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Abstract

We give a surprisingly short proof that in any planar arrangement of n curves where each
pair intersects at most a fixed number (s) of times, the k-level has subquadratic (O(n2− 1

2s ))
complexity. This answers one of the main open problems from the author’s previous paper
[Discrete Comput. Geom., 29:375–393, 2003], which provided a weaker upper bound for a restricted
class of curves only (graphs of degree-s polynomials). When combined with existing tools (cutting
curves, sampling, etc.), the new idea generates a slew of improved k-level results for most of the
curve families studied earlier, including a near-O(n3/2) bound for parabolas.

1 Introduction

The k-level problem for lines. We begin by re-examining an old result on a famous open problem

in two-dimensional combinatorial geometry.

The problem, first investigated by Lovász [23] and Erdős et al. [18] in the early 1970s, is the

following: for a set P of n points in the plane, consider the number of different subsets of size k

(called k-sets) that can be formed by intersecting P with a halfplane. How big can this number be,

asymptotically, as a function of n and k?

For the special case k = bn/2c, we are considering the number of different ways to bisect a

point set into two equal halves with a line. In the dual, the problem is known to be asymptotically

equivalent [16] to bounding the worst-case complexity (number of vertices) of the k-level in an

arrangement of n lines, where the k-level is defined as the closure of all points that lie on exactly one

line and strictly above exactly k−1 lines. Alternatively, as a “kinetic” problem in one dimension, we

are seeking the maximum number of changes that the k-th smallest point can undergo, for n points

moving linearly on the real line. These different views of the problem help explain its central place in

combinatorial and computational geometry. In particular, the problem is related to the analysis of

geometric algorithms for ham-sandwich cuts [22], range searching [13], geometric optimization with

∗A preliminary version of this paper appeared in Proc. 44th IEEE Sympos. Found. Comput. Sci. [11]. This work
was supported in part by an NSERC Research Grant.
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violations [9], and kinetic/parametric minimum spanning trees [3]. See the many books [16, 25, 26, 30]

and surveys [5, 7, 20] for more background information.

In the discussion below, we focus on bounds that are functions of n only, because as Agar-

wal et al. [1] showed, an O(f(n)) upper bound for this case automatically implies a “k-sensitive”

O((n/k)f(k)) bound, for any well-behaved function f .

The initial papers by Lovász [23] and Erdős et al. [18] established an O(n3/2) upper bound and an

Ω(n log n) lower bound. The conjecture by Erdős et al. [18] was that the number of k-sets (or k-level

vertices) is o(n1+ε) for any fixed constant ε > 0. No progress on the upper bound was made for almost

two decades until Pach, Steiger, and Szemerédi gave a complicated proof of an O(n3/2/ log∗ n) upper

bound in 1992 [27]. No significant progress was made for several more years until Dey presented

an elegant proof of an O(n4/3) upper bound in 1998 [15]. The lower bound meanwhile has been

increased to n2Ω(
√
logn) by Tóth in 2001 [34]; this lower bound was known some time ago by Klawe,

Paterson, and Pippenger [16] for the weaker case of “pseudo-lines” (see below).

Can Dey’s O(n4/3) upper bound be improved? A positive answer seems difficult to establish

with the existing approaches. One reason is that Dey’s proof [15]—and most known O(n3/2) proofs

(e.g., see the proceedings version of [1])—work not only for the k-set/k-level problem, but for a more

general problem (bounding the complexity of n nonoverlapping concave chains in an arrangement).

However, for this more general problem, there is a matching Ω(n4/3) lower bound [17]. If a better

upper bound exists, the proof is likely to be substantially different and tailor-made for the k-set/k-

level problem.

To renew hope for Erdős et al.’s original conjecture, we suggest a new proof of the old O(n3/2)

upper bound for the k-level problem. Our proof is quite different from all previous proofs and is very

simple: roughly speaking, we give an inequality that relates the sizes of different levels around the

k-level; from this inequality, a subquadratic bound for the k-level follows just by solving a recurrence.

