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Abstract
We study a longstanding problem in computational geometry: 2-d dynamic orthogonal range
reporting. We present a new data structure achieving O

(
logn

log logn + k
)
optimal query time and

O
(

log2/3+o(1) n
)

update time (amortized) in the word RAM model, where n is the number of
data points and k is the output size. This is the first improvement in over 10 years of Mortensen’s
previous result [SIAM J. Comput., 2006], which has O

(
log7/8+ε n

)
update time for an arbitrarily

small constant ε.
In the case of 3-sided queries, our update time reduces to O

(
log1/2+ε n

)
, improving Wilkin-

son’s previous bound [ESA 2014] of O
(

log2/3+ε n
)
.
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1 Introduction

Orthogonal range searching is one of the most well-studied and fundamental problems in
computational geometry: the goal is to design a data structure to store a set of n points so
that we can quickly report all points inside a query axis-aligned rectangle. In the “emptiness”
version of the problem, we just want to decide if the rectangle contains any point. (We will
not study the counting version of the problem here.)

The static 2-d problem has been extensively investigated [15, 6, 25, 13, 11, 22, 1, 21], with
the current best results in the word RAM model given by Chan, Larsen, and Pătraşcu [9].

In this paper, we are interested in the dynamic 2-d problem, allowing insertions and
deletions of points. A straightforward dynamization of the standard range tree [27] supports
queries in O

(
log2 n+ k

)
time and updates in O

(
log2 n

)
time, where k denotes the number

of reported points (for the emptiness problem, we can take k = 0). Mehlhorn and Näher [17]
improved the query time to O (logn log logn+ k) and the update time to O (logn log logn)
by dynamic fractional cascading.

The first data structure to achieve logarithmic query and update (amortized) time was
presented by Mortensen [19]. In fact, he obtained sublogarithmic bounds in the word RAM
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model: the query time is O
(

logn
log logn + k

)
and the amortized update time is O

(
log7/8+ε n

)
where ε denotes an arbitrarily small positive constant.

On the lower bound side, Alstrup et al. [2] showed that any data structure with tu update
time for 2-d range emptiness requires Ω

(
logn

log(tu logn)

)
query time in the cell-probe model.

Thus, Mortensen’s query bound is optimal for any data structure with polylogarithmic
update time. However, it is conceivable that the update time could be improved further
while keeping the same query time. Indeed, the O

(
log7/8+ε n

)
update bound looks too

peculiar to be optimal, one would think.
Let us remark how intriguing this type of “fractional-power-of-log” bound is, which showed

up only on a few occasions in the literature. For example, Chan and Pătraşcu [10] gave a
dynamic data structure for 1-d rank queries (counting number of elements less than a given
value) with O

(
logn

log logn

)
query time and O

(
log1/2+ε n

)
update time. Chan and Pătraşcu

also obtained more
√

logn-type results for various offline range counting problems. Another
example is Wilkinson’s recent paper [24]: he studied a special case of 2-d orthogonal range
reporting for 2-sided and 3-sided rectangles and obtained a solution with O

(
logn

log logn + k
)

amortized query time, O
(

log1/2+ε n
)
update time for the 2-sided case, and O

(
log2/3+ε n

)
update time for 3-sided; the latter improves Mortensen’s O

(
log5/6+ε n

)
update bound for

3-sided [19]. He also showed that in the insertion-only and deletion-only settings, it is possible
to get fractional-power-of-log bounds for both the update and the query time. However,
he was unable to make progress for general 4-sided rectangles in the insertion-only and
deletion-only settings, let alone the fully dynamic setting.

New results. Our main new result is a fully dynamic data structure for 2-d orthogonal
range reporting with O

(
logn

log logn + k
)

optimal query time and O
(

log2/3+o(1) n
)

update

time, greatly improving Mortensen’s O
(

log7/8+ε n
)
bound. In the 3-sided case, we obtain

O
(

log1/2+ε n
)
update time, improving Wilkinson’s O

(
log2/3+ε n

)
bound. (See Table 1 for

comparison.) Our update bounds seem to reach a natural limit with this type of approach.
In particular, it is not unreasonable to conjecture that the near-

√
logn update bound for

the 3-sided case is close to optimal, considering prior “fractional-power-of-log” upper-bound
results in the literature (although there have been no known lower bounds of this type so
far).

