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Abstract

We describe a fully dynamic linear-space data structure for point location in connected planar sub-
divisions, or more generally vertical ray shooting among non-intersecting line segments, that supports
queries in O(log n(log log n)2) time and updates in O(log n log log n) time. This is the first data struc-
ture that achieves close to logarithmic query and update time simultaneously, ignoring log log n factors.
We further show how to reduce the query time to O(log n log log n) in the RAM model with random-
ization. Alternatively, the query time can be lowered to O(log n) if the update time is increased to
O(log1+ε n) for any constant ε > 0, or vice versa.

1 Introduction

In the dynamic planar point location problem, we want to maintain a connected planar polygonal subdivision
with n edges, subject to insertions and deletions of edges, so that we can quickly return a label of the face
containing a query point q.

More generally, we want to maintain a set of n non-intersecting line segments (not necessarily con-
nected), subject to insertions and deletions of line segments, so that we can quickly find the segment im-
mediately above a query point q, i.e., answer a vertical ray shooting query. Indeed, if the subdivision is
connected, knowing the edge e immediately above q implies knowing the face containing q, by maintaining
the list of edges surrounding each face in a concatenable queue structure (e.g., see [12]).

Dynamic planar point location is a natural generalization of one-dimensional dynamic predecessor
search. It is among the most fundamental problems in geometric data structures, and also gives rise to one of
the major remaining open questions in computational geometry, reiterated in several invited talks [9, 10] and
surveys [14, 32]: is there a fully dynamic O(n)-space data structure for planar point location with O(log n)
query and update time?

A variety of different techniques have been proposed, based on segment trees [4], interval trees and
priority search trees [12], dynamic fractional cascading [1, 3], the trapezoid method [15], and primal/dual
spanning trees [20]. As Chazelle put it in his STOC’94 invited talk abstract [10], “many solutions exist, but
all suffer from extra logarithmic factors in one or several of the relevant resource measures (query, update
time, and storage).” See the top part of Table 1 for a list of previous results. In every row, at least one of
the time bounds is worse than log2 n. The sole exception is the most recent result by Arge et al. [1] from
FOCS’06, whose update time beats log2 n by merely a log log n factor.
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†Cheriton School of Computer Science, University of Waterloo (yakov.nekrich@googlemail.com).

1



s2s1 s2s1

s3

s3

Figure 1: Not knowing the segment s3 yet to be inserted, we cannot order s1 and s2 by y.

Omitted from the table are many more results [6, 19, 22, 27] for the special case of orthogonal subdivi-
sions, i.e., vertical ray shooting among horizontal line segments. There, data structures with O(log n) query
and update time are known (in the RAM model) [6, 19]. However, the orthogonal special case appears easier
for multiple reasons; for example, in the general case, it is not possible to globally y-order all segments in
advance (see Figure 1), and previously deleted segments may intersect current segments.

We obtain the new results shown in the bottom part of Table 1. In particular, we obtain the first result
that truly breaks the log2 n barrier and gets within log log n factors of the desiredO(log n) query and update
time bound simultaneously.

Our basic data structure requires O(log n(log log n)2) query time and O(log n log log n) update time.
It can be described in two different ways—non-recursively in Section 2, or recursively in Section 4—the
reader may choose to read either section, depending on his/her taste. Both versions are conceptually simple,
and both sections require just a few pages. One log log n factor in the query time unsurprisingly comes from
dynamic fractional cascading (which uses van Emde Boas trees), but the other log log n factor is where the
novelty lies.

In the non-recursive version, we adopt a multi-colored variant of the standard segment tree, where dif-
ferent pieces of one segment may be assigned different colors and we only y-order pieces of the same
color—this gets around the issue indicated by Figure 1. The log logn factor arises from the number of
colors, which are assigned using some form of binary searching over the O(log n) levels of the segment tree
(see the definition of canonical paths/subtrees in Section 2.4). In the recursive version, we use instead a

√
n-

way divide-and-conquer. The log log n factor arises from the depth of the recursion. Readers familiar with
the literature may compare and contrast our solution with other existing data structuring techniques which
generate log logn complexity, such as van Emde Boas trees [33] (which similarly have both a non-recursive
and a recursive description) and “ball inheritance” [8].

The non-recursive version is further refined in Section 3, where we address remaining technical issues,
such as reduction of the space bound to O(n), query/update-time trade-offs (lowering the query time to
O(log n) at the expense of increasing the update time to O(log1+ε n), or vice versa), implementation in
the pointer machine model, derandomization, and deamortization. The recursive version is further refined in
Section 5, where we manage to shave off a log logn factor from theO(log n(log log n)2) query bound using
RAM tricks, combined with an interesting randomized search technique [7]. (The non-recursive version
does not naturally yield this improvement; on the other hand, the recursive version does not naturally yield
some of the stated query/update trade-offs.)

2 Non-Recursive Approach

For simplicity, we assume that the endpoints of all segments have x-coordinates coming from a static set X
of size O(n); we will describe how to remove this assumption later in Section 3.1. We start by reviewing
known relevant techniques in the next three subsections, before revealing our new method in Section 2.4.
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Reference Space Query Time Insertion Time Deletion Time
Bentley [4] n log n log2 n log2 n log2 n G
Fries [18] n log2 n log4 n log4 n C

Preparata–Tamassia [30] n log2 n log2 n log2 n M
Chiang et al. [13] n log n log n log3 n log3 n C

Chiang–Tamassia [15] n log n log n log2 n log2 n M
Cheng–Janardan [12] n log2 n log n log n G
Baumgarten et al. [3] n log n log log n log n log log n log2 n G†

Goodrich–Tamassia [20] n log2 n log n log n M
Arge et al. [1] n log n log1+ε n log2+ε n G†

Arge et al. [1] n log n log n(log log n)1+ε log2 n/ log log n G†‡∗

Theorems 3.3 and 3.7 n log n(log log n)2 log n log log n log n log log n G
Theorems 3.4 and 3.7 n log n log1+ε n log1+ε n G

Theorem 3.8 n log n log1+ε n log n(log log n)1+ε G∗

Theorems 3.5 and 3.7 n log1+ε n log n log n G
Theorem 5.3 n log n log log n log n log log n log n log log n G‡∗

Table 1: Previous and new results on dynamic planar point location. Here, ε > 0 is an arbitrarily small con-
stant. Entries marked M are for monotone subdivisions, C for connected subdivisions, and G most generally
for vertical ray shooting among non-intersecting segments. Entries marked † and ‡ require amortization
and (Las Vegas) randomization respectively. All results are in the pointer machine model, except the ones
marked ∗, which are in the RAM model (assuming unit cost for standard operations on (log n)-bit words,
comparisons of input x-coordinates, and point–segment comparisons—the input may be real-valued).

2.1 Segment Tree

We first review the standard segment tree [4, 14, 16, 32].
We build a binary tree T of height H = O(log n), where each node corresponds to a vertical slab.

The root slab is (min(X),max(X)] × R; each internal node’s slab is the disjoint union of the slabs of the
children; and each leaf slab has x-coordinates delimited by two consecutive elements of X .

Let S be the set of O(n) input non-intersecting segments. A segment spans a slab if it intersects the slab
but both endpoints are outside the slab. For each slab u in T , we define the list

L(u) = {all segments in S that span u but not par(u)},

where par(u) denotes the parent of u.
The segment tree of S refers to the tree T together with the lists L(u) at each node u, where each L(u)

is stored in sorted y-order, in a binary-searchable structure.

Queries. To answer a vertical ray shooting query for a point q using the segment tree, we can just find the
O(H) slabs in T containing q, find the successor of q (with respect to y-order) among the segments in L(u)
by binary search in O(log n) time for each such slab u, and return the lowest of the segments found. The
overall query time is O(H log n) = O(log2 n).

Updates. To insert/delete a segment s, observe that s is in O(H) lists of the segment tree. Namely, we
find the two leaf slabs vL and vR containing the left and right endpoints of s (pretending that s has been
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Figure 2: Two paths πL and πR in a segment tree. The segment s is in the lists L(u) for the nodes u shown
as white boxes.

extended slightly on both sides), take the lowest common ancestor w of vL and vR, and consider the path
πL from the left child of w to vL and the path πR from the right child of w to vR; then s is in the lists L(u)
for right siblings u of the nodes along πL (excluding its top node), and the left siblings u of the nodes along
πR (excluding its top node). See Figure 2. We can insert/delete s in L(u) in O(log n) time for each affected
node u. The overall update time is O(H log n) = O(log2 n).

2.2 Segment Tree with Dynamic Fractional Cascading

The query time can be improved to near-logarithmic by a dynamic form [22] of fractional cascading [11],
which has been used as an ingredient in several previous methods for dynamic point location [1, 3]. We
describe our variant of the technique, which uses randomization to simplify matters;1 a derandomized variant
will be described in Section 3.6.