The k-level problem for curves. Unfortunately, we see no obvious ways to prove an o(n3/2)

upper bound with the new idea, let alone an improvement to Dey’s result. However, the idea

adapts beautifully to a generalization of the problem—the k-level in an arrangement of curves.

(In the one-dimensional kinetic setting, this corresponds to tracking changes to the k-th smallest

point, where each point moves according to a nonlinear function in time.) This generalized problem

is equally natural and fundamental, and has been studied intensively by several authors over the

years [4, 10, 29, 33].

For example, our O(n3/2) proof works immediately for pseudo-lines (x-monotone curves going

from x = −∞ to x =∞, where each pair intersects at most once) and pseudo-segments (x-monotone

curve segments where each pair intersects at most once). Previous proofs also generalize to pseudo-

lines, but their generalizations to arbitrary pseudo-segments require additional tools (to make pseudo-

segments extendible [10]). As another feature of our proof, we can derive an O(n3/2 +B) bound for

the k-level in an arrangement of n x-monotone curve segments with B “bad” pairs, where every good

pair intersects at most once but every bad pair may intersect O(1) times. To the author’s knowledge,

a similar bound for these “almost” pseudo-segment arrangements cannot be obtained easily (if at

all) through previous approaches.

More importantly, our proof gives the first subquadratic O(n2−
1
2s ) bound for general x-monotone

curve segments (called s-intersecting curve segments) where each pair intersects at most s times

for a fixed constant s. Previously, a subquadratic bound was obtained in the predecessor of this

paper [10] only when the curve segments are graphs of fixed-degree polynomials (or, slightly more
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class of curves previous result new result

lines/pseudo-lines/pseudo-segments Õ(n4/3) = O(n1.334) —

parabolas/pseudo-parabolas Õ(n5/3) = O(n1.667) Õ(n3/2) = Õ(n1.5)

pseudo-parabolic segments Õ(n16/9) = O(n1.778) O(n5/3) = O(n1.667)

pairwise-intersecting pseudo-parabolas Õ(n14/9) = O(n1.556) O(n13/9) = O(n1.445)

graphs of cubics Õ(n11/6) = O(n1.834) Õ(n5/3) = O(n1.667)

graphs of quartics Õ(n23/12) = O(n1.917) Õ(n31/18) = O(n1.723)

graphs of quintics Õ(n47/24) = O(n1.959) Õ(n161/90) = O(n1.789)

s-intersecting curve segments (odd s ≥ 3) O(n2) O(n2−
1
2s )

s-intersecting curve segments (even s ≥ 4) O(n2) O(n
2− 1

2(s−1) )

Table 1: Upper bounds on the complexity of the k-level.

generally, when repeated differentiation leads to a 1- or 2-intersecting family). For degree-s poly-

nomials, the previous bound was much worse—Õ(n2−
1

9·2s−3 ) [10] (or Õ(n2−
1

6·2s−3 ) using a recent

improvement [24]). The notation Õ hides polylogarithmic factors in this paper.

As Agarwal et al. [1] showed also for curves and curve segments, an O(f(n)) upper bound implies

a k-sensitive O((n/k)f(k)β(n/k)) bound, for any well-behaved function f and some slow-growing

(inverse-Ackermann-like) function β.

The only major tool available for curves was pioneered by Tamaki and Tokuyama [33] and later

improved and extended by Agarwal et al. [4] and in our previous paper [10]: the idea is to cut

the curves into pseudo-segments, so that k-level results on these pseudo-segments can be applied.

Unfortunately, for odd s, it is generally not possible to cut s-intersecting curves into subquadratically

many (s − 1)-intersecting segments, as a simple example illustrates [10]. Our approach manages to

obtain nontrivial k-level bounds directly, without cutting the curves.

This paper does not replace its predecessor [10], as bounds on the number of cuts turn out to

have further applications, for example, in the combinatorial analysis of pseudo-concave chains [10],

incidences [2, 4], and many faces [2, 4] in arrangements of curves, and parametric minimum spanning

trees [10]. Our approach has no ramifications on these problems. This defect can be viewed as an

advantage, if one believes that the k-level problem has lower complexity than these other problems.

