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Abstract

For many geometric problems, there are efficient algorithms that use surprisingly very little ex-
tra space other than the given array holding the input. For many geometric query problems, there
are efficient data structures that need no extra space at all other than an array holding a permuta-
tion of the input. In this paper, we obtain the first such space-economical solutions for a number
of fundamental problems, including three-dimensional convex hull and two-dimensional Delau-
nay triangulation computations, as well as fixed-dimensional range queries and fixed-dimensional
nearest neighbor queries.

1 Introduction

As is well known, we can sort an array of n numbers in O(n log n) time using only a constant amount
of extra space, for example, by heapsort. We can also locate a number in a sorted array of n numbers
(with no additional structures) in O(log n) time by binary search. In this paper, we explore analogous
in-place (or space-efficient) algorithms and data structures for problems in computational geometry.

The motivation for saving space is self-evident: in-place (or nearly in-place) algorithms can solve
larger problem instances in main memory; in addition, they can be used to handle larger base cases
within external-memory divide-and-conquer algorithms.

Although in-place sorting and searching algorithms were investigated a long time ago, there has
been a resurgence of interest recently; examples include the latest in-place sorting algorithm [25] that
minimizes data movement, and a series of work [26, 27, 28] on in-place (or implicit) search structures
that are dynamic (allowing insertions and deletions).

In computational geometry, there have been a few recent papers addressing in-place/space-
efficient algorithms: Brönnimann et al. [8] considered the 2-d convex hull problem, Brönnimann
and Chan [6] considered the convex hull of a 2-d polygonal chain, and Chen and Chan (and, more
recently, Vahrenhold [46]) considered the segment intersection problem [18] as well as Klee’s mea-
sure problem in 2-d [19]. Also, Bose et al. [5] gave a general technique for implementing stackless
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divide-and-conquer algorithms, and applied it to closest pair and orthogonal segment intersection
problems. However, many basic geometric problems, such as 2-d Voronoi diagrams, have remained
unsolved.

In this paper, we present a more comprehensive study of space-efficient geometric algorithms and
data structures. (All space bounds below are measured in words, not bits.)

• We give an in-place algorithm for one of the most fundamental geometric problems—computing
the convex hull of an array of n points in 3-d. Our algorithm runs in O(n log3 n) time with
O(1) extra space (see Section 3). A clarification on the model is needed (since the output
polyhedron does not naturally fit in an array of size n): our algorithm permutes the array so
that the convex hull vertices (the extreme points) occupy a prefix of the array. If the hull edges
and facets are desired, they can be printed to a write-only output stream as well.

• The above result automatically implies space-efficient algorithms for a number of geometric
problems including 2-d Voronoi diagrams and Delaunay triangulations within the same time
and space bounds. For certain applications of Voronoi diagrams, such as finding the bichromatic
closest pair or the Hausdorff distance between two n-point sets in 2-d, we can obtain a slightly
faster algorithm that runs in O(n log2 n) time using O(log2 n) extra space (see Section 4).

• We demonstrate surprisingly the possibility of permuting an array of n points in the plane,
so that nearest neighbor queries can be answered in O(log2 n) time and constant space (see
Section 5). This can be seen as a nontrivial generalization of the binary search result in 1-d.
(Apparently, permuting into sorted x- or y-order no longer works.)

• More generally, there are in-place data structures with sublinear query time for orthogonal
and non-orthogonal range searching queries, ray shooting queries inside convex polytopes,
and linear programming queries in any fixed dimension (see Section 5). As an application
of these data structures, we can compute the extreme points of an array of n points in IRd

in O(n2−1/bd/2c polylog n) expected time using O(1) extra space. As another application, we
also show how to make our space-efficient 3-d convex hull algorithm output-sensitive, with
O(n log3 h) expected running time and O(1) extra space, where h is the number of extreme
points.

Some of our results are derived by modifying known geometric algorithms or combining them
with known space-saving tricks; our simplex range searching data structure (being derived from
known partition trees) is perhaps one such example. Other results are not so straightforward. For
example, our in-place 3-d convex hull algorithm is not based on any of the previous optimal 3-d
convex hull algorithms; it involves both new geometric ideas (inspired by known techniques from
kinetic computational geometry) as well as array-layout issues (in a way, we are generalizing the
in-place heapsort algorithm in 1-d). Another nontrivial example is our 2-d nearest neighbor data
structure, which employs planar graph separators in an interesting way.

Furthermore, identifying which algorithms could be made space-efficient can sometimes be a
delicate matter. For instance, although Chen and Chan [18] have noticed that Bentley and Ottmann’s
sweep algorithm for segment intersection can be implemented with little extra space via known so-
called “implicit” data structures, a space-efficient version of Fortune’s sweep algorithm for 2-d Voronoi
diagrams [21, 24] seems more difficult (because of the complexity of the “beach-line” structure).

2



We end this section with a quick comparison of in-place algorithms with related topics. First, data
stream algorithms [40] have a similar goal of minimizing storage, but the input comes in a stream
and there is no array; although such algorithms can handle much larger data sets, the problems
that can be solved exactly in this model are far more limited, even if multiple passes are allowed
(space-efficient multi-pass geometric algorithms have recently been explored by Chan and Chen [14]).
Second, sublinear algorithms [17] also work with a “structure-less” data structure, but here prepro-
cessing is not even allowed; again, this model is more limited but desirable for massive data sets. A
closely-related topic is work on compressing and transmitting geometric structures (e.g., Delaunay
triangulations [45] and arbitrary triangulations [22] of a 2-d point set) through a permutation of
the data; here, a permutation-based structure with few extra bits is similarly desired, although the
encoding and decoding algorithms do not have to be in-place.

With space-efficiency carried to an extreme, the closest topic to our approach is succinct data
structures which require that the asymptotic amount of space they use match the entropy of the class
of structures represented. While many succinct data structures were given for arrays, bit-vectors and
dictionaries data structures (and more recently for their dynamic versions), very recently Castelli
Alleardi et al. are the first to provide succinct geometric data structures. In [9], they give succinct
representations for triangulations of point sets in the plane, and in [10] also provide dynamic updates.