We maintain an augmented list L+(u) for each node u, defined as follows. At the root u, we set
L+(u) = L(u). Given L+(par(u)), we first maintain lists sample(L(u)) and sample(L+(par(u))), where
sample(A) denotes a sublist of a list A, sorted in y-order, where each element of A is selected to be in
the sublist independently with probability α = 1/ log4 n. Note that every two consecutive elements of
sample(A) are separated by O((1/α) log n) elements of A w.h.p.2 We set

L+(u) = sample(L(u)) ∪ sample(L+(par(u))).

(In other words, we pass a fraction α of the elements of the parent list to each child’s list.) Note that segments
spanning par(u) span u, and so inductively all segments in L+(u) span u and can indeed be y-ordered. (In
contrast, if we were to pass elements instead from children lists to parent lists, the resulting lists would
contain segments that are not y-comparable.) We assume that each list is stored in a structure supporting
finger search [21].

We need a data structure to maintain a listA and a sublistB ⊆ A that can find the predecessor/successor
of any element in A among the elements in B. In our application, A = L+(u) and B is sample(L(u)) or
sample(L+(par(u))). Mehlhorn and Näher [22] presented a union-split-find data structure (based on van
Emde Boas trees) that can answer such a query in O(log log n) time and support an update in O(log log n)

1We make the standard assumption that the update sequence is independent of the random choices made by the update algorithm.
We do not assume that the update sequence is random, for otherwise the problem is easier [25].

2With high probability, i.e., with probability at least 1− 1/nd for an arbitrarily large constant d.
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time given the location in A of the element to be inserted/deleted (which may require O(log n) time to find
by an initial binary search).

Queries. To answer a vertical ray shooting query for a point q, we first find the successor of q in L+(u)
for the leaf slab u containing q by binary search in O(log n) time. From this, we can deduce the successor
of q in sample(L(u)) and the successor of q in sample(L+(par(u)) in O(log log n) time by querying a
union-split-find structure. From these, we can deduce the successor of q in L(u) and the successor of q in
L+(par(u)) by finger search in O(log((1/α) log n)) = O(log log n) time w.h.p. We then reset u to par(u)
and repeat. At the end, we have obtained the successor of q in L(u) for all O(H) slabs u containing q, and
can return the lowest segment found. The overall query time isO(log n+H log logn) = O(log n log logn).

Updates. Recall that the insertion/deletion of a segment s requires updates to the list L(u) for O(H)
nodes u, costing O(H log n) = O(log2 n) time (an insertion to each L(u) may require a binary search
for s).

In addition, with probability α, an update to L(u) may cause an update to the augmented list L+(u),
which in turn may trigger updates to the augmented lists of the children of u, and so on. Let ti denotes the
expected number of updates to the augmented lists triggered by an update to L+(u) for a node u at level i.
Then

ti ≤ 1 + α · 2ti+1, (1)

which yields ti = O(1). The O(H) updates to the lists L(u) thus trigger an expected O(αH) number of
updates to all the augmented lists, costing O(αH log n) = o(1) expected time. The overall expected update
time therefore remains O(log2 n).

The log2 n barrier. Fractional cascading improves the query time but not the update time. The bottleneck
in the insertion algorithm lies not in updating the augmented lists but in updating/searching the original lists
L(u) of the affected nodes u. Unfortunately, these searches for s in L(u) cannot be sped up by union-split-
find data structures, because the affected nodes u do not lie on two paths but are siblings of nodes along two
paths. (If we were to pass elements from a node’s list to a sibling’s child’s list, the resulting lists may contain
segments that are not directly y-comparable.) Although it is possible to reduce the update time slightly by a
log logn factor at the expense of increasing the query time by increasing the fan-out of the tree, it is unclear
how to get a more substantial improvement while staying within the segment tree framework.

2.3 1-Sided Case

There is one special case for which the log2 n barrier can be easily overcome, and which will be used as a
subroutine for our method later. The special case is when the line segments are 1-sided, i.e., they all touch
one of the walls, say, the right wall, of the root slab. Here, all the segments can obviously be y-ordered. (A
solution to this special case is sometimes used as secondary structures in an interval tree [14, 16, 32], but
we would like to stay within the segment tree framework.)

Specifically, for each slab u in T , define the list

L′(u) = {all segments in S whose left endpoints are inside u}.

The resulting tree of lists, each stored in sorted y-order, is equivalent to a 2D range tree [16] (if we transform
each segment to a point (x, y) where x is the x-coordinate of the left endpoint and y is the y-coordinate at
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the right wall of the root slab). It is already known how to maintain a 2D range tree efficiently by dynamic
fractional cascading, using union-split-find structures [22]. The situation is simpler than in Section 2.2
because the lists are already hierarchical, i.e., L′(u) ⊆ L′(par(u)). There is no need to augment these lists
and pass a fraction of elements from one list to another, and it is simpler to proceed downward rather than
upward during searches:

To insert/delete a segment s, we first update L′(u) at the root u by binary search in O(log n) time. From
the location of s in L′(u), we can deduce the location of s in L′(w) for the child w of u containing the left
endpoint of s, and update L′(w), in O(log log n) time by operations on a union-split-find structure. We then
reset u to w and repeat.

Observe that for each node u with left sibling v, the list L(u) is exactly equal to L′(v) in the 1-sided
case; and for each node u which is itself a left child, the list L(u) is equal to ∅. We conclude that in
an insertion/deletion, we can update all the affected lists L(u) in the segment tree for this special case in
O(log n+H log log n) = O(log n log log n) time.

2.4 New Method: A Multi-Colored Segment Tree

To overcome the log2 n barrier in the general case, we introduce a relaxed, multi-colored3 version of the
segment tree. For each element s that appears in the list L(u) of a node u, we assign s a color in u (note that
the same segment s may be assigned different colors in different nodes). In other words, we partition L(u)
into multiple sublists

Lχ(u) = {s ∈ L(u) : s has color χ in u}.

In a multi-colored segment tree, instead of requiring L(u) to be sorted in y-order, we only require Lχ(u) to
be sorted in y-order for each color χ separately. (This provides more flexibility, since elements in L(u) that
are assigned different colors need not be y-compared.)

To speed up querying by fractional cascading, we maintain augmented lists L+
χ (u) as before but for

elements of each color χ separately; in other words, we define

L+
χ (u) = sample(Lχ(u)) ∪ sample(L+

χ (par(u))).

Queries. The query algorithm is now slowed down by a factor of K, the number of colors: we find the
successor of the query point q in Lχ(u) for all slabs u containing q as before, using the augmented lists,
in O(log n log logn) time w.h.p. for each color χ, and return the lowest segment found. The overall query
time is O(K log n log logn) w.h.p.

The coloring scheme. We thus want to keep the number of colors K small to ensure good query time.
The crux to our solution is a clever way to assign colors that achieves K = O(log log n) and at the same
time makes updates easier to do. To this end, we first make a few definitions. A canonical path is a path
in T from a node at level j2i to a node at level (j + 1)2i (or a leaf before that level) for some integers i
and j with i < logH . A canonical subtree is the subtree in T rooted at a node at level j2i and reaching all
its descendants at level (j + 1)2i (or leaves before that level) for some integers i and j. See Figure 3 (left).
Note that each canonical path of length 2i lies in a canonical subtree of height 2i, and canonical subtrees of
the same height are edge-disjoint. Furthermore, any path in T to a leaf can be decomposed into O(logH)
canonical subpaths (with at most one subpath of each length 2i).

3This is unrelated to existing literature on colored range searching which deals with colored input sets; in contrast, our challenge
is in finding a good coloring.
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Figure 3: (Left) The canonical subtrees. (Right) Decomposing a path πL into canonical subpaths.

For a given segment s, we find the two leaf slabs vL and vR containing the left and right endpoints of
s (pretending that s has been extended slightly on both sides), take the lowest common ancestor w of vL
and vR, and consider the path πL from the left child of w to vL and the path πR from the right child of w
to vR. We decompose πL into O(logH) canonical subpaths (see Figure 3(right)). For each such canonical
subpath, say, of length 2i, the segment s is in L(u) for the right siblings u of the nodes along the subpath
(excluding its top node); we assign s the color (i,“L”) in each such u. Similarly, we decompose πR into
O(logH) canonical subpaths. For each such canonical subpath, say, of height 2i, the segment s is in L(u)
for the left siblings u of the nodes along the subpath (excluding its top node); we assign s the color (i,“R”)
in each such u. As i < logH , the number of possible colors is indeed K = O(logH) = O(log log n). The
resulting query time is thus O(log n(log log n)2) w.h.p.

