMST) on
a set P of n moving points in R2 can be main-
tained by handling nearly cubic events [19], each
in polylogarithmic time. Can we compute the min-
imu weight of the EMST on P , for linearly moving
points, in subcubic time?

• For a set of n moving unit disks, there exist ki-
netic data structures [11] that can efficiently answer
queries in the form “Are disks D1 and D2 in the
same connected component?”. This kinetic data
structure handles nearly quadratic events, each in
polylogarithmic time. Can we find the first time
when all the disks are in the same connected com-
ponent in subquadratic time?
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