2 Preliminaries on Space-Saving Tricks

Most data structures need many (Ω(n)) pointers, and any algorithm that uses such structures is
automatically not in-place. One of the main tricks in designing space-efficient algorithms is to store
pointers implicitly by a permutation of a block of data. More precisely, given a block of s = c log n

points p1, . . . , ps, we can permute selected pairs of points to encode s/2 bits (enough for bc/2c
pointers), for example, by the following convention: the i-th bit is interpreted as a 1 if p2i−1 is
lexicographically smaller than p2i. (We can assume that no two points are identical by an initial
sorting step to remove duplicates.)

With this trick, we can for instance implement a doubly-linked list inside an array with only
O(log n) extra space: just divide the given list into blocks of size s and encode c = 2 pointers to
the successor and predecessor blocks within each block. For example, Brönnimann and Chan [6]
used this implicit linked list structure in an in-place implementation of Melkman’s 2-d convex hull
algorithm.

With more effort, Munro [39] showed how to implement a dynamic binary search tree inside an
array with only O(log2 n) extra space. Updates and searches on n numbers can be performed in
O(log2 n) time. This implicit search tree structure will be used in one of our algorithms in Section 4.
(We will ignore the more complicated, recent developments [26, 27, 28].)

Chen and Chan [18] recently observed that the search tree can be combined with a heap without
increasing the space and time bounds in Munro’s method (the total orders associated with the tree
and the heap can be different). A tree/heap combination commonly occurs in sweep-based algorithms
in computational geometry; the particular application studied by Chen and Chan concerns a space-
efficient implementation of Bentley and Ottmann’s segment intersection algorithm.
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3 3-d Convex Hulls

In this section we present one of the main results of this paper: an efficient in-place algorithm for
3-d convex hulls. The 3-d problem is far more intricate than the 2-d problem (previously considered
by Brönnimann et al. [8]). None of the textbook algorithms for 3-d convex hulls—for example,
divide-and-conquer [42], randomized incremental construction [20], or gift-wrapping [15]—are space-
efficient, because they need to work with intermediate hulls. While a 2-d polygon can be easily
represented by the order of its vertices, the standard representation schemes for 3-d polyhedra (such
as the DCEL and quad-edge structures [21]) all require a large number of pointers.

In the preliminary version of this paper [7], we described a highly nontrivial adaptation of (Chan’s
“kinetic” reinterpretation [13] of) Preparata and Hong’s divide-and-conquer algorithm [42], to show
that 3-d convex hulls can be computed in O(n log3 n) time using O(log2 n) extra space. The key idea
there was to represent an intermediate hull simply by a permutation of its vertices (specifically, the
so-called shelling order). It turns out that this weaker representation is sufficient to support efficient
merging of two vertically separated hulls, via a sweep in dual space. This merging subroutine then
leads to a space-efficient divide-and-conquer algorithm.

In this version of the paper, we describe a less complicated algorithm that also happens to use
less space, namely O(1). The overall ideas are similar, but instead of using multiple sweeps to merge
sub-hulls, we use a single sweep to compute the entire hull directly without recursion (by maintaining
a tree structure as we sweep). As a result, the issue of representations of intermediate 3-d sub-hulls
becomes moot. To make our algorithm space-efficient, we adopt tricks similar to Chen and Chan’s
sweep algorithm for segment intersection [18] (although we do not explicitly need implicit search
trees).

We remark that while sweeping is popular in computational geometry (for example, in computing
2-d Voronoi diagrams [24]), it is not common knowledge that the paradigm can be applied to 3-d
convex hulls (perhaps because the resulting time bound is not quite O(n log n)). Seidel’s algorithm
for higher-dimensional convex hulls [44], however, can be interpreted as a sweep in dual space.

In the next subsection, we find it convenient to take a kinetic view of the 3-d convex hull problem.
In Section 3.2, we present a self-contained description of our algorithm under the traditional (non-
space-efficient) setting. Then in Section 3.3, we show that this algorithm can be made in-place. A
slower but more easily implementable variant is outlined in Section 3.4.

3.1 A kinetic approach

We assume that the input points are in general position, by standard perturbation techniques.
Without loss of generality, it suffices to compute the upper hull. For example, we can first find
the extreme points S of the upper hull, then find the extreme points S′ of the xy-projection of
S by an in-place 2-d convex hull algorithm [8], arrange the array so that a prefix stores S − S′,
and finally compute the lower hull of the complement of S − S′. Alternatively, we can apply the
transformation (x, y, z) 7→ (x/z, y/z,−1/z), which turns the convex hull into an upper hull, assuming
(by translation) that the lowest input point is the origin.

As noted in [13], constructing the upper hull of a set of 3-d points is equivalent to maintaining
the upper hull of a kinetic set of 2-d points that are moving vertically at fixed velocities: For each
3-d point pi = (xi, yi, zi), the corresponding 2-d point is defined as p̂i(t) = (xi, zi − tyi) at time t.

For any three such points p̂i, p̂j , p̂k in left-to-right order, we say that p̂ip̂j p̂k is convex at a
specified time value t, if it forms a clockwise turn, or concave otherwise. Clearly, each such triple can
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change from concave to convex (or convex to concave) at only one time t (namely when t satisfies
[(z1 − ty1)− (z2 − ty2)]/(x1 − x2) = [(z3 − ty3)− (z2 − ty2)]/(x3 − x2)).

As time progresses, a vertex p̂j may appear on or disappear from the 2-d upper hull. For example,
p̂j may be inserted between p̂i and p̂k, as p̂ip̂j p̂k becomes convex; and p̂j in between p̂i and p̂k may
be deleted, as p̂ip̂j p̂k becomes concave. Such an insertion or deletion event corresponds precisely to
a facet of the 3-d upper hull (namely, the triangle pipjpk). Note that a vertex may be inserted or
deleted at most once (the order of insertion is the shelling order). We will compute the 3-d upper
hull by tracking the changes to the kinetic 2-d upper hull, as we “sweep” over all time values from
t = −∞ to t =∞. Thus, the 3-d problem is reduced to a 2-d data structure problem, which is more
susceptible to a space-efficent solution.

We note that much work has been done on the design of kinetic data structures [3, 30]; in
particular, the kinetic 2-d convex hull problem was addressed by Basch et al. [3] and Alexandron
et al. [2]. However, our situation is a special case, where points only move vertically at constant
velocities, which allows for a more efficient algorithm (the general case may require Ω(n2) events).

We remark that the above kinetic viewpoint is mostly a matter of convenience. In the dual, the
3-d upper hull becomes a 3-d lower envelope of planes, and the corresponding 2-d upper hull at a
particular time value becomes a 2-d cross-section of this 3-d envelope (a lower envelope of lines that
moves linearly over time). Thus, sweeping over time can be reinterpreted as sweeping over one axis
in dual space.