Updates. Observe that anywhere inside a canonical subtree τ of height 2i, the only segments that can
be assigned the color (i,“L”) must have right endpoints outside the root slab of τ . In other words, when
restricted to the lists Lχ(u) for the color χ = (i,“L”), the tree τ is identical to a segment tree for 1-sided
segments, as discussed in Section 2.3. A similar statement holds for the color (i,“R”).

Thus, when we insert/delete a segment, we can update the affected lists Lχ(u) at all siblings u of the
nodes along a canonical subpath of length 2i by the method in Section 2.3 in O(log n + 2i log logn) time
(since the height of the corresponding canonical subtree is 2i). Doing this over all O(logH) canonical
subpaths of πL and πR and summing over the O(logH) different possible i’s, we obtain an overall update
time of O(logH log n+H log logn) = O(log n log log n).

Finally, remember that the O(H) updates to Lχ(u) may trigger updates to the augmented lists, but their
expected cost is o(1) as explained in Section 2.2.

Theorem 2.1 There is a data structure that supports vertical ray shooting queries on a dynamic set of n
non-intersecting segments in O(log n(log log n)2) expected time and support insertions and deletions of
segments in O(log n log log n) expected time, assuming that all x-coordinates are from a static set X of size
O(n).

3 Refinements

3.1 Dynamizing X

To support insertions of new x-values to the set X , we can replace the static binary tree T with a weight-
balanced B-tree [2] with constant-bounded degree. The amortized cost per insertion to X is known to be
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O(log n), if the cost of splitting a node u takes time linear in the size nv of the subtree at u (e.g., see [19,
Theorem 2.1]). When a node u is split, we can recompute the lists Lχ(v) for theO(1) affected nodes v from
scratch, which can indeed be done in O(nu) time. In addition, we need to recompute the augmented lists
L+
χ (v) for all the descendants v of u from scratch; since the amortized cost for updating the augmented lists

for the reinsertion of each segment is O((αH) log n) = o(1), this step takes o(nu) time.
When n is increased or decreased by a factor of 2, we can rebuild the entire data structure from scratch.

3.2 Reducing Space

The space usage of our data structure is dominated by the total size of the lists L(u) of the segment tree,
which is O(n log n), since each segment is in L(u) for logarithmically many nodes u, and the augmented
lists have expected total size o(n). In this subsection, we show how to reduce space to O(n). In fact,
we describe a general way to reduce the space requirement of any dynamic point location structure. The
following space-reduction lemma is inspired by a recent work [26]. In a decomposable search problem [5],
the answer to a query for a union of two subsets can be obtained from the answers to the queries for the
subsets in constant time; for example, vertical ray shooting is a decomposable search problem.

Lemma 3.1 Consider a decomposable search problem, where (i) there is an S(n)-space fully dynamic data
structure with Q(n) query time and U(n) update time, and (ii) there is an SD(n)-space deletion-only data
structure with QD(n) query time, UD(n) update time, and PD(n) preprocessing time. Then there is an
O(S(n/z) + SD(n))-space fully dynamic data structure with O(Q(n/z) + QD(n) log z) query time and
O(U(n/z) + UD(n) + (PD(n)/n) log z) amortized update time for any given parameter z (assuming that
PD(n)/n is nondecreasing).

Proof : This follows from a variant of Bentley and Saxe’s logarithmic method [5]. In the original version, a
dynamic set is decomposed into O(log n) deletion-only subsets. Sizes of subsets increase geometrically, so
that the smallest subset is of sizeO(1) and every subset is Θ(f) times larger than the preceding subset, where
f is a constant. In our construction, the smallest subset C0 is of size Θ(n/z) and every following subset Ci
is Θ(f) times larger than Ci−1. New points are always inserted into the subset C0. When a point is deleted,
we remove it from its subset. We can maintain sizes of all subsets Ci using the method described in [5]; this
incurs an amortized cost O((PD(n)/n) log z) per update operation. Thus we decompose a dynamic set into
O(log z) deletion-only data structures and a fully-dynamic data structure of size O(n/z). �

Lemma 3.2 If there is a deletion-only data structure for vertical ray shooting queries for n horizontal
segments with Sorth(n) space, Qorth(n) query time, Uorth(n) update time, and Porth(n) preprocessing time,
then there is a deletion-only data structure for vertical ray shooting queries for n arbitrary non-intersecting
segments with SD(n) = Sorth(n) + O(n) space, QD(n) = Qorth(n) + O(log n) query time, UD(n) =
Uorth(n) +O(1) update time, and PD(n) = Porth(n) +O(n log n) preprocessing time.

Proof : We preprocess the initial input in a static data structure, with O(n log n) preprocessing time, O(n)
space, andO(log n) query time [32]. We also compute a topological order of the segments, with the property
that if segment s is below segment s′ at some vertical line, s appears before s′. Such an ordering can be
computed by a plane sweep in O(n log n) time [29]. We then map each segment s into a horizontal segment
with y-coordinate equal to the rank of s in the topological order (while preserving the x-coordinates). We
maintain these horizontal segments for vertical ray shooting in a given deletion-only data structure. To
answer a query, we first answer the query in the initial static data structure; let p be the point on the returned
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segment s immediately above the query point (note that s could have been deleted). We then map p to rank
space, i.e., reset its y-coordinate to the rank of s. Finally we answer the query for the mapped point p in the
data structure for the horizontal segments and map the answer back. �

Known results on dynamic vertical ray shooting among horizontal segments or dynamic orthogonal
point location [6, 19] achieve Sorth(n) = O(n), Qorth(n) = O(log n), Uorth(n) = O(log n), and Porth(n) =
O(n log n). Theorem 2.1 achieves S(n) = O(n log n), Q(n) = O(log n(log log n)2), and U(n) =
O(log n log logn). Applying the two lemmas with z = log n, we conclude:

Theorem 3.3 There is anO(n)-expected-space data structure that supports vertical ray shooting queries on
a dynamic set of n non-intersecting segments in O(log n(log log n)2) expected time and support insertions
and deletions of segments in O(log n log logn) expected amortized time.

3.3 Trade-Off I

We can lower the query time at the expense of increasing the update time, by making a few changes to our
method.

First, we increase the fan-out of the segment tree. Instead of a binary tree, we make T a degree-b tree
with height H = O(logb n) for a given parameter b ≤ log n. In Section 2.2, equation (1) now becomes
ti ≤ 1 + α · bti+1, which still yields ti = O(1). The query time there reduces to O(log n+H log logn) =
O(log n logb log n). Since each node now has b− 1 siblings, the update time increases by a factor of O(b),
however.

Second, in Section 2.3, for the special 1-sided case, we redefine

L′(u) = {all segments in S whose left endpoints are inside u or one of its left siblings}.

The resulting tree of lists corresponds to a b-ary variant of the 2D range tree. For each node uwith immediate
left sibling v, the list L(u) is exactly L′(v). In inserting/deleting a segment s, at each node u containing the
left endpoint of s, there may be up to b children w for which s is in L′(w). The update time there becomes
O(log n+ bH log log n) = O(b log n log logn).

Third, for our multi-colored version of the segment tree in Section 2.4, we redefine a canonical path to
be a path in T from a node at level jbi to a node at level (j + 1)bi, and a canonical subtree to a subtree in
T rooted at a node at level jbi and reaching descendants at level (j + 1)bi, for some i, j with i < logbH .
Canonical subtrees with the same height remain edge-disjoint, and every path to a leaf can be decomposed
into O(b logbH) canonical subpaths (with at most b subpaths of each length bi). The number of colors is
now K = O(logbH) = O(logb log n). The resulting query time becomes O(log n(logb log n)2).

In inserting/deleting a segment s to our multi-colored segment tree, the affected nodes include sib-
lings u of the nodes along the O(b logbH) canonical subpaths of πL and πR, and can be handled in
O(b logbH log n + bH log logn) = O(b log n log log n) time. In addition, the affected nodes include the
O(b) siblings of u between the top nodes of πL and πR, and we can assign s a new color “M” in each
such u; these O(b) updates take O(b log n) additional time. Updates to the augmented lists triggered require
expected cost O(αbH log n) = o(1).

To support insertions to X in Section 3.1, we can again use weight-balanced B-trees, with degree Θ(b).
The cost per insertion to X is O(b log n), since the cost of splitting a node u is now O(bnu).

