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Abstract
In the colored orthogonal range reporting problem, we want a data structure for storing n colored
points so that given a query axis-aligned rectangle, we can report the distinct colors among the
points inside the rectangle. This natural problem has been studied in a series of papers, but most
prior work focused on the static case. In this paper, we give a dynamic data structure in the 2D case
which can answer queries in O(log1+o(1) n + k log1/2+o(1) n) time, where k denotes the output size
(the number of distinct colors in the query range), and which can support insertions and deletions
in O(log2+o(1) n) time (amortized) in the standard RAM model. This is the first fully dynamic
structure with polylogarithmic update time whose query cost per color reported is sublogarithmic
(near

√
log n). We also give an alternative data structure with O(log1+o(1) n + k log3/4+o(1) n) query

time and O(log3/2+o(1) n) update time (amortized). We also mention extensions to higher constant
dimensions.
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1 Introduction

Range searching is one of the most fundamental data structure problems studied in computa-
tional geometry. Motivated by applications in databases and information retrieval, many
researchers [5, 6, 7, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 29, 30, 31, 32, 34]
have investigated a natural colored variant of range searching (also called “categorical”, or
“generalized”, range searching):

Given a set of n points where each point is assigned a color (or “category”), we want
to quickly report the distinct colors of the points inside a query range.

The query time should depend on the output size k, i.e., the number of distinct colors in the
range (which could be much smaller than the number of points in the range). In this paper,
we focus on the basic case of 2D orthogonal query ranges, i.e., axis-aligned rectangles.

A long series of work have studied this colored orthogonal range reporting problem, which
turns out to be more challenging than the traditional uncolored problem; see Table 1 for
a quick summary. Throughout the paper, we assume the standard word RAM model of
computation.

All these prior papers addressed primarily static data structures, and surprisingly, not
much progress has been made on the equally fundamental dynamic problem, where insertions
and deletions of points are allowed.
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28:2 Dynamic Colored Orthogonal Range Searching

Table 1 Static data structures for colored 2D orthogonal range reporting. (Coordinates are
assumed to be integers bounded by U .)

space query time
Janardan & Lopez (’93) [21] O(n log n) O(log2 n + k)

O(n log2 n) O(log n + k)
Gupta, Janardan, & Smid (’95) [17] O(n log2 n) O(log n + k)
Agarwal et al. (ESA’02) [1] O(n log2 n) O(log log U + k)
Mortensen (’03) [27] O(n log n log log n) O(log2 log U + k)

O(n log n) O(log n log2 log n + k)
Shi & JaJa (’05) [34] O(n log n) O(log n + k)
Larsen & van Walderveen (SODA’13) [25] O(n log n) O(log log U + k)
Nekrich (PODS’12) [30] O(n log n) O(log log U + k)
Chan and Nekrich (SODA’20) [7] O(n log3/4+ε n) O(log log U + k)

Known dynamic colored results. The 1D dynamic colored range reporting problem – in
which query ranges are intervals – can be easily reduced to 2D uncolored 3-sided range
reporting (e.g., see the survey [16, Section 1.3.1]), and so by “textbook” range trees [11, 33],
the problem can be solved with O(log n + k) query time and O(log2 n) update time, or
by incorporating dynamic fractional cascading [26], O(log n log log n + k) query time and
O(log n log log n) update time. By using the current best results of Chan and Tsakalidis [9]
on dynamic 2D uncolored range searching, the query time improves to O( log n

log log n + k) and
the update time improves to O(log1/2+ε n) (amortized) for an arbitrarily small constant
ε > 0. (For dynamic 2D uncolored range searching, a lower bound of Ω( log n

log log n + k) query
time is known [2] for data structures with polylogarithmic update time; and

√
log n update

time has also been recognized as a barrier that would be difficult to break with existing
techniques [9].)

Straightforwardly, the dynamic 2D colored range reporting can be reduced dynamic 1D
colored range reporting, by using a range tree on the x-coordinates, with a logarithmic-factor
increase in both the query and update time. This implies a 2D colored data structure with
O( log2 n

log log n + k log n) query time and O(log3/2+ε n) update time. Notice the extra logarithmic
factor in the O(k log n) term of the query cost: as the query range is decomposed into
O(log n) sub-ranges, the same color may discovered O(log n) times with this approach.

