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Abstract

Given � points in the plane with integer coordinates
bounded by � � ��, we show that the Voronoi diagram can
be constructed in ������� ����� ��� ����� ��������
expected time by a randomized algorithm on the unit-cost
RAM with word size �. Similar results are also obtained for
many other fundamental problems in computational geome-
try, such as constructing the convex hull of a 	-dimensional
point set, computing the Euclidean minimum spanning tree
of a planar point set, triangulating a polygon with holes,
and finding intersections among a set of line segments.

These are the first results to beat the 
�� �����
algebraic-decision-tree lower bounds known for these prob-
lems. The results are all derived from a new two-
dimensional version of fusion trees that can answer point
location queries in ����������� ��� ������������ time
with linear space. Higher-dimensional extensions and ap-
plications are also mentioned in the paper.

1. Introduction

The sorting problem requires 
�� ����� time for
comparison-based algorithms, yet this lower bound can be
beaten if the � input elements are integers in a restricted
range ��� � �. For example, if � 
 �����, radix-sort
runs in linear time. Van Emde Boas trees [47, 48] can
sort in ��� ��� ���� � time. Fredman and Willard [27]
showed that ��� ����� time is possible even regardless of
how � relates to �: their fusion tree yields a deterministic
��� ����� ��� �����-time and a randomized ���

�
�����-

time sorting algorithm. Many subsequent improvements
have been given (see Section 2). In all of the above, the
underlying model of computation is a RAM that supports
standard operations on �-bit words with unit cost, under
the reasonable assumptions that � � ����, i.e., an index or
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pointer fits in a word, and that � � ��, i.e., each input num-
ber fits in a word. (The adjectives “transdichotomous” and
“conservative” have been associated with such a word-level
RAM model.)

Similarly, while searching requires 
������ time for
comparison-based algorithms, sublogarithmic data struc-
tures are possible for integer input (see Section 2). These
improved techniques have been applied to obtain faster
graph algorithms for basic problems like minimum span-
ning trees and shortest paths (e.g., [28, 45]).

Applications of these techniques to geometric problems
have also been considered, but up to now, all known re-
sults are limited essentially exclusively to problems about
axis-parallel objects or metrics (or those that involve a fixed
number of directions). The bulk of computational geom-
etry deals with non-rectilinear things (lines of arbitrary
slopes, the Euclidean metric, etc.) and thus has largely re-
mained unaffected by the breakthroughs on integer sorting
and searching. It is not even known, for instance, whether
the two-dimensional Voronoi diagram can be constructed in
��� ����� time, when the input points come from an integer
grid of polynomial size � 
 �����. (In other words, no 2-d
“equivalent” of radix-sort has been found.)

This paper will change all this. We show, for the first
time, that the known 
�� ����� lower bounds for alge-
braic computational trees can be broken for many of the
core problems in computational geometry, when the input
coordinates are integers in ��� � � with � � ��. We list
our results for some of these problems below, all of which
are major topics of textbooks—see [11, 25, 37, 38, 41] on
the extensive history and on the previously “optimal” algo-
rithms. (See Section 6 for more applications.)

� We obtain ��� ����� ��� �����-time randomized algo-
rithms for the 3-d convex hull, 2-d Voronoi diagram, 2-d
Delaunay triangulation, 2-d Euclidean minimum span-
ning tree, and 2-d triangulation of a polygon with holes.

� We obtain an ��� ����� ��� �������-time randomized
algorithm for the 2-d line segment intersection problem,
where � denotes the output size.



� We obtain a data structure for the 2-d point location
problem with ���� preprocessing time, ���� space, and
������� ��� ����� query time. The same space and
query bound hold for 2-d nearest neighbor queries (also
known as the static “post office” problem).

Our algorithms use only standard operations on �-bit words
that are commonly supported by most programming lan-
guages, namely, comparison, addition, subtraction, multi-
plication, integer division, bitwise-and, and left and right
shifts; a few constants depending only on the value of � are
assumed to be available (just like in [27]).

If � is not too large, we can get still better re-
sults: all the ����� ��� ���� factors can be replaced by�
���� . For example, we can construct the Voronoi dia-

gram in ���
�
����� expected time for 2-d points from a

polynomial-size grid (� 
 �����).
The rest of the paper is organized as follows. Section 2

provides more background by briefly reviewing some of
relevant previous work. Section 3 (and specifically Sec-
tion 3.2) represents the heart of the paper and explores point
location among disjoint line segments spanning a slab: this
turns out to be the key subproblem, and we obtain a sublog-
arithmic solution by rethinking (actually simplifying) Fred-
man and Willard’s original fusion tree and incorporating
nontrivial new ideas for its 2-d extension; the resulting data
structure remains simple and self-contained—its descrip-
tion is under two pages long. In Sections 4–6, we apply
this new data structure to derive new results for general
2-d point location and other well-known geometric prob-
lems: this part of the paper is perhaps more routine and in-
volves handpicking the right known techniques from com-
putational geometry. Extensions and applications in higher
dimensions are also mentioned. We conclude with com-
ments in Section 7.