To reduce space toO(n) in Section 3.2, we use a version of Lemma 3.1 withO(Q(n/z)+QD(n) logb z)
query time andO(U(n/z)+UD(n)+b(PD(n)/n) logb z) update time, via a base-b variant of the logarithmic
method (where we keepO(logb z) deletion-only subsets). The query time remainsO(log n(logb log n)2) and
the expected update time remains O(b log n log log n). Setting b = logε/2 n yields:
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Theorem 3.4 There is an O(n)-expected-space data structure that supports vertical ray shooting queries
on a dynamic set of n non-intersecting segments in O(log n) expected time and support insertions and
deletions of segments in O(log1+ε n) expected amortized time for any constant ε > 0.

3.4 Trade-Off II

Alternatively, we can lower the update time at the expense of increasing the query time, by the following
changes.

First, we make T a degree-b tree with height H = O(logb n) for a given parameter b ≤ log n. For
each node u, we decompose L(u) into the following O(b2) sublists: if u is a k-th child, then for every
1 ≤ k1 ≤ k ≤ k2 ≤ b with (k1, k2) 6= (1, b), define

Lk1,k2(u) = {all segments that span precisely the k1-th to the k2-th child of par(u)}.

Instead of requiring L(u) to be sorted by y-order, we only require each Lk1,k2(u) to be sorted by y-order.
We maintain augmented lists for each (k1, k2) separately. The query time in Section 2.2 increases to
O(b2(log n + H log log n)) = O(b2 log n log log n). Note that Lk1,k2(u) are identical lists for different
siblings u from the k1-th to the k2-th child of par(u); in updating Lk1,k2(u), it suffices to update one copy
of the list (although the augmented lists may be different, and a change to Lk1,k2(u) may trigger changes to
multiple augmented lists).

Second, in Section 2.3, we return to the original definition of L′(u). If u is a k-th child, then Lk1,b(u) is
exactly L′(v) where v is the (k1 − 1)-th child of par(u) for each 1 < k1 ≤ k.

Third, for our multi-colored version of the segment tree in Section 2.4, we redefine a canonical path
to be a path in T from a node at level jbi+1 − j′bi to a node at level jbi+1, and a canonical subtree to a
subtree in T rooted at a node at level jbi+1 − j′bi and reaching descendants at level jbi+1, for some i, j, j′

with i < logbH and 1 ≤ j′ ≤ b − 1. Canonical subtrees with the same height remain edge-disjoint, and
every path to a leaf can be decomposed into O(logbH) canonical subpaths (with at most one subpath of
each length j′bi). For each canonical subpath of πL, say, of length j′bi, we use the color (i, j, “L”). We
handle πR similarly. The number of colors is now K = O(b logbH) = O(b log logn). The resulting query
time is O(b3 log n log log n).

In inserting/deleting a segment to our multi-colored segment tree, the affected nodes include siblings u of
the nodes along theO(logbH) canonical subpaths of πL and πR, which can be handled inO(logbH log n+
H log log n) = O(log n logb log n) time (remember that only one copy of identical lists for siblings needs
to be updated). In addition, the affected nodes include the O(b) siblings of u between the top nodes of πL
and πR, and we can assign s a new color “M” in each such u; these O(b) updates take O(log n) additional
time (again, only one copy needs to be updated). Updates to the augmented lists triggered require expected
cost O(αbH log n) = o(1).

To support insertions to X in Section 3.1, we can again use weight-balanced B-trees, with degree Θ(b).
The cost per insertion to X is O(log n), since the cost of splitting a node u is O(nu).

To reduce space toO(n) in Section 3.2, we use a version of Lemma 3.1 withO(Q(n/z)+bQD(n) logb z)
query time and O(U(n/z) +UD(n) + (PD(n)/n) logb z) update time, via another base-b variant of the log-
arithmic method (where we keep O(b logb z) deletion-only subsets). The query time is O(b3 log n log log n)
and the amortized update time remains O(log n logb log n). Setting b = logε/4 n yields:

Theorem 3.5 There is an O(n)-expected-space data structure that supports vertical ray shooting queries
on a dynamic set of n non-intersecting segments in O(log1+ε n) expected time and support insertions and
deletions of segments in O(log n) expected amortized time for any constant ε > 0.
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3.5 Pointer Machine

Most parts of our algorithms in the preceding sections can be implemented in the pointer machine model.
The only exception is the space-reduction part in Section 3.2, where we have invoked known dynamic
(deletion-only) data structures for vertical ray shooting for horizontal segments [6, 19], which operates in
the (log n)-bit RAM model. In the pointer machine model, we can use instead the following alternative
data structures, which are slightly less efficient but do not affect the final time bounds in Theorems 3.3, 3.4,
and 3.5:

Lemma 3.6 In the pointer machine model, there is a data structure for vertical ray shooting for horizontal
segments with Sorth(n) = O(n) space, Porth(n) = O(n log n) preprocessing time, and

(i) Qorth(n) = O(log n log logn) query, Uorth(n) = O(log n log log n) update time, or

(ii) Qorth(n) = O(log n) query and Uorth(n) = O(log1+ε n) update time, or

(iii) Qorth(n) = O(log1+ε n) query and Uorth(n) = O(log n) update time.

Proof : (i) and (iii) were already proved by Giora and Kaplan [19] (it can be checked that their data structures
can indeed be preprocessed in O(n log n) time).

(ii) was almost proved by Giora and Kaplan as well, except that they obtained O(n logε n) space. They
used a space-reduction idea of Baumgarten et al. [3] based on dividing into blocks and keeping winners in
each block, but we take the idea one step further and describe how to reduce space to linear. We assume
familiarity with their paper [19, Section 6.1]. The base tree T is a tree with fan-out b = logε n and height
H = O(logb n). Each segment s is divided into three parts: take the lowest common ancestor w of the leaf
slabs containing the two endpoints; the left (resp. right) subsegment is the portion of s inside the child slab of
w containing the left (resp. right) endpoint of s; the middle subsegment refers to the remaining portion of s.
Giora and Kaplan already obtained O(n)-space structures for vertical ray shooting among the left and right
subsegments with O(log n) query time and O(log1+O(ε) n) update time. We suggest a more space-efficient
structure to handle the middle subsegments:

LetM(w) denote the list of all the middle subsegments for the node w, in y-order. We divideM(w) into
O(|M(w)|/t) blocks of size O(t) by y-coordinate, with t = log2ε n. We keep a sublist M ′(w) constructed
as follows. For each block B in M(w) and each of the b child slabs wi of w, we keep in M ′(w) the
highest and the lowest segment from B inside the slab wi. Then M ′(w) has size O((|M(w)|/t) · b) =
O(|M(w)|/ logε n). We store only the middle subsegments of M ′(w) in Giora and Kaplan’s data structure;
this reduces their O(n logε n) space bound to O(n). In addition, for each block B, we store a static data
structure for vertical ray shooting with O(t) space and O(log t) query time. The space for these structures
is O((|M(w)|/t) · t) = O(|M(w)|) per node w, which sums to O(n).

To answer a vertical ray shooting query among the middle subsegments for a point q, we first use Giora
and Kaplan’s structure to find the successor of q inM ′(u) for all theO(H) slabs u containing q, inO(log n)
overall time. For each such u, we can now identify the block B containing the true successor of q in M(u)
and finish the query in O(log t) = O(log log n) time by the static structure for B. The overall query time is
O(logb n log log n) = O(log n).

For an update, we update Giora and Kaplan’s structure inO(log1+O(ε) n) time and rebuild the static data
structure for one block in one M ′(w) list in additional O(t log t) = O(logO(ε) n) time. �
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3.6 Deamortization and Derandomization

Our only uses of amortization are from the weight-balanced B-tree in Section 3.1 and Lemma 3.2’s variant
of the logarithmic method in Section 3.2, but the first part can be deamortized (see [19]) and the second part
can be deamortized (see [28]) by standard techniques.

Our only use of randomization comes from dynamic fractional cascading in Section 2.2. We can deran-
domize by incorporating Baumgarten et al.’s deterministic version of dynamic fractional cascading [3], but
their scheme requires amortization. We describe a variant of deterministic dynamic fractional cascading,
inspired by the method of Arge et al. [1], that guarantees good worst-case update time. We focus on the
binary segment tree setting, but with straightforward modification, the technique can also be applied to the
version with larger fan-out used in the trade-off results.

Every segment s is kept in O(H) lists Lχ(u). To simplify the notation we will omit the subscripts and
write L(u) instead of Lχ(u) in the description below. Since each occurrence of s is stored in up to H lists
L+(v), each segment can appear in up to H2 structures in the worst case. Our variant keeps every element
s ∈ L(u) in a constant number of augmented lists L+(v) for descendants v of u. Hence the total number of
instances of any segment s in all lists L+(w) and L(u) is bounded by O(H).

