
Dynamic Generalized Closest Pair:

Revisiting Eppstein’s Technique

Timothy M. Chan∗

October 28, 2019

Abstract

Eppstein (1995) gave a technique to transform any data structure for dynamic nearest neigh-
bor queries into a data structure for dynamic closest pair, for any distance function; the trans-
formation increases the time bound by two logarithmic factors. We present a similar, simple
transformation that is just as good, and can avoid the extra logarithmic factors when the query
and update time of the given structure exceed nε for some constant ε > 0.

Consequently, in the case of an arbitrary distance function, we obtain an optimal O(n)-space
data structure to maintain the dynamic closest pair of n points in O(n) amortized time plus
O(n) distance evaluations per update.

1 Introduction

In 1995, David Eppstein [9] published a paper (earlier version of which appeared in [2]) describing
a useful technique to obtain dynamic data structures for closest-pair-like problems. The technique
has since found numerous applications in computational geometry [1, 5, 7, 11, 12, 13], for example,
to dynamic geometric minimum spanning trees, dynamic collision detection, semi-dynamic planar
width, and static algorithms for straight skeletons, geometric shortest paths, geometric matchings,
etc. In this note, we present a new simple alternative that yields small improvements in certain
cases.

The abstract setting. Let d : X × Y → R be a distance function. The problem is to design a
dynamic data structure for two sets P ⊂ X and Q ⊂ Y of at most n elements (which we will refer
to as “points”), which can

• maintain the closest pair (p, q) ∈ P ×Q (i.e., the pair (p, q) minimizing d(p, q)), and

• support insertions and deletions of points in both P and Q.

We assume that there is available an initial dynamic data structure for any set P ⊂ X of at most
n points, with P0(n) preprocessing time and S0(n) space, which can

• find the nearest neighbor in P to any given point q ∈ Y (i.e., the point p ∈ P minimizing
d(p, q)) in Q0(n) time, and

∗Department of Computer Science, University of Illinois at Urbana-Champaign (tmc@illinois.edu). Work sup-
ported in part by NSF Grant CCF-1814026.

1

• support insertion of a point in P in I0(n) (amortized) time and deletion of a point in P in
D0(n) (amortized) time.

We also assume that there is a symmetric dynamic data structure with the same bounds, for finding
the nearest neighbor of any point p ∈ X to a dynamic set Q ⊂ Y. Note that a solution to the
dynamic closest pair problem necessarily requires a solution to the above dynamic nearest neighbor
query problems, since the latter can obviously be reduced to the former.

Given such dynamic nearest neighbor structures, Eppstein designed a data structure for dynamic
closest pair with O(S0(n)) space and

• O((Q0(n) + I0(n) + D0(n)) log n) amortized insertion time and

• O((Q0(n) + I0(n) + D0(n)) log2 n) amortized deletion time.

(An earlier result by Dobkin and Suri [8] addressed only the special case of “semi-online updates”.)
Note that the abstract problem as formulated above is entirely non-geometric, in that no addi-

tional properties about the distance function d(·, ·) are required. When combined with known geo-
metric data structures for dynamic nearest neighbors under specific distance functions, Eppstein’s
technique led to the best known results for dynamic monochromatic/bichromatic closest/farthest
pair in a variety of geometric settings (although very recently a direct, slightly faster method was
given in the 2-d Euclidean case by the author [6]).

The most general case. A later paper by Eppstein [10] (see also [4]) redescribed the algorithm
in the most general case where we assume nothing about the distance function except that it can
be evaluated in unit time. Here, we have Q0(n), I0(n), D0(n) = O(n) trivially, and the resulting
dynamic closest pair data structure requires O(n) space, O(n log n) amortized insertion time, and
O(n log2 n) amortized deletion time (Ω(n) is a lower bound on the update time in this case). Several
applications of this general result, for example, to hierarchical clustering or the implementation of
certain TSP heuristics, were described in the paper [10], which also contained an alternative solution
with O(n) amortized insertion and deletion time. However, in this alternative solution (based on
a simple quadtree with leaves corresponding to all n2 entries of the distance matrix), the space
usage increases to O(n2). Eppstein wrote: “It remains open whether quadratic space is required
to achieve linear time per update.”

New result. We present a new data structure for dynamic closest pair achieving O(S0(n)) space
and

• O(Q0(n) log n + (P0(n)/n) log n) amortized insertion time and

• O(Q0(n) log2 n + (P0(n)/n) log2 n + D0(n) log n) amortized deletion time,

assuming that Q0(n) exceeds log n. These bounds are at least as good as Eppstein’s, since P0(n)/n is
trivially upper-bounded by I0(n). In fact, there is one fewer logarithmic factor in the O(D0(n) log n)
term, which matters if deletions are sufficiently more expensive than insertions and queries for dy-
namic nearest neighbors (as is the case in some applications). Also note that there is no appearance
of D0(n) in the insertion time bound, and there is no appearance of I0(n) at all, i.e., we do not need
insertions in the given dynamic nearest neighbor structure. (One could apply the standard “log-
arithmic method” to automatically transform a deletion-only data structure for nearest neighbor

2

queries into one that supports insertions [3], since nearest neighbor queries are “decomposable”, but
the transformation would increase the query and insertion time by one more logarithmic factor.)