3.2 The algorithm

We first describe our algorithm without consideration of space usage. The algorithm is expressed in
terms of the kinetic 2-d upper hull problem. (All points in this subsection are 2-d vertically moving
points.)

The kinetic data structure we use is a complete binary tree (similar to a “hull tree” data structure
of Overmars and van Leeuwen [41]). We first sort all points from left to right (say, by heapsort) and
group them into blocks of size s. These blocks are leaf nodes in the binary tree. For each node v, we
refer to the upper hull of all points in the leaf blocks underneath v as the sub-hull at v. We specify
what is stored in each node:

• At each leaf node v, we maintain two lists of points, both in left-to-right order: Hv contains
the current sub-hull at v, and H ′

v contains the remaining points in the block. Consider the
next change in the sub-hull at v, the insertion or deletion of a point; let pv be this point. We
store p−v , pv, and p+

v , where p− denotes the rightmost vertex to the left of p, and p+ denotes
the leftmost vertex to the right of p on the sub-hull at v.

• At each internal node v, let lvrv denote the bridge edge between the sub-hulls at the left child
and the right child of v, with lv on the left sub-hull and rv on the right sub-hull. We store lv,
rv, l−v , l+v , r−v , and r+

v . (See Figure 1.)

We can initialize the data structure at t = −∞ in O(n log n) time in a bottom-up manner: at
the leaves, we can compute the sub-hulls by any optimal 2-d convex hull algorithm; at each internal
node, we can compute the bridge by a linear-time scan or a logarithmic-time binary search [41].

To maintain this data structure over time, we consider the following types of events:
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Figure 1: Maintaining the bridge between two sub-hulls.

• Event 1. Time: When p−v pvp
+
v becomes concave for some leaf node v.

Action (pv is deleted from the sub-hull at v): Move pv from Hv to H ′
v. Find the next p−v , pv,

and p+
v . Update l−u , l+u , r−u , r+

u at ancestors u of v.

• Event 2. Time: When p−v pvp
+
v becomes convex for some leaf node v.

Action (pv is inserted to the sub-hull at v): Move pv from H ′
v to Hv. Find the next p−v , pv, and

p+
v . Update l−u , l+u , r−u , r+

u at ancestors u of v.

• Event 3. Time: When l−v lvrv becomes concave for some internal node v.
Action (lv is deleted from the sub-hull at v): lv ← l−v . Find the new l−v . Update l−u , l+u , r−u , r+

u

at ancestors u of v.

• Event 4. Time: When lvrvr
+
v becomes concave for some internal node v.

Action (rv is deleted from the sub-hull at v): rv ← r+
v . Find the new r+

v . Update l−u , l+u , r−u , r+
u

at ancestors u of v.

• Event 5. Time: When lvl
+
v rv becomes convex for some internal node v.

Action (l+v is inserted to the sub-hull at v): lv ← l+v . Find the new l+v . Update l−u , l+u , r−u , r+
u

at ancestors u of v.

• Event 6. Time: When lvr
−
v rv becomes convex for some some internal node v.

Action (r−v is inserted to the sub-hull at v): rv ← r−v . Find the new r−v . Update l−u , l+u , r−u , r+
u

at ancestors u of v.

A priority queue holds the time values of the above events at all leaf/internal nodes v. Our
algorithm repeatedly finds the event with the earliest time value, advances the current time to this
value, and executes the corresponding action, until t =∞.

We further elaborate on how the actions are carried out.

• In Events 1 and 2, we need to identify the next change to Hv in order to set p−v , pv, and
p+

v at a leaf node v. This can be done in O(s) time by scanning through Hv and H ′
v: For

each consecutive triple p−pp+ in Hv, note the time when p−pp+ becomes concave. For each
consecutive pair pp+ in Hv and each q in H ′

v with q to the right of p and left of p+, note the
time when pqp+ becomes convex. The earliest time noted is the time of the next change.

• In Events 3–6, we need to recompute p− (or p+) of a vertex p of the sub-hull at a child w of
an internal node v. This can be done in O(log n) time by searching downward in the tree: If
p = rw, then p− = lw. If p = lw or p is to the left of lw, compute p− at the left child of w
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recursively; otherwise, compute p− at the right child of w recursively. If w is a leaf node, we
can compute p− directly by a binary search in Hw.

• In all events, we need to update l−u , l+u , r−u , r+
u at all ancestors u of v that are affected by the

change in the sub-hull at v. This can be done by searching upward in the tree: let w be
the parent of v and update l−w , l+w , r−w , r+

w ; if the change at v occurs to a vertex to the left of
lw or right of rw, then the change occurs at w as well, so update l−u , l+u , r−u , r+

u at ancestors
u of w recursively; otherwise, stop. If the change occurs at the root, we can print out the
corresponding facet; if the change at the root is the insertion of a vertex, we mark it as a
output vertex.

At the end, we swap all marked points to a prefix of the array, which takes O(n) time.
For the analysis, observe that there are O(n) changes to the sub-hulls at the nodes of each level

of the tree. The total number of events is therefore O(n log n). Each of the O(n log n) priority queue
updates costs O(log n) time. Each of the O(n log n) events at internal nodes requires O(log n) time
to process. Each of the O(n) events at leaf nodes requires O(s) time. The total time of the algorithm
is thus O(ns + n log2 n).

3.3 An in-place implementation

We now show that the algorithm in Section 3.2 can be made space-efficient, using the encoding ideas
from Section 2. We observe that there are n

s leaf nodes and n
s − 1 internal nodes in total in the

tree (assuming that n
s is a power of 2). We number the leaf nodes 1, . . . , n

s from left to right, and
number the internal nodes 1, . . . , n

s − 1 from top to bottom and from left to right across each level.
We associate each leaf node v with the internal node u of the same number (if v is not the last leaf).
At the leaf node v, we encode the points p−v , pv, p

+
v and l−u , lu, l+u , r−u , ru, r+

u . The permutation trick
from Section 2 can be used if we set s = c log n for a sufficiently large constant c.

For the priority queue, we suggest a tournament tree implementation [32] instead of a heap. At
v, we encode an additional pointer to the node w that defines the earliest event among all events
at nodes underneath the associated internal node u. The overall earliest event is thus stored at the
root. Each priority queue update can still be carried out using O(log n) pointer operations.