While our approach does not require cutting, it can be combined with cutting to improve practi-

cally all existing k-level upper bounds for arrangements of curves other than pseudo-lines/segments.

Table 1 summarizes the best previous results [4, 10] obtained without our new technique, and the

results obtained using our new technique. (Bounds in both columns have been changed from the pre-

liminary version of this paper [11], to take into account a newly improved cutting bound by Marcus

and Tardos [24].)

Perhaps the most notable of these results concerns the case of axis-aligned parabolas (which

arises in tracking the k-th smallest distance for a set of linearly moving points). The history of the

parabolic case illustrates the evolution of techniques well: Tamaki and Tokuyama’s proof [33], which

introduced the cutting approach, yielded an O(n23/12) = O(n1.917) bound; Dey’s result [15] implied

a reduction to O(n17/9) = O(n1.889); in the previous paper [10], we utilized the cutting number more

effectively and obtained an Õ(n16/9) = O(n1.778) bound; Agarwal et al. [4] improved the cutting

number itself and obtained an a near-O(n5/3) bound (ignoring a super-polylogarithmic but small

hidden factor); the present paper finds the best way to use the cutting number and finally brings
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Figure 1: The charging argument for Lemma 2.1.

the upper bound to near O(n3/2) (which, as the reader may recall, was the initial upper bound for

the line case). The recent result by Marcus and Tardos [24] reduces the hidden factor somewhat and

shows that the same bound carries over to pseudo-parabolas (2-intersecting curves).

2 The Proof for Lines

In this section, we illustrate our main idea for the case of lines. We give a new simple proof of an

O(n3/2) upper bound for the size of the k-level. More generally, we actually show that any O(i)

consecutive levels have total size O(n3/2i1/2).

For simplicity, we assume that the given arrangement is in general position.

Let Lk denote the k-level. (By default, set Lk to y = −∞ if k ≤ 0, or to y =∞ if k > n.)

Let ti be the number of vertices in the arrangement strictly between Lk−i and Lk+i.

Let ∆ti = ti+1− ti be the number of vertices strictly between Lk−i−1 and Lk+i+1 that lie on Lk−i

or Lk+i. In other words, ∆ti is the total number of vertices in Lk−i \Lk−i−1 (i.e., “concave” vertices

of Lk−i) and vertices in Lk+i \ Lk+i+1 (i.e., “convex” vertices of Lk+i).

Lemma 2.1 For an arrangement of lines,

ti ≤ 2i∆ti +O(i2).

Proof: Take each vertex u strictly between Lk−i and Lk+i. Suppose u is defined by the lines `1 and

`2. For each j ∈ {1, 2}, shoot a rightward ray from u along `j until the ray hits Lk−i or Lk+i or

reaches x = ∞; let vj be the point hit. If v1 is to the left of v2, charge u to v1; otherwise, charge u

to v2. (See Figure 1.)

Consider a point v that receives charges. Then v must be a concave vertex of Lk−i or a convex

vertex of Lk+i, or a point at x =∞ strictly between Lk−i and Lk+i; the total number of such points

is at most ∆ti + 2i − 1. For v to receive a charge from u, the vertex u must be defined by a line

strictly between Lk−i and Lk+i at the x-coordinate of v; the number of such lines is at most 2i (or

more carefully, at most 2i − 2). Clearly, a line can define at most one vertex charged to v. Thus,

each point v receives at most 2i charges.

We conclude that the total number of charges, ti, is less than 2i(∆ti + 2i). 2

Theorem 2.2 For an arrangement of n lines, the k-level has O(n3/2) vertices.

Proof: The inequality ti ≤ 2i(ti+1 − ti) +O(i2), i.e.,

ti ≤
2i

2i+ 1
ti+1 + O(i),
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forms a recurrence (or a difference equation, if equality holds). For the base case, we have tn = O(n2).

As shown in the appendix (Lemma A.1), this recurrence solves to ti = O(n3/2i1/2). The size of the

k-level is upper-bounded by t2, so the theorem follows. 2

Remarks.