Alternatively, it is known (e.g., see [16, Section 3.4]) that a colored range reporting query
can be reduced to O(k log n) number of uncolored range emptiness queries, by using a range
tree on the colors. This simple reduction works in the dynamic setting, with update time
increased by a logarithmic factor. By Chan and Tsakalidis’s result [9] on dynamic uncolored
range emptiness, this implies a different dynamic 2D colored data structure with O(k log2 n

log log n )
query time and O(log3/2+ε n) update time, which is no better than the above.

Known static methods managed to avoid extra logarithmic factors in the k term (as can
be seen in Table 1), but these methods do not adapt well to the dynamic setting. Some
results were known in the insertion-only case [17], but it is open whether there exists a fully
dynamic data structure with O(polylog n + k) query time and O(polylog n) update time for
2D colored orthogonal range reporting.1

1 However, it is not difficult to obtain O( log n
log log n + k) query time with O(nε) update time, by modifying

the reduction from 2D colored to 1D colored to use a larger fan-out nε′
.
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New dynamic colored result. We make progress towards this open problem by presenting
a new data structure for dynamic 2D colored orthogonal range reporting with O(log n +
k log1/2+o(1) n) query time and O(polylog n) update time. The query cost per reported color
is thus sublogarithmic (log1/2+o(1) n).

Interestingly, this improved query time bound is obtained using an approach similar to
that in Chan and Pătraşcu’s O(n

√
log n)-time inversion-counting algorithm [8], or in other

known data structures with “fractional-power-of-log” update times [8, 9, 10, 28, 36]. As
reinterpreted in Chan and Tsakalidis’ framework [9], the approach roughly involves two
parts: (i) the design of micro-structures for small input (of size near 2

√
log n), which uses bit

packing tricks; and (ii) the design of macro-structures, which uses more traditional range
trees but with larger fan-out (also near 2

√
log n) to reduce the tree depth. What is novel in

our application is that the
√

log n factor appears in the k term of the query cost – we will
apply bit packing to the query’s output list of colors in the micro-structures. In addition, we
follow an idea from Chan and Nekrich’s static data structure for colored range reporting [7]:
first solve a “capped” version of the problem, where the number of reported colors k is
promised to be upper-bounded by some parameter K0, and then extend the solution to
general k by building a range tree on the colors. The overall method is conceptually not
complicated, as explained in Section 2.

Improving the update time. In its simplest version, our data structure has O(log3+o(1) n)
update time. In Section 3, by combining with the more sophisticated techniques in Chan
and Tsakalidis’ work on dynamic uncolored orthogonal range searching [9], we further
reduce the update time to O(log2+o(1) n), while keeping roughly the same query time
O(log1+o(1) n + k log1/2+o(1) n). These bounds are amortized.

Alternative result. In Section 4, by using a different micro-structure, we also describe
an alternative data structure which further lowers the update time to O(log3/2+o(1) n),
although the query time is increased to O(log1+o(1) n + k log3/4+o(1) n). Still, compared
to the aforementioned prior result with O( log2 n

log log n + k log n) query time and O(log3/2+ε n)
update time, we get a strictly better query time bound while keeping the same update time.

Higher dimensions. Our approach can also be extended to higher dimensions. In Section 5,
we show how to answer colored orthogonal range reporting queries in a constant dimension
d in O(logd−1 n + k logd−2+1/d+o(1) n) time, while supporting updates in O(polylog n) time.
The logd−2+1/d n factor is intriguingly similar to Chan and Pătraşcu’s bound on d-dimensional
(uncolored) orthogonal range counting [8].

Computational model. We work with the standard w-bit word RAM model of computation,
with w = Ω(log n). On occasion, we assume that certain nonstandard word operations take
unit time. This assumption may be removed by simulating such operations via table lookup,
after an initial preprocessing of the table in 2O(w) time, the cost of which is negligible since
we will eventually set w = δ log n for a sufficiently small constant δ > 0.

2 First Method

In this section, we present our first method for 2D colored orthogonal range reporting,
achieving roughly O(log n + k

√
log n) query time with polylogarithmic update time.