Like previous methods, our bounds are amortized (this includes query time). Our results
are in the word-RAM model, under the standard assumption that the word size w is at least
logn bits (in fact, except for an initial predecessor search during each query/update, we only
need operations on (logn)-bit words). Even to researchers uncomfortable with sublogarithmic
algorithms on the word RAM, such techniques are still relevant. For example, Mortensen

extended his data structure to d ≥ 3 dimensions and obtained O
((

logn
log logn

)d−1
+ k

)
query

time and O
(

logd−9/8+ε n
)
update time, even in the real-RAM model (where each word

can hold an input real number or a (logn)-bit number). Our result automatically leads to
improvements in higher dimensions as well.

Overview of techniques: Micro- and macro-structures. Our solution builds on ideas from
Mortensen’s paper [19]. His paper was long and not easy to follow, unfortunately; we strive
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Table 1 Dynamic planar orthogonal range reporting: previous and new results.

Update time Query time
4-sided Lueker and Willard [27] log2 n log2 n + k

Mehlhorn and Näher [17] log n log log n log n log log n + k

Mortensen [19] log7/8+ε n log n
log log n

+ k

New log2/3 n logO(1) log n log n
log log n

+ k

3-sided McCreight [16] log n log n + k

Willard [26] log n
log log n

log n
log log n

+ k

Mortensen [19] log5/6+ε n log n
log log n

+ k

Wilkinson [24] (log n log log n)2/3 log n + k

Wilkinson [24] log2/3+ε n log n
log log n

+ k

New log1/2+ε n log n
log log n

+ k

for a clearer organization and a more accessible exposition (which in itself would be a valuable
contribution).

The general strategy towards obtaining fractional-power-of-log bounds, in our view, can be
broken into two parts: the design of what we will call micro-structures and macro-structures.

Micro-structures refer to data structures for handling a small number s of points; by
“small”, we mean s = 2logα n for some fraction α < 1 (rather than s being polylogarithmic,
as is more usual in other contexts). When s is small, by rank space reduction we can
make the universe size small, and as a consequence pack multiple points (about w

log s )
into a single word. As observed by Chan and Pătraşcu [10] and Wilkinson [24], we can
design micro-structures by thinking of each word as a block of multiple points, and
borrowing known techniques from the world of external-memory algorithms (specifically,
buffer trees [4]) to achieve (sub)constant amortized update time. Alternatively, Mortensen
described his micro-structures from scratch, which required a more complicated solution
to a certain “pebble game” [19, Section 6].
One subtle issue is that to simulate rank space reduction dynamically, we need list labeling
techniques, which, if not carefully implemented, can worsen the exponent in the update
bound (as was the case in both Mortensen’s and Wilkinson’s solutions).

Macro-structures refer to data structures for large input size n, constructed using micro-
structures as black boxes. This part does not involve bit packing, and relies on more
traditional geometric divide-and-conquer techniques such as higher-degree range trees,
as in Mortensen’s and Chan and Pătraşcu’s solutions, with degree 2logβ n for some
fraction β < 1. Van Emde Boas recursion is also a crucial ingredient in Mortensen’s
macro-structures.

Our solution will require a number of new ideas in both micro- and macro-structures. On
the micro level, we bypass the “pebbling” problem by explicitly invoking external-memory
techniques, as in Wilkinson’s work [24], but we handle the list labeling issue more carefully,
to avoid worsening the update time. On the macro level, we use higher-degree range trees
but with a more intricate analysis (involving Harmonic series, interestingly), plus a few
bootstrapping steps, in order to achieve the best update and query bounds.

SoCG 2017
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2 Preliminaries

In all our algorithms, we assume that during each query or update, we are given a pointer to
the predecessor/successor of the x- and y-values of the given point or rectangle. At the end,
we can add the cost of predecessor search to the query and update time (which is no bigger
than O

(√
logn

)
[3] in the word RAM model).

We assume a word RAM model that allows for a constant number of “exotic” operations
on w-bit words. By setting w := δ logn for a sufficiently small constant δ, these operations can
be simulated in constant time by table lookup, after preprocessing the tables in 2O(w) = nO(δ)

time.
For simplicity, we concentrate on emptiness queries; all our algorithms can be easily

modified for reporting queries, with an additional O (k) term to the query time bounds.
A 3-sided query deals with a rectangle that is unbounded on the left or right side, by

default. A 2-sided (or dominance) query deals with a rectangle that is unbounded on two
adjacent sides.