The second challenge is that we needO(log n) time to insert a new segment s ∈ L(u) into an augmented
list L+(w) for a descendant w of u. When a bridge segment s ∈ L+(w) \ L(w) is deleted, we also need
O(log n) time because we have to insert another segment s′ into L+(w). We employ delayed insertions
and lazy deletions to solve this problem. Our method guarantees that there are Ω(log2 n) insertions into
an ancestor of a node u for every insertion into L+(u). When a bridge segment s is deleted, it is marked
as deleted but we keep a copy of s in the list L+(u). Segments marked as deleted will be called phantom
segments, other segments will be called real segments. Let L(u) and L+

(u) denote the lists that contain
all real and phantom segments; as before L(u) and L+(u) are the lists of real segments. The number of
phantom segments in any given list L+

(u) can be large; for instance, all segments in L+
(u) \ L(u) can be

phantom segments. Unlike L(u) segments in L+
(u) can intersect. We maintain two invariants that enable

efficient searching in spite of intersections: (i) each real segment intersects at most H phantom segments
and (ii) each phantom segment is intersected by at mostO(H log2 n) (real or phantom) segments. Segments
in L+

(u) are ordered by y-coordinates of their endpoints, i.e., points where they intersect the right boundary
(or left boundary) of u.

In Section 3.6.1 we describe how to define sets sample(u) and how augmented listsL+(u) = sample(u)∪
sample(par(u)) are maintained under insertions and deletions. In Section 3.6.2 we then show how invariant
(ii) can be maintained and how to search in sets L+

(u) in spite of intersecting segments.

3.6.1 Structure

Each list L(u) is divided into groups of O(log3 n) elements. Every group in L(u) except for the last one
contains Ω(log3 n) elements. If L(u) consists of more than one group, we maintain a set L′(u) that contains
one representative segment from each group. L′(u) is further divided into blocks that contain Θ(log2 n)
consecutive segments from L′(u). Every set subset(j, L′(u)) for j = 0, 1, . . . ,H contains one element
from every block (except for probably the last block in L′(u)). Finally we divide each subset(j, L′(u))
into chunks of size Θ(2j log n). We maintain sets subset(t, j, L(u)) for t = 1, 2, . . . , 2j so that every
subset(t, j, L′(u)) contains one segment for each chunk of subset(j, L′(u)) (except for, probably, the last
chunk).

We say that u is a j-descendant of v if the distance from v to u equals j and v is an ancestor of
u. We assign a unique index index(v, u) ∈ [1, O(2j)] to every j-descendant of v. Let sample(u) =
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⋃
w subset(jw, index(w, u), L′(w)) where the union is over all ancestors w of u and jw is the distance

from w to u. Thus sample(u) contains every (2jw · polylog(n))-th element from every ancestor list
L(w) (including also every polylog(n)-th element from the list L(u)). We set L+(u) = sample(u) ∪
sample(par(u)). Sets sample(u1) and sample(u2) do not intersect for any two different nodes u1 and
u2. There are O(2 log5 n) segments in subset(t1, j − 1, L(u)) between any two consecutive elements of
subset(t2, j, L(u)) for any t1 and t2. Hence there are polylog(n) segments from sample(par(u)) between
any two elements of sample(u) and there are polylog(n) elements of L(par(u)) between any two elements
of sample(par(u)). By the same argument there are polylog(n) segments from L+(par(u)) between any
two elements of L+(u). Hence we can organize the search in lists L+(u) and L(u) in the same way as in
Section 2.2.

We will say that segments in L′(u) ∩ L(u) are special segments and segments in L(u) \ L′(u) are
regular segments. Only special segments can be potentially used as bridges. Deletions of special segments
are handled in a different way: a deleted special segment s is kept in L(u) until its group is rebuilt; deleted
segments are called phantom segments. We maintain sizes of groups by running the following iterative
process in the background. At the beginning of each iteration, we select the smallest group of size at most
2 log3 n and merge it with one of its neighbor groups; the resulting group is split into two equal size groups
if its size exceeds 7 log3 n. We also select the largest group of size at least 7 log3 n and split it into two
groups of equal size. When a group is re-built, we select its middle segment sm as the special segment and
insert it into L′(u). The old special segment so is removed from L′(u). If so is marked as deleted, we also
remove so from L(u); otherwise we keep so in L(u) but handle it as a regular segment. If so was stored
in some subset(j, L′(u)), we insert sm into subset(j, L′(u)). If so was stored in subset(t, j, L′(u)), we
insert sm into subset(t, j, L′(u)) and into the list L+

(w) for some j-descendant w of u. An insertion into
subset(j, L′(u)) or subset(t, j, L′(u)) takes O(log n) time. An insertion into L+

(w) takes O(log2 n) time,
as will be shown later in this section. We also take care that the special segment is neither the first nor the
last segment in its group. Letmj denote the number of segments deleted from the groupGj since the special
segment in Gj was chosen. At the beginning of each iteration we find the group Gj with the highest value
of mj . We select the middle segment of Gj as the new special segment and remove the old special segment
so from L′(u) (if so was marked as deleted, we also remove it from L(u)).

We will show below that every iteration takes up to O(log2 n) time. Its cost is distributed among
O(log2 n) following updates of L(u). It can be shown that the size of any group in L(u) is never less
than log3 n and never larger than 8 log3 n: let di = max(0, ni − 7 log3 n) where ni is the number of seg-
ments in the i-th group. During each iteration we select the group Gj with the highest dj and set dj = 0. By
Theorem 5 in [17], di ≤ O(log2 n · hn) where hn is the n-th harmonic number. We can choose constants
so that di ≤ log3 n/2. Hence ni never exceeds 71

2 log3 n. By the same argument, ni ≥ 3
2 log3 n and the

number of segments deleted from a group Gi since its special segment was chosen is at most log3 n/2. We
can maintain the sizes of blocks in L′(u)) in the same way.

Background processes that maintain sizes of chunks in subset(j, L′(u)) also use the same approach. For
every j such that 0 ≤ j ≤ H and every subset(j, L′(u)), we select the largest chunk in subset(j, L′(u))
of size at least 7 · 2j log n and split it into two chunks. We also select the smallest chunk of size at most
2 · 2j log n and merge it with one of its neighbor chunks. When a chunk is split into two chunks, we must
insert one new segment of subset(j, L′(u)) into subset(t, j, L′(u)) for t = 1, . . . , 2j ; a segment inserted
into subset(t, j, L′(u)) is also inserted into L+

(v) where v is a j-descendant of u with index(u, v) = t.
The cost of splitting a chunk is distributed among (at most) 2j log3 n updates of L(u) (or 2j updates of
subset(j, L′(u))). During every iteration of the background process, we spend O(log2 n) time on split-
ting a chunk of subset(j, L′(u)) for j = 0, . . . ,H . We consider the chunk C of subset(j, L′(u)) that is
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currently being split and identify the next segment s ∈ subset(j, L′(u)) that must be inserted into some
subset(t, j.L′(u)). We insert s into subset(t, j, L′(u)) in O(log n) time. Then, we also insert s into L+

(w)
for a j-descendant w of u, such that index(u,w) = t . However, segments from different ancestors of w
must be inserted into L+

(w) and insertion costs are distributed among updates; therefore we must order
insertions into L+

(w) that originate in different ancestors. To this end, we use a queue Qw to schedule
insertions into L+

(w); an insertion of s via Qw is guaranteed to be finished in O(log2 n) time. When a
segment s is inserted, we set j = (j+ 1)mod(H + 1) and spend O(log2 n) time on subset(j, L′(u)) for the
new value of j. The cost of merging chunks is distributed among updates of L(u) in a similar way: when
two chunks are merged, we remove one segment from every subset(t, j, L′(u)) and from a list L+(v) for
every j-descendant v of u.

At any moment of time there are O(1) elements of L(u) that must be inserted into lists L+
(v) for some

descendants v of u. Elements from different ancestors of v are inserted into L+
(v). In order to organize

and order insertions from different ancestors, we associate a queue of segments Qv with every node v.
Qv contains segments that are stored in ancestors of v and are scheduled to be inserted into L+

(v). All
insertions of bridge elements into L+

(v) are executed via Qv. We guarantee that every element e ∈ L(u)

that is added to Qv will be inserted into L+
(v) during O(log2 n) following updates of L(u) and O(log2 n)

following updates of L(v). Segments in Qv are inserted into L+
(v) in the same order as they are inserted

into Qv. The queue processing procedure extracts the first segment from the queue and finds its position
in L+

(v). At any moment of time, there are O(1) queues that contain elements of L(u). Every time when
L(u) is updated we spend O(1) time on processing each queue Qv that contains a segment from L(u). We
also spend O(1) time on processing a queue Qv every time when the list L(v) is updated. Every element
of Qv is processed in O(log n) time. An element of L(u) is inserted into Qv at most once per Θ(log2 n)

updates of L(u). Insertions into Qv can be also initiated by updates of L+
(v) that will be described in

Section 3.6.2, but we execute at most H insertions into Qv per Θ(log2 n) insertions into L+
(v). Hence the

queue Qv always contains O(log n) segments.
Our method satisfies the following conditions: (i) for log2 n insertions into L(u) there is at most one

insertion into L′(u) (ii) there is always at least one regular segment s3 ∈ L(u) between any two consecutive
special segments s1 and s2 from L′(u) (iii) each segment s ∈ L(u) is stored in at most two lists L+(v) and
L+(par(v)) for some descendant v of u.