Our data structure also has smaller preprocessing time: O(nQ0(n) + P0(n)) instead of
O(nQ0(n) + P0(n) + nD0(n)).

There is one more important advantage: if Q0(n)/nε, P0(n)/n1+ε, and D0(n)/nε are monoton-
ically increasing for an arbitrarily small constant ε > 0, then the amortized insertion and deletion
time can be further improved to O(Q0(n)+P0(n)/n) and O(Q0(n)+P0(n)/n+D0(n)), eliminating
all the extra logarithmic factors.

Consequently, in the most general case, with the trivial bounds Q0(n) = O(n), P0(n) = O(n2)
and D0(n) = O(n), we obtain an (optimal) data structure with O(n) space and O(n) amortized
insertion and deletion time, thus resolving Eppstein’s aforementioned open question.

Overview. Eppstein’s method is simple but clever. Roughly, we maintain logarithmically many
layers, where the i-th layer stores subsets Pi ⊂ P and Qi ⊂ Q whose sizes form a geometric
progression (like in the standard “logarithmic method” [3]). In each layer, we build an ordered
nearest neighbor path over Pi ∪ Q of length 2|Pi| (aptly called a “conga line” in Eppstein’s later
presentation [10]), where each point p ∈ Pi is linked to its nearest neighbor among all points in Q
that appear after p along the path, and each point q ∈ Q is linked to its nearest neighbor among
all points in Pi that appear after q along the path. A similar path is built over P ∪ Qi. The key
feature of a path is that the maximum in-degree is 1; a deletion in a layer thus requires “fixing”
only O(1) points, which is done by reinserting these points (initially placed at the bottommost
layer, but later elevated to higher layers due to periodic merging, as in the logarithmic method).
The description of the entire data structure is concise, though the details are subtle.

In the standard logarithmic method, the time bound does not increase when it grows faster
than nε. However, the same cannot be said about Eppstein’s data structure, since the ordered
nearest neighbor path is built between Pi and the global set Q, thus requiring a global dynamic
nearest neighbor structure at every level.

In our new data structure, we build a more flexible graph, where the in-degree is O(1) rather
than 1 (Eppstein did suggest this as a possible variant at the end of his paper [9], but did not
pursue the idea in detail). At each layer, our approach does not need to refer to the global point
sets. This enables the improvements in the case when the time bound exceeds nε; it also allows the
entire method to be described recursively, and the proof of correctness becomes more self-evident.
We hope that some may find the new solution more intuitive.

There is some similarity with the author’s recent O(log4 n)-time dynamic closest pair data
structure in the 2-d Euclidean case [6], which was a direct modification of a dynamic 2-d nearest
neighbor data structure with the same update time bound, but the solution there was specific to
the 2-d case (using a geometric construction known as “shallow cuttings”).

2 The Solution

Our data structure uses two parameters b and ∆, with ∆ ≥ 2b. For simplicity, we assume that all
distances are distinct (by perturbation, or by straightforward modifications to the algorithm).

The data structure for (P,Q). We maintain a bipartite graph GP,Q with vertex sets P and Q
(where we think of the edges as directed from P to Q, as shown in Figure 1), along with a partition
of Q into two subsets Qgood and Qbad, satisfying the following properties:

3

bad

P Q

Figure 1: The bipartite graph GP,Q.

1. each point p ∈ P has out-degree 1;

2. each point q ∈ Q has in-degree at most 2∆;

3. if (p, q) is an edge in GP,Q, then p is closer to q than to any other point in Qgood.

We similarly maintain a bipartite graph GQ,P , along with a partition of P into two subsets
Pgood and Pbad, with similar properties except with P and Q swapped. The edges of both bipartite
graphs are stored in a heap, ordered by distances. We store Pgood and Qgood in the given dynamic
nearest neighbor data structures. We recursively maintain a data structure for (Pbad, Qbad). The
smaller of the heap’s minimum and the closest pair in (Pbad, Qbad) gives us the overall closest pair.
The recursion terminates when n ≤ b (here, we just maintain the closest pair by brute force in O(b)
time).

Correctness follows by an easy case analysis: Let (p∗, q∗) be the actual closest pair in P ×Q. If
q∗ ∈ Qgood, then (p∗, q∗) must be in GP,Q by property 3, and so is in the heap. If p∗ ∈ Pgood, then
(p∗, q∗) is in the heap by a symmetric argument. Finally, if p∗ ∈ Pbad and q∗ ∈ Qbad, then (p∗, q∗)
is found by recursion.