A remaining problem is how to avoid the extra bit to mark an output vertex. To this end, we
partition each leaf block v into four (instead of two) lists, each in left-to-right order, containing:
(i) all marked points in Hv, (ii) all unmarked points in Hv, (iii) all marked points in H ′

v, and (iv) all
unmarked points in H ′

v. We encode the sizes of these lists in v as well.
In applying the encoding trick, we have to be careful not to permute pairs across boundaries of

the four lists. One solution is to keep all list sizes even by moving the last element of a list to the
end of the block if the size of the list is odd. (Because we have encoded the sizes of the original lists,
we can easily tell whether the last element of a list has been moved to the end.)

Identifying the next change to the sub-hull at a leaf node v still takes O(s) time, using O(1)
space, by scanning through the four lists. Moving a point from Hv to H ′

v (or vice versa) or changing
a point from unmarked to marked can be done in O(s) time by shifting elements within the block.

Note that we can traverse up/down the tree by simple address arithmetic (like in a heap). We
can refer to a point by its index (rank) in the sorted left-to-right order. Given the index, we can
locate the actual array entry containing the point in O(s) time, by scanning through the four lists
in the relevant block. Encoding/decoding each point or pointer takes O(log n) time instead of O(1).

7



The running time in the in-place version is now multiplied by a factor of O(s+log n). For s = c log n,
the overall time bound is therefore O((ns + n log2 n) log n) = O(n log3 n). We conclude:

Theorem 3.1 Given an array of n points in IR3, we can compute the vertices of the upper hull,
stored in a prefix of the same array, in O(n log3 n) time using O(1) extra space. The edges and facets
can also be printed within the same time bound.

3.4 A more practical space/time trade-off

The implicit encoding/decoding trick makes the algorithm hard to implement. In this subsection,
we briefly mention a simpler variant of the algorithm that is slower but still uses sublinear space.
(Though suboptimal, it is better than the “brute-force” in-place algorithm that takes cubic time.)

For instance, we can set the block size to s = Θ(
√

n) and store the tournament tree and the
priority queue explicitly (outside the array) in arrays of size O(n/s). Because the tree and the
priority queue have size O(

√
n), the extra space needed is O(

√
n). In each leaf block, we can store

the sizes of the four lists explicitly. The running time is O(ns + n log2 n) = O(n3/2).
In fact, this approach can be extended to any block size s such that Ω(logn) = s ≤ n, yielding a

wide space/time trade-off:

Theorem 3.2 Given an array of n points in IR3 and a parameter s such that c log2 n ≤ s ≤ n, for
some constant c > 0, we can compute the vertices of the upper hull, stored in a prefix of the same
array, in O(ns) time using O(n/s) extra space. The edges and facets can also be printed within the
same time bound.

From a practical point of view, the larger the space available, the faster the runtime. Thus a
practical variant of the algorithm (so-called adaptive) would try to acquire as much space as possible,
then set the block size as in Theorem 3.2, and if the available space is less than the required cn/s

words, it would then switch to Theorem 3.1.

4 2-d Proximity Problems

Theorem 3.1 implies an in-place O(n log3 n) algorithm for 2-d Voronoi diagrams by the standard
lifting transformation [38, 43] and can consequently be used to solve a number of off-line proximity
problems in 2-d. In this section, we give more direct solutions to these problems that eliminate some
of the extra logarithmic factors.

4.1 Monochromatic closest pairs

A number of known algorithms have been proposed for the classic problem of computing the closest
pair in a set P of n points in IR2. Some of these algorithms can be made in-place. For example, the
well-known divide-and-conquer algorithm in 2-d [43] (the version without “pre-sorting”) can be easily
implemented in O(n log2 n) time and O(1) space (and the approach can be extended to higher fixed
dimensions). Using known techniques for in-place merging or stable partitioning, it is possible to
reduce the running time of the 2-d algorithm to O(n log n); this was observed independently by Bose
et al. [5]. If coordinates are integers in a finite universe U = [1, . . . , 2w] and the bitwise exclusive-or
operation is supported on words of width w, then there is a simpler solution (which works in any
fixed dimension on the word RAM): the “shift-shuffle-and-sort” algorithm suggested by Chan [12] is
already in-place (since the problem is directly reduced to sorting).
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Figure 2: A left Voronoi diagram.

4.2 Bichromatic closest pairs

The bichromatic version of the closest pair problem is perhaps more challenging: given a set P of
red points and a set Q of blue points in IR2, we want minp∈P,q∈Q ‖p − q‖. Here we suggest a sweep
approach, similar to an algorithm by Hinrichs et al. [31], described below.

We solve a more general problem: for each blue point q, find the nearest neighbor among all red
points to the left of q (call this the left nearest neighbor of q). A symmetric subproblem for the right
nearest neighbors can be solved similarly, and we can take the minimum of the distances found.

Define the left Voronoi diagram of the red points to be the planar subdivision where two points
lie in the same cell iff they have the same left nearest neighbor. Note that the cells are not necessarily
convex but are x-monotone polygons. (See Figure 2.) The left Voronoi diagram is more susceptible
to the sweep paradigm than the ordinary Voronoi diagram, because we know in advance the insertion
time of each point: the minimum x-coordinate in the cell of a red point p is precisely the x-coordinate
of p.

Here are the details of the sweep for the left Voronoi diagram. We first sort all the red points and
all the blue points according to their x-coordinates by heapsort. Let A be the list of all red points to
the right of the current vertical sweep line; this list is arranged in increasing order by x-coordinates.
Let T of the list of all red points whose left Voronoi cells intersect the sweep line; this list is ordered
by y-coordinates. Let p− and p+ denote the predecessor and successor of p in the list T .

We initialize A← P and T ← ∅ at x = −∞. To maintain the lists as the sweep line moves from
left to right, we consider the following types of events:

• Event 1. Time: the x-coordinate of the head p of A.
Action: Remove p from A. Insert p to T . A consecutive group of points may have to be deleted
from T as follows: while the circumcenter of pp+p++ is to the left of the sweep line, delete p+

from T ; while the circumcenter of p−−p−p is to the left of the sweep line, delete p− from T .

• Event 2. Time: the x-coordinate of the circumcenter of p−pp+ for some p ∈ T , if the value is
to the right of the sweep line.
Action: Delete p from T .