• The O(n3/2i3/2) bound on the complexity of O(i) consecutive levels was first shown by

Welzl [35]. Dey’s proof [15] improved this to O(n4/3i2/3).

• A few previous papers (e.g., [1, 8, 21]) have also examined relationships among sizes of different

levels, but the above inequality has not been observed before.

• Like previous proofs, our proof can directly yield a k-sensitive O(n
√
k) upper bound of the size

of the k-level: by using the known fact [6, 19] that the combined complexity of the first O(k)

levels is O(nk), we obtain a better base case tk = O(nk); solving the recurrence (with details

omitted) now yields ti = O(n
√
ki) for i ≤ k.

• We can also directly prove the above-mentioned fact that the combined complexity of the first

O(i) levels is O(ni): redefining ti to be the number of vertices strictly below Li, we can modify

the charging argument to show that

ti ≤ i∆ti +O(i2),

which implies that ti = O(ni) (by Lemma A.1, or by a simple telescoping argument).

• Interestingly, we can also adapt the proof to show that for a set of n line segments, their

lower envelope (1-level) has O(n logn) vertices: redefining ti again to be the number of vertices

strictly below Li, we have this time

ti ≤ i∆ti +O(ni),

if the ray-shooting process is modified to stop at endpoints as well (see the next section for

more details); this recurrence solves to ti = O(ni log(n/i)) (by Lemma A.1).

Although the worst-case complexity of the lower envelope is actually Θ(nα(n)) [30] (where α

denotes the inverse Ackermann function), the above proof is simple. Tagansky [31] also gave

an O(n logn) proof involving a recurrence of a somewhat similar form, but his recurrence was

obtained using probabilistic arguments.

3 The Generalization to Curves

The new proof extends easily to pseudo-lines and pseudo-segments. In this section, we consider

general curves and curve segments. The generalization of Lemma 2.1 is straightforward. We state

the inequality in a form that is sensitive to the number of “bad” pairs; this form will be beneficial

in later proofs.

Throughout the paper, we assume that “curve segments” are x-monotone and each pair inter-

sects at most O(1) times (the latter condition is not required in the lemma below and is needed

subsequently). Unbounded curves can be viewed as special cases of curve segments (with endpoints

at x = ±∞).
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Figure 2: The charging argument for Lemma 3.1, with s = 2. (In the scenario to the left, u is charged

to a vertex v ∈ Lk+i \Lk+i+1. In the scenario to the right, u is charged to a 2-lens in Λ
(s)
i , shown in

bold.)

Given two curve segments γ1 and γ2 that intersect at least s + 1 times, an s-lens refers to the

portion of γ1 ∪ γ2 between some s+ 1 consecutive intersection points of γ1 ∩ γ2.

Let Λ
(s)
i be the collection of all s-lenses fully lying strictly between Lk−i and Lk+i. Let ti and

∆ti be defined as in the previous section.

Lemma 3.1 (Main Inequality)

ti ≤ 2si∆ti + O(ni+ |Λ(s)i |).

Proof: Take each vertex u strictly between Lk−i and Lk+i. Suppose u is defined by the curve

segments γ1 and γ2. If u is the leftmost point of some s-lens in Λ
(s)
i formed by γ1 and γ2, charge u

to this s-lens. Otherwise, for each j ∈ {1, 2}, walk rightward from u along γj until Lk−i or Lk+i or

an endpoint is hit; let vj be the point hit. If v1 is to the left of v2, charge u to v1; otherwise, charge

u to v2. (See Figure 2.)

Consider a point v that receives charges. Then v must be a vertex in Lk−i\Lk−i−1 or Lk+i\Lk+i+1,

or an endpoint, or a point of discontinuity in Lk−i or Lk+i; the total number of such points is

∆ti + O(n). For v to receive a charge from u, the vertex u must be defined by a curve segment

strictly between Lk−i and Lk+i at the x-coordinate of v; the number of such segments is at most

2i. Each curve segment can define at most s vertices charged to v, because if there were s+ 1 such

vertices, the leftmost such vertex would be the leftmost point of an s-lens strictly between Lk−i and

Lk+i. Thus, each point v receives at most 2si charges.