Added note. Independently, Mihai Pǎtraşcu (in these pro-
ceedings) has obtained an ��

�
���� � result for 2-d point

location (but not our ������� ��� ����� result, nor the ex-
tensions and applications to other geometric problems). His
solution of the slab subproblem is similar to one of our so-
lutions in Section 3.3, but he proposes a different method,
based on persistent and exponential search trees, to reduce
general point location to the slab subproblem, instead of
our sampling-based or separator-based method in Section 4.
(Unlike our separator-based method, the preprocessing time
of his method is not linear.)

Shortly after exchanging papers, Pǎtraşcu has no-
ticed that both his method and our method can lead to
an ��

�
����� ��� ���� � bound for general 2-d point

location—in his case, by just invoking our better slab result
as a subroutine, and in our case, by just setting parameters
of the recurrences a little more carefully, without changing
the method itself. We have added this small improvement

in Section 4 and incorporated it into the statements of all
subsequent results in Sections 5–6.

2. Related Work

In 1-d. In addition to the work already mentioned, many
integer-sorting results have been published; currently, the
best linear-space deterministic and randomized algorithms
(independent of � and �) have running time ��� ��� �����
and ���

�
��� ����� respectively, due to Han [29] and Han

and Thorup [30]. A linear randomized time bound [6] is
also known for � � ������ � for any fixed � 	 �.

For the problem of maintaining a data structure for
successor search (finding the smallest element greater
than a query value), van Emde Boas trees [47, 48] yield
����� ���� � expected update and query time with linear
space, and Fredman and Willard’s fusion trees yield
an ������� ��� ����� deterministic and ��

�
�����

randomized time bound with linear space. In the static
case, Beame and Fich [10] improved the query time to
������

�
����� ��� ����� ��� ����� ��� ��� ������,

with ����� space; even more importantly, they proved a
matching lower bound in a cell probe model. (See [40]
for further tradeoff results.) Combined with Anders-
son’s exponential search trees [5, 8], this also leads to
the currently best result for dynamic successor search:
an update/query bound of ������������ ��� �����
��� ���� ��� ����� ��� ��� ����� ����� ���� �
��� ������, with linear space.

Other 1-d data structure problems for integer input have
also been studied. The classic problem of designing a dic-
tionary to answer membership queries can be solved in
���� deterministic time statically, with linear space, and
���� expected time dynamically, by hashing. There are
also known data structures for other related problems like
1-d range searching [1] and priority queues [46].

In 2-d and beyond. As mentioned, known algorithms
from the computational geometry literature that exploit the
power of the word RAM mostly deal with rectilinear spe-
cial cases, such as orthogonal range searching, finding in-
tersections among axis-parallel line segments, and near-
est neighbor search under the 
�- or 
�-metric. Most
of these work (see [12, 33, 34, 39] for a sample) are
about van-Emde-Boas-type results, with only a few excep-
tions (e.g., [49, 36]). For instance, Karlsson [34] obtained
an ��� ��� ���� �-time algorithm for the 
�-Voronoi di-
agram in 2-d (Chew and Fortune [22] later showed how
to construct the Voronoi diagram under any fixed convex
polygonal metric in 2-d in ��� ��� ����� time after sort-
ing the points along a fixed number of directions). De Berg
et al. [12] gave ������ ���� ������ results for point loca-
tion in an axis-parallel rectangular subdivisions in 2- and



3-d (they also noted that certain subdivisions built from fat
objects can be “rectangularized”, though this is not true
for general objects). There are also approximation results
(not surprisingly, since arbitrary directions can be approxi-
mated by a fixed number of directions); e.g., see [13] for an
��� ��� �����-time 2-d approximate Euclidean minimum
spanning tree algorithm.

There is one notable non-rectilinear problem where
faster exact transdichotomous algorithms are known: find-
ing the closest pair of � points in a constant-dimensional
Euclidean space. (This is also not too surprising, if one
realizes that the complexity of the exact closest pair prob-
lem is linked to that of the approximate closest pair prob-
lem, due to packing arguments.) Rabin’s classic paper on
randomized algorithms [42] solved the problem in ����
expected time (using hashing). Deterministically, the au-
thor [19] has given a reduction from closest pair to sorting
(using one nonstandard but AC� operation on the RAM).
This implies an ��� ��� ����� deterministic time bound by
Han’s result [29], and for the special case of points from
a polynomial-size grid, an ���� deterministic bound by
radix-sorting. Similarly, the dynamic closest pair prob-
lem and (static or dynamic) approximate nearest neighbor
queries reduce to successor search [19] (see also [3, 15] for
previous work). Rabin’s original approach itself has been
generalized to obtain an ��� � ��-time randomized algo-
rithm for finding � closest pairs [17], and an �����-time
randomized algorithm for finding the smallest circle enclos-
ing � points in 2-d [31]. For the asymptotically tightest
possible grid, i.e., � 
 �������, the discrete Voronoi dia-
gram [14, 20] can be constructed in linear time and can be
used to solve static nearest neighbor problems.