Preprocessing (P,Q). We construct the bipartite graph GP,Q, along with Qgood and Qbad, satis-
fying the above properties, in the most intuitive way: we repeatedly link points of P to its nearest
neighbors in Q, but as soon as a point q ∈ Q has in-degree exceeding ∆, we mark q as bad and
remove it (though the edges linked to q are kept in the graph). More precisely:

Qgood = Q, Qbad = ∅, GP,Q = ∅
for each p ∈ P do:

find p’s nearest neighbor q in Qgood in O(Q0(n)) time
add (p, q) to GP,Q (and to the heap)
if q’s in-degree reaches ∆ then

delete q from Qgood in O(D0(n)) time and insert q to Qbad

We similarly construct the bipartite graph GQ,P , along with Pgood and Pbad. We then recursively
preprocess (Pbad, Qbad).

If |P |, |Q| ≤ n, then |Pbad|, |Qbad| ≤ n/∆. The total preprocessing time obeys the recurrence

P (n) ≤ P (n/∆) + O(nQ0(n) + P0(n) + (n/∆)D0(n)).

Inserting a point p to P . (Note: inserting a point to Q can be handled symmetrically.)

4

We find p’s nearest neighbor q in Qgood in O(Q0(n)) time, add (p, q) to GP,Q (and to the
heap), and if q’s in-degree reaches 2∆, delete q from Qgood in O(D0(n)) time, and insert q to Qbad

recursively in the data structure for (Pbad, Qbad). It takes Ω(∆) edge changes in GP,Q before q’s
in-degree reaches 2∆, and each insertion to P causes just one edge change. Thus, each insertion to
P triggers an amortized O(1/∆) number of deletions from Qgood and insertions to Qbad.

In addition, we do not change GQ,P but just recursively insert p to Pbad.
When the size of Pbad or Qbad reaches n/b, we rebuild the entire data structure for (P,Q) in

O(P (n)) time. It takes Ω(n/b) updates before a rebuild can occur, and thus the amortized cost for
rebuilding is O(P (n) · b/n).

The overall amortized insertion time satisfies the recurrence

I(n) ≤ (1 + O(1/∆))I(n/b) + O(Q0(n) + log n + D0(n)/∆ + bP (n)/n).

Deleting a point q from Q. (Note: deleting a point from P can be handled symmetrically.)
If q ∈ Qgood, we delete q from Qgood in O(D0(n)) time, else we recursively delete q from Qbad.

In either case, we find the at most 2∆ points p that are linked to q in GP,Q. For each such p, we
find p’s new nearest neighbor q′ in Qgood in O(Q0(n)) time, replace (p, q) with (p, q′) in GP,Q (and
in the heap), and if the in-degree of q′ reaches 2∆, delete q′ from Qgood in O(D0(n)) time, and
insert q′ to Qbad in I(n/b) amortized time. It takes Ω(∆) edge changes in GP,Q before a vertex’s
in-degree reaches 2∆, and each deletion from Q causes O(∆) edge changes. Thus, each deletion
from Q triggers an amortized O(1) number of deletions from Qgood and insertions to Qbad.

In addition, we remove the single edge incident to q from GQ,P (and from the heap).
Again, when the size of Pbad or Qbad reaches n/b, we rebuild the entire data structure for (P,Q)

in O(P (n)) time. It takes Ω(n/b) updates before a rebuild can occur, and thus the amortized cost
for rebuilding is O(P (n) · b/n).

The overall amortized deletion time satisfies the recurrence

D(n) ≤ D(n/b) + O(∆Q0(n) + ∆ log n + D0(n) + bP (n)/n + I(n/b)).

Space. The total space of the data structure satisfies the recurrence

S(n) ≤ S(n/b) + O(n + S0(n)).

Solving the recurrences. Assume that P0(n)/n, S0(n)/n, Q0(n)/ log n, I0(n), and D0(n) are
monotonically increasing. Clearly, S(n) = O(S0(n)).

• In the case when Q0(n)/nε, P0(n)/n1+ε, and D0(n)/nε are monotonically increasing: We set
b = 2 and ∆ = max{c,D0(n)/Q0(n)} for some constant c ≥ 2. Then

– P (n) ≤ P (n/c) + O(nQ0(n) + P0(n)), which solves to P (n) = O(nQ0(n) + P0(n));

– I(n) ≤ (1 + O(1/c))I(n/2) + O(Q0(n) + P0(n)/n), which solves to I(n) = O(Q0(n) +
P0(n)/n), by picking a sufficiently large constant c (depending on ε);

– D(n) ≤ D(n/2) + O(Q0(n) + D0(n) + P0(n)/n), which solves to D(n) = O(Q0(n) +
D0(n) + P0(n)/n).