A priority queue holds the time values of Event 2 for all points in T . Our algorithm repeatedly
finds the event with the minimum time value, advances the sweep line to this value, and executes
the corresponding action, until x =∞. Whenever the sweep line passes through the x-coordinate of

9



a blue point q, we can report the left nearest neighbor of q by performing a binary search over T to
find the left Voronoi cell containing q.

To obtain a space-efficient implementation, we maintain T using Munro’s implicit search tree [39]
combined with a heap, as in Chen and Chan’s approach [18] mentioned in Section 2. Note that T

and A are disjoint at all times. We store the data structure for T in a prefix of the array, with
O(log2 n) extra space, and store A at the back of the array. There are O(n) updates to T and the
priority queue. Each update/search requires O(log2 n) time [18, 39]. The total running time of the
whole algorithm is thus O(n log2 n).

Theorem 4.1 Given a set P of n red points and a set Q of n blue points in IR2 stored in two arrays,
we can compute the bichromatic closest pair in O(n log2 n) time with O(log2 n) extra space.

Independently, Bose et al. [5] have proposed a randomized O(n log n) algorithm for 2-d bichro-
matic closest pair using O(log n) extra space; however, their approach does not yield o(n)-space
algorithms for the more general problem considered in the next subsection.

4.3 Bichromatic all-nearest-neighbors

A more difficult example is to compute the Hausdorff distance maxq∈Q minp∈P ‖p − q‖. Here, it
suffices to report the nearest neighbor of every blue point q. We can adopt the same approach
as in Section 4.2, but we face one difficulty: one sweep can compute the left nearest neighbors,
and a second sweep can compute the right nearest neighbors, but we don’t have space to store the
result from the previous sweep to determine the overall nearest neighbors. We suggest a more clever
algorithm for the second sweep that constructs the right Voronoi diagram and “reconstructs” the
left Voronoi diagram simultaneously.

The first left-to-right sweep proceeds exactly as in Section 4.2, except that in Event 2, when p is
deleted from T , we also insert p to the tail of an output list B. We can store this list B in a prefix
of the array, store T in the middle of the array, and A at the back. (At all times, A, T , and B are
disjoint.) At the end of the algorithm, we thus obtain a list of all red points B sorted in “order of
deletion” (i.e., increasing order with respect to the maximum x-coordinates of the left Voronoi cells).
This order will help later when we simulate the sweep of the left Voronoi diagram “backwards” from
right to left.

We now explain the second, right-to-left sweep. Let TL (resp. TR) be the list of all red points
whose left (resp. right) Voronoi cells intersect the sweep line; both lists are ordered by y-coordinates.
Let p−L and p+L (resp. p−R and p+R) denote the predecessor and successor in TL (resp. TR).

We initialize TL ← P −B and TR ← ∅ at x =∞. To maintain the lists as the sweep line moves,
we consider the following types of events:

• Event 1. Time: the x-coordinate of some p ∈ TL.
Action: Delete p from TL. Insert p to TR. A consecutive group of points may have to be
inserted to TL as follows: while the circumcenter of r−Lrr+L is to the right of the sweep line
for the tail r of B, remove r from B and insert r to TL.

• Event 2. Time: the x-coordinate of the circumcenter of p−Lpp+L for the tail p of B, if the
value is to the left of the sweep line.
Action: Remove p from B. Insert p to TL.
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• Event 3. Time: the x-coordinate of the circumcenter of p−Rpp+R for some p ∈ TR, if the value
is to the left of the sweep line.
Action: Delete p from TR.

A priority queue holds the time values of Event 1 for all points in TL; another priority queue
holds the time values of Event 3 for all points in TR. Our algorithm repeatedly finds the event with
the maximum time value, advances the sweep line to this value, and executes the corresponding
action, until x = −∞. Whenever the sweep line passes through the x-coordinate of a blue point q,
we can find the left and right nearest neighbors of q by performing binary searches over both TL and
TR, and report the closer of the two neighbors.

To obtain a space-efficient implementation, we maintain TL and TR in two separate combined
implicit search-tree/heap structures [18, 39]. The key observation is that the lists B, TL, and TR are
disjoint at all times. We can store B in a prefix of the array, and TL and TR at the back. There are
O(n) updates to TL, TR, and the two priority queues. The total running time is again O(n log2 n).

Theorem 4.2 Given a set P of n red points and a set Q of n blue points in IR2 stored in two
arrays, we can print the set of pairs {(pq, q)}q∈Q, where pq denotes the nearest red neighbor to q, in
O(n log2 n) time with O(log2 n) extra space.

As in Section 3.4, a more practical variant with a space/time trade-off can be derived by storing
an explicit representation of the search-tree and heap data structures.

5 Range Searching

In this section we demonstrate how certain known geometric data structures can be made in-place
and also propose some new in-place data structures. A number of basic geometric problems are con-
sidered: halfspace/simplex range searching in fixed dimensions (Sections 5.1–5.3), queries for convex
polyhedra (Sections 5.4 and 5.5), and orthogonal range searching (Section 5.6). We also discuss
semi-dynamic updates (Section 5.7) and applications to constructing convex hulls (Section 5.8).

5.1 A simple (static) partition tree

We find it instructive to start with an early (suboptimal) method for halfspace range counting in
2-d—Willard’s partition tree [47]. Given a static set of n points in the plane, the preprocessing
algorithm constructs two lines and recursively handles the subset of points inside each of the four
regions formed by the two lines. The first line is taken as the vertical line through the point p1

with the median x-coordinate. The second line, defined by two points p2, p3 on each side of p1, is
chosen such that the number of points in each region formed (excluding p1, p2, p3) is exactly (n−3)/4
(ignoring floors and ceilings for simplicity), by the ham-sandwich cut theorem.

The resulting tree structure takes up O(n) space, but a space-efficient version is actually not
difficult to obtain. Just store p1, p2, p3 at the head of the array, divide the remaining part of the
array into four subarrays of equal size, and recurse in these subarrays. The data structure requires
no extra space! To answer a query, we only need to recurse in three of four subarrays; the query
algorithm runs in O(nlog4 3) = O(n0.793) time and O(1) space, as simple arithmetic allows us to
traverse up/down the tree.
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The preprocessing algorithm takes O(n log n) time, because the ham-sandwich cut problem (the
separable case) can be solved in linear time by Megiddo’s algorithm [37]. Megiddo’s ham-sandwich cut
algorithm can actually be made in-place: Brönnimann et al. previously observed [8] that Megiddo’s
2-d linear programming algorithm can be made in-place, and the same space-efficient prune-and-
search strategy works for ham-sandwich cuts as well.