ESA 2021



28:4 Dynamic Colored Orthogonal Range Searching

We begin by solving the case of 3-sided query ranges, i.e., rectangles that are unbounded
on one side, w.l.o.g., from below. The colored 3-sided problem is already challenging (and, in
fact, so is 2-sided). The general idea is to build the data structure in two stages. First, in
Section 2.1 we design a micro-structure to solve the problem for small input size, in which
case the colors can be encoded in much fewer bits than log n and we can apply bit packing
tricks. In Sections 2.2–2.3 we then use this micro-structure to build a macro-structure, solving
the 3-sided problem for large input size. Finally, in Section 2.4, we note how the original
4-sided problem can be reduced to the 3-sided problem, without increasing the query time
(though the update time is increased by an extra logarithmic factor).

2.1 3-Sided Micro-Structure
Our micro-structure is obtained by modifying the binary range tree and incorporating bit
packing techniques.

▶ Lemma 1. Given a set of at most s points in 2D, there is a data structure for colored
3-sided range reporting with

query time Q3(s, k) = O(log s + (k log k log2+o(1) s)/w + k), and
amortized update time U3(s) = O(log1+o(1) s).

Proof. Since there are at most s points and thus at most s colors, we can map each color
to an integer in {1, . . . , s}. This enables us to pack w/ log s colors into a single word. The
mapping can be stored in a “color translation” table of s entries, so that we can translate
each mapped color back to its original color in constant time. In an insertion of a point with
a new color, we can simply map its color to the next unused integer.

The micro-structure takes the form of a binary range tree. At each node, we divide the
plane into two vertical slabs, each with roughly half the number of points, such that each
child node stores a recursive data structure for one of the slabs. For each slab σ, we store a
list Lσ of all points in σ, sorted by the y-coordinates. In addition, we store a sublist L′

σ that
contains the lowest point of each color in Lσ, also sorted by y. Using a colored predecessor
search structure [28, Theorem 14], which has O(log2 log s) update time, for any given point,
we can find the predecessor in Lσ and L′

σ in O(log2 log s) time, given its predecessor in Lτ

of the parent slab τ ; we can also find the predecessor of a specific color in O(log2 log s) time.
When a point p is inserted to Lσ, if p has no predecessor of the same color, we insert

it to L′
σ and delete its colored successor (if one exists) from L′

σ. When a point p is deleted
from Lσ, if p is in L′

σ, we delete it and insert its colored successor to L′
σ.

By bit packing, we store the list of colors in Lσ in a sequence of words, each containing
between w/(2 log s) and w/ log s colors. During an insertion, when the number of elements
in a word exceed w/ log s, we split the word into two. During a deletion, when the number
of elements in a word drops below w/(2 log s), we merge the word with its successor in the
sequence, and if the number of elements in the merged word exceeds w/ log s, we split it.
This takes constant time (using standard word operations such as shifts).

We can ensure that the range tree has O(log s) height, for example, by known weight-
balancing techniques [4]. The overall update time is thus O(log s log2 log s).

For a given 3-sided query range q, if q intersects only one slab, then we recurse in that
slab; otherwise, we make a recursive 2-sided query in each slab. Given a 2-sided query range
q open to the left, if the vertical side of q intersects the left slab, then we recurse in the
left slab; otherwise, we report all distinct colors in the left slab σ by scanning its sublist L′

σ

from the bottom and extracting a prefix, and then recurse in the right slab. We can handle
2-sided query ranges open to the right symmetrically.
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Each color is reported only once at each level, and therefore is reported O(log s) times
over the recursion. Thus, the combined list of reported colors requires O(k log s · log s) bits
and can be represented in O(1 + (k log2 s)/w) words. We then remove duplicate colors by
sorting and performing a linear scan. A bit-packed version of mergesort on m elements takes
time O(log m) times the number of words (using possibly nonstandard word operations).
Thus, the cost is O(log s + (1 + (k log2 s)/w) · log(k log s)) = O(log s + (k log k log2+o(1) s)/w).
Afterwards, we spend O(k) time to translate the output colors. ◀

2.2 3-Sided Capped Macro-Structure
Next, we present our macro-structure for large input. We first solve the K0-capped problem.
Here, the number of colors in the query range is promised to be smaller than a given fixed
value K0, i.e., k ≤ K0.