3.6.2 Updates and Queries

Updates. We insert one segment into L+(u) \ L(u) for log2 n insertions into L(w) for an ancestor w of
u. Every real segment (including bridges) intersects at most H phantom bridge segments: there is always a
real segment sb ∈ L(w) between any two bridge segments s1 ∈ L(w) ∩ L+(u) and s2 ∈ L(w) ∩ L+(u).
Therefore a real segment s cannot intersect two bridge segments s1 ∈ L(w)∩L+(u) and s2 ∈ L(w)∩L+(u)
for the same ancestor w of u. Since u has at most H ancestors, s intersects at most H phantom bridges.

Now we show how the number of segments that intersect a phantom segment can be bounded. Every
real segment s ∈ L+(u) intersects at most H consecutive phantom bridges. We divide phantom bridges in
the list L+

(u) into blocks, so that a block contains between H and 2H phantom segments. Using standard
techniques, we can maintain phantom blocks under insertions and deletions by splitting and merging blocks.
We associate weight(B) with every block B; weight(B) is equal to the maximal number of segments that
intersect a phantom segment s ∈ B. When we initiate the process of insertion of some segment s intoL+

(u),
s is a real segment and can intersect at most H phantom segments. Hence an insertion of a segment s into
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L
+

(u) increments weight(B) by 1 for at most two blocks B. After every series of log2 n insertions into
L(u) we identify a block B of maximal weight and replace all phantom segments in B with real segments.
Insertions of new bridge segments are executed using a queue Qu described in Section 3.6.1. The cost of
replacing segments can be distributed among log2 n following updates of L(u) or one of its ancestors. It
can be shown that the maximal weight of a block does not exceed log3 n. Hence every phantom segment is
intersected by at most log3 n real segments.

When a segment s ∈ L(u) is deleted, we simply remove it from L(u). If s is used as a bridge in
some descendant v of u, we mark s as deleted and keep a copy of s in L(u) as described above. When
s ∈ L+(u) \ L(u) is deleted, we mark s as deleted.

Queries. To find a segment directly above a query point q, we visit the leaf that contains the successor of
qx, where qx is the x-coordinate of q, and all its ancestors. In each visited node we find the segment su that
is directly above q in L(u) as follows.

First, we search in L+
(u) for the lowest segment s1 ∈ L

+
(u) that is above q. The search procedure is

terminated when s1 is found or when the search fails. We say that a search fails if we find two segments s1
and s2 such that s1 precedes s2 in L+

(u), but s1 is above q and s2 is below q. We find the first segment
s3 ∈ L(u) ∩ L+

(u) that follows s1 in L+
(u). Since a phantom segment is intersected by at most log3 n

segments, we need to search O(log3 n) segments in the neighborhood of s3 in order to find the successor
s4 of q in L(u) ∩ L+

(u). Since L+
(u) contains every log2 n-th segment of L(u), we only need to search

in O(log2 n) neighborhood of s4 in order to find su. We can find s4 and su in O(log log n) time by finger
search. When s4 is found, we identify the bridge segment s5 that precedes s4 in L(u); s5 can be found in
O(log log n) time using a union-split-find data structure.

Consider the position of s5 in L+
(par(u)). Although s5 can be a phantom bridge, s5 is intersected

by at most H other bridges. We set u = par(u) and s1 = s5. Then we find the segment s4 that is the
successor of q in L(u) and the new bridge s5 that precedes s4 in L(u) as described above. The segment s4 is
within Hpolylog(n) segments in the neighborhood of s1; hence s4 can be found in O(log log n) time. The
segment s5 is computed in O(log log n) time using a union-split-find data structure. The same procedure is
then repeated in all nodes u. The total query time is O(log n+H log logn).

Applying this technique to all our data structures implies:

Theorem 3.7 We can modify the data structures in Theorems 3.3, 3.4, and 3.5 so that all bounds are deter-
ministic worst-case bounds.

3.7 Trade-Off III

We can decrease the deletion time of the first trade-off if standard (log n)-bit word RAM operations are
allowed and update procedures use randomization. Our starting point is the data structure described in
Section 3.3. To simplify the notation, we omit the subscripts when they are clear from the context. Let vL,
vR, πL, and πR be defined as in Section 2.1. All occurrences of a segment s in lists L(·) can be divided into
three groups: (1) Occurrences of s stored in the children of w, where w is the lowest common ancestor of
vL and vR. These occurrences are colored with a special color “M” and will be called middle occurrences.
(2) Occurrences of s stored in the nodes u ∈ πR and their left siblings; these occurrences will be called left
occurrences. (3) Occurrences of s stored in the nodes u ∈ πL and their right siblings; these occurrences will
be called right occurrences. We will describe below how queries and updates on middle and left occurrences
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are supported. Right occurrences are symmetric to left occurrences. To answer a query q we find the segment
immediately above q among middle, left, and right occurrences. The answer is the lowest of three segments.

Middle occurrences are kept in the same data structures as described in Section 3.3. Every segment
s occurs O(b) times as a middle segment and is stored in O(b) structures L(u). When a new segment is
inserted, we insert it intoO(b) lists containing “M”-colored segments inO(b log n) time. When s is deleted,
we can remove it from all “M”-lists and all fractional cascading structures in O(b log log n) time.

Left occurrences are stored as follows. We associate a tree Tu to each node u of the global tree T .
Leaves of Tu correspond to children ui of u and each internal node has Θ(log log n)ε

′
) children for an

arbitrary constant ε′ > 0. We keep lists V (v) in every node v of Tu. V (v) contains all segments s such
that s covers all leaf descendants of v but does not cover at least one leaf in the subtree of par(v). Our
data structure uses two level of fractional cascading. For every tree Tu we keep augmented lists V +(v).
V +(v) are obtained from lists V (ν) in the same way as L+(u) are obtained from lists L(u), V +(v) =
sample ′(V (v)) ∪ sample ′(V +(par(v)), but sample ′(A) contains every (log log n)3-th element from the
set A. For children ui of u, we set L′(ui) = V +(ui). Using the same techniques as described in previous
sections, we can maintain fractional cascading data structure on sets L′(u) for all u ∈ T . We also keep
the data structure R(u) described by Arge et al. [1] in each tree Tu: for any two segments s1 and s2 from⋃
v∈Tu V (v) and for any node ν ∈ Tu, we can identify some segment s′ ∈ V (ν) situated between s1 and

s2 (or report that no such s′ exists) in O(log log log n) time. Updates of R(u) are supported in O(log log n)
time.

To answer a query, we visit all nodes u ∈ πR and find segments sl(u) and su(u) that precede and
succeed the query point q in L′(u) for every u ∈ πr. Let u0 be a node on πR and let u be the parent of
u. We examine all internal nodes ν on the path from u0 to the root of Tu. In each ν we find a segment
s′ between sl(u) and su(u). If s′ exists we search in the (log log n)-neighborhood of s′ for segments that
precede and follow q in V +(ν). We update sl(u) and su(u) accordingly and proceed in the parent of ν. The
search in Tu examines O(log log n/ log log log n) nodes. Finger search in V (ν) and a query on R(u) take
O(log log log n) time. Hence we spend O(log log n) time in any Tu for u ∈ πR and the total query time is
O(log n).

We keep lists L̃(u) = {S | s ∈ L(ui) for a child ui of u } in all internal nodes u and all colors ex-
cept for “M”. When a new segment is inserted we find its position in O(H) lists L̃i(u) as described in
Section 3.3. For every node u, we identify children ui of u covered by the new segment s and nodes
ν ∈ Tu in which s must be stored. Since every V (ν) is a subset of L̃(u), we can find the position
of s in each V (ν) in O(log log n) time using a union-split-find data structure. We also update the data
structure R(u). Since s is kept in O((log logn)1+ε

′
) nodes of Tu, updates of union-split-find data struc-

tures and R(u) take O((log logn)2+2ε′) time. Auxiliary data structures in all nodes u are updated in
O(logb n(log log n)2+2ε′) time. We need O(log1+ε n) time to find the position of s in all L̃i(u). Hence
the total insertion time is O(log1+ε n). Deletions are symmetric, but we do not have to find the position of s
in lists L̃i(u). Hence the total deletion time is O(logb n(log log n)2+2ε′). By setting ε′ = ε/2, the deletion
time is O(log n(log log n)1+ε).