5.2 More implicit partition trees

Naturally we can try the same idea to lay out other kinds of partition trees in an array. Here we
consider Matoušek’s near-optimal partition trees [34] for simplex range counting in an arbitrary fixed
dimension d, which are obtained by the following theorem:

Lemma 5.1 (Partition Theorem) Given an n-point set P in IRd and a parameter r, we can partition
P into r subsets {Pi} each of size O(n/r), and enclose each Pi by a simplex, such that the maximum
number of simplices crossed by any hyperplane is bounded by κ = O(r1−1/d).

We need a few observations about the construction of the partition, which follow by inspecting
Matoušek’s proof [34]:

(i) If r is a constant, the randomized version (for example, see [38]) of Matoušek’s algorithm is
actually in-place and takes O(n) expected time: the algorithm selects a random sample R of
about r1/d points, and works with “test” hyperplanes that are defined by d points of R; the
amount of extra space depends only on r.

(ii) Each subset Pi except the last has size exactly bn/rc.

(iii) Each simplex is defined by a constant (depending only on d) number of points in R: specifically,
the algorithm uses only simplices with vertices that come from the arrangement of the test
hyperplanes.

A space-efficient version of Matoušek’s partition tree can be obtained as follows: Pick a subset
S of size O(r2) so that each subset Pi − (R ∪ S) except the last has exactly the same size. Store
R ∪ S at the head of the array, divide the remaining array into r subarrays, and recursively store
Pi− (R∪S) in the i-th subarray. Because of (iii), the r simplices can be encoded by permuting pairs
in S (as in Section 2) as long as |S| = ω(r log r). The data structure needs no extra space and, like
Matoušek’s original partition tree, can answer simplex range counting queries in O(n1−1/d+ε) time
and O(1) space for any fixed ε > 0, by making r a sufficiently large constant.

The preprocessing algorithm is in-place and takes O(n log n) total expected time by (i), since r

is a constant.

Theorem 5.2 Given an array of n points in IRd and any fixed ε > 0, we can permute the array in
O(n log n) expected time, using O(1) space, so that we can count the number of points in a query
simplex with O(n1−1/d+ε) time and O(1) space. We can also report all k points in the simplex in
O(k) additional time.
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5.3 Finer partitions

Matoušek [34] gave slight further improvements to his data structure that lower the extra nε factor
by using partitions with a nonconstant parameter r. We show that improvements are possible in the
in-place setting as well; however, the array layout becomes much more intricate, as we shall see.

We first invoke the partition theorem with r = bn/ loga nc, where a is a suitable constant. We
divide the array into blocks of size Θ(loga n) holding the subsets Pi’s.

Matoušek [34, in the proof of Theorem 6.1] gave an auxiliary data structure to store the r

simplices, with O(r polylog r) preprocessing time, so that we can (i) count the number of simplices
contained in a query simplex q, and (ii) report all simplices crossing the boundary of q, both in
O(r1−1/d polylog r +κ) time, where κ is the crossing number bound (an upper bound on the number
of answers to query (ii)). The space required by this data structure is O(r polylog n) words or bits.
Since this number is less than n/2 for a sufficiently large a, our key idea is to encode the entire
auxiliary data structure inside the input array by permuting pairs of points within all the blocks.
Time bounds are now increased by a factor of O(log n), because of the need to encode/decode words
in each step. The simplices themselves can be encoded in the array as well, since these require
only O(r log n) extra bits (as noted in Section 5.2, each simplex can be specified by only a constant
number of input points).

To count the number of points in a query simplex q, we first count the number of simplices
(excluding the last one) that are contained in q and multiply the number by bn/rc. We then identify
all simplices crossing the boundary of q, and for each such simplex (plus the last one), examine the
points inside the corresponding block and increment the count for each point that lies in q. The
number of points examined is O(r1−1/d polylog n) times Θ(loga n), with r = bn/ loga nc. The overall
query time is thus O(n1−1/d polylog n).

The preprocessing requires the construction of a partition for a large value of r. Matoušek [34,
Theorem 4.7(ii)] showed that this can be done in O(n log n) time (via a recursive application of the
partition construction for small r), if the crossing number bound κ is increased by a polylogarithmic
factor. However, this algorithm requires O(n) space. If we insist on an in-place preprocessing
algorithm, we can do the following: Arbitrarily divide P into b subsets {Sj} each of size at most
dn/be, where b = dc log ne for a suitable constant c. Build our in-place data structure for Sj . The
space needed for this preprocessing is technically O((n/b) log(n/b)) bits. Since this number is less
than (n − dn/be)/2 for a sufficiently large c, however, we can simulate the algorithm without extra
space by permuting pairs in P − Sj . The running time is increased by a factor of O(log n), due to
the encoding/decoding of words. So, the overall preprocessing time is O(n log2 n). We can answer
a query for P by answering a query for each Sj ; the query time is increased by at most a factor of
b = O(log n).

Theorem 5.3 With O(n polylog n) preprocessing time, we can replace the nε factor by polylog n in
Theorem 5.2.

5.4 Polytope queries

A similar approach can be taken for Matoušek’s data structure for halfspace emptiness queries [35]
(deciding whether a query halfspace contains any input point), which replaces the exponent 1−1/d by
1−1/bd/2c, for d ≥ 4. This uses a variant of the partition theorem for “shallow hyperplanes”. The im-
provement in Section 5.3 is also applicable, using the appropriate auxiliary data structure (as provided
by Matoušek [35, in the proof of Theorem 1.3]). The query time becomes O(n1−1/bd/2c polylog n).
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Any data structure for halfspace emptiness queries can be used to answer ray shooting and linear
programming queries in the dual polytope by parametric search [1, 36]. So, we automatically obtain
results for these polytope queries. There is one slight issue, though: the space required by the query
algorithm is now O(n1−1/bd/2c polylog n) because of the application of parametric search. Since this
number is o(n), one idea is to reserve, say, n/10 pairs in the array that we can permute (which can
be made available in the method of Section 5.3 by adjusting the constants), so that we can simulate
the query algorithm without needing space outside the array. The query time is increased by another
logarithmic factor due to the encoding/decoding of words.