▶ Lemma 2. Fix a value K0 ≤ 2
√

w. Given n points in 2D, there is a data structure for
colored 3-sided K0-capped range reporting with

query time O(log n + (k log K0 log1+o(1) n)/
√

w + k) ≤ O(log n + k log K0 log1/2+o(1) n);
amortized update time O(log1+o(1) n).

Proof. We will still use a variant of the range tree, but with a much larger fan-out s to be
set later. At each node, the plane is divided into s vertical slabs, each with about 1/s of the
points. For each slab σ, among the lowest point of each color, we only take the K0 lowest
ones. We replace the x-coordinates of these points with that of the left side of σ. We then
store all sK0 such points across all slabs in the micro-structure from Lemma 1, with U3(sK0)
update time and Q3(sK0, k) query time. We maintain colored predecessor search structures
at each node as before. We can ensure that the range tree has O(logs n) height, by known
weight-balancing techniques [4].

For a given 3-sided query range q, we identify the child slabs σ1 and σ2 containing the
two vertices of q, answer a query for the micro-structure for q − σ1 − σ2, and then recurse in
σ1 and σ2. We make O(logs n) queries on the micro-structures along two paths of the tree,
so the query time is

Q′
3(n, k) = O(Q3(sK0, k) logs n) = O

(
log(sK0) + k

log k log2+o(1)(sK0)
w

+ k

)
· logs n.

For each update, we make O(logs n) updates on the micro-structures along a path of the
tree, so the update time is

U ′
3(n) = O(U3(sK0) logs n + logs n log2 log n) = O((log1+o(1)(sK0) + log2 log n) logs n).

Setting s = 2
√

w and recalling that K0 ≤ 2
√

w, we obtain Q′
3(n, k) = O(log n +

(k log k log1+o(1) n)/
√

w + k) and U ′
3(n) = O(log1+o(1) n). ◀

Remark. If k ≥ K0, the algorithm may or may not succeed in reporting all k distinct
colors. It is actually possible to pre-check whether the algorithm will succeed, in O(log n)
time (without paying the O((k log K0 log1+o(1) n)/

√
w + k) cost): In the data structure from

Lemma 2, recall that in each slab we store the lowest K0 points of distinct colors in a
micro-structure. We mark the K0-th lowest point with a special color. In the micro-structure
from Lemma 1, in each Lσ, we maintain the lowest special point. If the query algorithm
wants to report a prefix of L′

σ, we check that the lowest special point is not in the query
range (otherwise the algorithm would fail). We also check that the K0-th lowest point of L′

σ

is not in the query range. The cost of pre-checking is O(logs n · log(sK0)) = O(log n).

ESA 2021



28:6 Dynamic Colored Orthogonal Range Searching

2.3 From Capped to Uncapped
We now remove the assumption k < K0, to obtain a complete solution to the 3-sided problem:

▶ Theorem 3. Given n points in 2D, there is a data structure for colored 3-sided range
reporting with

query time O(log n + (k log1+o(1) n)/
√

w + k) ≤ O(log n + k log1/2+o(1) n), and
amortized update time O(log2+o(1) n).

Proof. We use a range tree on the colors, as in Chan and Nekrich’s static colored method [7,
proof of Theorem 2.3], with fan-out f . At each node we store its point set in the capped
data structure from Lemma 2. The color class is partitioned into f color subclasses, each
with roughly equal number of colors. Each child of a node corresponds to one of these
subclasses. We can ensure that the range tree has O(logf n) height, by known weight-
balancing techniques [4].

To answer a query, at each node we first pre-check whether the query will succeed, as in
the Remark after Lemma 2.2 If so, we query the capped structure from Lemma 2 at the
node and finish the query. Otherwise, we recurse in all f children.

Whenever we recurse in the children of a node, the node must contain ≥ K0 colors in
the query range. Thus, the number of recursive calls per level is O(fk/K0), so the total
number of recursive calls is O((fk/K0) logf n), excluding the root. Thus, the total cost of
pre-checking is O((fk/K0) logf n · log n). The total query time spent on capped structures is
O(((fk/K0) logf n + 1) · log n + (k log K0 log1+o(1) n)/

√
w + k).

For each update, we make O(logf n) updates to the capped structures along a path of
the tree, so the total update time is O(logf n · log1+o(1) n).