Let [n] denote {0, 1, . . . , n− 1}.
We now quickly review a few useful tools.

List labeling. Monotone list labeling is the problem of assigning labels to a dynamic set of
totally ordered elements, such that whenever x < y, the label of x is less than the label of y.
As elements are inserted, we are allowed to change labels. The following result is well known:

I Lemma 1. [12] A monotone labeling for n totally ordered elements with labels in
[
nO(1)]

can be maintained under insertions by making O (n logn) label changes.

Weight-balancing. Weight-balanced B-trees [5] are B-tree implementations with a rebal-
ancing scheme that is based on the nodes’ weights, i.e., subtree sizes, in order to support
updates of secondary structures efficiently.

I Lemma 2. [5, Lemma 4] In a weight-balanced B-tree of degree s, nodes at height i have
weight Θ

(
si
)
, and any sequence of n insertions requires at most O

(
n/si

)
splits of nodes at

height i.

Colored predecessors. Colored predecessor searching is the problem of maintaining a dy-
namic set of multi-colored, totally ordered elements and searching for the predecessors with
a given color.

I Lemma 3. [19, Theorem 14] Colored predecessor searches and updates on n colored, totally
ordered elements can be supported in O

(
log2 logn

)
time deterministically.

Van Emde Boas transformation. A crucial ingredient we will use is a general technique of
Mortensen [18, 19] that transforms any given data structure for orthogonal range emptiness
on small sets of s points, to one for point sets in a narrow grid [s]× R, at the expense of a
log logn factor increase in cost. We state the result in a slightly more general form:

I Lemma 4. [19, Theorem 1] Let X be a set of O (s) values. Given a dynamic data structure
for j-sided orthogonal range emptiness (j ∈ {3, 4}) on s points in X × R with update time
Uj(s) and query time Qj(s), there exists a dynamic data structure for j-sided orthogonal
range emptiness on n points in X × R with update time O (Uj(s) log logn) and query time
O (Qj(s) log logn).
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If the given data structure supports updates to X in UX(s) time and this update procedure
depends solely on X (and not the point set), the new data structure can support updates to
X in UX(s) time.

Mortensen’s transformation is obtained via a van-Emde-Boas-like recursion [23]: Roughly,
we divide the plane into

√
n horizontal slabs each with

√
n points; for each slab, we store

the topmost and bottommost point at each x-coordinate of X in a data structure for O (s)
points, and handle the remaining points recursively. (Note that all these data structures for
O (s) points work with a common set X of x-coordinates.)

3 Part 1: Micro-Structures

We first design micro-structures for 3- and 4-sided dynamic orthogonal range emptiness when
the number of points s is small. This part heavily relies on bit-packing techniques.

3.1 Static universe
We begin with the case of a static universe

[
sO(1)]2.

I Lemma 5. For s points in the static universe
[
sO(1)]2, there exist data structures for

dynamic orthogonal range emptiness that support

(i) updates in O
(

log2 s
w + 1

)
amortized time and 3-sided queries in O (log s) amortized

time;
(ii) updates in O

(
log3 s
w + 1

)
amortized time and 4-sided queries in O

(
log2 s

)
amortized

time.

Proof. We mimick existing external-memory data structures with a block size of B :=
⌈
δw

log s

⌉
for a sufficiently small constant δ, observing that B points can be packed into a single word.

(i) For the 3-sided case, Wilkinson [24, Lemma 1] has already adapted such an external-
memory data structure, namely, a buffered version of a binary priority search tree due to
Kumar and Schwabe [14] (see also Brodal’s more recent work [7]), which is similar to the
buffer tree of Arge [4]. For 3-sided rectangles unbounded to the left/right, the priority
search tree is ordered by y, where each node stores O (B) x-values. Wilkinson obtained
O
( 1
B · log s+ 1

)
= O

(
log2 s
w + 1

)
amortized update time and O (log s) amortized query time.