Theorem 5.4 Given an array of n halfspaces in IRd with d ≥ 4, we can permute the array in
O(n polylog n) time, using O(1) space, so that we can answer ray shooting queries and linear pro-
gramming queries in the intersection of the halfspaces in O(n1−1/bd/2c polylog n) time and O(1) space.

We can obtain similar results for nearest neighbor queries for a point set in IRd−1, as these queries
can be reduced to ray shooting in IRd by the standard lifting transformation [38, 43].

5.5 3-d polytopes

For polytope queries in 3-d, we describe a new strategy that uses planar graph separators instead of
Matoušek’s partitions. We need an extension of Lipton and Tarjan’s planar separator theorem [33],
as given by Frederickson [29] and restated below in a dual form.

Lemma 5.5 (Separator Theorem) Given a planar graph with n faces and a parameter b, we can
partition the faces into a separator of O(n/

√
b) faces and O(n/b) clusters of O(b) faces each, such

that no two different clusters share an edge and each cluster is adjacent to O(
√

b) separator faces.
The construction can be done in O(n log n) time and space.

We first compute the boundary PH of the intersection of the given set H of n halfspaces in IR3,
triangulate all faces, then invoke the separator theorem with b = bc log2 nc, where c is a suitable
constant. Let S be the subset of all halfspaces that define separator faces. Let Hi be the subset of
all halfspaces not in S that define faces in the i-th cluster, and H ′

i be the subset of all halfspaces in
S that define faces in the i-th cluster. Note that the Hi’s are disjoint, |Hi| = O(b), |H ′

i| = O(
√

b),
and |S| = O(n/

√
b). We divide the array into O(n/b) blocks, where the i-th block stores Hi and the

last block stores S.
Next we compute the boundary PS of the intersection of S, triangulate so that the separator faces

(triangles) in PH also are faces in PS , then store PS under Dobkin and Kirkpatrick’s hierarchical
data structure [23]. The space required by the data structure is O(|S|) words, i.e., O((n/

√
b) log n)

bits. Since this number can be made smaller than n/2 for a sufficiently large c, our key idea is to
encode the entire data structure by permuting pairs in the array. Note that the same separator
faces also divide PS into the same number of clusters; we make each interior vertex and face inside a
cluster of PS point to the cluster. We also store the starting positions of the blocks and the subsets
H ′

i. These extra information requires O((n/
√

b) log n) bits and can be encoded in the array as well.
Given a line q, suppose we want to find the leftmost intersection of q with PH , denoted ans(H, q)

(a ray shooting query). We first compute ans(S, q) by querying Dobkin and Kirkpatrick’s data
structure for PS . Ordinarily, this takes O(log n) time [23], but because of encoding/decoding, the
bound is increased to O(log2 n). If ans(S, q) lies in a separator face, then we return ans(S, q). If
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ans(S, q) lies in the i-th cluster of PS , then we return ans(Hi∪H ′
i, q) by examining the intersections

of q with all halfspaces in the block containing Hi in O(b) time, and with all halfspaces in the encoded
subset H ′

i in O(
√

b log n) time. The overall query time is thus O(log2 n).
Given a direction q, we can also find the extreme vertex of P along q (a linear programming

query) by the same strategy. The only difference is that in computing ans(Hi ∪H ′
i, q), we need to

run a linear programming algorithm on O(b) halfspaces. This requires O(log2 n) time and space.
(Probably, the space bound can be reduced with more effort.)

In apply the encoding trick, we again have to be careful not to permute pairs across boundaries
of the blocks (especially as the blocks have different sizes). One solution is to keep all block sizes
even by moving one halfspace from Hi to H ′

i whenever |Hi| is odd.

Theorem 5.6 Given an array of n halfspaces in IR3, we can permute the array in O(n log n) time,
so that we can answer ray shooting queries in the intersection of the halfspaces in O(log2 n) time
and O(1) space, and linear programming queries in O(log2 n) time and space. If we require the
preprocessing algorithm to be in-place, both the preprocessing and query time bounds are increased by
a log n factor.

As an application, we obtain a similar result for nearest neighbor queries in IR2.

5.6 Implicit kd-trees

For orthogonal range queries over a point set in IRd (counting/reporting all input points inside a query
hyperrectangle), we can use the kd-tree [21], which is even easier to made in-place than Willard’s
partition tree in O(n log n) time: store a single point (median along one of the axes) at the head of
the array, divide the remaining points into two halves, and recurse in the two subarrays. Reporting
k points takes time O(n1−1/d + k) [21]. A partial match query (when s < d coordinates are specified
in the query range) takes time O(n1−s/d + k).

Note that by Chazelle’s lower bound [16], polylogarithmic query time cannot be attained by any
data structure that uses space o(n(log n/ log log n)d−1), in particular, any in-place data structure.
(For example, no in-place version of range trees [21] is possible.)

However, for three-sided orthogonal range searching in 2-d (reporting all points inside a rectangle
of the form (−∞, qx]× [qy, q

′
y]), we can obtain an in-place data structure with query time O(log n+k)

by a (slightly modified) priority search tree [21]: store the point p1 with the smallest x-coordinate
and the point p2 with the median y-coordinate at the head of the array, divide all other points
(excluding p1 and p2) into two halves by the median y-coordinate, and recurse in the two subarrays.

5.7 Semi-dynamization

All of the above data structures can also be made to support insertions, by using a standard technique
due to Bentley and Saxe [4]. The idea is to partition the data set into O(log n) subsets, each of size
equal to a power of 2, where a subset of size 2i exists iff the (i+1)-st least significant bit in the binary
representation of n is 1. To perform an insertion, we increment the number n in binary, identify
which bits are turned to 0, and merge the corresponding subsets by building a static data structure
for their union. We observe that this process can be easily done in-place if the static data structures
are in-place: just put the subsets in decreasing order of size in the array.

For decomposable queries like range searching, the query time is increased by at most a logarith-
mic factor through this process; if the preprocessing time for the static data structure is O(n log n),
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as in all of our algorithms, the amortized update time is O(log2 n). Alternatively, by using a base
larger than 2, we can reduce to amortized update time to O(log n) at the expense of increasing the
query time by an nε factor. For non-decomposable queries like linear programming, we apply the
parametric-search reduction to halfspace emptiness first before applying the above technique.

Supporting deletions appears much harder, if we want to keep the number of cells used by the
data structure equal to the current number of elements at all times. We leave this as an open
problem (this seems to call for some geometric generalization of dynamic implicit search trees [39]).
Likewise, supporting worst-case O( polylog n) update time in-place, even for insertions only, seems
much harder, and we leave this as an open problem.