Setting f = 2 and K0 = log2 n yields query time O(log n + (k log1+o(1) n)/
√

w + k) and
update time O(log2+o(1) n). ◀

2.4 From 3-Sided to 4-Sided
By building a standard binary range tree where each node stores the 3-sided structure from
Theorem 3, we can reduce a 4-sided query to two 3-sided queries. The query time remains
the same, and the update time increases by a logarithmic factor. This immediately yields
the following result:

▶ Corollary 4. Given n points in 2D, there is a data structure for colored 4-sided range
reporting with

query time O(log n + k log1/2+o(1) n), and
amortized update time O(log3+o(1) n).

3 Improving the 4-Sided Update Time

In this section, we apply more advanced techniques to improve the update time for 4-sided
queries to O(log2+o(1) n), which matches our 3-sided update time, avoiding the logarithmic-
factor penalty in going from 3-sided to 4-sided.

Chan and Tsakalidis [9] proposed a framework for transforming micro-structures into
macro-structures for uncolored range searching. We observe that their transformation works
for the capped colored problem as well, with minor modifications. Our improved colored

2 Chan and Nekrich [7] originally suggested some nontrivial approximate range counting approach to do
the pre-checking, which we have bypassed.
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result then follows by combining this transformation with our 3-sided micro-structure from
Section 2.1, and with the known transformation of capped to uncapped structures used in
Section 2.3.

In more details, Chan and Tsakalidis started with a technique of Mortensen [28, The-
orem 1], which they dubbed the van Emde Boas transformation, for converting a micro-
structure to a data structure for solving the narrow grid case, where input points have a
small number of distinct x-coordinates. The conversion increases time bounds by only log log
factors, and is achieved by a recursion similar to van Emde Boas trees [35]. We observe that
a similar transformation holds for the capped colored range reporting problem, if the cap K0
is not too big. The statement below is adapted from Chan and Tsakalidis [9, Lemma 4]. In
this section, 3-sided query ranges are unbounded from the left or the right (instead of from
below).

▶ Lemma 5. Fix K0. Let X be a set of O(s) values. Given a dynamic data structure for
colored j-sided range reporting (j ∈ {3, 4}) on s′ points in X × R with query time Qj(s, s′, k)
and update time Uj(s, s′) (amortized), there is a data structure for colored j-sided K0-capped
range reporting on n points in X × R with (amortized)

query time Qj(s, n, k) = O
(
Qj(s, (sK0)O(1), k) log log n

)
, and

update time Uj(s, n) = O
(
Uj(s, (sK0)O(1)) log2 log n

)
.

If the given data structure supports updates to X in UX(s) time and this update procedure
depends solely on X (and not the point set), the new data structure can support updates to
X in UX(s) time.

The proof is a straightforward modification of the previous proof [28, 9]. (Basically,
whenever in the uncolored solution we refer to the topmost/bottommost point, we now
consider the K0 topmost/bottommost points of distinct colors – this explains why the
number of points in the micro-structures goes up from sO(1) to (sK0)O(1).)

Next, Chan and Tsakalidis [9, Lemma 7] described a way to convert a narrow-grid
structure into a data structure for the general case. This transformation, which they dubbed
the (first) range tree transformation, uses standard range trees with fan-out s. We observe
that the same transformation works for the capped colored problem:

▶ Lemma 6. Fix K0. Given a family of data structures D(i)
j (i ∈ {1, . . . , logs n}) for dynamic

colored j-sided K0-capped range reporting (j ∈ {3, 4}) on n points in X × R (|X| = O(s))
with query time Q

(i)
j (s, n, k) update time U

(i)
j (s, n) (amortized), where updates to X take

UX(s) time, there is a data structure for colored 4-sided K0-capped range reporting on n

points in the plane with the following query and update time (amortized):

Q′
4(n, k) = O

(
max

i
Q

(i)
4 (s, n, k) + max

i
Q

(i)
3 (s, n, k) logs n + logs n log2 log n

)
U ′

4(n) = O

logs n∑
i=1

(U (i)
4 (s, n) + U

(i)
3 (s, n)) +

logs n∑
i=1

U
(i)
X (s)
si−1 + logs n log2 log n

 .