Each s-lens in Λ
(s)
i receives just one charge. We conclude that the total number of charges, ti, is

at most 2si(∆ti +O(n)) + |Λ(s)i |. 2

Theorem 3.2 For an arrangement of s-intersecting curve segments, the k-level has O(n2−
1
2s ) ver-

tices. More generally, for an arrangement of n curve segments where at most B pairs may intersect

more than s times, the k-level has O(n2−
1
2s +B) vertices.

Proof: The first part follows from the second (with B = 0).

For the second part, since |Λ(s)i | = O(B) for all i, the recurrence is ti ≤ 2s∆ti + O(ni + B),

with tn = O(n2). By a change of variable t′i := ti − cB for a sufficiently large constant c, the

recurrence simplifies to t′i ≤ 2s∆t′i + O(ni). As shown in the appendix (Lemma A.1), this yields

t′i = O(n2−1/2si1/2s), i.e., ti = O(n2−1/2si1/2s +B). 2
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4 Improvements by (Not) Cutting

For pseudo-parabolas (2-intersecting curves going from x = −∞ to x = ∞) or pseudo-parabolic

segments (2-intersecting curve segments), Theorem 3.2 implies an O(n7/4) bound. This bound can

be improved further, by applying known techniques to cut the given curve segments (i.e., subdivide

them by inserting new endpoints) into a pseudo-segment family. The k-level is unchanged after the

cuts. A natural first idea is to make the cuts and then apply the main inequality (with a larger n but

a smaller s). We discover, though, that it is possible—and in fact more effective—to avoid explicitly

cutting the curve segments but instead directly estimate the number of “bad” lenses |Λ(s)i | using
these known techniques.

Given a class of curve segments, let ν(s)(n) be the maximum size of a collection of nonoverlapping

s-lenses in an arrangement of n segments in the class. Here, a collection is nonoverlapping if each

pair intersects only at a discrete set of points. The number of cuts required to turn n curve segments

into an s-intersecting family is clearly Ω(ν(s)(n)), but is also O(ν(s)(n)) by the technique of Tamaki

and Tokuyama [33] (see also [24]).

Lemma 4.1 |Λ(s)i | = O(i2ν(s)(n/i)).

Proof: Given a collection of s-lenses, its depth refers to the maximum number of s-lenses that a

point can lie on. The key observation is that Λ
(s)
i has depth O(i): if a point v lies on an s-lens

λ ∈ Λ
(s)
i , then λ must be defined by a curve segment containing v and another curve segment lying

strictly between Lk−i and Lk+i at the x-coordinate of v.

As one step of their technique, Tamaki and Tokuyama [33] have basically shown (at least for

s = 1) that the maximum size of a collection of s-lenses of depth O(i) is O(i2ν(s)(n/i)). For the

sake of completeness, we quickly provide the proof, which employs random sampling in the style of

Clarkson and Shor [14].

Pick a random subset R of the given curve segments with |R| = n/i. Take each lens λ ∈ Λ
(s)
i

defined by curve segments γ1 and γ2. Put λ in a subcollection Λ(R) under the following conditions:

1. the curve segments γ1 and γ2 are in R, and

2. for every other curve segment γ, if γ defines some lens in Λ
(s)
i that contains an endpoint of λ

(i.e., the leftmost or rightmost point of λ), then γ is not in R.

Then Λ(R) is nonoverlapping, because if two lenses overlap, one lens must contain an endpoint

of the other. Thus, E[|Λ(R)|] = O(ν(s)(n/i)). On the other hand, because Λ
(s)
i has depth O(i), for

a fixed lens λ ∈ Λ
(s)
i , we have Pr{λ ∈ Λ(R)} ≈ (1/i)2(1 − 1/i)O(i) = Ω(1/i2). Thus, E[|Λ(R)|] =

Ω(|Λ(s)i |/i2). The lemma follows. 2

Theorem 4.2

(a) For an arrangement of n pseudo-parabolas, the k-level has O(n3/2 log2 n) vertices.