The 2-d convex hull problem is another exception, due
to its simplicity: Graham’s scan [11, 41] takes linear time
after sorting the �-coordinates. In particular, computing the
diameter and width of a 2-d point set can be reduced to 1-d
sorting. (In contrast, sorting along a fixed number of di-
rections does not help in the computation of the 3-d convex
hull [43].)

Chazelle [21] studied the problem of deciding whether a
query point lies inside a convex polygon with �-bit integer
or rational coordinates. This problem can be easily reduced
to 1-d successor search, so the study was really about lower
bounds (how to adapt Beame and Fich’s techniques [10]).
(Un)fortunately, he did not address upper bounds for more
challenging variants like intersecting a convex polygon with
a query line (see Section 6, item 8).

In recent years, interest seems to have developed in the
quest for faster integer-RAM algorithms for the core geo-
metric problems like the standard Voronoi diagram and pla-
nar point location,1 but attempts by researchers so far have

1For example, Jonathan Shewchuk (2005) in a blog comment wondered
about the possibility of computing Delaunay triangulations in ���� time;

apparently failed to materialize.
In the remainder of the paper, we assume without loss

of generality that � 
 �� (by shrinking the word size �).
Henceforth, � is equated with ���� .

3. Point Location in a Slab

In this section, we study a special case of the 2-d point
location problem: given a static set � of � disjoint closed
(nonvertical) line segments inside a vertical slab, where the
endpoints all lie on the boundary of the slab and have integer
coordinates in the range ��� ���, preprocess � so that given
a query point 
 with integer coordinates, we can quickly find
the segment that is immediately above 
. We begin with a
few words to explain (vaguely) the difficulty of the problem.

The most obvious way to get sublogarithmic query time
is to store a sublogarithmic data structure for 1-d succes-
sor search along each possible vertical grid line. However,
the space required by this approach would be prohibitively
large (������), since unlike the standard comparison-
based approaches, these 1-d data structures heavily depend
on the values of the input elements, which change from one
vertical line to the next.

So, to obtain sublogarithmic query time with a reason-
able space bound, we need to directly generalize a 1-d data
structure to 2-d. The common approach to speed up binary
search is a multiway search, i.e., a “�-ary search” for some
nonconstant parameter �. The hope is that locating a query
point 
 among � given elements ��� � � � � �� could be done
in constant time. In our 2-d problem, this seems possible,
at least for certain selected segments ��� � � � � ��, because
of the following “input rounding” idea: locating 
 among
��� � � � � �� reduces to locating 
 among any set of segments
���� � � � � ��� that satisfy �� � ��� � �� � ��� � � � �, where
� denotes the (strict) belowness relation (see Figure 1(a)).
Because the coordinates of the ���’s are flexible, we might be
able to find some set of segments ���� � � � � ���, which can be
encoded in a sufficiently small number of bits, so that locat-
ing among the ���’s can be done quickly by table lookup or
operations on words. (After the ��’s have been “rounded”,
we will see later that the query point 
 can be rounded as
well.)

Unfortunately, previous 1-d data structures do not seem
compatible with this idea. Van Emde Boas trees [47, 48]
and Andersson’s exponential search trees [5] require hash-
ing of the rounded input numbers and query point—it is un-
clear what it means to hash line segments in our context.
Fredman and Willard’s original fusion tree [27] relies on
“compression” of the input numbers and query point (i.e.,

earlier at SODA’92, Willard [49] asked for an ��� ����� algorithm for
Voronoi diagrams. Demaine and Iacono (2003) in lecture notes (and more
recently [9]) asked for an ������� method for 2-d point location.



extraction of some carefully chosen bits)—the compressed
keys bear no geometric relationship with the original.

We end up basing our data structure on a version of the
fusion tree that appears new, to the best of the author’s
knowledge, and avoids the complication of compressed
keys. This is described in Section 3.1 (which is perhaps
of independent interest but may be skipped by the impatient
readers, since better 1-d data structures are known). The ac-
tual data structure for point location in a slab is presented in
Section 3.2, with further variants described in Section 3.3.

3.1. Warm-Up: A Simpler 1-d Fusion Tree

We first re-solve the standard 1-d problem of perform-
ing successor search in a static set of � numbers, where
the numbers are assumed to be integers in ��� ���. Our
main idea is very simple and is encapsulated in the obser-
vation below—roughly speaking, in divide-and-conquer, al-
low progress to be made not only by reducing the number
of elements, �, but alternatively by reducing the length of
the enclosing interval, i.e., reducing the number of required
bits, �. (Beame and Fich [10] adopted a similar philosophy
in the design of their data structure, though, in a much more
intricate way.)

Observation 3.1 Fix � and �. Given a set � of � numbers
in an interval � of length ��, we can divide � into ����
subintervals such that

(i) each subinterval contains at most ��� elements of �
or has length ����; and

(ii) the subinterval lengths are all multiples of ����.