We describe a derandomized variant of the data structure R(u). We divide the segments of L′(u) into
blocks of size Θ(log2 n). Let m be the number of segments in L′(u). Using the labeling scheme of
Willard [34], we can assign positive integer labels lab(G) ∈ [1, O(m/ log2 n)] to every block G. Given
two segments s1 and s2 from the same block G and a node ν ∈ Tu, we can identify a segment s ∈ V (ν)
or report that there is no such s. A data structure that supports such queries and updates on G in O(1) time
can be implemented using standard bit operations. Furthermore we keep a data structure Rep(ν) in every
ν ∈ Tu. Rep(ν) contains block labels of all segments in V (ν). For any two labels l1 and l2, Rep(ν) can find
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a segment s′ from a block G′ such that l1 ≤ lab(G′) ≤ l2 or determine that no such s′ ∈ V (ν) exists. We
implement Rep(ν) using the one-dimensional reporting data structure of Mortensen et al. [24]. Their data
structure uses dynamic dictionaries over a universe of size U . These dynamic dictionaries use linear space
and rely on randomized update procedures. In our modified data structure we implement dictionaries using
bit vectors. Hence the space usage of Rep(ν) is O(m/ log2 n) (to be compared with O(|V (v)|) space used
by the original data structure of Mortensen et al. [24]), but the update procedures are deterministic. A query
on R(u) is answered as follows. Given two segments s1 ∈ L(u) and s2 ∈ L(u) and a node ν ∈ Tu, we can
find their groups G1 3 s1 and G2 3 s2. We check if there is a segment s′ ∈ G1 ∩V (ν) such that s′ is above
s1 or s′ ∈ G2 ∩ V (ν) such that s′ is below s2. If there is no such s′ we look for a segment s′ such that the
label of its block is in [lab(G1) + 1, lab(G2)− 1].

Theorem 3.8 There is an O(n)-space data structure that supports vertical ray shooting queries on a dy-
namic set of n non-intersecting segments in O(log n) worst-case time and support insertions and deletions
of segments in O(log1+ε n) and O(log n(log log n)1+ε) worst-case time respectively for any constant ε > 0
in the RAM model.

4 An Alternative Recursive Approach

Let S be a set of at most N non-intersecting line segments, with x-coordinates from a static set X of size n,
with N ≥ n. We will describe how to support insertions to X later in Section 5.2.

The y-successor (resp. y-predecessor) of a point q in a set S refers to the segment in S immediately
above (resp. below) q. An elementary slab refers to a vertical slab with x-coordinates defined by two
consecutive values in X .

Let samplem(S) denote a random sample of S where each element is selected independently with prob-
ability 1/m. Note that inside any elementary slab, two consecutive elements of samplem(S) are separated
by O((|S|/m) logN) elements of S w.h.p.

To obtain a recursive solution, we need the right interface. The key is to define the following version of
the query problem for some sufficiently large constant c:

(∗) Given a query point q and the y-successor s0 of q in samplenc(S), find the y-successor and y-
predecessor of q in S.

At the beginning, N = O(n) and samplenc(S) has subconstant expected size, so s0 is trivially known.

4.1 Data Structure

We divide the plane into
√
n vertical slabs σ1, . . . , σ√n, each with

√
n x-coordinates from X . For each

segment s ∈ S that is not completely inside any σi, we divide s into three subsegments: the left (resp. right)
subsegment refers to the portion of s in the slab containing the left (resp. right) endpoint, and the middle
subsegment refers to the remaining portion of s.

1. Let Li (resp. Ri) be the set of all left (resp. right) subsegments of S inside σi. We recursively build a
data structure for each Li and Ri.

2. Let M be the set of all middle subsegments of S. We recursively build a data structure for M , wich
has
√
n possible x-coordinates.
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3. Let Si be the subset of segments of S that are completely inside σi. We recursively build a data
structure for each subset Si, which has

√
n possible x-coordinates.

4. For each elementary slab inside σi, we maintain finger search trees [21] for the y-ordered lists
samplenc/2(Li), samplenc/2(Ri), samplenc/2(M), and samplenc/2(Si), and also van Emde Boas
or union-split-find structures [22] to support O(log logN)-time predecessor/successor search in a list
for query elements from another list. The total expected space over all O(n) elementary slabs is
O((N/nc/2) · n) = o(N).

Notice that in each recursive subproblem in step 1, the input set is 1-sided, i.e., the left or right endpoints
of all segments have a common x-coordinate. In the case when S is 1-sided, then one of Li and Ri is
empty, M is 1-sided, and Si is empty. When S is 1-sided, the segments can be globally y-ordered and we
additionally keep van Emde Boas structures to support O(log logN)-time predecessor/successor search in
each list Li or Ri, and M , for query elements from S.

In the base case n = 2, we just maintain S in a finger search tree.

4.2 Query Algorithm

To solve the query problem (∗) for a given point q and segment s0:

1. Suppose that q is in σi. We first find the y-successors of s0 in samplenc/2(Li), samplenc/2(Ri),
samplenc/2(M), and samplenc/2(Si) in the elementary slab containing q, using the union-split-find
structures, which costO(log logN) time. Using these results as fingers, we then find the y-successors
of q in samplenc/2(Li), samplenc/2(Ri), samplenc/2(M), and samplenc/2(Si), by finger search in
O(log(nc logN)) = O(log n + log logN) time w.h.p., since there are O(nc logN) elements of S
between q and s0.

2. We recursively query the data structure for Li and Ri.

3. We recursively query the data structure for M .

4. We recursively query the data structure for Si, finally returning the lowest y-successor and highest
y-predecessor of q found.

For the analysis, we first consider the case when S is 1-sided. Here, steps 2–4 require two recursive calls,
since one of Li and Ri is empty and Si is empty. Thus, the expected query time satisfies the recurrence

Q1(n) = 2Q1(
√
n) +O(log n+ log logN), (2)

with the base caseQ1(2) = O(log n+log logN). The total contribution of the log n term isO(log n log logn),
whereas the total contribution of the log logN term isO(log n log logN). Hence,Q1(n) = O(log n log logN).

For the general case, step 2 takes Q1(
√
n) expected time, and steps 3–4 require two recursive calls.

Thus, the expected query time satisfies the recurrence

Q(n) = 2Q(
√
n) +Q1(

√
n) +O(log n+ log logN) = 2Q(

√
n) +O(log n log logN), (3)

with the base caseQ(2) = O(log n+log logN). Hence,Q(n) = O(log n log log n log logN) = O(log n(log logN)2).
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4.3 Update Algorithm

To insert/delete a segment s in S:

1. We recursively insert/delete its left and right subsegments in Li and Ri.

2. We recursively insert/delete its middle subsegment in M .

3. If s is completely inside σi, we recursively insert/delete s in Si.

4. If s is in any of the lists samplenc/2(Li), samplenc/2(Ri), samplenc/2(M), and samplenc/2(Si), we
update their associated data structures for all O(n) elementary slabs in O(n logN) time.

For the analysis, we first consider the case when S is 1-sided. We assume that the position of s in in the
global y-order of S is given, which can be found by an initial binary search in O(logN) time. We can then
find the position of s in Li or Ri, and M , in O(log logN) time. Since one of Li and Ri is empty and Si is
empty, steps 1–3 require two recursive calls. Step 4 is done with probability O(1/nc/2) and so has expected
cost O((1/nc/2) · n logN) = o(logN) for a sufficiently large constant c. Thus, the expected update time,
excluding the initial binary search, satisfies the recurrence

U1(n) = 2U1(
√
n) +O(log logN), (4)

with the base case U1(2) = O(1). Hence, U1(n) = O(log n log logN).
For the general case, step 1 takes O(logN) + 2U1(

√
n) expected time, steps 2–3 require only one

recursive call, since s can contribute to M or Si but not both, and step 4 has expected cost O((1/nc/2) ·
n logN) = o(logN). Thus, the expected update time satisfies the recurrence

U(n) = U(
√
n) + 2U1(

√
n) +O(logN) = U(

√
n) +O(log n log logN + logN), (5)

with the base case U(2) = O(1). The total contribution of the log n log logN term is O(log n log logN),
whereas the total contribution of the logN term isO(logN log logN). Hence, U(n) = O(log n log logN).
We have therefore reproved Theorem 2.1.