(ii) For the general 4-sided case, we use a buffered version of a binary range tree. Although
we are not aware of prior work explicitly giving such a variant of the range tree, the
modifications are straightforward, and we will provide only a rough outline. The range
tree is ordered by y. Each node holds a buffer of up to B update requests that have not
yet been processed. Each node is also augmented with a 1-d binary buffer tree (already
described by Arge [4]) for the x-projection of the points. To insert or delete a point, we add
the update request to the root’s buffer. Whenever a buffer’s size of a node exceeds B, we
empty the buffer by applying the following procedure: we divide the list of Θ (B) update
requests into two sublists for the two children in O(1) time using an exotic word operation
(since B update requests fit in a word); we then pass these sublists to the buffers at the
two children, and also pass another copy of the list to the node’s 1-d buffer tree. These 1-d
updates cost O

( 1
B · log s

)
each [4], when amortized over Ω (B) updates. Since each update

eventually travels to O (log s) nodes of the range tree, the amortized update time of the
4-sided structure is O

( 1
B log2 s+ 1

)
= O

(
log3 s
w + 1

)
.

SoCG 2017
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A 4-sided query is answered by following two paths in the range tree in a top-down
manner, performing O (log s) 1-d queries; since each 1-d query takes O (log s) time, the
overall query time is O

(
log2 s

)
. However, before we can answer the query, we need to first

empty the buffers along the two paths of the range tree. This can be done by applying the
procedure in the preceding paragraph at the O (log s) nodes top-down; this takes O (log s)
time, plus the time needed for O (B log s) 1-d updates, costing O

( 1
B · log s

)
each [4]. The

final amortized query time is thus O
(
log2 s

)
. J

Notice that the above update time is constant when the number of points s is as large as
2
√
w for 3-sided queries or 2w1/3 for 4-sided.
(It is possible to eliminate one of the logarithmic factors in the query time for the above

4-sided result, by augmenting nodes of the range tree with 3-sided structures. However, this
alternative causes difficulty later in the extension to dynamic universes. Besides, the larger
query time turns out not to matter for our macro-structures at the end.)

3.2 Dynamic universe
To make the preceding data structure support a dynamic universe, the simplest way is to
apply monotone list labeling (Lemma 1), which maps coordinates to

[
sO(1)]2. Whenever a

label of a point changes, we just delete the point and reinsert a copy with the new coordinates
into the data structure. However, since the total number of label changes is O (s log s) over s
insertions, this slows down the amortized update time by a log s factor and will hurt the
final update bound.

Our approach is as follows. We first observe that the list labeling approach works fine for
changes to the y-universe. For changes to the x-universe, we switch to a “brute-force” method
with large running time, but luckily, since the number of such changes will be relatively small,
this turns out to be adequate for our macro-structures at the end. (The brute-force idea can
also be found in Mortensen’s paper [19], but his macro-structures were less efficient.)

I Lemma 6. Both data structures in Lemma 5 can be modified to work for s points in a
universe X × Y with |X|, |Y | = O (s). The update and query time bounds are the same, and
we can support

(i) updates to Y in O
(
log2 log s

)
amortized time (given a pointer to the predecessor/successor

in Y ), and
(ii) updates to X in 2O(w) time, where the update procedure for X depends solely on X (and

not the point set).

Proof. (i) To start, let us assume that X =
[
sO(1)] but Y is arbitrary. We divide the sorted

list Y into O (s/A) blocks of size Θ (A) for a parameter A to be set later. It is easy to
maintain such a blocking using O (s/A) number of block merges and splits over s updates.
(Such a blocking was also used by Wilkinson [24].) We maintain a monotone labeling of the
blocks by Lemma 1. In the proof of Lemma 5, we construct the y-ordered priority search
tree or range tree using the block labels as the y-values. Each leaf then corresponds to a
block. We build a small range tree for each leaf block to support updates and queries for the
O (A) points in, say, O

(
log2 A

)
time. We can encode a y-value η ∈ Y by a pair consisting of

the label of the block containing η, and the rank of η with respect to the block. We will use
these encoded values, which still are O (log s)-bit long, in all the buffers. The block labels
provide sufficient information to pass the update requests to the leaves and the x-ordered
1-d buffer trees. The ranks inside a block provide sufficient information to handle a query or
update at a leaf.
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During each block split/merge and each block label change, we need to first empty the
buffers along the path to the block before applying the change. This can be done by applying
the procedure from the proof of Lemma 5 at O (log s) nodes top-down, requiring O (log s)
amortized time. Since the total number of block label changes is O

(
s
A log s

A

)
, the total time

for these steps is O
(
s
A log s

A · log s
)

= O (s) by setting A := log2 s. The amortized cost for
these steps is thus O (1).