Proof: Form a grid over � consisting of �� subintervals
of length ����. Let � contain the ������	�-th smallest ele-
ment of � for � 
 �� � � � � �. Consider the grid subintervals
that contain elements of �. Use these ���� grid subinter-
vals to subdivide � (see Figure 1(b)). Note that any “gap”
between two such consecutive grid subintervals do not con-
tain elements of � and so can contain � ��� elements. �

The data structure. The observation suggests a simple
tree structure for 1-d successor search. Because of (ii), we
can represent each endpoint of the subintervals by an integer
in ��� ���, with � bits. We can thus encode all ���� subin-
tervals in ����� bits, which can be packed (or “fused”) into
a single word if we set � 
 �����	 for a sufficiently small
constant � 	 �. We recursively build the tree structure for
the subset of all elements inside each subinterval. We stop
the recursion when � � � (in particular, when � � �). Ini-
tially, � 
 �. Because of (i), in each subproblem, � is
decreased by a factor of � or � is decreased by �. Thus, the
height of the tree is at most ���� ����� 
 ������ �� ��.

To search for a query point 
, we first find the subinter-
val containing 
 by a word operation (see the next para-
graph for more details). We then recursively search in-
side this subinterval. (If the answer is not there, it must
be the first element to the right of the subinterval; this
element can be stored during preprocessing.) By choos-
ing � 


��
����

�
, for instance, we get a query time of

������ �� �� 
 ������� ��� �����.

Implementing the word operation. We have assumed
above that the subinterval containing 
 can be found in con-
stant time, given ���� subintervals satisfying (ii), all packed
in one word. We now show that this nonstandard opera-
tion can be implemented using more familiar operations like
multiplications, shifts, and bitwise-ands (&’s).

First, because of (ii), by translation and scaling (namely,
dividing by ����), we may assume that the endpoints of
the subintervals are integers in ��� ���. We can thus round

 to an integer �
 in ��� ���, without changing the answer.
The operation then reduces to computing the rank of an �-
bit number �
 among an increasing sequence of ���� �-bit
numbers ���� ���� � � �, with �� � ��.

This subproblem was considered before [27, 7], and we
quickly review one solution. Let 
�� � �� � � � �� denote the
word formed by ���� blocks each of exactly � � � bits,
where the �-th block holds the value ��. We precompute the
word 
��� � ��� � � � �� during preprocessing by repeated shifts
and additions. Given �
, we first multiply it with the con-
stant 
� � � � � � �� to get the word 
�
 � �
 � � � ��. Now, ��� � �

iff ��� � ��� 
 �
�� �� is zero. With one addition, one
subtraction, and one & operation, we can obtain the word

��� � ��� 
 �
�� �� � ��� � ��� 
 �
�� �� � � � ��. The rank
of �
 can then be determined by finding the most significant
1-bit (msb) position of this word. This msb operation is
supported in most programming languages (for example, by
converting into floating point and extracting the exponent,
or by taking the floor of the binary logarithm); alternatively,
it can be reduced to standard operations as shown by Fred-
man and Willard [27].

3.2. A New 2-d Fusion Tree

We now present the data structure for point location in a
slab. The idea is to allow progress to be made either combi-
natorially (in reducing �) or geometrically (in reducing the
length of the enclosing interval for either the left or the right
endpoints).

Observation 3.2 Fix � and �. Let � be a set of � disjoint
segments, where all left endpoints lie on an interval � of
length �� on a vertical line, and all right endpoints lie on
an interval � of length �	 on another vertical line. We can
find ���� segments ��� ��� � � � � � in sorted order, which
include the lowest and highest segment of �, such that



(a) (c)
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Figure 1. (a) The rounding idea: locating among the solid segments reduces to locating among
the dotted segments. (b) Proof of Observation 3.1: elements of � are shown as dots. (c) Proof of
Observation 3.2: segments of � are shown, together with the constructed sequence ��� ��� � � �

(i) for each �, there are at most ��� segments of � be-
tween �� and ����, or the left endpoints of �� and ����
lie on a subinterval of length ����, or the right end-
points of �� and ���� lie on a subinterval of length
�	��; and

(ii) there exist segments ���� ���� � � �, with �� � ��� � �� �
��� � � � � and endpoints on � and � , such that dis-
tances between left endpoints of the ���’s are all mul-
tiples of ���� and distances between right endpoints
are all multiples of �	��.

Proof: Form a grid over � consisting of �� subintervals
of length ����, and a grid over � consisting of �� subinter-
vals of length �	��. Let � contain the ������	�-th lowest
segment of � for all � 
 �� � � � � �. Set �� to be the lowest
segment. For � 
 �� �� � � � � (until the highest segment is
reached), set ���� to be the highest segment of � such that
the left endpoints of �� and ���� are in the same grid subin-
terval or the right endpoints of �� and ���� are in the same
grid subinterval. Set ���� to be the successor of ���� in �.
(See Figure 1(c).) Since the left endpoints of �� and ����
are in different grid subintervals and the right endpoints of
�� and ���� are in different grid subintervals, we can round
�� to a new segment ��� to satisfy (ii). �

The data structure. Because of (ii), we can represent
each endpoint of the ���’s as an integer in ��� ���, with �
bits. We can thus encode all ���� segments ���� ���� � � � in
����� bits, which can be packed in a single word if we set
� 
 �����	 for a sufficiently small constant � 	 �. We
recursively build the tree structure for the subset of all seg-
ments strictly between �� and ����. We stop the recursion
when � � � (in particular, when � � � or � � �). Ini-
tially, � 
 � 
 �. Because of (i), in each subproblem, �
is decreased by a factor of �, or � is decreased by �, or �
is decreased by �. Thus, the height of the tree is at most
���� �� ���� 
 ������ � � ��.