The proof of the above requires essentially no change in the previous proof [9].
We are now ready to put together our new improved data structure. We set K0 = s. Our

colored 3-sided method in Theorem 3 gives

Q3(s, sO(1), k) = O(log s + (k log1+o(1) s)/
√

w + k)

U3(s, sO(1)) = O(log2+o(1) s).

ESA 2021



28:8 Dynamic Colored Orthogonal Range Searching

The known colored 4-sided method mentioned in the introduction gives

Q4(s, sO(1), k) = O( log2 s
log log s + k log s)

U4(s, sO(1)) = O(log3/2+ε s).

(Actually, a weaker bound of U4(s, sO(1)) = O(log2+o(1) s) suffices.) In both of these methods,
UX(s) = 0. Applying Lemmas 5–6 (with Q

(i)
4 = Q4 and Q

(i)
3 = Q3 for all i) yields

Q′
4(n, k) = O

(
log2 s

log log s + k log s + (log s + (k log1+o(1) s)/
√

w + k) logs n
)

· log2 log n

U ′
4(n) = O(log2+o(1) s logs n) · log2 log n.

Setting s = 2
√

log n gives

Q′
4(n, k) = O(log1+o(1) n + k log1/2+o(1) n)

U ′
4(n) = O(log3/2+o(1) n).

All this is for the K0-capped problem with K0 = s = 2
√

log n. Finally, we solve the
general uncapped problem by the color range tree technique in Section 2.3. As in the Remark
after Lemma 2, it is possible to pre-check whether the query will succeed, in O(log1+o(1) n)
time (without paying the O(k log1/2+o(1) n) cost); the modification is straightforward (see
the Appendix regarding the van Emde Boas transformation). As in the proof of Theorem 3,
by using a range tree on colors with fan-out f , the overall query time is O(((fk/K0) logf n +
1) · log1+o(1) n + k log1/2+o(1) n), and the overall update time is O(logf n log3/2+o(1) n).

By setting f =
√

K0 for example, the query time remains O(log1+o(1) n + k log1/2+o(1) n)
and the update time becomes O(log2+o(1) n).

▶ Theorem 7. Given n points in 2D, there is a data structure for colored 4-sided range
reporting with

query time O(log1+o(1) n + k log1/2+o(1) n), and
amortized update time O(log2+o(1) n).

4 Alternative Method

We now describe an alternative method that has smaller update time O(log3/2+o(1) n), though
the query time is increased to O(log1+o(1) n + k log3/4+o(1) n).

The solution uses a different micro-structure, given in the lemma below, which works
directly for the general 4-sided case. Its main advantage is that it has constant amortized
update time when the input size s is sufficiently small (around 2log1/4 n). It is a colored
variant of a micro-structure for uncolored 4-sided queries by Chan and Tsakalidis [9, Lemma
5(ii) and Lemma 6].

▶ Lemma 8. Fix a parameter w̄ ≤ w with w̄ = Ω(log s). Given a set of at most s points
in a universe X × Y with |X|, |Y | = sO(1), and there is a data structure for 4-sided colored
range reporting with

amortized query time O(log2 s + (k log3+o(1) s)/w̄ + k), and
amortized update time O(1 + (log4 s)/w̄).

In addition, it supports:
updates to Y in O(log2 log n) time, and
updates to X in 2O(w̄) time, where the update procedure depends solely on X (and not
the point set).



T. M. Chan and Z. Huang 28:9

Proof. Recall that colors can be mapped to (log s)-bit integers, as noted in the first paragraph
of the proof of Lemma 1.

We follow the approach by Chan and Tsakalidis [9, Lemma 5(ii)] and mimick an external-
memory data structure with block size B := δw̄/ log s for a sufficiently small constant δ. A
block of B points can be encoded in O(δw̄) bits and can thus be packed in a single word.

The well-known buffer tree of Arge [3] is a 1D external-memory data structure with
subconstant (O( 1

B logB s)) amortized update cost. For their 4-sided uncolored micro-structure,
Chan and Tsakalidis suggested an analogous buffered version of the binary range tree in 2D,
which has amortized update cost O( 1

B log2 s) = O((log3 s)/w̄). Our solution in the colored
setting is similar.