(b) For an arrangement of n extendible pseudo-parabolic segments [10] (i.e., 2-intersecting curve

segments that can be extended to form 2-intersecting curves), the k-level has O(n3/2 log2 n)

vertices.
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(c) For an arrangement of n pseudo-parabolic segments, the k-level has O(n5/3) vertices.

(d) For an arrangement of n s-intersecting curve segments for an even s ≥ 4, the k-level has

O(n
2− 1

2(s−1) ) vertices.

Proof:

(a) For pseudo-parabolas, the original paper by Tamaki and Tokuyama [33] established ν (1)(n) =

O(n5/3). Agarwal et al. [4] improved this to ν(1)(n) = O(n3/2(log n)O(α(n)
2)) for axis-aligned

parabolas and other special cases. The bound for general pseudo-parabolas was also improved

to ν(1)(n) = O(n8/5) by Agarwal et al. [4] and Pinchasi and Radoičić [28], and later improved

to ν(1)(n) = O(n3/2 logn) by Marcus and Tardos [24]. Thus, combining with Lemma 4.1, we

can write the main inequality as

ti ≤ 2i∆ti + O(n3/2i1/2 log(n/i)).

Solving the recurrence (e.g., by applying Lemma A.1 to t′i := ti/ logn) yields ti =

O(n3/2i1/2 log2 n). (This result is also noted in Marcus and Tardos’ paper [24].)

(b) For extendible pseudo-parabolic segments, we still have ν(1)(n) = O(n3/2 log n) by applying

Marcus and Tardos’ bound to the extensions of the segments. So, the same result follows.

(c) For general pseudo-parabolic segments, the previous paper [10, Theorem 7.2] showed that

ν(1)(n) = O(n5/3) (by adapting Tamaki and Tokuyama’s approach). The main inequality is

now

ti ≤ 2i∆ti + O(n5/3i1/3),

which (by Lemma A.1) solves to ti = O(n5/3i1/3).

(d) For s-intersecting curve segments for even values of s, the previous paper [10, Remark af-

ter Lemma 7.1] showed that ν(s−1)(n) = O(n2−
1

s+1 ) (by modifying Tamaki and Tokuyama’s

approach). We thus have

ti ≤ 2(s− 1)i∆ti + O(n2−
1

s+1 i
1

s+1 ),

which solves to ti = O(n
2− 1

2(s−1) i
1

2(s−1) ), since 2(s− 1) > s+ 1 for s ≥ 4.
2

Remarks. There is quite a large gap between the upper bounds in parts (b) and (c) in the above

theorem. An open problem is to determine whether Marcus and Tardos’ cutting bound would still

hold for general pseudo-parabolic segments.

5 Improvements by Bootstrapping

For certain curve families, further improvements can be obtained by switching to a different inequal-

ity, stated below, which uses level bounds on smaller arrangements to obtain a better level bound

overall.

Given a class of curve segments, let τi(n) be an upper bound on the number of vertices strictly

between the (k − i)- and (k + i)-level, over all arrangements of n segments in the class and all k.

Assume that τi is well-behaved, i.e., τi(cn) = O(τi(n)) for any fixed constant c.
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Lemma 5.1 For an arrangement of n curve segments and i ≤ j/2,

ti = O

((
n+

tj
j

)
τi(j)

j

)
.

Proof: The proof follows an approach by Agarwal et al. [1] (originally used to derive a k-sensitive

level bound for line segments).

Let m ≥ i be a parameter to be determined later. Divide the plane into O((n+∆tm)/m) vertical

slabs such that for each slab σ, the set Sσ of all curve segments that define vertices of Lk−m \Lk−m−1

and Lk+m \Lk+m+1 and endpoints within σ has size at most m. Define Tσ to be the set of all curve

segments that lie strictly between Lk−m and Lk+m at the left wall of σ; the size of Tσ is at most 2m.

Within the slab σ, each level strictly between Lk−m and Lk+m in the original arrangement is equal

to a level in the arrangement of the subset Sσ ∪Tσ. Thus, ti is bounded by τi(3m) times the number

of slabs. We conclude that

ti = O

(
(n+∆tm)

τi(m)

m

)
.