(ii) Now, we remove the X =
[
sO(1))] assumption. We assign elements in X to labels in

[O (s)] but do not insist on a monotone labeling. Then no label change is necessary! We will
use these labels for the x-values in all the buffers. The exotic word operations are simulated
by table lookup, but in the precomputation of each table entry, we need to first map the
labels to their actual x-values. During each update to X, we now need to recompute all
table entries by brute force, taking 2O(w) time. J

4 Part 2: Macro-Structures

We now present macro-structures for 3- and 4-sided dynamic orthogonal range emptiness
when the number of points n is large, by using micro-structures as black boxes. This part
does not involve bit packing (and hence is more friendly to computational geometers). The
transformation from micro- to macro-structures is based on variants of range trees.

4.1 Range tree transformation I
I Lemma 7. Given a family of data structures D(i)

j (i ∈ {1, . . . , logs n}) for dynamic j-sided
orthogonal range emptiness (j ∈ {3, 4}) on s points in X ×R (|X| = O (s)) with update time
U

(i)
j (s) and query time Q(i)

j (s), where updates to X take U (i)
X (s) time with a procedure that

depends solely on X, there exist data structures for dynamic orthogonal range emptiness on
n points in the plane with the following amortized update and query time:

(i) for the 3-sided case,

U ′3(n) = O

logs n∑
i=1

U
(i)
3 (s) log logn +

logs n∑
i=1

U
(i)
X (s)
si−1 + logs n log2 logn


Q′3(n) = O

(
max
i
Q

(i)
3 (s) logs n log logn + logs n log2 logn

)
;

(ii) for the 4-sided case,

U ′4(n) = O

logs n∑
i=1

(U (i)
4 (s) + U

(i)
3 (s)) log logn +

logs n∑
i=1

U
(i)
X (s)
si−1 + logs n log2 logn


Q′4(n) = O

(
max
i
Q

(i)
4 (s) log logn + max

i
Q

(i)
3 (s) logs n log logn + logs n log2 logn

)
.

Proof. We store a range tree ordered by x, implemented as a degree-s weight-balanced
B-tree. (Deletions can be handled lazily without changing the weight-balanced tree; we can
rebuild periodically when n decreases or increases by a constant factor.) At every internal
node v at height i, we store the points in its subtree in a data structure for j-sided orthogonal
range emptiness on a narrow grid Xv × R, obtained by applying Lemma 4 to the given
structure D(i)

j , where Xv is the set of x-coordinates of the O (s) dividing vertical lines at
the node, and the x-coordinate of every point is replaced with the predecessor in Xv. We
also store the y-coordinates of these points in a colored predecessor searching structure of

SoCG 2017
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Lemma 3, where points in the same child’s vertical slab are assigned the same color. And
we store the x-coordinates in another colored predecessor searching structure, where Xv is
colored black and the rest is colored white.

To insert or delete a point, we update the narrow-grid structures at the nodes along the
path in the tree. This takes O

(∑logs n
i=1 U

(i)
j (s) log logn

)
total time. Note that given the

y-predecessor/successor of the point at a node, we can obtain the y-predecessor/successor
at the child by using the colored predecessor searching structure. We can also determine
the x-predecessor in Xv by another colored predecessor search. This takes total time
O
(
logs n log2 logn

)
along the path.

To keep the tree balanced, we need to handle node splits. For nodes at height i, there
are O

(
n/si

)
splits by Lemma 2. Each such split requires rebuilding two narrow-grid

structures on O
(
si
)
points, which can be done naively by O

(
si
)
insertions to empty struc-

tures. This has O
(∑logs n

i=1
(
n/si

)
· siU (i)

j (s) log logn
)
total cost, i.e., an amortized cost of

O
(∑logs n

i=1 U
(i)
j (s) log logn

)
. A split of a child of v also requires updating (deleting and rein-

serting) the points at the child’s slab. This has O
(∑logs n

i=1
(
n/si−1) · si−1U

(i)
j (s) log logn

)
total cost, i.e., an amortized cost of O

(∑logs n
i=1 U

(i)
j (s) log logn

)
. Furthermore, a split of a

child of v requires an update to Xv. This has O
(∑logs n

i=1
(
n/si−1) · U (i)

X (s)
)
total cost, i.e.,

an amortized cost of O
(∑logs n

i=1
(
1/si−1) · U (i)

X (s)
)
.