Roughly speaking, in the primary 2D range tree, each node corresponds to a canonical
horizontal slab and stores a secondary tree, which is a 1D range tree of the points in the
corresponding canonical horizontal slab. In a secondary tree, each node corresponds a
canonical rectangle. In the buffered version, each node of the primary tree and secondary
trees holds a buffer of up to B update requests that are yet to be processed.

We will not re-explain all the details of the buffered 2D range tree, but just describe
the main changes needed for the colored problem: For each node ν of a secondary tree, we
additionally maintain a sorted list Lν of the distinct colors appearing in the corresponding
canonical rectangle, along with the multiplicity of these colors. We also hold a buffer Zν

of (a possibly large number of) of update requests yet to be processed at ν. Updates in
ν are handled lazily, by just appending the requests to the buffer Zν . We postpone the
work of actually updating Lν to querying. When a query wants to report the colors in a
node ν, we sort Zν by color and perform a linear scan to update Lν . Let ℓν and zν be the
number of elements in Lν and Zν . The lists Lν and Zν can be packed in O((ℓν log s)/w) and
O(zν log s)/w̄) words respectively. By a bit-packed version of mergesort, sorting Zν takes
time O((zν log s)/w̄) · log s. Since an update leads to update requests in the buffers Zν of
O(log2 s) nodes ν, we can assign an amortized cost of O((log4 s)/w̄) per update to cover this
sorting cost. Scanning Lν takes time O((ℓν log s)/w). Now, ℓν is bounded by the number of
colors reported in ν during the previous query that involves ν. Since a query visits O(log2 s)
nodes, we can assign an amortized cost of O((k log3 s)/w) per query with output size k to
cover this scanning cost.

In a query, we report the colors in the sorted list Lν for O(log2 s) nodes ν. The combined
list of reported colors has O(k log2 s) colors and requires O((k log3 s)/w̄) words. We remove
duplicate colors by merging these O(log2 s) sorted lists. This multi-way merging can be done
in O(log log s) rounds, each taking time linear in the number of words. Thus, the cost is
O((k log3+o(1) s)/w̄). Afterwards, we spend O(k) time to translate the output colors.

Updates to X and Y can be handled using the same ideas by Chan and Tsakalidis [9,
Lemma 6]. ◀

We can now put together the new data structure by combining the new micro-structure
with Chan and Tsakalidis’ framework [9], via the van Emde Boas transformation and range
tree transformation, as we have described in Section 3.

As before, we set K0 = s. For each j ∈ {3, 4} and each i ∈ {1, . . . , logs n}, we apply
Lemma 8 with the choice w̄ = δi log s to get

Q
(i)
j (s, sO(1), k) = O(log2 s + (k log2+o(1) s)/i + k)

U
(i)
j (s, sO(1)) = O(1 + (log3+o(1) s)/i)

U
(i)
X (s) = sO(δi).

ESA 2021
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Applying Lemmas 5–6 and noting that
∑logs n

i=1 1/i = O(log logs n) yields

Q′
4(n, k) = O

(
log2 s logs n + k log2+o(1) s + k logs n

)
· log3 log n

U ′
4(n) = O(logs n + log3+o(1) s) · log3 log n.

Setting s = 2log1/4 n gives

Q′
4(n, k) = O(log5/4+o(1) n + k log3/4+o(1) n)

U ′
4(n) = O(log3/4+o(1) n).

All this is for the K0-capped problem with K0 = s = 2log1/4 n. Finally, we solve the
general uncapped problem by using the color range tree technique in Section 2.3. As before,
it is possible to pre-check whether the query will succeed, in O(log5/4+o(1) n) time (without
paying the O(k log3/4+o(1) n) cost). The overall query time is then O(((fk/K0) logf n + 1) ·
log5/4+o(1) n + k log3/4+o(1) n), and the overall update time is O(logf n log3/4+o(1) n).

By setting f =
√

K0 for example, the query time remains O(log5/4+o(1) n+k log3/4+o(1) n)
and the update time becomes O(log3/2+o(1) n).

The term O(log5/4+o(1) n) dominates the query time bound only when k ≪
√

log n, but
in this case, we can switch to the method in Section 3, which solves the problem for an even
bigger cap 2

√
log n with a better query time O(log1+o(1) n + k log1/2+o(1) n) while keeping

update time O(log3/2+o(1) n).