Given a query point 
, we first locate 
 among the ���’s
by a word operation. With one extra comparison we can
then locate 
 among ��� ��� �� � � �, and with one more com-
parison we can locate 
 among all the ��’s and answer the
query by recursively searching in one subset. By choos-
ing � 


��
����

�
, for instance, we get a query time of

������ �� �� 
 ������� ��� �����.
The data structure clearly requires ���� space. Since

the segments ��’s and ���’s can be found in linear time for
pre-sorted input, the preprocessing time after initial sorting
can be bounded naively by ���� times the tree height, i.e.,
��� ����� ��� ����� (which can actually be improved to
���� with more work). Sorting naively takes ��� �����
time, which can be improved by known results.

Implementing the word operation. We have assumed
above that we can locate 
 among the ���’s in constant time,
given ���� segments ���� ��� � � �, satisfying (ii), all packed in
one word. We now show that this nonstandard operation can
be implemented using more familiar operations like multi-
plications, divisions, shifts, and bitwise-ands.

First, by a projective transformation, we may assume that
the left endpoint of ��� is ������� and the right endpoint is
��������, where the ���’s and ���’s are increasing sequences
of integers in ��� ���. For example, the mapping below
transforms two intervals � 
 ��� � ��� ��� and � 
 ��� �
������	� to ������� ��� and �������� ��� respectively:

��� �� ��
�

���	�

���� 
 �� � �	�
�

����� 
���

���� 
 �� � �	�

�
�

(The line segments ���’s are mapped to line segments, and
the belowness relation is preserved.)

We round the query point 
, after the transformation, to
a point �
 with integer coordinates in ��� ���. (Note that �

can be computed exactly by using integer division in the
above formula.) Observe that a unit grid square can inter-
sect at most two of the ���’s, because the vertical separation



between two segments (after transformation) is at least 1
and consequently so is the horizontal separation (as slopes
are in the range �
�� ��). This observation implies that after
locating �
, we can locate 
 with ���� additional compar-
isons.

To locate �
 
 ���� ��� for �-bit integers �� and ��, we pro-
ceed as follows. Let 
�� � �� � � � �� denote the word formed
by ���� blocks each of exactly ������ bits, where the �-th
block holds the value �� (recall that �� � ��). We pre-
compute 
��� � ��� � � � �� and 
��� ���� � � � �� during preprocess-
ing by repeated shifts and additions. The �-coordinate of ���
at �� is given by �������
 ������������

�. With two multiplica-
tions and some additions and subtractions, we can compute
the word 
������ 
 ��� � ����� � ������ 
 ��� � ����� � � � ��. We
want to compute the rank of ���� among the values encoded
in the blocks of this word. This subproblem was solved be-
fore [27] (as reviewed in Section 3.1).

3.3. Variants

A larger-space data structure. We now present results
that are sensitive to �. We first describe a variant of our
2-d fusion tree that is even simpler and provides a time-
space tradeoff. Namely, we just apply Observation 3.2 re-
cursively, this time, with � 
 � (i.e., we care only about
reducing � and �, not �). The height of the resulting tree is
now at most ����.

Because the segments ���� ���� � � � can no longer be packed
in a word, we need to describe how to locate a query point 

among the ���’s in constant time. By the projective transfor-
mation and rounding as described in Section 3.2, it suffices
to locate a point �
 that has �-bit integer coordinates. The
idea is to precompute the answers for all ��� such points
during preprocessing in ������ time, for example, by ��

scans along each vertical grid line, and subsequently an-
swer a query by table lookup. The total extra cost for the
table precomputation is �������. We immediately obtain
������� ������ preprocessing time (after initial sorting),
������� space, and ������ query time, for any given �.

Reducing space. We can obtain another linear-space data
structure as follows. Let � contain the �����	-lowest seg-
ment for � 
 �� � � � � �, and apply the preceding data struc-
ture only for these segments of �. To locate a query point

 among �, we first locate 
 among � and then finish by a
binary search in a subset of ������ elements between two
consecutive segments in �.

The preprocessing time excluding initial sorting is ����
���� � ������, the space requirement is ��� � �����,
and the query time is ���������� � ����. Setting � 
�
������� ����

�
leads to ���� preprocessing time and

space and ��� � ���� query time. Setting � 
 ���	
yields ��

�
�� query time.

We can reduce the query time further by replac-
ing the binary search with a point location query us-
ing the data structure from Section 3.2 to store each
subset of ������ elements. The query time becomes
����������� ��� �������� � ���� 
 ���� ���� � ����.
Setting � 


��
� ����

�
instead yields a query time of

��
�

�� �����.