To answer a 3-sided query, we proceed down a path of the tree and perform queries in the
narrow-grid structures at nodes along the path. This takes O

(
logs n ·maxiQ(i)

3 (s) log logn
)

total time. As before, given the y-predecessor/successor of the coordinates of the rectangle
at a node, we can obtain the y-predecessor/successor at the child by using the colored
predecessor searching structure. This takes total time O

(
logs n log2 logn

)
along the path.

To answer a 4-sided query, we find the highest node v whose dividing vertical lines cut the
query rectangle. We obtain two 3-sided queries at two children of v, which can be answered
as above, plus a remaining query that can be answered via the narrow-grid structure at v in
O
(

maxiQ(i)
4 (s) log logn

)
time. J

Combining with our preceding micro-structures, we obtain the following results, achieving
the desired update time but slightly suboptimal query time (which we will fix later):

I Theorem 8. Given n points in the plane, there exist data structures for dynamic orthogonal
range emptiness that support

(i) updates in amortized O
(

log1/2 n logO(1) logn
)
time and 3-sided queries in amortized

O (logn log logn) time;

(ii) updates in amortized O
(

log2/3 n logO(1) logn
)
time and 4-sided queries in amortized

O (logn log logn) time.

Proof. (i) For the 3-sided case, Lemmata 5(i) and 6 give micro-structures with update time
O
(

log2 s
w + log2 log s

)
and query time O (log s), while supporting updates to X in 2O(w)

time. Observe that we can choose to work with a smaller word size w ≤ w, so long as
w = Ω (log s). We choose w := δi log s for a sufficiently small absolute constant δ and for
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any given i ∈ [2, logs n]. This gives

U
(i)
3 (s) = O

(
log s
i

+ log2 log s
)

Q
(i)
3 (s) = O (log s)

U
(i)
X (s) = sO(δi).

For the special case i = 1, we use a standard priority search tree, achieving U (1)
3 (s), Q(1)

3 (s) =
O (log s) and U (1)

X (s) = 0. Substituting into Lemma 7, we obtain

U ′3(n) = O

logs n∑
i=1

log s log logn
i

+ logs n log3 logn +
logs n∑
i=2

sO(δi)

si−1 logs n log2 logn


= O

(
log s log2 logn + logs n log3 logn

)
,

since the first sum is a Harmonic series and the second sum is a geometric series. (This
assumes a sufficiently small constant for δ, as the hidden constant in the exponent O (δi)
does not depend on δ.) Furthermore,

Q′3(n) = O
(
log s logs n log logn + logs n log2 logn

)
= O

(
logn log logn + logs n log2 logn

)
.

We set s := 2
√

logn to get U ′3(n) = O
(

log1/2 n logO(1) logn
)
, Q′3(n) = O (logn log logn).

(ii) Similarly, for the 4-sided case, Lemmata 5(ii) and 6 with a smaller word size w :=
δi log s give micro-structures with

U
(i)
4 (s) = O

(
log2 s

i
+ log2 log s

)
Q

(i)
4 (s) = O

(
log2 s

)
U

(i)
X (s) = sO(δi).

For the special case i = 1, we use a standard range tree, achieving U (1)
4 (s), Q(1)

4 (s) = O
(
log2 s

)
and U (1)

X (s) = 0. Substituting into Lemma 7, we obtain

U ′4(n) = O

logs n∑
i=1

log2 s log logn
i

+ logs n log3 logn +
logs n∑
i=2

sO(δi)

si−1 logs n log2 logn


= O

(
log2 s log2 logn + logs n log3 logn

)
and

Q′4(n) = O
(
log2 s log logn + log s logs n log logn + logs n log2 logn

)
= O

(
log2 s log logn + logn log logn + logs n log2 logn

)
.

We set s := 2log
1
3 n to get U ′4(n) = O

(
log2/3 n logO(1) logn

)
, Q′4(n) = O (logn log logn). J
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4.2 Range tree transformation II
We now reduce the query time to optimal by another transformation:

I Lemma 9. Given data structures for dynamic j-sided orthogonal range emptiness (j ∈ {2, 3,
4}) on n points in the plane with update time Uj(n) and query time Qj(n), there exist data
structures for dynamic j-sided orthogonal range emptiness (j ∈ {3, 4}) on n points in the
plane with the following amortized update and query time:

U ′j(n) = O
(
Uj(s) logs n log logn + Uj−1(n) logs n + logs n log2 logn

)
Q′j(n) = O

(
Qj(s) log logn + Qj−1(n) + logs n log2 logn

)
.