▶ Theorem 9. Given n points in 2D, there is a data structure for colored 4-sided range
reporting with

amortized query time O(log1+o(1) n + k log3/4+o(1) n), and
amortized update time O(log3/2+o(1) n).

5 Higher Dimensions

We now point out a generalization of the method in Section 2 to higher dimensions.
First, it is straightforward to generalize the micro-structure from Lemma 1 (here, a

(2d − 1)-sided range is unbounded along the d-th axis):

▶ Lemma 10. Given a set of at most s points in a constant dimension d, there is a data
structure for colored (2d − 1)-sided range reporting with

query time Q2d−1(s, k) = O(logd−1 s + (k log k logd+o(1) s)/w + k), and
amortized update time U2d−1(s) = O(logd−1+o(1) s).

We generalize the capped macro-structure from Lemma 2:

▶ Lemma 11. Fix a value K0 ≤ 2w1/d . Given n points in a constant dimension d, there is a
data structure for colored (2d − 1)-sided K0-capped range reporting with

query time O(logd−1 n + k log K0 logd−2+1/d+o(1) n);
amortized update time O(logd−1+o(1) n).

Proof. For each j ∈ {0, . . . , d − 1}, define Pj to be the (capped) subproblem in d dimensions
which the first j coordinates of all points come from a set X of O(s) values.

Following the proof of Lemma 2 of using a range tree but along the j-th axis, we can
reduce problem Pj to problem Pj+1 at the expense of increasing the query and update time
by one O(logs n) factor.



T. M. Chan and Z. Huang 28:11

We solve problem Pd−1 directly: Points lie on O(sd−1) vertical lines. For each such
vertical lines, among the lowest point of each color, we only take the K0 lowest points, and
store all these O(sd−1K0) points in the micro-structure from Lemma 10.

Thus, the original problem P0 can be solved with query and update time

Q′
2d−1(n, k) = O(Q2d−1(sd−1K0, k) · (logs n)d−1)

= O

(
logd−1(sK0) + k

log k logd+o(1)(sK0)
w

+ k

)
· (logs n)d−1

U ′
2d−1(n, K) = O(U2d−1(sd−1K0, k) · (logs n)d−1) = O(logd−1+o(1)(sK0)) · (logs n)d−1.

Setting s = 2w1/d and recalling that K0 ≤ 2w1/d , we obtain Q′
2d−1(n, k) = O(logd−1 n +

(k log k logd−1+o(1) n)/w1−1/d + k) and U ′
2d−1(n) = O(logd−1+o(1) n). ◀

We can solve the general uncapped problem by using the color range tree technique in
Section 2.3 (invoking the capped structure with K0 polylogarithmic). The update time is
increased by a logarithmic factor:

▶ Theorem 12. Given n points in a constant dimension d, there is a data structure for
colored (2d − 1)-sided range reporting with

query time O(logd−1 n + k logd−2+1/d+o(1) n), and
amortized update time O(logd+o(1) n).

Finally, as in Section 2.4, general (2d)-sided queries can be reduced to (2d − 1)-sided
queries, with another logarithmic-factor increase in the update time:

▶ Corollary 13. Given n points in a constant dimension d, there is a data structure for
colored (2d − 1)-sided range reporting with

query time O(logd−1 n + k logd−2+1/d+o(1) n), and
amortized update time O(logd+1+o(1) n).

6 Final Remarks

All the extra logo(1) n factors are (log log n)O(1). In the 2D query time bound of Corollary 4,
the O(log n) first term is likely improvable slightly to O( log n

log log n ) (to match known lower
bounds), by increasing the fan-out from 2 to logδ n in the proof of Lemma 1.

The main open question is whether O(polylog n + k) query time is achievable with
O(polylog n) update time in 2D.

In higher dimensions, we have not tried to optimize the number of logarithmic factors
in the update time, but the ideas in Section 3 should help. A more intriguing question is
whether O(polylog n + k logd−2−δ n) query time is achievable with O(polylog n) update time.
Even for the static problem, we do not know how to get O(polylog n + k) query time with
O(n polylog n) space; current techniques only give O(polylog n + k logd−3 n) query time [7].
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