Remarks. The above data structures can be extended to
deal with ����-bit rational coordinates, i.e., coordinates
that are ratios of integers in the range �
�
�� �
�� for some
constant  . (This extension will be important in subsequent
applications.) The main reason is that the coordinates have
bounded “spread”: namely, the difference of any two such
distinct rationals must be at least ����
�. Thus, when �
or � reaches below 
� �, we have � � �. The point-
segment comparisons and projective transformations can
still be done in constant time, since ����-bit arithmetic can
be simulated by ���� �-bit arithmetic operations.

The data structures can also be easily adapted for disjoint
open segments that may share endpoints.

4. General 2-d Point Location

We now tackle the 2-d point location problem in the gen-
eral setting: given a static planar subdivision formed by a
set � of � disjoint open line segments with ����-bit in-
teger or rational coordinates, preprocess � so that given a
query point 
 with integer or rational coordinates, we can
quickly identify (a label of) the face containing 
. By as-
sociating each segment with an incident face, it suffices to
find the segment that is immediately above 
.

The result of the previous section naively yields an
�����-space data structure with ����������� ��� ������

�� ������ query time: Divide the plane into ���� slabs
through the �-coordinates of the endpoints and build our
2-d fusion tree inside each slab (note that the endpoints of
the segments clipped to the slab indeed are rationals with
����-bit numerators and denominators). Given a query
point 
, we can first locate the slab containing 
 by a 1-d
successor search on the �-coordinates and then search in
this slab. The preprocessing time is ���� �����.

We can improve the preprocessing time and space by
applying known computational-geometric techniques for
point location, for example, using a �-ary version of the seg-
ment tree or the trapezoid method [11, 41, 44]. To get linear
space, though, we adopt a random sampling method [37] or
a planar separator method [35]. The former is simpler to
implement, but the latter is deterministic and also has lin-
ear preprocessing time for connected subdivisions. Due to
space limitation, we will only describe the sampling method
here; see the full paper for more on the separator method.



Reducing space by sampling. . . Take a random sample
� � � of size �. We first compute the trapezoidal de-
composition ! ���: the subdivision of the plane into trape-
zoids formed by the segments of � and vertical upward and
downward rays from each endpoint of �. This decomposi-
tion has ���� trapezoids and is known to be constructible
in ��� ��� �� time. We store ! ��� in a point-location data
structure, with "���� preprocessing time, ����� space, and
#���� query time.

For each segment � � �, we first find the trapezoid of
! ��� containing the left endpoint of � in #���� time. By
a walk in ! ���, we can then find all trapezoids of ! ���
that intersects � in time linear in the number of such trape-
zoids (note that � does not intersect any segment of � and
can only cross vertical walls of ! ���). As a result, for each
trapezoid � � ! ���, we obtain the subset �	 of all seg-
ments of � intersecting � (the so-called conflict list of �).
The time required is ���#���� �

�
	�� ��� ��	��.

By a standard analysis of Clarkson and Shor [24, 37],

�
	�� ���

��	� 
 ���� � ���
	�� ���

��	� 
 ������� ��� ��

holds with probability greater than a constant. As soon
as we discover that these bounds are violated, we stop the
process and restart with a different sample; the expected
number of trials is constant. We then recursively build a
point-location data structure inside � for each subset �	.

To locate a query point 
, we first find the trapezoid
� � ! ��� containing 
 in #���� time and then recursively
search inside �.

The expected preprocessing time " ���, worst-case space
����, and worst-case query time #��� satisfy the following
recurrences for some ��’s with

�
� �� 
 ���� and �� 


������� ��� ��:

" ��� 

�

� " ���� � ��"���� � �#�����

���� 

�

� ����� � ��������

#��� 
 ����#���� � ��#������

We have already described a method with
"���� 
 ���� ��� ��, ����� 
 �����, and
#���� 
 ����� �� ��� ��� ��. By setting � 
 ���	, the
above recurrence solves to " ���� ���� 
 ��� ������� ��
and #��� 
 ������� ��� �����.

. . . and resampling. To reduce space further, we boot-
strap using the new bounds "����� ����� 
 ��� ���
 ��
and #���� 
 ����� �� ��� ��� �� for some constant  . This
time, we replace recursion by directly invoking a known
planar point location method [44] with "���� 
 ��� �����
preprocessing time, ����� 
 ���� space, and #���� 

������� query time. We then obtain the following bounds,

where
�

� �� 
 ���� and �� 
 ������� ��� ��:

" ��� 

�

� "����� � ��"���� � �#�����


 ��� �������� � � ���
 � � � ��� �� ��� ��� ��

���� 

�

� ������ � �������� 
 ���� � ���
 ��

#��� 
 ����#����� � ��#�����


 ���������� � ��� �� ��� ��� ���

Setting � 
 ��� ���
 �	 this time yields
��� ����� ��� ����� expected preprocessing time,
���� space, and ������� ��� ����� query time.