5.8 Applications to convex hulls

We describe one application of the preceding data structures to finding extreme points in higher
dimensions.

Corollary 5.7 Given an array of n points in IRd with d ≥ 4, we can compute the vertices of the
convex hull, stored in a prefix of the same array, in O(n2−1/bd/2c polylog n) expected time using O(1)
extra space.

Proof: Testing whether a point is extreme can be reduced to a linear programming query, so we
can apply Theorem 5.4. One problem arises, though: we do not have extra space to “mark” points
in the array as extreme. To get around the problem, we borrow an idea from Section 3.3. Recall
that the data structure from Theorem 5.4 (based on Section 5.3) divides the array into blocks. We
subdivide each block into two lists, one containing all currently marked points in the block, the other
containing all unmarked points. We encode in addition the size of these lists in the block. (Like
before, to ensure that we do not permute pairs across the boundary of the two lists, we can move
the last element of a list to the end of the block if the size of the list is odd.) At the end, we can
swap all marked points to a prefix of the array by one linear scan. 2

For another application of the in-place data structures, we derive an output-sensitive version of
Theorem 3.1 for 3-d convex hulls, by modifying Chan’s “group-and-wrap” algorithm [11]. Previously,
Brönnimann et al. [8] considered space-efficient output-sensitive results for 2-d convex hulls.

Corollary 5.8 Given an array of n points in IR3, we can compute the h vertices of the lower hull,
stored in a prefix of the same array, in O(n log3 h) time using O(1) extra space. The edges and facets
can also be printed within the same time bound.

Proof: It suffices to find the extreme points, as the edges and facets can be subsequently generated
by Theorem 3.1. For simplicity, we assume that h is known; a standard “guessing” trick (e.g.,
see [11]) can be applied otherwise. If h ≥ n1/4, then the bounds in Theorem 3.1 are good enough.
So assume h < n1/4. We divide the input array into one block of size h and O(n/h4) blocks of size
O(h4), and build an in-place data structure for dual ray shooting queries for each block except the
first, by Theorem 5.6. The total preprocessing time is O((n/h4) · h4 log2(h4)) = O(n log2 h), and no
extra space is used.

We then repeatedly enlarge a connected subset S of hull vertices, stored in a prefix of the first
block, as follows. Initially, put the endpoints of any hull edge in S (an initial hull edge can be easily
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found in linear time without extra space). In each iteration, we go through each pair p, q ∈ S, test
whether pq forms a hull edge, and if so, wrap the hull around

−→
pq by a dual ray-shooting query, to

get a vertex r; if r 6∈ S, we insert r to S by swapping r with a point in the first block and rebuilding
the data structure for the block previously containing r. We quit the algorithm when no insertions
to S occur in an iteration.

As the number of iterations is bounded by h, the total number of edge tests and wrapping queries
is bounded by O(h3). Each such query can be reduced to ray shooting in the dual polytope and
can be answered by answering a ray shooting query for each subset. Since a query for one subset
requires O(log3 h) time by Theorem 5.2 (except for the first block, which requires O(h) time by brute
force), the total cost of all O(h3) queries is O(h3 · [h + (n/h4) log3(h4)]) = O(n). In addition, O(h)
rebuilding operations are performed, each requiring O(h log2 h) time. The total running time after
preprocessing can therefore be bounded by O(n). 2

6 Open Problems

We close with a few intriguing questions that arise from our work:

• Is there an in-place O(n log n)-time algorithm for convex hulls in 3-d?

• Is there a data structure that requires no extra space and can answer 2-d nearest neighbor
queries in logarithmic time?

• Is there an Ω(
√

n) lower bound on the complexity of 2-d orthogonal range queries for (static)
data structures with no extra space?

• Can one decide whether a point lies in a simple polygon in sublinear time if the polygon’s
vertices are preprocessed and stored in a suitable permutation?
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[36] J. Matoušek and O. Schwarzkopf. Linear optimization queries. In Proc. 8th Annu. ACM Sympos. Comput.
Geom., pages 16–25, 1992.

[37] N. Megiddo. Partitioning with two lines in the plane. J. Algorithms, 6:430–433, 1985.

[38] K. Mulmuley. Computational Geometry: An Introduction Through Randomized Algorithms. Prentice
Hall, Englewood Cliffs, NJ, 1993.

[39] J. I. Munro. An implicit data structure supporting insertion, deletion, and search in O(log2 n) time. J.
Comput. Sys. Sci., 33:66–74, 1986.

[40] S. Muthukrishnan. Data streams: Algorithms and applications. Manuscript, http://www.cs.
rutgers.edu/~muthu, 2003.

[41] M. H. Overmars and J. van Leeuwen. Maintenance of configurations in the plane. J. Comput. Syst. Sci.,
23:166–204, 1981.

[42] F. P. Preparata and S. J. Hong. Convex hulls of finite sets of points in two and three dimensions. Commun.
ACM, 20:87–93, 1977.

[43] F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduction. Springer-Verlag, New
York, NY, 1985.

[44] R. Seidel. Constructing higher-dimensional convex hulls at logarithmic cost per face. In Proc. 18th Annu.
ACM Sympos. Theory Comput., pages 404–413, 1986.

[45] J. Snoeyink and M. van Kreveld. Linear-time reconstruction of Delaunay triangulations with applications.
In Proc. Annu. European Sympos. Algorithms, number 1284 in Lecture Notes Comput. Sci., pages 459–
471. Springer-Verlag, 1997.

[46] J. Vahrenhold. Line-segment intersection made in-place. In Proc. 9th Workshop Algorithms Data Struct.,
volume 3608 of Lecture Notes Comput. Sci., pages 146–157, 2005.

[47] D. E. Willard. Polygon retrieval. SIAM J. Comput., 11:149–165, 1982.

19


	Introduction
	Preliminaries on Space-Saving Tricks
	3-d Convex Hulls
	A kinetic approach
	The algorithm
	An in-place implementation
	A more practical space/time trade-off

	2-d Proximity Problems
	Monochromatic closest pairs
	Bichromatic closest pairs
	Bichromatic all-nearest-neighbors

	Range Searching
	A simple (static) partition tree
	More implicit partition trees
	Finer partitions
	Polytope queries
	3-d polytopes
	Implicit kd-trees
	Semi-dynamization
	Applications to convex hulls

	Open Problems