Proof. We first switch the x- and y-coordinates of the points. This is fine since the given
data structures in the statement of this lemma still exist by symmetry (unlike in Lemma 7).

We modify the range tree in the proof of Lemma 7, where every internal node is augmented
with a (j − 1)-sided structure.

During an insertion or deletion of a point, we update the narrow-grid structures along a
path as before, in O (logs n · Uj(s) log logn) time. We now also need to update the (j−1)-sided
structures at nodes along the path. This adds O (Uj−1(n) logs n) to the update time.

During rebalancing, each split of a node at height i now requires rebuilding the (j − 1)-
sided structures, which can be done naively by O

(
si
)
insertions to an empty structure. This

has O
(∑logs n

i=1
(
n/si

)
· siUj−1(n)

)
total cost, i.e., an amortized cost of O (Uj−1(n) logs n).

To answer a j-sided query, we find the highest node v whose dividing vertical lines cut
the query rectangle. We obtain two (j − 1)-sided queries at two children of v, plus a query
in the narrow-grid structure at v. (In the case j = 3, recall that the input to a 3-sided query
is now a rectangle unbounded from above or below, because of the switching of x and y.)
The two (j − 1)-sided queries can be answered directly using the augmented structures. This
takes O (Qj(s) log logn+Qj−1(n)) time, plus the cost O

(
logs n log2 logn

)
to descend along

the path to that node. J

We obtain our final results by bootstrapping:

I Theorem 10. Given n points in the plane, there exist data structures for dynamic ortho-
gonal range emptiness that support

(i) updates in amortized O
(

log1/2+O(ε) n
)
time and 3-sided queries in amortized O

(
logn

log logn

)
time;

(ii) updates in amortized O
(

log2/3 n logO(1) logn
)
time and 4-sided queries in amortized

O
(

logn
log logn

)
time.

Proof. (i) Theorem 8(i) achieves

U3(s) = O
(

log1/2 s logO(1) log s
)

Q3(s) = O (log s log log s) .

Wilkinson [24] has given a data structure for 2-sided (dominance) queries with

U2(n) = O
(

log1/2+ε n
)

Q2(n) = O

(
logn

log logn

)
.
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Substituting into Lemma 9, we obtain

U ′3(n) = O
(

log1/2 s logs n logO(1) logn + log1/2+ε n logs n+ logs n log2 logn
)

Q′3(n) = O

(
log s log log s log logn + logn

log logn + logs n log2 logn
)
.

We set s := 2
logn

log3 logn to get U ′3(n) = O
(

log1/2+O(ε) n
)
, Q′3(n) = O

(
logn

log logn

)
.

(ii) Similarly, Theorem 8(ii) achieves

U4(s) = O
(

log2/3 s logO(1) log s
)

Q4(s) = O (log s log log s) .

Part (i) above gives

U3(n) = O
(

log1/2+O(ε) n
)

Q3(n) = O

(
logn

log logn

)
.

Substituting into Lemma 9, we obtain

U ′4(n) = O
(

log2/3 s logs n logO(1) logn + log1/2+O(ε) n logs n+ logs n log2 logn
)

Q′4(n) = O

(
log s log log s log logn + logn

log logn + logs n log2 logn
)
.

We set s := 2
logn

log3 logn to get U ′4(n) = O
(

log2/3 n logO(1) logn
)
, Q′4(n) = O

(
logn

log logn

)
. J

5 Future Work

We have not yet mentioned space complexity. We can trivially upper-bound the space of
our data structure by n times the update time, i.e., O

(
n log2/3+o(1) n

)
for the 4-sided case,

which is already an improvement over Mortensen’s O
(
n log7/8+ε n

)
space bound. We are

currently working on ways to improve space further to near-linear. (See [20, 21] for the
current best data structures with near-linear space.)

We can automatically extend our result to higher constant dimensions d ≥ 3 by us-
ing a standard degree-b range tree, which adds a b logb n factor per dimension to the
update time and a logb n factor per dimension to the query time. With b = logε n, this
gives O

(
(logn/ log logn)d−1) query time and O

(
logd−5/3+O(ε) n

)
update time, improving

Mortensen’s result. Alternatively, we can directly modify our micro- and macro-structures,
which should give a better update time of the form O

(
logd−2+O(1/d) n

)
. We are currently

working on obtaining the best precise exponent with this approach. (See [8] for a different
tradeoff with query time better by about a logarithmic factor but update time worse by
several logarithmic factors.)
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