Variant. Alternatively, to get a result sensitive to �, we
can use the larger-space variant from Section 3.3 and start
with the bounds "���� 
 ������� ������ ��� ��, ����� 

��������, and #���� 
 ������. We set � 


�
����

�
and

� 
 �� ����	 for a sufficiently small constant � 	 � (so
that ����� ��� � 
 ����).2 The recurrences become

" ��� 

�

� " ���� � ����� �����

���� 

�

� ����� � ����

#��� 
 ����#���� � ���� ������

where
�

� �� 
 ���� and �� 
 ������ �����. We stop
the recursion when � � �� and handle the base case us-
ing our earlier method with ���� ���

���� ��� expected pre-
processing time, ����� space, and �������� ��� ������
query time. As a result, the recurrences solve to " ��� 


���� ������� ��, ���� 
 ��� ������� ��, and #��� 

�������� ��� ����� � �� ������ (because the #��� re-
currence expands to a geometric series). Setting �� 


�
�
� 
��� yields #��� 
 ��

�
�� �����.

Now, substituting "���� 
 ���� ���
 ��, ����� 

��� ���
 ��, #���� 
 ��

�
�� �����, "���� 


��� �����, ����� 
 ����, #���� 
 �������, and
� 
 ����� ���
 ��	 yields ���

�
�� ����� expected pre-

processing, ���� space, and ��
�

�� ����� query time.

5. 3-d Convex Hulls

We next tackle the well-known problem of constructing
the convex hull of a set � of � points in 3-d, under the as-
sumption that the coordinates are �-bit integers, or more
generally ����-bit rationals.

We again use a random sampling approach. First it suf-
fices to construct the upper hull (the portion of the hull vis-
ible from above), since the lower hull can be constructed
similarly. Take a random sample � � � of size �. Compute
the upper hull of � in ��� ��� �� time by a known algorithm

2This choice of � is based on a suggestion by Mihai Pǎtraşcu. Orig-
inally, we used a fixed value of � during recursion, which resulted in a

slightly larger query bound of ��
�
�� instead of ��

�
�� �����.



[11, 41]. The ��-projection of the faces of the upper hull is
a triangulation; store the triangulation in our point-location
data structure.

For each point � � �, consider the dual plane ��

[11, 25, 37]. Constructing the upper hull is equivalent to
constructing the lower envelope of the dual planes. Let
! ��� denote a canonical triangulation [23, 37] of the lower
envelope LE��� of the dual planes of �, which can be com-
puted in ���� time given LE���. For each � � �, we first
find a vertex of the LE��� that is above ��, say, the ex-
treme vertex along the normal of ��; in primal space, this
is equivalent to finding the facet of the upper hull that con-
tains � when projected to the ��-plane—a point location
query. By a walk in ! ���, we can then find all cells of
! ��� that intersect �� in time linear in the number of such
cells. As a result, for each cell � � ! ���, we obtain the
subset ��	 of all planes �� intersecting �. The time re-
quired thus far is ���������� �� ��� ��� ��

�
�� ����� ��

	�� ��� ���	��. We then construct LE���	� inside ��	, by
using a known �����	� ��� ���	��-time convex-hull/lower-
envelope algorithm. We finally stitch these lower envelopes
together to obtain the overall lower envelope/convex hull.

By a standard analysis of Clarkson and

Shor [24, 37], $
��

	�� ��� ���	�
�


 ���� and

$
��

	�� ��� ���	� ��� ���	�
�


 ��� � ����� ���������.
The total expected running time is ��� ��� � �
�������� �� ��� ��� ��

�
�� ����� � � ���������.

Setting � 
 ��� ����	 yields an ������������ ��� ������
�� ������-time randomized algorithm.

6. Other Consequences

To demonstrate the impact of the preceding results, we
list a sample of improved algorithms and data structures that
can be derived from our work, assuming that all input coor-
dinates/coefficients are ����-bit integers or rationals.

1. We can construct the convex hull of � points in 3-d in
��� ���%� ��� ���%� expected time, where % is the
number of hull vertices. This follows by using the con-
vex hull algorithm from Section 5 within the output-
sensitive algorithm from [16].

2. We can report all � intersections among
a set of � line segments in 2-d in
������������ ��� �����

�
�� ����� � �� ex-

pected time, where � is the number of intersecting
pairs. Moreover, we can construct the trapezoidal
decomposition in the same amount of time. This follows
by modifying the preprocessing algorithm in Section 4
to work for non-disjoint segments. (Since the details are
similar, we defer them to the full version of the paper.)

3. We can compute a triangulation of an �-
vertex polygon with holes, in expected time
������������ ��� �������� ������. This fol-
lows immediately from the fact that a triangulation can
be constructed from the trapezoidal decomposition of
the edges in linear time.

4. We can construct the Voronoi diagram, or equivalently
the Delaunay triangulation, of � points in the plane in
������������ ��� �����

�
�� ������ expected time.

This follows immediately because the Delaunay triangu-
lation reduces to the convex hull of a 3-d point set via a
lifting map (where coordinates still have ���� bits).

5. We can find the largest empty circle inside a
rectangle for a set of � points in the plane in
������������ ��� �������� ������ expected time.
This follows from the fact that the optimal circle can be
determined from the Voronoi diagram in linear time.