To finish, just choose an index m between bj/2c and j− 1 such that ∆tm ≤ tj
dj/2e . Such an index

exists because
∑j−1

m=bj/2c∆tm ≤ tj . 2

Lemma 5.1 is best applied after cutting the given segments first (resulting in a larger n but a

smaller τi function), as illustrated in the following example:

Theorem 5.2 For an arrangement of n pseudo-parabolas where each pair intersects exactly twice,

the k-level has O(n13/9 log1/3 n) vertices.

Proof: Agarwal et al. [4] established the bound ν(1)(n) = O(n4/3) for this special kind of pseudo-

parabolas. The main inequality combined with Lemma 4.1 becomes

ti ≤ 2i∆ti + O(n4/3i2/3),

which yields ti = O(n3/2i1/2) only.

To obtain a better bound for small i, we cut the given arrangement into an arrangement of

extendible pseudo-segments: by Agarwal et al.’s result [4], the curves can be cut into O(n4/3) pseudo-

segments, and by the extendibility technique from our previous paper [10, Theorem 3.3], these can be

further subdivided into O(n4/3 log n) extendible pseudo-segments. For extendible pseudo-segments,

we have τi(j) = O(j4/3i2/3) by a generalization [32] of Dey’s level bound [15]. Lemma 5.1 then gives

ti = O

((
n4/3 logn+

n3/2

j1/2

)
j1/3i2/3

)
.

Setting j = bn1/3/ log2 nc yields ti = O(n13/9i2/3 log1/3 n), for i ≤ j/2. 2

We now apply the same “bootstrapping” strategy to improve k-level bounds for graphs of uni-

variate low-degree polynomial functions. For cubics, although Theorem 3.2 yields only an O(n11/6)

bound and the best bound for cutting into pseudo-segments (ν(1)(n)) is Õ(n7/4) [10, 24], we are able

to obtain a k-level bound that is better than both, as shown in the theorem below.

In what follows, F ′ refers to the family of curve segments corresponding to the derivatives of the

univariate functions whose graphs form the family F .
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Theorem 5.3 For an arrangement of n curve segments F (e.g., graphs of cubics) such that F ′ is

an extendible pseudo-parabolic family, the k-level has O(n5/3 log8/3 n) vertices.

Proof: For such a family F , we have shown in the previous paper [10, Lemma 7.3] that ν (2)(n) =

O(n3/2). The main inequality combined with Lemma 4.1 gives

ti ≤ 4i∆ti + O(n3/2i1/2),

which solves to ti = O(n7/4i1/4).

To refine the bound, we cut the arrangement into extendible pseudo-parabolic segments: by

the differentiation technique from our previous paper [10, Observation 6.1], it suffices to cut F ′

into extendible pseudo-segments, and by Marcus and Tardos’ cutting bound and our extendibility

technique, we getO(n3/2 log2 n) segments. For extendible pseudo-parabolic segments, we have τi(j) =

O(j3/2i1/2 log2 j) by (the proof of) Theorem 4.2(b). Therefore, Lemma 5.1 gives:

ti = O

((
n3/2 log2 n+

n7/4

j3/4

)
j1/2i1/2 log2 j

)
.

Setting j = bn1/3/ log8/3 nc yields ti = O(n5/3i1/2 log8/3 n) for i small. 2

Further bootstrapping steps can yield improved results for polynomials of any fixed degree s. To

illustrate the strategy, we only give bounds for the s = 4 and s = 5 cases.

Theorem 5.4 For an arrangement of n curve segments F (e.g., graphs of quartics) such that F ′′ is

an extendible pseudo-parabolic family, the k-level has O(n31/18 log34/9 n) vertices.

Proof: For such a family F , we have shown in the previous paper [10, Section 7] (by a repeated dif-

ferentiation technique) that ν(3)(n) = O(n3/2) and ν(2)(n) = O(n7/4). The main inequality combined

with Lemma 4.1 for s = 2 gives

ti ≤ 4i∆ti + O(n7/4i1/4),

which solves to ti = O(n7/4i1/4 log(n/i)).