5 Refinements of the Recursive Approach

5.1 Improving the Query Time

We now describe a modification of our method in Section 4 to remove one log logN factor from the query
time. The improvement comes from the 1-sided case. We first need a subroutine for a decision version of
the 1-sided problem:

Lemma 5.1 We can maintain a setZ ofO(N) non-intersecting 1-sided segments with n distinct x-coordinates,
and a subset S of Z, so that given any two segments s, s′ ∈ Z and a value qx, we can decide whether there
exists a segment in S between s and s′ at x-coordinate qx in Q1-decis(n) = O(log n+ log logN) time in the
RAM model. An update to S or Z takes U1-decis(n) = O(log n + log logN) time, given the position of the
segment being updated in the global y-order of Z.
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Proof : Suppose that all left endpoints have a common x-coordinate. Map each segment s ∈ Z to a point
(sx, sy) where sx is the x-coordinate of the right endpoint and sy is the y-coordinate of the left endpoint.
Then the problem reduces to 3-sided orthogonal range emptiness: deciding whether [qx,∞) × (sy, s

′
y)

contains a point from the image of S.
This problem can be solved using a dynamic priority search tree (e.g., [12]), which has O(logN) query

and update time, but we want better time bounds that depend on the number n of distinct x-coordinates.
The problem can alternatively be solved using a dynamic range tree with fractional cascading [22], which
achievesO(log n log logN) query and update time. To remove the extra log logN factor, we can use a range
tree with a larger fan-out wε, where w = logN is the word size—various such structures for orthogonal
problems have been proposed by several researchers [6, 19, 23] using generalized union-split-find structures.
These techniques improve the query and update time to O((logw n+ 1) log logN) = O(log n+ log logN)
as desired on the RAM. �

For our data structure, when S is 1-sided, we include the auxiliary structure from Lemma 5.1 for Li or
Ri, and M .

For the query algorithm, when S is 1-sided, we adapt a randomized search technique by Chan [7]: We
imagine expanding the recursion for some constant c0 number of levels, giving rise toC = 2c0 subproblems,
each with n1/C x-coordinates, caused by steps 2 and 3. We randomly permute the order in which we perform
these K subproblems (since these subproblems can be executed in any order). In step 2, we perform the
recursive call only if there exists a segment of Li or Ri between s and s′, where s is the current lowest
y-successor of q and s′ is the current highest y-predecessor of q found so far—a condition testable by
Lemma 5.1. In step 3, we proceed similarly. For the i-th subproblem considered (i = 1, . . . , C), we thus
need the recursive call only if its y-successor is the lowest of the y-successors among the first i subproblems,
or its y-predecessor is the lowest of the y-predecessors among the first i subproblems—this holds with
probability at most 2/i. Hence, the expected number of recursive calls is at most

∑C
i=1 2/i = O(logC).

The recurrence (2) for the expected query time in the 1-sided case then improves to

Q1(n) = O(logC)Q1(n
1/C) + C Q1-decis(n

1/C) +O(log n+ log logN)

= O(logC)Q1(n
1/C) +O(C(log n+ log logN)),

which solves to Q1(n) = O(log n + logε n log logN) for a sufficiently large constant C. The recurrence
(3) in the general case is now

Q(n) = 2Q(
√
n) +O(log n+ logε n log logN),

which solves to Q(n) = O(log n log log n+ log n log logN) = O(log n log logN).
For the update time, the recurrence (4) for the 1-sided case is now

U1(n) = 2U1(
√
n) + 2U1-decis(

√
n) +O(log logN) = 2U1(

√
n) +O(log n+ log logN), (6)

which solves to U1(n) = O(log n log logn+ log n log logN) = O(log n log logN), exactly as before. So,
for the general case, the same recurrence (5) still gives U(n) = O(log n log logN).

Theorem 5.2 There is a data structure that supports vertical ray shooting queries on a dynamic set of
n non-intersecting segments in O(log n log logn) expected time and support insertions and deletions of
segments in O(log n log logn) expected time in the RAM model, assuming that all x-coordinates are from a
static set X of size O(n).
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5.2 Dynamizing X

Before discussing how to support insertions to X , we first discuss the preprocessing time for our data
structure, which is trivially bounded by O(N · U(n)) = O(N log n log logN).

In the 1-sided case, we can reduce the preprocessing time by a standard blocking technique [3]. Sup-
pose that all left endpoints have a common x-coordinate. We divide the y-ordered list S of segments into
O(N/B) blocks of size Θ(B) with B = log2N , and maintain a subset S′ containing the segment with the
rightmost right endpoint in each block. Then S′ has size O(N/B). We maintain our data structure for S′,
which has O((N/B) log n log logN) = o(N) preprocessing time. Each block can be kept in a naive data
structure with O(logO(1)B) = O(log logN) query and update time and linear preprocessing time. The
total preprocessing time is O(N), given the global y-order of S.

To answer a query, we answer the query for S′ and then search in the blocks containing these answers
and their neighboring blocks, with additional O(log logN) time. (Technically, we also need to use s0 to
first find the y-successor of q in S′ in sample(n/B)c(S

′), but this is similar to step 1 of our query algorithm,
requiring O(log n+ log logN) time by finger search and union-split-find structures.)

For the general case, we can speed up the preprocessing algorithm by pre-computing a topological order
of S, with the property that if s is below s′ at some vertical line, s appears before s′; this takes O(N logN)
time [29]. Afterwards, the preprocessing time is linear excluding the recursion to M and the Si’s. Each
segment either contributes to M or an Si, but not both. As the recursion has O(log log n) levels, the total
expected preprocessing time is O(N logN +N log logn) = O(N logN).

Now, to support insertions of new x-values to the set X , we apply standard techniques (for example,
found in weight-balanced B-trees [2]). We require that each value in X is the x-coordinate of O(N/n)
endpoints in S. When dividing into Θ(

√
n) slabs, we maintain that each slab σi has Θ(N/

√
n) endpoints.

(Replacing
√
n with Θ(

√
n) in the recurrences does not affect their solutions.) In inserting a value to X ,

when this invariant is violated, we split σi into two slabs and rebuild the data structure for the portion of the
segments inside the slabs, by our preceding preprocessing algorithm. This requires O(N/

√
n) time in the

1-sided case, and O((N/
√
n) logN) time in the general case, but is done O(

√
n) times over N segment

updates. Thus, the extra amortized cost per segment update is O(1) for the 1-sided case, and O(logN) for
the general case. Furthermore, each insertion to X causes rebuilding of structures associated with O(1)
elementary slabs, which requires O((N/nc/2) logN) time but is done O(n) times over N segment updates.
Thus, the extra amortized expected cost per segment update is o(1). Adding an O(1) term to (4) or (6) and
an O(logN) term to (5) does not change the recurrences of the update time.

When n is increased or decreased by a factor of 2, we can rebuild the entire data structure from scratch.
(All this can be deamortized with more effort.)

5.3 Other Issues

The space usage of the data structure in Theorem 5.2 can be immediately reduced to O(n) by the general
technique from Section 3.2. We conclude:

Theorem 5.3 There is an O(n)-expected-space data structure that supports vertical ray shooting queries
on a dynamic set of n non-intersecting segments in O(log n log logn) expected time and support insertions
and deletions of segments in O(log n log logn) expected time in the RAM model.

It is unclear how to implement the improved query algorithm in the pointer machine model, because
(logN)-bit word RAM operations are needed in Lemma 5.1 (and also in the known dynamic data struc-
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ture for horizontal segments used for the space-reduction part in Section 3.2). It is also unclear how to
derandomize the randomized search used in the improved query algorithm.

6 Final Remarks

Our method can be immediately generalized to handle non-intersecting x-monotone curve segments.
Removing all the log logn factors in the query and update time of our main result remains very chal-

lenging. It is not clear how to remove them even in terms of decision tree complexity, i.e., counting only the
number of comparisons of input x-coordinates and point–segment comparisons, and not the cost of other
operations. In the comparison model, Ω(log n) is a lower bound on the query cost, and by standard argu-
ments in one dimension, Ω(log n) is a lower bound on the update cost for any data structure with o(n1−ε)
query cost, at least for vertical ray shooting for general non-intersecting segments. However, we are not sure
if Ω(log n) is a lower bound on the update cost for point location in connected subdivisions.

Certain dynamic data structures for planar point location can be adapted to yield static data structures
for three-dimensional point location in a convex subdivision [20, 31]. However, our method does not appear
to have any implication to the three-dimensional problem, where finding a near-linear-space data structure
with near-logarithmic query time remains open.

It is unclear how to solve the dynamic point location problem for subdivisions that are not connected,
in particular, how to test whether two query points are in the same face when faces may have holes. The
unresolved issue here (mentioned in [12]) concerns how to test whether two edges are part of the same face.
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