6. We can preprocess � points in the plane, in
������������ ��� �����

�
�� ������ expected time

and ���� space, so that nearest/farthest neighbor
queries under the Euclidean metric can be answered in
����������� ��� �������� ������ time. This fol-
lows because these queries reduce to point location in
the Voronoi diagram (whose coordinates have ����-bit
numerators/denominators).

7. We can construct the Euclidean minimum span-
ning tree (MST) of � points in the plane in
������������ ��� �����

�
�� ������ expected time.

This follows because the MST is contained in the Delau-
nay triangulation and the MST of a planar graph can be
computed in linear time, e.g., by Bor

Æ

�vka’s algorithm.

8. We can preprocess a convex polygon " with � ver-
tices in ���� space, so that wrapping queries (finding
the left tangent from an exterior point) and ray shooting
queries (intersecting " with a line) can be answered in
����������� ��� �����

�
�� ������ time. For wrap-

ping queries, this follows by decomposing the plane into
regions (wedges) that have a common answer and per-
forming a point location query. Ray shooting queries
reduce to wrapping queries in the dual convex polygon
(whose coordinates are still ����-bit rationals).

9. We can store � points in the plane in ��� ��� �����
space, so that circular range reporting queries (find-
ing the � points inside a query circle), and “�
nearest neighbors” queries, can be answered in
����������� ��� �������� ����� � �� time. This
follows by combining our point location result with a
data structure from [18].



Remark on higher dimensions. For any fixed dimen-
sion & 	 �, the slab data structure from Section 3
can be generalized to handle point location for dis-
joint simplices in a vertical prism, in ���� space and
����������� ��� �����

�
�� ������ query time, by us-

ing an appropriate analog of Observation 3.2. As a result,
we can solve the point location problem for any subdivision
of IR� into polyhedral cells, with ����-bit integer/rational
coordinates, naively with ����� space and preprocess-
ing time and ����������� ��� �����

�
�� ������ query

time. We can again use sampling, as in Section 4, to reduce
space. For example, we can perform point location in an
arrangement of � hyperplanes in IR� with ����-bit ratio-
nal coefficients, in ����������� ��� �������� ������
time with ���� ������� �� space; we can answer (exact)
nearest neighbor queries in IR� in ����������� ��� ������

�� ������ time with �������� ������� �� space [23].
Many geometric search problems (even those involving
curved objects) can be reduced to point location in higher
dimensions (by the technique of linearization); this leads to
many more applications, such as ray shooting and motion
planning. See the full paper for more details.

7. Conclusions

We have hardly exhausted all implications of our results.
What we have shown is that the complexity of many pre-
viously “solved” problems in computational geometry may
have to be revised, at least for researchers who are willing
to embrace the transdichotomous RAM model. The most
popular model for computational geometers, for good rea-
sons, is the unit-cost real RAM. While we do not intend
to change this default, the transdichotomous model for in-
teger or rational input also deserves to be studied and, as
some might argue, is perhaps more realistic. (In practice,
we do not have infinite precision as assumed by the real
RAM.) In fact, discussion on robustness and the exact arith-
metic paradigm in computational geometry often assumes
�-bit integer or floating-point input and operations on �-
bit words. (We leave open the issue of whether our results
could be extended to floats.)

One possible complaint about our algorithms is their use
of �-bit integer multiplication/division, which are not AC�

operations and in reality take more than constant time as
� grows. However, the previous real-RAM algorithms all
need multiplication as well, and our algorithms use com-
paratively fewer multiplications. Notice that when the input
is from a polynomial-size grid (� 
 �������), multipli-
cation/division on ��-bit words can be simulated by table
lookup, so there is no dispute about the model in this case.

If it has not been made clear already, our study here
is primarily theoretical. A ��� ���� factor improvement
would not necessarily make a huge impact in practice, es-

pecially because of possibly larger hidden constant factors.
(To be more optimistic, though, we mention that Anders-
son [4] did implement an ������� ��� ����� method for
1-d successor search, supposedly with promising results.)

The most pressing theoretical question is to determine
the precise complexity of the subproblem of 2-d point loca-
tion in a slab. Any improved upper bound would lead to bet-
ter results for the other problems. Actually, for most of the
offline applications, it suffices to solve the problem of an-
swering a batch of � queries. It is not clear how this offline
problem can be solved more efficiently (unlike in 1-d by
sorting). Improvement for the special case � 
 �������
alone (say, � 
 �) would be interesting.

A lower bound strictly stronger than that for 1-
d successor search [10] would even be more exciting.

������ ��� ����� query-time lower bounds have been es-
tablished in the cell probe model for some dynamic prob-
lems when update time is polylogarithmic [26, 2]. For ex-
ample, Husfeldt et al. [32] have stated such a result for
dynamic planar point location in monotone subdivisions.
However, this lower bound does not apply to the static prob-
lem, and the hardness seems to stem from non-geometric
issues namely, identifying (a label of) the face incident to
an edge, not finding the edge immediately above a point.
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