To refine the bound, we cut the arrangement so that F ′ becomes an extendible pseudo-parabolic

family: by the differentiation technique from our previous paper, it suffices to cut F ′′ into extendible

pseudo-segments, and by Marcus and Tardos’ cutting bound and our extendibility technique, we

get O(n3/2 log2 n) segments. For curve segments F such that F ′ is an extendible pseudo-parabolic

family, we have τi(j) = O(j5/3i1/2 log8/3 j) by (the proof of) Theorem 5.3. Lemma 5.1 then gives:

ti = O

((
n3/2 log2 n+

n7/4 log n

j3/4

)
j2/3i1/2 log8/3 j

)
.

Setting j = bn1/3/ log4/3 nc yields ti = O(n31/18i1/2 log34/9 n) for i small. 2

Theorem 5.5 For an arrangement of n curve segments F (e.g., graphs of quintics) such that F ′′′

is an extendible pseudo-parabolic family, the k-level has O(n161/90 log182/45 n) vertices.
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Proof: For such a family F , we have shown in the previous paper (by the repeated differentiation

technique) that ν(4)(n) = O(n3/2), ν(3)(n) = O(n7/4), and ν(2)(n) = O(n15/8). The main inequality

combined with Lemma 4.1 for s = 3 gives

ti ≤ 6i∆ti + O(n7/4i1/4),

which solves to ti = O(n11/6i1/6).

To refine the bound, we cut the arrangement so that F ′′ becomes an extendible pseudo-parabolic

family: by the differentiation technique from our previous paper, it suffices to cut F ′′′ into extendible

pseudo-segments, and by Marcus and Tardos’ cutting bound and our extendibility technique, we

get O(n3/2 log2 n) segments. For curve segments F such that F ′′ is an extendible pseudo-parabolic

family, we have τi(j) = O(j31/18i1/2 log34/9 j) by Theorem 5.4. Lemma 5.1 then gives:

ti = O

((
n3/2 log2 n+

n11/6

j5/6

)
j13/18i1/2 log34/9 j

)
.

Setting j = bn2/5/ log12/5 nc yields ti = O(n161/90i1/2 log182/45 n) for i small. 2

6 Additional Remarks

Tóth’s n2Ω(
√
log n) lower bound [34] remains the current record for the k-level problem, even for

s-intersecting curves. At present, it is conceivable that Erdős et al.’s o(n1+ε) conjecture [18] might

hold for curves.

We do not know whether the main idea here, of exploiting relationship among nearby levels,

could help in resolving the original problem for lines in the plane. (For example, is it possible to

reduce the coefficient 2 in Lemma 2.1 by increasing the overhead term?) An upcoming paper [12]

demonstrates that the idea can be used for arrangements of surfaces in three dimensions, albeit with

considerably more effort.
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A Appendix: Solving the Recurrences

Lemma A.1 Given constants a > 0 and b ≥ 0, the inequality

ti ≤ ai∆ti +O(n2−bib)

with tn = O(n2) implies that

ti =





O(n2−1/ai1/a) if 1/a < b

O(n2−bib log(n/i)) if 1/a = b

O(n2−bib) if 1/a > b.

Proof: The inequality can be rewritten as

ti ≤
ai

ai+ 1
ti+1 + O(n2−bib−1).

Note that
m∏

j=i

aj

aj + 1
= O

(
e
−
∑m

j=i
1

aj+1

)
= O

(
e−

1
a
ln(m/i)

)
= O

((
i

m

)1/a)
.

Expanding the recurrence reveals that

ti = O

(
tn

(
i

n

)1/a
+

n∑

m=i

n2−bmb−1
(

i

m

)1/a)
= O

(
n2−1/ai1/a + n2−bi1/a

n∑

m=i

mb−1/a−1

)
.

The three cases follow, since

n∑

m=i

mb−1/a−1 =





O(nb−1/a) if 1/a < b

O(log(n/i)) if 1/a = b

O(ib−1/a) if 1/a > b.
2
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