5

• Otherwise: We set ∆ = max{t,D0(n)/Q0(n)} for some fixed parameter t ≥ 2. Then

– P (n) ≤ P (n/t) + O(nQ0(n) + P0(n)), which solves to P (n) = O(nQ0(n) + P0(n));

– I(n) ≤ (1 +O(1/t))I(n/b) +O(bQ0(n) + bP0(n)/n), which solves to I(n) = O((bQ0(n) +
bP0(n)/n) · logb n · (1 + O(1/t))logb n);

– D(n) ≤ D(n/b)+O(tQ0(n)+D0(n))+O((bQ0(n)+bP0(n)/n) · logb n ·(1+O(1/t))logb n),
which solves to D(n) = O((tQ0(n) +D0(n)) · logb n) +O((bQ0(n) + bP0(n)/n) · (logb n)2 ·
(1 + O(1/t))logb n).

We now set t = max{2b, logb n} (this ensures that ∆ ≥ 2b and (1 + O(1/t))logb n = O(1)).
Then I(n) = O(bQ0(n) log n+b(P0(n)/n) log n) and D(n) = O(bQ0(n) log2 n+D0(n) logb n+
b(P0(n)/n) log2 n).

Theorem 1. Assume that P0(n)/n, S0(n)/n, Q0(n)/ log n, I0(n), and D0(n) are monotonically
increasing. There is a data structure for the dynamic closest pair problem with O(nQ0(n) +P0(n))
preprocessing time and O(S0(n)) space, with

(i) O(Q0(n) + P0(n)/n) amortized insertion time and O(Q0(n) + P0(n)/n + D0(n)) amortized
deletion time, if Q0(n)/nε, P0(n)/n1+ε, and D0(n)/nε are monotonically increasing for some
constant ε > 0; or

(ii) O(bQ0(n) log n + b(P0(n)/n) log n) amortized insertion time, and O(bQ0(n) log2 n +
b(P0(n)/n) log2 n + D0(n) logb n) amortized deletion time, for any given b.

In (ii), the simplest option is to set b to a constant. In the case when D0(n) is larger than
(Q0(n) + P0(n)/n) log1+ε n, we may even set b = logε n for a small (log log n)-factor improvement
in the final deletion time bound.

References

[1] P. K. Agarwal, A. Efrat, and M. Sharir. Vertical decomposition of shallow levels in 3-dimensional
arrangements and its applications. SIAM J. Comput., 29(3):912–953, 1999.

[2] P. K. Agarwal, D. Eppstein, and J. Matoušek. Dynamic half-space reporting, geometric optimization,
and minimum spanning trees. In Proceedings of the 33rd IEEE Symposium on Foundations of Computer
Science (FOCS), pages 80–89, 1992.

[3] J. L. Bentley and J. B. Saxe. Decomposable searching problems I: Static-to-dynamic transformation.
J. Algorithms, 1(4):301–358, 1980.

[4] J. Cardinal and D. Eppstein. Lazy algorithms for dynamic closest pair with arbitary distance measures.
In Proceedings of the 6th Workshop on Algorithm Engineering and Experiments (ALENEX), pages
112–119, 2004.

[5] T. M. Chan. A dynamic data structure for 3-d convex hulls and 2-d nearest neighbor queries. J. ACM,
57(3):16:1–16:15, 2010.

[6] T. M. Chan. Dynamic geometric data structures via shallow cuttings. In Proceedings of the 35th
Symposium on Computational Geometry (SoCG), pages 24:1–24:13, 2019.

[7] T. M. Chan and A. Efrat. Fly cheaply: On the minimum fuel consumption problem. J. Algorithms,
41(2):330–337, 2001.

6

[8] D. P. Dobkin and S. Suri. Maintenance of geometric extrema. J. ACM, 38(2):275–298, 1991.

[9] D. Eppstein. Dynamic Euclidean minimum spanning trees and extrema of binary functions. Discrete
& Computational Geometry, 13:111–122, 1995.

[10] D. Eppstein. Fast hierarchical clustering and other applications of dynamic closest pairs. ACM Journal
of Experimental Algorithmics, 5:1, 2000. Preliminary version in SODA 1998.

[11] D. Eppstein. Incremental and decremental maintenance of planar width. J. Algorithms, 37(2):570–577,
2000.

[12] D. Eppstein and J. Erickson. Raising roofs, crashing cycles, and playing pool: Applications of a data
structure for finding pairwise interactions. Discrete & Computational Geometry, 22(4):569–592, 1999.

[13] H. Kaplan, W. Mulzer, L. Roditty, P. Seiferth, and M. Sharir. Dynamic planar Voronoi diagrams for
general distance functions and their algorithmic applications. In Proceedings of the 28th ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 2495–2504, 2017.

7

